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ABSTRACT 

In modern drug discovery, lead discovery is a term used to describe the overall process 

from hit discovery to lead optimisation, with the goal being to identify drug candidates. 

This can be greatly facilitated by the use of computer-aided (or in silico) techniques, 

which can reduce experimentation costs along the drug discovery pipeline. The range of 

relevant techniques include: molecular modelling to obtain structural information, 

molecular dynamics (which will be covered in Chapter 2), activity or property prediction 

by means of quantitative structure activity/property relationship models (QSAR/QSPR), 

where machine learning techniques are introduced (to be covered in Chapter 1) and 

quantum chemistry, used to explain chemical structure, properties and reactivity.  

This thesis is divided into five parts. Chapter 1 starts with an outline of the early stages 

of drug discovery; introducing the use of virtual screening for hit and lead identification. 

Such approaches may roughly be divided into structure-based (docking, by far the most 

often referred to) and ligand-based, leading to a set of promising compounds for further 

evaluation. Then, the use of machine learning techniques, the issue of which will be 

frequently encountered, followed by a brief review of the "no free lunch" theorem, that 

describes how no learning algorithm can perform optimally on all problems. This 

implies that validation of predictive accuracy in multiple models is required for optimal 

model selection. As the dimensionality of the feature space increases, the issue referred 

to as "the curse of dimensionality" becomes a challenge. In closing, the last sections 

focus on supervised classification Random Forests. Computer-based analyses are an 

integral part of drug discovery. 

Chapter 2 begins with discussions of molecular docking; including strategies 

incorporating protein flexibility at global and local levels, then a specific focus on an 

automated docking program – AutoDock, which uses a Lamarckian genetic algorithm 

and empirical binding free energy function. In the second part of the chapter, a brief 

introduction of molecular dynamics will be given. 

Chapter 3 describes how we constructed a dataset of known binding sites with co-

crystallised ligands, used to extract features characterising the structural and chemical 

properties of the binding pocket. A machine learning algorithm was adopted to create a 

three-way predictive model, capable of assigning each case to one of the classes (regular, 

orthosteric and allosteric) for in silico selection of allosteric sites, and by a feature 

selection algorithm (Gini) to rationalize the selection of important descriptors, most 

influential in classifying the binding pockets. 



 

 

In Chapter 4, we made use of structure-based virtual screening, and we focused on 

docking a fluorescent sensor to a non-canonical DNA quadruplex structure. The 

preferred binding poses, binding site, and the interactions are scored, followed by 

application of an ONIOM model to re-score the binding poses of some DNA-ligand 

complexes, focusing on only the best pose (with the lowest binding energy) from 

AutoDock. The use of a pre-generated conformational ensemble using MD to account for 

the receptors' flexibility followed by docking methods are termed “relaxed complex” 

schemes. 

Chapter 5 concerns the BLUF domain photocycle. We will be focused on conformational 

preference of some critical residues in the flavin binding site after a charge 

redistribution has been introduced. This work provides another activation model to 

address controversial features of the BLUF domain. 
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CHAPTER 1. Theory of Chemoinformatics Methods 

Computer-aided drug design (CADD) is a relatively time saving yet cost effective 

procedure. This is the term generally referring to the use of computational tools and 

resources that help identify potential lead candidates in the drug discovery process. At 

the early stage of drug discovery, an ensemble of computer-based methods known as 

virtual (compound) screening (VS) methods, also referred to as in-silico screening, are 

emerging as an efficient approach to screen large compound databases. These methods 

aim to identify compounds with a higher probability of binding to a given target, 

analogously to the role of high-throughput screening (HTS) in experiments. [1] Later in 

the drug discovery process, different VS methods are developed as a means to narrow 

down the size of databases or libraries to be screened for hits or leads, such as to discard 

compounds which are not drug-like (i.e. do not adhere to measures such as Lipinski’s 

Rule of Five) and those that are likely to have poor ADME (absorption, distribution, 

metabolism and excretion) and toxicity properties, thereby reducing the cost of in vitro 

research for synthesis or assays. In general, VS methods have been shown to help in 

three ways: a) to identify new active compounds as chemical starting points, b) to 

improve the molecules as leads and c) as a filtering method used to prioritise 

compounds throughout the lead optimisation process. [2]  

 

1.1 Drug discovery 

A potential drug candidate is obtained via a costly and time consuming multi-step 

process (Figure 1), starting from target identification and validation, where validation 

refers to the process of identifying a molecular target with therapeutic benefit. The 

primary goal of this step is to identify targets that are druggable, to which small 

molecules or biologic therapeutics (e.g. antibodies known to block protein-protein 

interactions) can bind and induce a biological response. This is where data mining 

comes into the picture. One relatively cost-effective way to do this is by making use of 

genomics in combination with bioinformatics approaches [3,4] mining available sources 

from publications, patent data, clinical research and gene expression data etc. This 

identification process also helps to uncover genes whose expression is correlated with 

disease progression. Using genome sequences to identify genes responsible for coding 

target proteins allows prioritisation of the most promising potential targets, or 

identification of any genetic associations, polymorphism, or mutations making a person 

more susceptible to the disease or to the disease progression. In addition, bioinformatics 

is further used in the process of validating the putative target as relevant to treatment of 
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the disease. [5] Traditionally, the process of target validation has relied on a multi-

validation of in vitro and animal model approaches, antisense oligonucleotides which 

reversibly bind to target mRNA by inhibiting the synthesis of the target protein [6], 

antibodies or transgenic animals to confirm a phenotypic response due to lack of a given 

gene. [7] 

Target identification and validation have given rise to the term chemical genomics (or 

chemogenomics) [8], where the aim is to extend chemical genetics to the genomic scale. 

By analogy to classical genetics, chemical genomics uses small molecules (‘chemical’) to 

elucidate biological processes in which its effects are equivalent to mutations in classical 

genetics. [9] In practice, chemical genomics often focuses on a class of protein targets, 

allowing screenings to be performed in parallel. In “reverse” chemical genomics, 

libraries of small molecules are tested for their ability to specifically modulate a target of 

interest (from protein to phenotype), akin to the high-throughput screening (HTS) 

process (covered in the next paragraph), and thereby knowledge gained from 

informatics and data mining tools will help to identify tool molecules that can be used to 

validate the therapeutic hypothesis of a given drug target during the target validation 

process. In contrast to “forward” chemical genomics, the active compounds that produce 

a desired phenotypic change are identified from screening of any pool of compounds so 

as to discover a target (from phenotype to protein) in which no prior knowledge of the 

target is assumed. [10]  

Once a validated target has been chosen, the next step involves compound screening 

using either in vitro or in silico based methods to identify "hits" in a screen of a library 

for compounds having the desired activity at the target of interest. In vitro assays are 

either done with a biochemical or cell-based assay based upon agreed selection criteria. 

A miniaturised and automated process, high throughput screening (HTS), has been 

employed since the 1980s [2] at the hit discovery stage, whereby large numbers of 

compounds are assayed against the target in a time-efficient manner. Focused or 

knowledge-based screening [11] is commonly adopted when the knowledge of the target 

structure and the binding site location from literature, from the constructed 

pharmacophores, molecular modelling, or from patent precedents is available to be used 

as the basis for a smaller subset consisting of compounds having desired chemical 

features. [12] There are other compound screens, such as fragment screening which uses 

libraries of smaller compounds or fragments, and tissue-based screens which look for 

desired in vivo effects, etc. 

Often, the whole screening process can be broken down into two stages: 1) the primary 

screen, in which the activities of compounds are measured at a single concentration 
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(single-dose screen) to yield "primary hits", and 2) the secondary screen, where the 

most active compounds are re-tested to confirm their activity. This activity can be 

further confirmed in follow-up screens. [13] High-throughput screening methods have a 

certain rate of false positive and false negative results occurring for a number of reasons: 

the causes of poor solubility (compound precipitation in aqueous media), low purity, 

incorrect compound concentration, fluctuations in environmental factors or other 

experimental errors. False positives can generally be recognised by the follow up 

confirmation tests. However, false negatives, which occur when active compounds are 

detected as inactive, may remain undetected. [14,15] 

 

Figure 1 - Early stages of lead discovery.  

The resulting hits found through virtual screening or high-throughput screening will 

need to be refined and prioritised. Clustering based on structural similarity is frequently 

applied throughout the process to ensure that compounds of diverse chemical classes 

are selected for consequent follow-up studies. Thereafter, compounds are analysed as 

groups, which could later form the basis of a lead series of compounds which share 

similar properties. Further studies are conducted to assess dose-response for each 

chemical, to identify chemicals with desired competitive behaviour. The assay is 

conducted for each compound at multiple concentrations and then plotted against the 

resulting percent inhibition, from which the concentration required for 50% inhibition 

can be determined, giving the IC50 value as a measure of potency for each candidate 

compound. At this stage, the representatives of each cluster are characterised for 

physicochemical properties (logP, pKa, solubility etc), ADME and pharmacokinetics (PK) 

using various in vitro assays, and checked for selectivity to other related targets using 

cross screening techniques to reduce off-target effects. [16] Tissue- or cell-based models 

are used to look at the functional response exerted by the compounds in more intact 

systems, however such an approach does not really replicate the true physiological 

environment and thus has its limitations. [17] At the end of this process, the most 

promising series are selected for further studies. 
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The compounds in a hit series appear to have different potencies due to different 

chemical groups attached to the core compound structure; these are used to derive 

structure-activity relationships (SAR) which can be used to identify substructures that 

may contribute to the activities. From a practical point of view, this step includes 

assessing whether compound series can be synthesised in parallel and thus allow a 

diverse set to be generated. Confirmed hits with biological activity predicted from a 

preconstructed SAR are termed "leads", from which researchers hope eventually to 

develop drug candidates. Following hit identification, this stage of the drug development 

process is known as "hit-to-lead", with the goal being to optimise the hits to yield 

compounds with improved potency and selectivity. [15] Leads are compounds that, in 

addition to their promising activity, should have the potential to be further developed 

from their relatively simple features, belong to a well-defined SAR series, possess the 

desired ADME properties, and have the potential to be patented. [20] 

Studies of SAR are useful to establish biological activity for each hit and to determine 

potential structural modifications of a lead to increase its potency and selectivity. The 

purpose of SAR is to relate structural changes to changes in biological activity. Screening 

a higher number of compounds might help to identify structural features associated with 

certain properties. Structure-based drug design techniques and methodologies to gain 

structural information of the targets are able to facilitate the process of establishing 

SARs. Screening at this stage provides reports on the activity of the compounds and 

target selectivity profile which address the efficacy and off-target safety issues. 

Furthermore, this stage involves examining whether the compound could be active in 

primary assays to protein orthologues of other species. Consequently, animal models are 

frequently used to study the in vivo effects, pharmacodynamic (PD)/PK profiles and 

preclinical toxicity of the compounds in disease models, and in a high throughput 

fashion for detailed understanding of the physicochemical properties, including the 

solubility and permeability profile and the ADME properties. Assays are developed to 

examine if compounds can be introduced to the body orally and absorbed via the 

digestive tract, or introduced alternatively by injection directly into the bloodstream, 

and whose effects can be diminished as it is metabolised by enzymes and eliminated 

from the body. A limited number of compounds are selected for PK evaluations to study 

how a drug is processed by the body of animals. As a general principle, it is desirable for 

a candidate to be higher than 20 percent absorbed after an oral dosing, or have a half-life 

longer than 60 minutes, given an IV-injected dose; a concept known as “bioavailability”, 

which refers to the amount of a drug dose reaching to the systemic circulation (plasma). 

These values are typically dependent upon the targets. [17]  
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With the help of these assays, the initial lead compounds are selected and subjected to 

"lead optimisation" before being declared as a "drug candidate" in clinical trials. At this 

stage, further work is carried out to improve deficiencies in the lead structures while 

still maintaining their favourable properties. The process of further characterising the 

leads varies by company, but in general, the measurement and reporting of certain 

properties must be in accordance with regulatory bodies throughout the development 

process. These include the genotoxicity tests by means of in vitro (for example, Ames 

test) or in vivo testing that are used to reveal possible genetic damage done by the new 

active compounds, and others tests assess the PK/PD profiles and the PK response after 

repeated dosing. All nonclinical information gathered by the end of this stage will be 

used later, during regulatory submission for approval to test on human subjects. [17] 

 

1.1.1 Filters for Druglikeness 

As mentioned previously, in silico methods are used to predict properties of chemical 

compounds based on their structures, and the predicted results can be used to prioritise 

the compounds which best match the design criteria related to potency, selectivity, 

ADME properties, etc.; thus, to identify “leads” out of the pool of hits. Nowadays the key 

considerations of library design have changed to consider the druglikeness of members, 

rather than their size, and the diversity of the library. [18] Compounds selected for use in 

libraries usually adhere to "Lipinski's Rule of Five" which defines the following limiting 

property criteria to be satisfied as a filter for drug: a molecular weight of less than 500 

daltons, an octanol-water partition coefficient (which is a measure of lipophilicity, logP) 

of less than 5, less than 5 hydrogen donors and 10 hydrogen acceptors. These rules were 

empirically derived from existing drugs that can be administered orally.  

In general, the lead optimisation process is often accompanied by an increase in 

molecular weight and changes in logP. The lead is only used as a starting point. Because 

of this, Teague et al. [19] argued that the properties used to design a library of leads that 

will need further optimisation may be different to those for constructing a druglike 

library. Besides, a novel library design has to depend on the target, their routes of 

administration and the result of pharmacokinetics to identify proper profile. [20]  

Teague et al. [19] broadly divided the leads into three types: the leadlike, the druglike 

and the high-affinity leads; leading to developing different optimisation scenarios. The 

leadlike leads consisted of small molecules with low cLogP, typically associated with low 

affinity are to be improved by increasing the molecular weight and lipophilicity. To 
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convert high-affinity leads (mostly peptidic compounds with molecular weight > 

350Da) into drugs with good pharmacokinetic properties, involves retaining its potency 

while increasing cLogP and reducing the molecular weight. The druglike leads, on the 

other hand perhaps are the most commonly reported type of lead emerging from HTS by 

filtering the combinatorial libraries; the resulting compounds tend to have low affinity. 

(Figure 2) They proposed that using the library of leads with molecules in the molecular 

weight range 100-350 and cLogP range 1-3.0 (filters defined for leadlike leads) would 

give results superior to the molecules in the druglike leads library, allowing additional 

interactions to be explored when optimising leads. In addition, smaller molecules are 

easier to locate at the desired binding site, and also more easily adapt to enhance 

selectivity, affinity, and other properties; often achieved by introducing lipophilic groups. 

[20,21] These preferable leadlike leads, averagely speaking, have lower molecular 

weight, fewer rings and rotatable bonds and are less hydrophobic and have lower 

polarisability. [20] 

 

Figure 2 - Modified from Teague et al. [19] Classification of leads according to their 

molecular weight (Mr) and cLogP values. 

 

1.1.2 In silico Virtual Screening 

Virtual screening (VS) methods can generally be categorised depending on the 

availability of experimental data into: 1) the structure-based (SBVS) or target-based 

approaches, when the structure of the receptor is available or can be determined by 

homology modelling and 2) the ligand-based (LBVS) approaches. [1] The process of VS 

is often described by analogy to a funnel, where the compounds are filtered to exclude 

inactive molecules, or ranked based on their predicted activity as assessed using a 

computational algorithm. Ultimately, this process is expected to result in a more 

manageable set of active compounds to be tested experimentally. VS methods can be 

used as an alternative to HTS when no suitable assays are available (i.e. HTS assays 
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require adequate sensitivity in identifying modulators of the enzyme activity). 

Compared to HTS, VS is lower in cost. Also, it is not limited to physically existing 

screening libraries, allowing the access to a larger chemical space. VS does not suffer 

from experimental deficiencies (i.e. poor solubility) that interfere with the assays and its 

readout. One the other hand, the success of VS depends heavily on reliable methods to 

predict binding modes and binding affinities. [22] Alternatively, VS methods can be 

complementary to HTS in identifying new hit compounds. VS can be performed prior to 

a HTS to enrich active compounds in a library, or after a HTS, to identify false negatives. 

[23] A comparison on the performance of HTS and VS (docking) against the same target 

has been published by Doman et al. [24]. The aim was to identify potential inhibitors of 

protein-tyrosine phosphatase 1B (for treatment of diabetes). In the end, they discovered 

two distinct sets of active compounds (hits), suggesting the complementary nature of 

the two methods. 

Tanrikulu et al. [2] classified the applications of VS into classic VS, parallel VS, iterative 

VS and integrated VS on the basis of various integral strategies that exist in the 

literature. Parallel VS makes use of multiple VS techniques running in parallel (each of 

which works at its own classic VS). The resulting hits from various methods which give 

complementary results are combined, either directly or by a fusion method [25] to 

increase the true positive and reduce the false positive hits. Iterative VS applies VS 

sequentially to rounds of refinement processes at various stages of drug discovery. At 

each iteration, the in silico selected compounds and their similarities, identified at 

various threshold levels, are used as starting points. These compounds are subjected to 

in vitro evaluations where experimental results are incorporated, to improve the 

subsequent in silico model leading to the discovery of more potent hits. Integrated VS, 

which is found to be the most advanced application of VS, integrates a number of 

different validated and parameterised screening procedures into a tailor-made protocol 

for a specific compound or compound type. Subsequent to HTS results, compounds are 

re-evaluated by the VS methods and with different subsequent arrangements (so as to 

take advantage of their complementary nature), to reduce the false positive hits from in 

vitro screening [26] or to reduce the size of chemical space to be searched. [27] 

Structure-based virtual screening (SBVS) involves using a known 3D biological receptor 

structure (obtained by X-ray crystallography or NMR) or 3D model (homology 

modelling) as a template to screen for potential binders (typically a 3D representation). 

Usually this is done by employing molecular docking techniques, as an estimate of how 

likely it is that this compound will bind to the target with high affinity [28] and in an 

effort to gain information on how the ligand interacts with the receptor. The structure-

based approaches include molecular docking and scoring (which will be covered in 
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Chapter 2), molecular dynamics, pharmacophore modelling, and de novo ligand design 

methods. Since structure-based screening relies on a static structure of the target, from 

which ligand binding is modelled, the results of a screening are limited by (and to) 

fixed/rigid molecular structures. Thus, a number of strategies have been proposed to 

account for receptor flexibility (explored more in Chapter 2) in SBVS, to avoid biasing 

towards a single rigid conformation. 

Ligand-based virtual screening (LBVS) emerged during the 1980s and early 1990s and 

uses known bioactive compounds as reference molecules (usually 2D representations, 

but can be 3D representations) to extract SAR. This method allows one to search for new 

hits sharing shape and/or pharmacophore features identified as being responsible for 

the activity (to identify compounds with similar bioactivity profiles). LBVS is used when 

3D structural information on the target is not available. The “similar property principle” 

(SPP) [29], formalised by Johnson and Maggiora in 1990, provides a rationale for a 

structural similarity searching, which is what the ligand-based approach relies on. The 

principle states that similar molecules are prone to display similar biological properties. 

In contrast to LBVS, SBVS employs docking, and generally depends on structural 

complementarities between the macromolecular target and its ligand.  

However, structurally similar compounds can have distinct SARs. [30] Similarity 

searching does not consider the stereochemistry, which can affect the ability of a 

molecule to bind to a target, especially where the ability of the molecule to change 

‘shape’ is limited by strong intramolecular interaction. Consequently, ligand-based 

approaches were used for targeted (or focused) library design to select compounds from 

the initial compound collection enriched with specific properties for a target or a protein 

family based on the known target and literature (or patent precedents).  

Approaches for ligand-based screening can be divided into similarity search and 

compound classification techniques. In practice, each molecule is represented using a set 

of descriptors encoding chemical features. Traditional virtual screening efforts focus on 

similarity searching using fingerprints which are binary descriptors, or various other 

similarity descriptors (see ‘Molecular Descriptors’) to provide chemical features. It is 

these fingerprints that are compared to perform similarity measures and will produce a 

similarity score (or similarity coefficient) between pairs of molecules, from which the 

clusters are based. Compounds from the same cluster that have a high similarity 

measure value are expected to interact with proteins of the same group. [31] 

Descriptors, calculated with the aim of predicting a given property, can be defined in 

terms of a subset of the chemical space (descriptor space), where each molecule is 

represented as a point with n-descriptor dimensions. The success of similarity searching 
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is dependent upon the choice of this descriptor space. The best-defined are those 

categorised within the criteria for drug-like structures, which follow the Lipinski, the 

lead-like [20] and fragment-based [32] definitions. Such constraints help to reduce the 

chemical space, limiting the chemical space to those regions containing molecules with 

favourable (drug) properties; for instance, chemical space in which the active 

compounds reside, which is referred to as the ‘biologically relevant chemical space’. 

(Figure 3) However, not all compounds with proved activity fall within predefined limits 

or other criteria (rules). [33] Compound classification techniques, on the other hand, 

can be divided further according to the training procedure implemented, with an 

ultimate goal to predict the class label for compounds using either an unsupervised 

(clustering) or a supervised (classification) machine learning algorithm to learn 

decision rules from a training set of known compounds. Then the resulting models are 

used to predict whether a given molecule will bind to a target on the basis of 

physicochemical properties. [34,35] 

However, several limitations of ligand-based approaches are listed. Firstly, the rationale 

behind a similarity search, the similar property principle (SPP), is not always valid; in 

some cases, similar compounds have dissimilar properties. The SAR data can be 

conceptualised using an “activity landscape” model proposed by Gerald Maggiora (2006) 

[36], which is similar to geographical landscapes where the third dimension forms the 

surface of an “activity landscape” that accounts for compound biological activity, and is 

added to a 2D projection of chemical space. As such, it provides a graphical 

representation of the relationships between structural similarity and biological activity. 

SARs are distinguished by how molecules respond to structural modifications. In their 

terminology, “continuous” SARs would correspond to smooth regions or gently rolling 

hills of the structure activity landscape; the areas where gradual changes in chemical 

structure result in a small or moderate effect on biological activity, and thus which would 

make reliable predictions of activities (potency) for other similar compounds. [31] In an 

extreme case, when large changes of structure result in a very small change in activity, 

SARs are known as “flat”, and most optimization efforts on this kind of SAR are fruitless. 

[37] By contrast, rugged areas represent regions of “discontinuous” SARs, where 

“activity cliffs” are more likely to be found. In the presence of “activity cliffs” the results 

appear to be inconsistent with the concept of SPP; small changes in chemical structure 

can result in a dramatic change in biological activity, yielding models with limited 

predictive power and often leading to the failure of QSAR (Quantitative Structure-

Activity Relationship). [36] The presence of “activity cliffs” is a challenge to similarity-

based approaches since they assume a continuous SAR. “Similarity cliffs” or scaffold 

hops, which in contrast to activity cliffs, occur when structures that are dissimilar but 

exhibit similar activities. 
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To put SAR in the context of target-ligand interactions, the biological activity is the result 

of interactions between small molecules and their biological targets, and since the ligand 

binding depends on chemical (i.e. hydrogen bonding, electrostatic interactions, etc.) and 

geometrical (shape) complementarity of ligand and receptor, which enables only certain 

specific interactions to occur. The “activity cliffs”, here refer to “structure-based activity 

cliffs”, in this sense, are associated with critical interactions required for the binding, 

regardless of ligand structure and properties, leading to the concepts of the term 

“activity cliff hot spots” [38,39], which are regions or atoms in the target site directly 

involved in interactions with the ligand, associated with the formation of activity cliffs. 

[40] “Continuous SAR” regions indicate permissive binding. The binding sites are able to 

accommodate ligand variability to some extent and such a binding would require a high 

degree of shape complementarity between binding site and ligand to result different 

potential interactions. [41] Evidence shows that different SAR types coexist at the active 

site. In the case of heterogeneous SARs (also termed variable activity landscapes) this 

coexistence comprises smooth regions intersected by (rough) activity cliffs. The SAR 

analysis of activity cliffs can help to drive the ligand improvement task.  

Secondly, the relative positions of compounds in chemical space vary depending on the 

particular selection of a descriptor set defining a chemical space, and based on the 

chemical representation used to describe molecules, with the “activity landscape” 

changing accordingly. This may lead to different (chemical) neighbourhood relationships 

in chemical space. [33] The aim of similarity searching is to find similar compounds 

(neighbours) to a given query, with points close in chemical space considered to be 

similar. Such a lack of consensus in listing of similar (neighbour) compounds leads to 

inaccurate ligand similarity predictions. [31] Moreover, the use of active compounds 

used as the reference structures in similarity searches may result in limited diversity 

amongst the compounds retrieved. 

Lastly, similarity searching relies heavily on the accuracy of input data in building 

reliable models. There are, however, significant error rates observed from the chemical 

data available in the literature and public databases. [31]  
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Figure 3 - Modified from [33]. The existing compound collection contained only limited 

coverage of the biologically relevant chemical space (molecules with biological activity), 

which lead to discovery of drugs (A). Virtual screening offers opportunities to expand on 

an existing collection for a greater coverage of previously unexplored chemical space 

(dashed ellipse), where drugs are likely to be found (B).   

 

1.1.3 SAR/QSAR 

The ligand-based approach employs quantitative structure-activity relationships 

(QSAR). SAR may be designed to provide either quantitative (as in QSAR) or qualitative 

predictions, based on the relationships developed using continuous data or discrete data 

(presence or absence of a particular structural feature), respectively. It is assumed in 

QSAR models that a mathematical relationship (often a statistical correlation) can be 

found between the activity (or other relevant property) of query molecules and 

measurable or computable physico-chemical descriptors used to quantify the chemical 

structure. For this, a number of models were built to relate molecular descriptors to 

biological activity with the objective to firstly, predict properties for untested data, 

secondly, to select compounds to be prioritised for synthesis or screening, and thirdly, to 

extract patterns or SARs from analogues of the lead compounds. Thus, one may study 

the effect of structure on activity (or potency), and the resulting knowledge can be used 

to guide the lead optimisation process. Lastly, QSAR can be used to get insights into the 

characteristics of the receptor binding site. [42] A QSAR model’s value depends on the 
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quality of input data; they provide only limited precision due to experimental variation 

and the incompleteness of the compound set, the choice of descriptors and statistical 

methods. 

The history of SAR originated in 1863, when Cross [43]observed that the toxicity of 

aliphatic alcohols is inversely related to their aqueous solubility, and just a few years 

later, in 1868, Crum-Brown and Fraser [44] published that the physiological action (Ф) 

of quaternized strychnine derivatives which would produce muscle paralysis (effect on 

blocking neuromuscular receptors, competitively inhibiting acetylcholine binding) is a 

function (𝑓) of its chemical constituents (C), thus proposing the first quantitative 

relationship in pharmacology and medicinal chemistry by the Equation 1: 

Equation 1 – Crum-Brown and Fraser’s formula relates chemical structure to a biological 

response: 

 

Ф = 𝑓(C) 

which is the first general form of a QSAR relationship. Due to a change in chemical 

constituent, ∆C, the effect is reflected in the biological activity, ∆Ф. Richardson (1869) 

[45] later observed that the hypnotic activity of aliphatic alcohols satisfies a 

proportional relationship with their molecular weight, then followed by Meyer [46] and 

Overton [47] in 1890s who correlated the toxicity of organic components to their 

lipophilicity (lipid-water partition coefficient). Trabe [48] and Seidell [49] were 

pioneers in using physicochemical properties as descriptors in their study. The QSAR 

concept was proposed initially by Corwin Hansch (who is honoured as the “father of 

QSAR”) and his co-workers in the 1960s showing that a variety of biological activities 

could be modelled as a function of physicochemical attributes, followed by their first 

QSAR publication, which concerned the herbicidal effects of phenoxyacetic acids and 

their derivatives, in 1962. [50]  

Various applications of QSAR are reviewed. Any QSAR study requires a data set with 

known values of activity, a set of molecular descriptors (structure-related) and a 

mathematical method. QSAR focuses on local structural features known to be relevant to 

biological activity, which is in contrast to the similarity searching based on the whole 

structure. [51] On the other hand, large numbers of descriptors would increase the 

chance of producing deceptively good models due to overfitting or chance correlations. 

It is found that predictions obtained from a model with a small number of simple 

descriptors can often outperform those from complex ones. [52] Traditionally, QSAR has 

been applied to a congeneric series of chemicals sharing a common scaffold, which 
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ideally should not contribute to differences in activity but with adequate diverse 

substituents. In contrast, recent studies focus on data with a wider chemical space. [53] 

Typically, the whole dataset is partitioned into training (used to build the model) and 

testing for model evaluation or selection. In the early stages of QSAR method 

development, linear methods such as multiple linear regression, which was first 

introduced to QSAR by Hansch and is still commonly adopted due to its simplicity and 

interpretability, and partial least squares (PLS) were often applied to generate QSAR 

models, and over time, with increased computer power, more complex machine learning 

methods such as artificial neural networks, support vector machines, random forest and 

k-nearest neighbours have come to be used in QSAR modelling. [53] 

 

1.1.4 Chemical space 

The depiction of chemical space varies from the intuitive perspective of Lipinski, to the 

review of Hopkins (2004) [54] who analogises compounds in chemical space to the stars 

in the universe, whereby the chemical space is very large in size. Others suggest that 

chemical space is composed of all possible organic molecules. [33] As introduced above, 

compounds characterised by the same set of descriptors are mapped onto the 

coordinates of a multidimensional descriptor space defined as chemical space. Each 

molecular descriptor adds a dimension to the space. Molecules are located according to 

their descriptor values [51], where similarity and dissimilarity are defined based on 

their intermolecular distance in chemical space. The choice of molecular descriptors is 

decisive for a meaningful chemical space in which if the compounds happen to be 

similar, they would be located in contiguous regions. 

 

1.1.5 Molecular Descriptors 

Descriptors are numerical values, which can be scalars, vectors or bit strings etc., created 

using a defined algorithm that transforms chemical information contained in a molecule 

or fragments of a molecule into a number used to establish QSAR. Each descriptor 

encodes only a certain subset of the information contained in a molecule. They include 

physicochemical, geometric or topological properties associated with a molecular 

structure. These could either be obtained experimentally (physicochemical properties) 

or calculated theoretically (based on fragments or the whole molecule), or both. In other 

words, descriptors are mathematical representations of a molecule. 
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Based on the data representations of these properties, descriptors can be hierarchically 

ordered as: zero-dimensional (0D), the simplest, calculated from the chemical 

composition of the molecules by simple counts of the number of atom types or bonds. 

Examples are molecular weight, atomic count descriptors etc., which are not calculated 

from a molecular graph but usually from atomic information; one-dimensional (1D) 

based on the substructure (fragment); and two-dimensional (2D) descriptors, often 

termed as “connectivity (or topological) indices” computed from a molecular graph or 

matrices reflecting the connectivity between atoms; these include binary 

representations such as structural keys and fingerprints, feature trees, etc. 2D 

descriptors are the most widely used molecular representation to the field of 

chemoinformatics and ligand screening. In practice, the 2D molecular graph of a 

chemical is converted to a 1D string (the SMILES format [55]) to calculate the structural 

descriptors. [31] Binary descriptors are represented by a Boolean array of a set of 1 or 0 

values, typically encoding the presence or absence of a specific substructure, allowing a 

chemical database to be screened at low computational costs by simple Boolean 

operations. There exist a variety of three dimensional (3D) descriptors, derived from 3D 

structure of molecules such as pharmacophores, considering the spatial configuration of 

essential features conferring specificity for a ligand binding to a specific binding site. 3D 

descriptors depend on the geometrical coordinates of the molecule’s atoms required in a 

valid conformation, which varies depending on the representative physical state. [56] 

To note that there is no “best” descriptor available as a general rule. The information 

content of the “best” descriptors should be comparable with the experimentally 

determined properties. High order descriptors (3D or higher) but irrelevant information 

with respect to the properties are usually regarded as noise on behalf of the model, 

which in turn produce instable or not predictive models. [57] 

 

1.2 Machine Learning models 

One of the major applications of machine learning is data mining. Due to the rapid 

advances in high-throughput instruments and database technologies, collections of data 

have become more readily available. Methods enabling new discoveries derived from the 

analysis of large amounts of complex data have become increasingly demanded. It is 

desirable for an algorithm to be able to train on data contaminated with experimental 

errors or missing values, and to derive empirical correlations to estimate properties of 

new data. One can perform these analyses using a machine learning approach which 

involves processing and modelling of massive amounts of experimental and computer 
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simulation data (usually referred to as descriptors in chemoinformatics) to retrieve and 

discover data patterns and to establish quantitative relationships between multiple 

features. Nowadays, machine learning has been widely used in many areas including 

computer science, bio- and chemoinformatics and biostatistics. 

Each instance in any database is represented by the same set of features which can be 

numerical (discrete and continuous), categorical and binary that is used to train a 

machine learning algorithm. The instances in a multivariate dataset can be pictured as 

points in a multidimensional space where each variable (measurement) is a dimension 

of the search space. In general, models can be trained with supervised and unsupervised 

learning algorithms. As they are named, the former contains known labels associated 

with each training instance. Other finer categories of machine learning algorithms 

include hybrid models, semi-supervised learning and reinforcement learning, which are 

beyond the scope of this thesis.  

Clustering (or segmentation) is an unsupervised classification task that requires no 

previously provided class labels. The purpose of clustering is to group related entities 

(observations) based on the hidden relationships found from the data or as a 

preprocessing step to be performed prior to actual processing. This is in contrast to 

supervised machine learning referring to a learning process from training data and the 

resulting classifier is used to generalise on previous unseen instances.  

In the case of supervised classification (or usually just classification), a classifier is a 

learning algorithm which takes a vector of feature values as inputs and returns a class 

label. The learning process starts with data preparation and data-preprocessing which 

may involve detection of outliers (noise), handling missing or imbalanced data, feature 

construction and transformation, collecting relevant or (if known) informative features 

from the dataset, and, in the case of data sets with large numbers of variables/entries, 

feature/instance selection prior to the learning process is required to reduce the 

number of features captured/data to a manageable amount, which also helps to increase 

performance. Apart from the data used to train the algorithm, a subset called the test set 

is kept independently for evaluation. In cross-validation, the training data is randomly 

partitioned into subsets of equal size, and each is used in turn for testing, treating as a 

proxy for true test data, while using the remaining data for training. The average across 

all repetitions is used to compensate for the bias caused by the reduction of the training 

set size.  

The typical goal of machine learning is to generalise on new data on the basis of 

examples in the training set. The following section addresses each of these issues on fix 
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experiment setting especially on construction of a random forest, a decision tree based 

classifier. 

 

1.2.1 Pre-processing 

The raw data has to undergo pre-processing which includes “data clearing” to fill in or 

remove the missing values, remove the noise (random errors), and curated data (errors 

in public sources), and “data reduction” to obtain a reduced representation of the 

original data, while at the same time eliminating irrelevant or redundant data. Instance 

selection involves reducing the sample size while maintaining the required quality of the 

estimates. This is often achieved by random sampling which randomly selects instances 

from the original data, or stratified sampling, to increase the sample size of minority 

groups. Whenever necessary, the data are transformed for better model development. In 

autoscaling, the variables are rescaled to have zero mean and unit standard deviation. 

Also, new features can be derived from the original features in the process of feature 

construction. Data pre-processing aims at improving data quality, to reduce the size of 

data and computational complexity, and improve the performance of the models. [58] 

Note that, the challenge to generalise well to new samples increases drastically with 

increased number of features, which easily lead to “the curse of dimensionality”. 

Typically, the performance of a classifier increases as the number of features increases; 

until an optimum is reached, beyond which the accuracy of the model decreases. This is 

due to the data points in space becoming increasingly sparse with increasing 

dimensionality. This will result in misleading approximations of the boundaries between 

classes and as a result, overfitting occurs. Most clustering algorithms rely on distance or 

similarity measures, whereby the data are partitioned into groups (clusters), such that 

the data in the same cluster are closer to each other than to the data from other clusters. 

However, as the dimensionality tends to infinity, distances for sparse high dimensional 

data follow: 

Equation 2 – The relative distance between points converges to zero with increasing 

dimensionality (d): 

lim
d →∞

distmax − distmin

distmin
= 0 

The relative difference in distance of the nearest and the farthest data points to the 

centroid tends toward zero (Equation 2), this means the distances (dissimilarity 
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measures) between data points become relatively uniform so that distance measures to 

select the nearest points (as to be assigned in the same cluster) becomes meaningless in 

high dimensional spaces. Also, the sparseness of the data in high dimensional spaces is 

not uniformly distributed in which data points mostly lie near the edges of the space far 

away from one another, with empty space in between. [59]  

To reduce the dimensionality of the data while retaining data information, feature 

selection is generally part of preprocessing. In other words, feature selection allows 

identification of relevant features. The process involves removing features that have no 

significant variation, or are correlated with other features. Alternatively, a method such 

as principal component analysis (PCA) is used to project data to a lower dimensionality, 

which would also help to remove noise from the model. Feature selection is a common 

step, appropriate to select descriptors for QSAR models, and can be done in a number of 

ways, such as stepwise selection, all possible subset selection, genetic methods and 

factor analysis. 

 

1.2.2 Imbalanced data 

Imbalanced data occurs when the number of instances of each class is not evenly 

distributed. Firstly, classifiers tend to optimise prediction for the largest class, while 

treating all others as noise so as to maximise prediction accuracy. Accordingly, there will 

be a bias produced. An instance in a minority class is more likely to be misclassified. 

Secondly, instances from the minority class may provide insufficient information to build 

a model. The collections of a class for learning shall be adequately sized to insure they 

sufficient reflect the complete chemical space. Lastly, the noise (outliers) from the 

majority class may mask the information contained in the minority class. One way to 

reduce this size-related effect is to weight the training set inversely proportionally to the 

size of the class, however this in turn causes a higher rate of misclassification. The other 

way is to even up the number of samples in each class by resampling of the training data 

(either by down- or up-sampling) in the pre-processing stage. Down-sampling (or 

under-sampling) to down-size the majority class may result in a loss of data whereas up-

sampling (or over-sampling) to make exact copies of the minority class may result in 

overfitting. [60] 
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1.2.3 Decision trees 

The decision tree algorithm is a non-parametric supervised learning method. Non-

parametric refers to no assumptions about the space distribution and the classifier 

structure which can grow with the data. Classification is performed by routing from the 

root node of a decision tree from where the tree starts growing. At each node (except the 

terminal nodes), the data is split into two or more subsets according to the value of a 

selected feature, and the process is repeated until homogeneous groups remain or the 

stopping criteria have met. The prediction of each instance is made by routing it down 

the tree according to its attribute values tested in successive nodes until a leaf node is 

reached, with which a class label is associated. Decision trees are flexible yet data-driven 

classifiers. Small differences in training data may lead to great variations to the 

classification results. [61] The complexity of a tree is directly affected by the splitting 

criteria, stopping criteria deciding when to stop growing the tree and the pruning 

methods. Most existing decision tree algorithms, including ID3 [62], C4.5 [63] and CART 

(Classification and Regression Trees) [64] are greedy as the best attribute is searched to 

split the data at each node. Typically, an optimal tree has minimum generalisation error. 

In general, decision trees tend to have low bias but high variance. To improve the 

performance, one can use an ensemble of models. It is found that the generalisation 

(test) error can be improved by adding classifiers. Bagging, boosting and stacking are 

ensemble methods. In bagging (aka bootstrap aggregation) [65], each classifier is 

learned from a different training set by resampling with replacement to create random 

variations in the training in such a way to reduce the variance. Also, all variables are 

considered at each split in the tree. The result is made by combining the votes from each 

classifier. Boosting [66] decreases the bias by using all data to train a classifier. However, 

each training sample carries a weight so that misclassified examples could have more 

focus in subsequent learning processes until all the samples are correctly learned. 

Stacking is similar to boosting, where the outputs of classifiers become input of another 

classifier as to combine the results. 

 

1.2.4 Splitting rule 

The feature resulting in the best partition of the training instances is chosen at each 

node according to a selection criterion. The tree is grown by recursively partitioning 

until a pure subset is formed or the size of subset is sufficiently small. Among numerous 

splitting criteria, however, none was observed to be superior from one another [67], 

Quinlan's C4.5 uses information gain splitting [63] and CART uses the Gini index [64]. 
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CART only allows binary splitting whereas C4.5 and ID3 use multi-way splits.  

To speed up the most time-consuming step of the training algorithm in determining the 

threshold of a split at a node for a numeric feature, one approach is to restrict the 

threshold to be based on only a subset of the instances, or to discretise the original 

values of features to intervals as a way to reduce computational efforts. Generally, 

decision trees are better for handling discrete/categorical features. The univariate 

decision trees which use a single attribute to test at each internal node are restricted to 

axis-orthogonal splits. In each partitioning, the instance space is partitioned into two 

hyperrectangles (sub-regions); this process is recursively repeated until every square 

region contains homogeneous data sets. Thus, univariate decision trees do not work well 

with problems that require diagonal splits with respect to the features’ axes of the 

feature space. (Figure 4) [68] 

 

Figure 4 – Orthogonal splits divide the feature space into axis-parallel sub-regions, each 

with a single classification label.  

 

1.2.5 Overfitting 

A decision tree may result in overfitting of the training data due to outliers and noise 

(mislabelled instances) or by the lack of representative examples, resulting either from 

insufficient amount of training data being available or as a consequence of sampling 

error. Furthermore, high dimensionality of data may lead to overfitting. Generally, 

overfitting occurs when a model learns more of the detail and the noise in the training 

data rather than underlying relationship, thereby creating a tree that is excessively 

complex and does not generalise well to new data.  
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To avoid this, one can pre-prune the decision tree by some stopping criteria to stop the 

tree growth before it gets too complex, or alternatively employ a post-pruning method to 

remove useless branches. Since the objective function based on a subsample of the 

training data is only a proxy for our goal function; one wants to generalise beyond the 

training examples, thus there is no need to fully optimise it. However, even using noise 

free training samples can still result in overfitting because any chosen sample would 

most likely not be a perfect representative of the entire sample. A tree-based ensemble 

classifier, Random Forest, is considered relatively immune to overfitting.  

Every learning algorithm has an inductive bias (or named learning bias) referring to a 

set of prior assumptions that a classifier holds in order to perform induction, that is to 

generalise beyond the training examples. In other words, inductive bias specifies a 

preference for which types of generalisation to use to bias toward a particular set of 

predictors. In decision tree models, shorter trees are preferred which naturally tend to 

avoid overfitting. As a result of inductive bias, some potential solutions cannot be 

reached. [69] This was formalised in the "no free lunch" theorem by Wolpert [70], which 

states for machine learning that there is no universal learning algorithm that can deal 

with all possible situations. Of course, at least some prior knowledge is required for 

induction. It is common to build multiple models and compare their performance since 

every model represents a certain simplification of the reality; cross validation is often 

used to determine the best model that suit the needs based on predictive accuracies.  

 

1.2.6 Evaluation functions 

The prediction accuracy is used to evaluate the performance of the classifiers by either 

the cross-validation or the out-of-bag (OOB) estimations or alternatively, leave-one-out 

validation estimate strategy. Predicting new data on the basis of an induction process for 

machine learning involves uncertainty. The classification results of a supervised machine 

learning (an induction process) is justified with reference (known responses to the 

data); thereby, the quality of the predicted value can only be guaranteed 

probabilistically. The theoretical guarantee is that given enough training data, there is a 

high probability that the learner will return a hypothesis that would either generalise 

well, or otherwise be unable to find a hypothesis that consistently classifies data 

correctly. [71] 
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1.3 Random Forest  

Random Forest [72] is a supervised machine learning approach used for classification 

and regression. The predictions are made based on a stochastically built ensemble of 

decision trees. Each tree is grown from a particular bootstrap sample by the CART 

(classification and regression trees) algorithm using data drawn randomly with 

replacement from the entire dataset, leaving approximately a third of the data for the 

internal validation as an out-of-bag (OOB) sample for each tree. Random Forest 

improves bagged trees by way of firstly, having trees grow to their maximum to reduce 

the correlation between trees; secondly, each split is determined by a random subset of 

features thus to induce diversity of the resulting trees.  

Rather than using all descriptors, the split at each node of the tree as the tree grows is 

determined by choosing the best division possible using any of a randomly chosen 

subset of mtry descriptors, where mtry is by default the square root of the number of 

descriptors available. Each splitting is based on a single valued attribute that best 

divides the training set. Random Forest is an improvement over bagging, as descriptors 

are not equally important. The Gini criterion [73] is used to select the split resulting in 

the greatest decrease in impurity. This process is iteratively continued, with a freshly 

chosen random sampling of descriptors at each node, until all the training data have 

been classified into their appropriate leaf nodes. At this point, the tree building ends and 

no pruning is carried out. Running Random Forest with the default setting of mtry 

speeds up the process compared to using larger values, as the number of splitting tests 

required at each node is smaller. The tree building process is repeated for each of the 

ntree trees in the forest, with each tree being based upon a different bootstrap sample of 

the instances from the dataset. 

The classifier is trained with labelled samples to construct a model to predict the 

category of unseen data. The predictive performance of the model is evaluated through 

internal validation. During the training, the out-of-bag (OOB) sample, which does not 

participate in the tree building, is used in parallel to evaluate the prediction accuracy of 

the trees. Each tree being trained, that is built, on a bootstrap sample comprising one or 

more occurrences of approximately 2/3 of the full training set. The class prediction of 

each sample is made based on a majority vote of those trees (averaging for regression) 

for which the given instance is in the OOB sample (and therefore uses those trees for 

which the instance has not been part of the training set). The OOB error rate is obtained 

by dividing the number of misclassified data points by the total number of points. [72] 
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In CART, the Gini criterion (or index), introduced by Breiman in 1984 [64], is used to 

select the best split for each node that leads to the greatest reduction in impurity 

between parent and child nodes. The impurity 𝑖(𝑡) of a node 𝑡 is defined as: 

Equation 3 – The Gini impurity measure: 

𝑖(𝑡) = ∑ 𝑝𝑖(1 − 𝑝𝑖)

𝑛

𝑖=1

= 1 − ∑(𝑝𝑖)2

𝑛

𝑖=1

 

where 𝑖(𝑡) is zero when the node is pure, 𝑝𝑖  is the proportion of class 𝑖 at node 𝑡, 𝑛 

denotes the number of classes. The reduction in impurity ∆𝑖(𝑡) after a split is given by: 

Equation 4 – The reduction in impurity of a binary split: 

∆𝑖(𝑡) = 𝑖(𝑡) − 𝑃𝐿𝑖(𝑡𝐿) − 𝑃𝑅𝑖(𝑡𝑅) 

where 𝑖(𝑡𝐿) and 𝑖(𝑡𝑅) are impurity measures, and 𝑃𝐿 and 𝑃𝑅 are the proportion of 

cases that go from parent to the left and the right child nodes, respectively. [74] 

Alternatively, there are other machine learning techniques, such as support vector 

machine (SVM), that can be used for classification and regression tasks. SVM, proposed 

by Cortes and Vapnik [75], uses a kernel function to transform the data nonlinearly to a 

higher dimensional space. This spreads out the data, such that an optimal hyperplane 

can be constructed that separates the data into two classes on either side of the 

hyperplane with a maximum margin. The k-Nearest Neighbours (kNN) [76], where k is 

typically a small odd integer, calculates proximity between a query point and all of its 

neighbours using a distance function (e.g. Euclidean distance), and the class is assigned 

by voting among its k closest neighbours. In contrast, Naïve Bayes by applying Bayes’ 

rule computes the probabilities of a query belonging to each class based on various 

attributes. [77] 

 

1.3.1 Applications 

Random Forest has been applied in several contexts. A Random Forest model was built 

to classify HIV-1 protease binding pockets to one of the nine FDA approved protease 

inhibitors; while to obtain the Gini importance to identify the essential features 

responsible for the binding with various protease inhibitors. At the end, Ko et al. [78] 

identified 12 top ranked descriptors quantified the geometric and electronic properties 
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of the binding pockets which can be used to aid the design of novel HIV-1 protease 

inhibitors. Palmer et al. [79] used a data set of 988 organic molecules with which to train 

and test a Random Forest to predict aqueous solubility based on 2D descriptors and 

reported that Random Forest achieved better accuracy compared to the other models. 

Random Forest has been successfully applied to predict protein-ligand binding affinity. 

[80,81,82] 
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CHAPTER 2. Theory of Molecular Dynamics and Molecular Docking 

2.1 Introduction to Molecular Docking  

As mentioned in the previous chapter, molecular docking is the most used SBVS method, 

to ultimately identify lead compounds. Docking methods have been employed to study 

the interaction of small molecules with the target which helps to design a ligand with the 

necessary feature(s) to achieve high affinity binding. [83] 

Molecular docking relies on the availability of 3D structural data of the receptors 

obtained experimentally, or through computational modelling. Docking inherits the 

intrinsic limitations of structure-based methods, including the challenges to resolve the 

3D structure of membrane-bound receptors because of the difficulty in crystallising 

them. In addition, the crystallisation environment is not physiological, this means the 

determined structure may adopt a non-physiological fold [84] and may not retain in its 

native conformation in water or organic solvents. The choice of solvents for 

crystallisation is shown to affect protein conformation. [85] The structures of the 

unbound receptor may be of less biological relevance. This is especially true when 

receptor flexibility is not allowed in simulations. The binding site may have been 

shielded by other parts of the molecule which do not allow access of small molecules. 

Binding results in a structural rearrangement (induced fit) of the receptor. On the other 

hand, error can be found in the structures derived using homology modelling based on 

analogy or other simulation approaches, when the 3D receptor structure is not available. 

[86]  

Molecular docking simulates the recognition process of ligands to receptors. Typically, a 

docking protocol comprises: a) a global search (or a reduced search at potential binding 

sites) for exploring all the possible conformations of a protein-ligand complex, referred 

to as sampling, for predicting the binding modes, and b) a scoring method used to 

evaluate the binding energy for a particular binding mode to identify the binding mode 

with the lowest energy-reflecting shape complementarity and electrostatic amity to the 

rigid target. In silico simulation of receptor-ligand recognition processes can be justified 

theoretically, depending on the level of flexibility accounted for by a docking algorithm 

(see the “relaxed complex scheme” section), which can be described by the “lock and 

key” model, where the rigid target and ligand have exactly matching binding surfaces, or 

by models accounting for protein flexibility, including two competing hypotheses, 

“induced fit” and “conformational selection” (or population shift), with both models 

describing the mechanisms underlying molecular recognition. [87] The induced fit, 
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proposed by Daniel Koshland in 1958, [88] suggests binding induces a conformational 

change of the receptor, whereby the receptor and ligand are fitted by the binding event. 

Conformational selection [89] suggests the ligand binds selectively from the unbound 

ensemble in a “lock and key manner”, and as a result of binding causes a population shift 

toward this bound conformational state. 

 

2.1.1 Sampling 

The earliest docking programs focused on rigid-docking where docking is performed 

through rigid body translations and rotations. The first docking program, DOCK, was 

published in 1982 [90] and employs matching methods. Conformational sampling 

methods considering ligand flexibility are divided up into three categories, as follows: a) 

systematic searching, in which ligand is divided up into rigid (core fragment) and 

flexible (side chains) parts. This is achieved by either docking core fragments prior to 

adding the side chains in an incremental fashion or by covalent linking of various 

molecular fragments that were docked previously into the active site region, referring to 

as de novo ligand design strategy. [91] e.g. DOCK, b) a stochastic search e.g. genetic 

algorithm AutoDock, which will be detailed later ; and, c) simulation methods [92], such 

as the use of molecule dynamics.  

 

2.1.2 Relaxed complex scheme (RCS) 

Using a fixed receptor structure can lead to 50-70% of binding poses being predicted 

incorrectly. [93] A number of ways have been developed to account for conformational 

rearrangements upon complex formation with the ligand. (Figure 5) For example, 

multiple receptor conformations (MRCs) can be used as docking targets (a.k.a ensemble 

docking), where docking is performed on an ensemble of pre-generated conformations 

provided by experimental techniques such as NMR spectroscopy or X-ray 

crystallography, or by computational techniques such as Monte Carlo, normal mode 

analysis or a MD run (methods involving docking to multiple MD conformations have 

been termed “relaxed complex” (RC) schemes) etc.  
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MRCs could be regarded as an analogy to the “conformation selection” model, but with 

protein flexibility modelled implicitly, as the conformation of the receptors is kept rigid 

during the docking process. However, there is a possibility that a ligand may bind to less 

frequent but important conformations with this method, and that the true bound-

conformation may not be selected from the resulting conformational ensembles.  

Alternatively, to MRCs, the “Soft receptor” method is designed to allow partial overlap of 

the ligand and receptor, by specifying a smaller van der Waals repulsive term to reduce 

steric penalties. The effect of this adjustment on the van der Waals potential is to 

simulate a larger binding site, to account for a certain degree of conformational 

plasticity, thereby modelling protein flexibility implicitly. Nevertheless, there are some 

drawbacks: soft docking is limited to small side-chain rearrangements of the target (in 

the order of 1Å) and has an unfortunate tendency to increase false positives.  

Another example, “selective docking” aims to select a few “critical” side chains in the 

binding site to explicitly model their dynamics during the binding process, related to the 

“induced fit” model, by allowing some small rearrangement of the residues in the pocket 

to accommodate ligand binding. Most uses of this method will require some structural 

knowledge of the receptor and its function.  

Finally, “on-the-fly” docking models, which change the receptor’s conformations during 

docking, use various sampling and optimisation techniques. [87,94] One such strategy, 

based on the “induced fit” concept, is applied by RosettaLigand. [95] This method does 

not simultaneously sample both ligand and receptor flexibility, thus allows consideration 

of only small-scale induced-fit effects. The ligand is first docked in a rigid receptor, the 

side chains of the receptor are later changed by the use of rotamer libraries, followed by 

a minimisation of the ligand-receptor complex. Other strategies, such as energy 

minimisation, Monte Carlo or molecular dynamics simulations, are used to perform a 

post-processing refinement step after a rigid docking. 
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Figure 5 - Modified from [87]. Classification of approaches accounting for protein 

flexibility. 

The “relaxed complex” method was proposed by McCammon et al. [96] inspired by two 

experimental works. [97,98] They observed that ligand may bind to conformations that 

rarely exist in the dynamics of the receptor. Therefore, MD simulation is applied first to 

explore conformational space to discover novel binding sites, or to find conformations 

that are rare. Docking to different snapshots taken at different time scales aims to 

overcome the intrinsic limit in docking, by accounting for protein receptor flexibility. 

Application of this method led to the discovery of the first clinically approved HIV drug. 

[99] and has been used to screen a library of ~12,500 compounds against DNA 

polymerase. [100] Several selection techniques have been proposed to extract 

representative conformations from MD simulations [101,102,103]. 

 

2.1.3 Scoring 

Scoring (or potential) functions were previously categorised as either physical-based, 

empirical-based or knowledge-based scoring.  

Physical-based (force-field) energy functions (e.g., GOLD, AutoDock, Dock), which are 

derived from the laws of physics, use atomic force fields; a set of functional forms and 

parameters to calculate the energy. Force fields, also referred to as molecular mechanics 
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(MM), ignore the electronic effects of nuclear motions, and electrons are treated as 

implicit within the MM variables. 

Empirical energy functions (e.g., F-score, ChemScore, SCORE) are expressed as a sum of 

various energetic contributions, can be written in form of Equation 5, where ∆𝐺 is the 

binding free energy. Each term is scaled by a coefficient 𝑊𝑖 derived from linear 

regression in order to fit known (receptor-ligand) binding affinities. Both force field-

based and empirical scoring functions are functions of different energy terms. The 

difference is that the force field adopts an energy function derived from well-established 

theoretical models; whereas an empirical scoring method is built using a best-fit 

function obtained from regression analysis. 

Equation 5 - General empirical energy functions: 

∆𝐺 = ∑ 𝑊𝑖∆𝐺𝑖

𝑖

 

Knowledge-based (or statistical) (e.g., PMF, DrugScore), energy functions use 

experimentally determined structural data to derive distance-dependent potentials for 

interactions between pairs of receptor and ligand atoms. Pairwise potentials are 

calculated by computing the frequencies of observed structural features, occurring as 

atom-atom pairs, and converting them into free energies using the inverse Boltzmann 

relationship; which states that probability of occurrence of a given state can be derived 

by the given energy of that state. 

The lowest energy corresponds to the thermodynamically most stable complex. Docking 

can be regarded as an optimisation problem, including the global positioning of the 

ligand and a local refinement step, finding the optimal pose of small molecules in the 

receptor, as characterised by the position, orientation and shape of the ligand. The 

binding energy of every possible pose of the ligand is computed from a minimisation 

process to find the minimum of the binding energy function. Docking generally adopts a 

simpler force field, allowing a wider computational space to be explored. This allows 

blind docking to be performed, when no prior knowledge of the binding site is known. 

Recently, docking methods based on scoring have been used to prioritise those to be 

screened in vitro. In order to have a high binding affinity, a ligand must be electronically 

and sterically matched to the pocket. 
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2.2 AutoDock 

AutoDock is an automated docking tool. In a docking simulation, a ligand starts from a 

random position. The flexibility of the ligand is modelled, and the translations, 

orientations, and conformation of the ligand are explored by a search method until 

putative binding sites have been found. AutoDock employs a force field energy 

evaluation method. AutoDock uses a united atom model, in which non-polar hydrogens 

are merged and the charges are assigned to the corresponding carbon, leaving only the 

heavy atoms and the polar hydrogen atoms. 

 

2.2.1 Search method 

Genetic algorithms (GA) [104] apply the concept of Darwinian natural evolution and 

Mendelian genetics, and are suitable for problems that suffer from combinatorial 

explosions as the ligands complexity increases with increased degrees of freedom. 

AutoDock uses GA to perform a global search for best docking pose. The arrangement of 

a ligand with respect to a protein, is described with a set of real values and these refer to 

a ligand’s “state variables”, analogised as a gene in a chromosome (the chromosome 

itself refers to solutions of a problem), while the atomic coordinates are analogised to 

the phenotype. Chromosomes are evaluated for the fitness based on the calculation of 

interaction energy and decide which to pass down to the next generation. Mutation and 

crossover operations which offer a larger degree of alternation, are passed from parents 

to their children, increasing the chance of exploring other areas of the conformational 

space. Based on the evaluation of the fitness, selection allows reproduction of offspring 

better suited to the environment. 

In detail, each ligand is defined by a set of real values including three Cartesian 

coordinates, describing the ligand's translation, four values for quaternions defining the 

ligand's orientation [105], and one value for each defined conformation torsion of the 

ligand with respect to the receptor. The search process starts by creating a user defined 

number of random individuals that makes the initial population, followed by iteration 

over a number of generations until any of the termination criteria are met. A generation 

consists of mapping, fitness (energy) evaluation, selection, crossover, mutation, and 

elitist selection. (Figure 6) 
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Figure 6 - Modified from [106]. The process of a genetic algorithm. Each generation 

consists of the following, in the order given: mapping, fitness evaluation, selection, 

crossover, mutation, elitist selection and local search. 

Firstly, each genotype is “mapped” to corresponding phenotype (that is the ligand's 

atomic coordinates) to allow interaction energies to be evaluated by a grid-based 

approach. Then, it goes through a selection process based on fitness value, such that 

individuals with better than average fitness are ensured to have at least one offspring. 

Crossover and mutation are used to apply random perturbations to the parents. 

Crossover and mutation occur between random individuals at a user defined rate, and 

the resulting offspring replace their parents to keep the population size constant. The 

value replaced by a mutation is a random real number that has a Cauchy distribution for 

small deviates. The new generated population from the proportional selection, 

crossover, and mutation is ranked according to fitness. 
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A user defined fraction (0.06 was found to be in maximum efficiency) of populations 

undergo a local search, based on that of Solis and Wets method [107]. The local search is 

performed in genotypic space (as illustrated in Figure 6) rather than in the phenotypic 

space, so that the acquired traits from local adaptation can be inherited by 

their offspring; otherwise an inverse mapping approach is required to convert the 

phenotypic result of local search into its corresponding genotype. Instead of dedicating 

effort to an inverse mapping, AutoDock performs a local search operation in genotypic 

space using modified Solis and Wets method with a translational step size of 0.2, and 

orientation and torsional step size of 5. The step size of the local search is adaptive.  

The combination of the global and adaptive local search method results in the 

Lamarckian genetic algorithm. The Lamarckian method was developed, so that the 

results from LS are heritable to offsprings. A genotypic space is used in the Lamarckian 

search method, in contrast to the typical phenotypic search space.  

 

2.2.2 Energy evaluation during sampling 

AutoDock uses a grid-based approach [108,109] to reduce the run time spent for 

evaluating candidate conformations. AutoGrid is used to generate grid maps. To do this, 

a protein target is placed in a 3D grid box and a probe atom systematically visits every 

grid point. (Figure 7) The pairwise interaction energies of the probe, and of the protein 

atoms positioned within a cut-off radius of 8Å at each grid point are summed and stored 

in the grid maps, providing a pre-calculated lookup table to speed up energy evaluation. 

Grid maps, including dispersion/repulsion terms and a hydrogen-bonding energy, are 

created for each atom type in the ligand. A separate electrostatic potential grid is also 

created. During the docking, interaction energies are calculated from the pre-calculated 

grid maps using trilinear interpolation. 
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Figure 7 - Adopted from [110] illustrates the grid-based method. 

The pair-wise atomic terms include evaluations of dispersion/repulsion energies, 

calculated using the Lennard-Jones 6-12 potential with coefficient A𝑖𝑗  and B𝑖𝑗  

calculated from the well depths and equilibrium distances of homogeneous pairs using 

AutoDock force-field parameters (AMBER) [111]. Hydrogen bonds are described by the 

12-10 potentials with well depths increased by a factor of 10. The electrostatic 

interaction energy is calculated using Coulomb’s potential using a single positive charge 

probe. The resulting electrostatic interaction energy of each ligand atom is the 

multiplication of the trilinearly interpolated electrostatic potential with the ligand's 

partial charge. Intramolecular energies of the ligand are calculated at each time step 

using the functional forms described above, but with a factor of 4 in the dielectric 

constant. [112] 

 

2.2.3 Scoring  

AutoDock4 uses a semiempirical free energy force field, combining molecular mechanics 

force field with an empirical method, to predict binding free energies. It uses pair-wise 

terms to evaluate the interaction between the two molecules and an empirical method to 

consider the contribution of water implicitly. The free energy of binding ∆G (see 

Equation 6) is estimated to be equal to the sum of the intramolecular energies by 

consideration of the bound and unbound states of the ligand and the protein 

respectively; the third term gives the intermolecular energy between the bound and 

unbound states of the complex. It is assumed that the two molecules are sufficiently 
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separate in an unbound state, making (𝑉𝑢𝑛𝑏𝑜𝑢𝑛𝑑
𝑃−𝐿 ) zero. As the protein (𝑃) is kept 

frozen, and considering there is no interaction in the unbound state, the energies are set 

to zero. An extended conformation of the ligand (𝐿) in which atoms could be fully 

solvated, with few internal contacts, is used as unbound state. The conformational 

entropy lost upon binding (∆𝑆𝑐𝑜𝑛𝑓) is estimated to be directly proportional to the 

number of rotatable bonds (𝑁𝑡𝑜𝑟) in the molecule. [113]  

Equation 6 - The free energy of binding is estimated by: 

∆G = (𝑉𝑏𝑜𝑢𝑛𝑑
𝐿−𝐿 − 𝑉𝑢𝑛𝑏𝑜𝑢𝑛𝑑

𝐿−𝐿 ) + (𝑉𝑏𝑜𝑢𝑛𝑑
𝑃−𝑃 − 𝑉𝑢𝑛𝑏𝑜𝑢𝑛𝑑

𝑃−𝑃 ) + (𝑉𝑏𝑜𝑢𝑛𝑑
𝑃−𝐿 − 𝑉𝑢𝑛𝑏𝑜𝑢𝑛𝑑

𝑃−𝐿 + ∆𝑆𝑐𝑜𝑛𝑓) 

∆𝑆𝑐𝑜𝑛𝑓 = 𝑊𝑐𝑜𝑛𝑓𝑁𝑡𝑜𝑟 

Each pair-wise evaluation (V) can be expressed as Equation 7. The weighting constants 

(𝑊) are optimised to calibrate the empirical free energy based on experimental data 

and are applied to each term. Dispersion/repulsion interactions are calculated using the 

Lennard-Jones 6-12 potential, where 𝐴𝑖𝑗  and 𝐵𝑖𝑗  are taken from the AMBER force 

field. The hydrogen bonding is based on the 12-10 potential where a directional weight 

Ε(𝑡) is used to calculate the divergence from ideal bonding geometry. A maximal well 

depths of 5 kcal/mol at 1.9Å for O-H and N-H and 1 kcal/mol at 2.5Å for S-H are used to 

derived the parameters 𝐶𝑖𝑗, 𝐷𝑖𝑗. Electrostatic interaction is evaluated using a screened 

Coulomb potential. The desolvation potential is based on the volume of the atoms 

surrounding a given atom, weighted by a solvation parameter and an exponential term. 

(weighted factor=3.5Å) [113] 

Equation 7 - The pair-wise atomic terms include: 

V = 𝑊𝑣𝑑𝑊 ∑ (
𝐴𝑖𝑗

𝑟𝑖𝑗
12 −

𝐵𝑖𝑗

𝑟𝑖𝑗
6 )

𝑖,𝑗

+ 𝑊ℎ𝑏𝑜𝑛𝑑 ∑ (
𝐶𝑖𝑗

𝑟𝑖𝑗
12 −

𝐷𝑖𝑗

𝑟𝑖𝑗
10) Ε(𝑡) +

𝑖,𝑗

𝑊𝑒𝑙𝑒𝑐 ∑ (
𝑞𝑖𝑞𝑗

𝜀(𝑟𝑖𝑗)𝑟𝑖𝑗

) + 𝑊𝑠𝑜𝑙

𝑖,𝑗

∑(𝑆𝑖𝑉𝑗

𝑖,𝑗

+ 𝑆𝑗𝑉𝑖) 𝑒
𝑟𝑖𝑗

2

2𝜎2 

The desolvation term is based on Wesson and Eisenberg’s model [114], where 𝑆𝑖 is the 

atomic solvation parameter calculated from the energy needed to transfer the atom from 

a fully hydrated to a fully buried state. They postulate that the desolvation energy is 

proportional to the change of surface area exposed to the water by comparing the 

solvent accessible surface area of the bound and unbound states. The amount of 
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desolvation 𝑉𝑖 is calculated by a modified method using volume-summing method from 

Stouton et al. [115]  

One issue of the data used in calibration is that the cost of burying a hydrogen bond 

without forming a bond to the protein is unknown. Desolvation of polar atoms is 

modelled by a constant, added in the hydrogen bonding function. It is assumed that 

hydrogen bonding to the complex is the same as bonding to water. Polar atoms that do 

not form hydrogen bonds will have an unfavourable effect on binding. Polar atoms are 

modelled by combination of the favourable hydrogen potential and the unfavourable 

desolvation potential.  

 

2.3 Introduction of molecular dynamics (MD) 

2.3.1 Energy minimisation  

Energy minimisation is a prerequisite for other simulation techniques (i.e. molecular 

dynamics) to relieve strain in the initial structure and to reduce the thermal noise 

allowing better comparison between structures. This is because the energy of a system, 

composed of kinetic and potential energies, is conserved during MD simulations. The 

kinetic energy will increase significantly if low potential energy structure is sampled, 

which can distort the structure. Therefore, it is essential for a MD to start from the 

minimised structure. An energy minimisation moves atoms systemically toward the 

atomic positions at the closest (local) minimum of the potential energy surface, resulting 

in a local minima stable state. The minimisation methods can be energy-based, gradient-

based or a minimisation taking account of the second derivative of the potential energy 

function.  

The steepest descent (or gradient descent) minimisation algorithms [116] use the first 

order derivative from the potential energy function to determine the direction for the 

next move to move toward a negative gradient (more negative, stable conformation). 

Convergence can be slow whilst in the vicinity of the local minimum, as the algorithm 

does not consider the previous steps.  

 

2.3.2 Force field 

Force field methods are also referred to as molecular mechanics (MM). It describes the 

potential energy surface by treating the electrons implicitly and expressing the energy 
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with respect to nuclear coordinates, in which the electrons are not treated, and the 

quantum character of nuclear motion is neglected, and with the atoms treated with 

classical mechanics. The interactions are parameterised beforehand and are not changed 

during the calculation. The electronic energy is calculated from summation of potentials, 

which can be divided into non-bonded, bonded and restraints.  

Equation 8 - A typical force fields: 

V = ∑
𝑘𝑖

𝑏

2
𝑏𝑜𝑛𝑑𝑠

(𝑙𝑖 − 𝑙𝑖
𝑟𝑒𝑓

)
2

+ ∑
𝑘𝑖

𝑎

2
𝑎𝑛𝑔𝑙𝑒𝑠

(𝜃𝑖 − 𝜃𝑖
𝑟𝑒𝑓

)
2

+ ∑
𝑉𝑇

2
[1 + cos(𝑛𝜔 − 𝑟)]

𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠

+ ∑ ∑ {4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

]} +
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 

The potential energy (V) is generally expressed as sum of firstly, the bonded interactions 

including (1) the bond stretching (a two-body term), modelled by a harmonic potential 

with spring constant 𝑘𝑖
𝑏. The deviation of the bond length 𝑙𝑖 from its equilibrium 

(reference) distance 𝑙𝑖
𝑟𝑒𝑓

, either stretching or compressing, result in an increase of 

energy; (2) the angle bending (a three-body term), modelled by a harmonic potential on 

the angle. 𝜃𝑖 − 𝜃𝑖
𝑟𝑒𝑓

 equals to the difference between the angle 𝜃𝑖 to its reference bond 

angle 𝜃𝑖
𝑟𝑒𝑓

 and 𝑘𝑖
𝑎 denotes the bending force constant; and (3) the proper and 

improper dihedrals (four-body terms), modelled by a periodic cosine function, where 𝑛 

denotes the dihedral multiplicity, 𝜔 the torsion, 𝑟 the phase shift and 𝑉𝑇 the force 

constant refers to the energy barrier associated with the rotation of a dihedral angle, 

computed based on fixed lists. The latter is used for keeping planar groups planar and to 

prevent a flip to their mirror images (Equation 8) 

Secondly, the non-bonded interactions, which include (4) the Lennard-Jones (a two-

body term) consist of a repulsion term caused by the Pauli exclusion principle and a 

dispersion term, where the equilibration distance 𝜎𝑖𝑗 between atom 𝑖 and 𝑗 depends 

on pairs of atom types, can be taken from look up table of Lennard-Jones parameters, 𝜀𝑖𝑗  

is the potential well depth and 𝑟𝑖𝑗 is the distance between pairs of atoms 𝑖 and 𝑗; and 

(5) Coulomb and modified Coulomb interactions. The expression is pair-additive, in 

which all pairs of atoms separated by at least three bonds are calculated intra- and inter-

molecularly with the Coulombic law, where 𝑟𝑖𝑗 is the distance between two partial 

atomic charges 𝑞𝑖 and 𝑞𝑗, and 𝜀0 is the dielectric constant. Calculations are computed 

based on a neighbour list, listing non-bonded atoms within a certain radius and are 

typically solved by assuming a constant dielectric environment beyond the cut off with a 

dielectric constant. (Equation 8) 
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Thirdly, constraints including position, angle distance etc. are based on fixed lists, which 

is not shown in the Equation 8. 

 

2.4 Molecular dynamics (MD) 

MD is used to simulate the dynamical behaviour of the system in real time, and under 

real conditions whilst considering solvent and ions etc. MD solves Newton's equations of 

motion (Equation 9) to derive atomic positions to describe how the system evolves with 

time. The output coordinates at regular intervals are saved to a trajectory; an ensemble 

of conformations which will reach to an equilibrium state. The method of MD is a 

deterministic method, that is the state of the system of the future can be predicted from 

current state.  

Equation 9 - Newton’s equation of motion, the forces are the negative derivatives of the 

potential function 𝑉: 

𝑚𝑖

𝜕2𝑟𝑖

𝜕𝑡2
= 𝐹𝑖 = −

𝜕𝑉

𝜕𝑟𝑖
, 𝑖 = 1 ⋯ 𝑁 

, where 𝑚𝑖 is the mass of the 𝑖th atom, and the 𝑉 is the potential energy of the system 

with respect to position 𝑟𝑖. MD calculations are broken down into small time steps to 

simulate the real time potential. At each step, the atomic forces on the atoms are 

computed and with the current positions and velocities new positions and velocities are 

generated.  

Velocities are randomly generated (temperature) as an initial step acting on all atoms. 

The system then evolves from the starting point using the velocity (v) at time t = 0 by 

solving Newton’s laws of motion; resulting in a set of coordinates at time t = 𝑖. From the 

coordinates, the potential energy can be obtained. The first derivative of this energy 

gives the force acting on each atom, which become the new velocities for the next step. 

This strategy allows exploration of a greater fraction on the energy landscape. The force 

acting on each atom is constant during the time interval, and is implemented using a 

force field. The positions of the atoms in a small-time interval can be expressed by a 

Taylor expansion that depends on the velocities, acceleration and hyperaccelerations.  

Periodic boundary conditions are applied to prevent artefacts arising from the box 

edges, and are used with the minimum image conversion where only the nearest image 

of each particle is used to compute short range non-bonded interactions. Integration 
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methods of MD can be either the velocity Verlet (Tinker) [117] or the leap-frog 

integrator (Gromacs) [118] used to update position and velocities of the MD simulations.  

In velocity Verlet algorithm, positions 𝐫𝑖(𝑡) and velocities 𝐯𝑖(𝑡) are defined at each 

time step and the trajectory for N particular are generate iteratively using Equation 10: 

Equation 10 - The velocity Verlet algorithm: 

𝐫𝑖(𝑡 + 𝛿𝑡) = 𝐫𝑖(𝑡) + 𝛿𝑡𝐯𝑖(𝑡) +
(𝛿𝑡)2

2𝑚𝑖
𝐅𝑖(𝑡) 

𝐯𝑖(𝑡 + 𝛿𝑡) = 𝐯𝑖(𝑡) +
𝛿𝑡

2𝑚𝑖

[𝐅𝑖(𝑡) + 𝐅𝑖(𝑡 + 𝛿𝑡)] 

, where 𝐅𝑖(𝑡) is the force on particle 𝑖 at time 𝑡 and is calculated from the potential 

energy function.  

The drawbacks of the MD approach, include (a) when the dynamics of the particle is 

described by the classical mechanics, hydrogen atoms and high frequency vibrations 

which require quantum mechanical treatments to properly represent are not modelled. 

One could either apply corrections to the total internal energy or constrains on bond 

lengths (or bond angles). Default setting in gromacs is LINCS or P-LINCS [119] which 

enable constraints to be parallel processing across the nodes. (b) MD describes the time 

evolution of nuclear positions alone and neglects of electronic motions, limiting MD to 

model the dynamics of reactions, breaking and formation of chemical bonds. (c) MD uses 

force field or potential energy function, which is semi-empirically derived using 

experiments and quantum mechanics calculations, to define the interactions between 

atoms. As a result, force fields are fixed during the course of simulation to mainly pair 

additive (including non-bonded forces), with the exception of long range Coulomb forces 

and that the polarizabilities are not considered.  
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CHAPTER 3. A Random Forest Model for Predicting Allosteric and 

Functional Sites on Proteins 

This chapter is based on my publication: 

Chen, A. S. Y., Westwood, N. J., Brear, P., Rogers, G. W., Mavridis, L., & Mitchell, J. B. O. 

(2016). A Random Forest Model for Predicting Allosteric and Functional Sites on 

Proteins. Molecular Informatics. 35, 125-135. 

 

3.1 Introduction to allostery  

Allostery is a universal mechanism for regulation of a protein’s activity, typically an 

enzyme, by the binding of a ligand molecule to a cleft other than the protein’s active site. 

In contrast to conventional use of orthostery as a simple on-off device, allosteric 

regulation can act as a dimmer switch, and offer greater fine modulatory control over the 

level of protein activity. [120] A typical enzyme has one active site, but may have 

multiple allosteric sites.  

 

3.1.1 Old view 

The traditional understanding of allostery focuses on those binding events that induce a 

conformational change affecting the activity of another site of the protein. The classical 

explanation of how allosteric regulation is achieved was proposed in the Monod-

Wyman-Changeux (MWC) [121] and the Koshland-Nemethy-Filmer (KNF) [122] models 

(Figure 8), where the cooperativity between subunits of an oligomeric protein is coupled 

with a conformational change. According to the MWC model, cooperativity is achieved by 

a concerted transition between two alternative states, the protein being in either the T 

(tense) or R (relaxed) state. For the KNF model, a binding-induced conformational 

change in one subunit is propagated sequentially among other subunits. Both models 

imply that the conformational change at the substrate binding site results from the 

transmission of a signal initiated by allosteric effector binding. [123,124] 
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Figure 8 – Modified from [125]. Classic models of allostery (a) the concerted MWC model 

and (b) the sequential KNF model, where S represents substrates. Each subunit is in 

either a tense (T) or a relaxed (R) state, where the R state is more receptive to ligand 

binding.  

 

3.1.2 New view 

Conformational state redistribution is a concept that has been proposed to explain 

allosteric regulation. The native protein appears to exist as a conformational ensemble. 

[126,127] In contrast to the oversimplified classical models, Weber proposed that the 

binding results merely in a population shift of conformational states which were 

experimentally proved to have an effect on function. [128] Population redistribution 

enriches certain pre-existing conformations which were previously hardly seen due to 

low population. It is through the interconversion of the functional conformations that 

allosteric regulation is achieved. [129,130] 

Thus, Del Sol et al. [120] think of allosteric regulation as redirecting the levels of traffic 

on dynamic communication pathways that already existed prior to effector binding, 

rather than establishing new pathways. They note that allosteric regulation can occur in 

the absence of significant conformational change, though some kind of communication 

between sites must take place. 
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3.2 Allostery and Drug Design 

The discovery of new allosteric sites is of interest for drug design. In contrast to active 

site inhibitors, allosteric binding can lead to either an increase or decrease in activity of 

a protein. In addition, allosteric effectors do not necessarily share similar chemical 

properties with the natural substrate, as a site distinct from the active site is targeted. 

This provides an alternative route for the discovery of promising new leads for 

regulation of the same target. Allosteric sites on proteins are also subject to lower 

evolutionary pressure compared to the active site, which is beneficial when designing 

target-specific inhibitors. [131] 

Despite the advantage of variation among homologs that an allosteric site has, this may 

cause difficulty in studying allosteric mechanisms, since the allosteric sites are hard to 

predict by traditional homology methods based on sequence similarity. [131] For 

protein families where a reasonably large number of sequences are available, a more 

effective approach to sequence-based allosteric site prediction is to assume that 

allosteric sites are associated with networks of co-evolving residues. [132,133] In this 

way, Novinec et al. [134] identified a network of co-evolving residues putatively 

responsible for communication between allosteric and functional sites from a multiple 

sequence alignment of papain-like cysteine peptidases. This prediction, along with 

associated experimental work, allowed them to identify a promising inhibitor candidate. 

Panjkovich and Daura [135] applied normal mode analysis (NMA) to consider changes in 

the flexibility of a protein upon ligand binding. To achieve this, ligands were represented 

as dummy atoms arranged in an octahedron. For each putative binding site, the NMA-

derived B-factors of the apo and the bound states were compared in order to identify 

any large changes in the B-factors, these indicating potential allosteric sites.  

A two-way classification model was proposed to differentiate allosteric from non-

allosteric sites by Huang et al. [136] They developed a support vector machine (SVM) 

based machine learning model, based on 90 allosteric sites selected from allosteric 

database (ASD) and 1360 predicted non-allosteric sites from the same set of proteins 

using the Fpocket algorithm. For their SVM model, sets of site descriptors were derived 

to characterise the topological structure and physicochemical properties of both types of 

sites, obtaining a total of 41 site descriptors. A somewhat related method has been 

adopted by van Westen et al. [137] to select allosteric modulators based on the 

physicochemical and structural descriptors calculated for those molecules from the 

ChEMBL database. [138] Several machine learning approaches have also been used with 

other dynamic-or NMA-based approaches to predict the location of allosteric sites. 
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[139,140] 

Other studies relevant to the prediction of allosteric interactions focus on simplified 

models of protein dynamics, using approaches like NMA [135], energy exchange [141], 

and Monte Carlo path generation [142]. 

 

3.3 Serendipitous binder 

Almost all protein crystal structures contain non-cognate bound ligand molecules, such 

as stabilising agents and buffers used during crystallisation [143], which was originally 

regarded as a crystallisation artefact and was once believed to have no effect on protein 

function, despite their role in maintaining protein solubility and stability for NMR 

experiments. Yet growing evidence of its effect on protein dynamics implies that protein 

function will be affected by ligand binding [144]. These molecules represent a potential 

starting point to design novel probes for new allosteric sites and as a tool to study 

changes in protein dynamics induced upon the binding of a buffer molecule. [145] In this 

study, buffer molecules are introduced as potential binders to identify locations of 

possible allosteric sites. 

 

3.4 Aims and Objectives 

In this work, we focused on identifying potential allosteric sites, while making better use 

of available crystal data in the PDB. We used the co-crystallised ligands to calculate 

descriptors from the ligand and from the structures of the sites, thus building a machine 

learning model. Our aim is to identify binding sites which are purely crystal contacts 

from potential allosteric sites. These bound ligands could be a starting point to guide 

experiments aimed at probing the nature of the sites. 
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3.5 Method 

To do this, we use a complementary approach, founded on a deeper analysis of the 

structures of potential binding sites. We assemble collections of three kinds of site based 

on its function: first, known orthosteric functional (active) sites of proteins in which the 

main cognate ligand binds; second, allosteric sites in which allosteric effectors can bind; 

third, a structurally representative set of other protein clefts, expected to be neither 

functional nor allosteric. For these three sets of sites, descriptors are proposed to 

identify and discriminate the binding state of individual ligands between the three 

different subsets. We use our existing protein-ligand scoring function RF-Score [146] and 

a new accessibility-like algorithm called CavSeek to compute structurally-based binding 

descriptors and descriptors pertaining to the composition and flexibility of the clefts. We 

use these as features in a ternary predictive model, employing the Random Forest 

machine learning algorithm. We take advantage of the out-of-bag data, [147] and 

separately those instances omitted from the stratified balanced samples, to conduct a 

fair validation, which uses only data excluded from model building. Then the model is 

subsequently used to predict the types of sites where CHES binds, with the objective of 

identifying candidate allosteric sites on proteins. The challenge was to differentiate the 

binding sites based on a combination of descriptors. In presenting our result, we 

investigated whether the results previously obtained through manual inspection 

corresponded to those obtained with our computational approach.  

Our work is distinct from Huang et al.’s [136] in our design of a three-way predictive 

model containing two classes other than allosteric, and distinct from van Westen et al.’s 

[137] in that our work predicts allosteric sites (not molecules) using co-crystallised 

molecules and descriptors derived from the structure of the sites as well as from the 

ligands. 
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Workflow 

Figure 9 - A flowchart of the methodology. 

 

 

3.6 Collection of training data 

We have annotated our data according to where the ligand has bound to its protein using 

three classes: allosteric, regular and orthosteric sites. Each subset was included 

independently, and for convenience these are denoted by the capital letters A, R and T, 

respectively.  
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3.6.1 Allosteric Sites (A) 

A total of 91 proteins adopted from Panjkovich and Daura’s work were initially used to 

represent the subset of allosteric sites in the training set. [131] The data were primarily 

collected from the online AlloSteric Database (ASD) and from the literature, and were 

further filtered to be structurally non-redundant by the sequence clustering program 

BLASTClust. The protein with the highest resolution structure of each of the resulting 91 

groups was selected to represent that group. ASD [148] provides a list of the allosteric 

residues in the given protein. We compared those residues, thus annotated as 

comprising an allosteric site, to the list of residues involved in ligand binding extracted 

from PDBsum. [149] From this, we can identify any ligand that is bound in the allosteric 

site in order to obtain descriptors which capture the binding profile of the ligand in the 

allosteric pocket. If there are many instances in which the same ligand adopts an 

equivalent binding mode, the one with the highest RF-score value is kept in the subset to 

represent the particular binding pattern. Thus, the list has been whittled down to 59 

representative allosteric (A) protein pockets. (see Table 1 in Appendix for protein lists) 

 

3.6.2 Orthosteric Sites (T) 

A total of 195 protein-ligand complexes representing the subset of orthosteric (T) sites 

were retrieved from the PDBbind database (version 2007). [150] These data were 

originally used for the purpose of validating scoring functions in Cheng et al.'s study. 

[151] The data contain experimentally determined binding affinity values obtained from 

the literature. Cheng et al. further filtered their initial collection of data to account for 

the quality of structures, the quality of binding data, the components of complexes and 

redundancy of protein sequences, to avoid over-representing certain families. They 

clustered the remaining complexes according to sequence similarity and selected the 

complexes with the highest, the median and the lowest binding affinity to represent each 

of the 65 clusters, giving 195 complexes in total. In this study, we have further whittled 

down the number to 159 complexes which have only small molecules in the pocket. 

 

3.6.3 Regular Sites (R) 

The regular site subset was derived from a representative set of protein domain 

structures, each of which is given by CATH [152] as an example representing the 

homologous superfamily to which it belongs. From each such structure, one ligand 
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binding site is selected according to PDBsum. [149] For enzymes, we chose sites having a 

ligand which is neither a cofactor nor similar to the enzyme’s product or substrate. 

Ligands were selected to have no contact with any residues of any allosteric site given in 

ASD. Therefore, the sites occupied by the selected ligands are unlikely to be active sites 

or allosteric pockets. The regular subset is expected to have the weakest binding affinity 

and the lowest burial value of the three subsets. These weak interactions correspond to 

the regular binding events by which non-cognate ligands bind, possibly as accidents of 

crystallisation.  

A total of 99 instances were selected for the subset of regular (R) sites. The number 

representing each class was designed to be proportional to the prevalence of that 

structural class amongst all CATH [152] superfamilies (2620 superfamilies in total). 

There are four top C-level classes defined in the CATH database. Table 1 shows the 

number of entities included from each CATH class.  

Table 1 - Distribution of regular sites amongst CATH C-level classes. 

 

Class No. 

Mainly alpha 32 

Mainly beta 20 

Alpha beta mixture 42 

Few Secondary Structures 5 

 

3.7 Collection of external testing data (CHES) 

The PDB crystal structures containing the buffer molecule CHES (2-(N-cyclohexylamino) 

ethane sulfonic acid) were investigated. CHES is one of the many buffer molecules that 

commonly complex with proteins during the crystallisation process. 

In total, 82 CHES containing entries had been released in the PDB up to Dec 2013. From 

these, our external testing CHES set of 158 CHES-protein binding sites (some proteins 

have multiple CHES ligands) has been identified and each site is characterised by a set of 

descriptors individually calculated for it. We noted 14 cases in which CHES was bound in 

a protein's defined pockets [145], from which only one of these 14 CHES molecules was 

found in an allosteric site, that of a bacterial sialidase (NanB). [153] There results were 

manually identified by Brear and Westwood [145], who were hoping to see if the CHES 

was bound at the site where other small molecules can also bind. We have further 

specified which one or more of multiple CHES molecules in a given structure were being 
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referred to in their review results by using literature searching to identify the cavities as 

allosteric sites or otherwise. 

 

3.8 Random Forest 

We used the randomForest package in R [154,155] to build predictive models with the 

default setting of mtry to the square root of the number of descriptors and with ntree set 

to 10,000. Random Forest is widely considered relatively immune to overfitting. Each 

tree is grown by stochastic recursive binary partitioning, and the individual trees carry 

independent information because of the substantial random element in their 

construction.  

Three further considerations apply to the use of Random Forest in this work. First, each 

tree is built by bootstrap sampling from the same balanced dataset, which we 

constructed by stratified sampling (subsampling) to include an equal number of objects 

(53) from each class, a total of 159 sites to avoid bias due to imbalanced class sizes. 

Within this stratified balanced set, the bootstrap sampling means that approximately 

63% ( 1 – 1/e) of the data are used once or more in the building of each constructed 

tree, and the remaining 37% ( 1/e) or so are reserved for OOB validation of that tree. 

The bootstrap sampling from the balanced set is repeated afresh for each of the 10,000 

trees.  

Further, the performance of the Random Forest model is assessed firstly on the OOB data 

and secondly on the external test set consisting of the158 sites (46 R, 106 T and 6 A) 

omitted from the stratified (balanced) dataset. Those data excluded from the stratified 

balanced set in advance of the bootstrap sampling form an external test set which was 

separately used for further validation. This entire process of generating 10,000 trees was 

itself repeated ten times with different random seeds to avoid losing information from 

the majority class in training the models, see Figure 9. 

Finally, Random Forest is designed to handle the inclusion of redundant and irrelevant 

descriptors through the process of selecting possible splits at each node from a 

substantial set of randomly chosen options. [147] This obviates any need for an explicit 

descriptor selection step, and is particularly useful when a bespoke descriptor set is 

used, as in the present work.  
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3.9 Descriptor 

Every binding instance was characterised by the same set of descriptors.  

Table 2 - List of descriptors and their abbreviations. 

 

RFSCxCSK The RF-Score (R) times average burial over nine 

thresholds estimated by CavSeek 

Binding Site 

RF.score The unadjusted RF-Score (R) Binding Site 

NormRFScore The normalised RF-score (R/E) Binding Site 

Function_F195 The expected RF-score (E), calculated by a fitting 

function E=2.222 N⅓ 

Binding Site 

B_protein Average B-factor of the protein Binding Site 

B_pocket Average B-factor of the contact residues defined as 

protein residues <4Å to the ligand 

Binding Site 

noContact_resi Number of contact residues Binding Site 

 

3.9.1 CavSeek 

 

Figure 10 - The burial percentage is calculated as the number of distances considered to 

be “in contact” (less than or equal to a certain threshold) over the total number of 

measurements taken. The distance is measured between points of any CHES atom (on 

the left) to the van der Waals sphere of any protein atom. 

rw, r1w: vdw radii of individual atoms 

“In contact”: R-r1w threshold  
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In order to measure the burial of a ligand within the cavity of the protein binding site, we 

developed an accessibility-like program called CavSeek using a script written in Java. For 

a given protein and ligand, we calculate the percentage of possible point-to-atom 

contacts which are shorter than a given threshold value and hence are said to be “in 

contact”. A number of thresholds from 0.5 to 2Å have been selected to profile optimally 

and identify a ligand’s binding site. The aim of this program is to make it possible to 

discriminate computationally between surface-binding molecules and pocket-binding 

molecules. Ligands that are found within a protein cleft in a small binding pocket will 

have a higher percentage of sub-threshold contact distances. The percentage burial 

increases with the size of the thresholds as more points are counted. To generate 

descriptors from CavSeek, one can either include the result at each different threshold as 

a separate descriptor, or calculate an average burial as a single descriptor. For this study, 

we have included the burial at nine individual thresholds and also the average burial.  

In detail, CavSeek first centres the protein-ligand complex at the geometric centre of the 

ligand. We remove all protein atoms which are more than 20Å away from this origin, 

since there is a very little prospect of those atoms having a significant interaction with 

the modestly sized ligands that we study. We then represent each ligand atom as a 

sphere using the following van der Waals radii (r) in Ångstron: Br (1.85), C (1.7), Cl 

(1.75), F (1.47), Fe (2.0), I (1.98), N (1.55), O (1.52), P (1.8) and S (1.8). [156] For an 

atom at (x, y, z), we define six points on the van der Waals sphere along the co-ordinate 

axes at (x±r, y, z), (x, y±r, z) and (x, y, z±r). (Figure 10) For each of these six points, we 

calculate the shortest distance to the corresponding van der Waals sphere around any 

protein atom. The hydrogen atoms in both ligand and protein are ignored. For a ligand 

with M atoms, this results in 6M distances, each of which is compared with the 

threshold. All distances less than or equal to the threshold are taken to be “in contact” at 

that threshold, and the percentage of the 6M distances that are “in contact” is recorded. 

This is repeated for all nine chosen threshold values. In the cases when crystal structure 

reveals alternative conformations of the side chain due to a partial occupancy, the first 

conformation listed in the PDB file was kept for this study. 

 

3.9.2 RF-score 

RF-Score [146] is our group's machine learning approach to predicting protein-ligand 

binding affinity, especially for docked structures. Previous knowledge-based approaches 

used ensembles of observed protein-ligand crystal structures to infer binding energies 

from atom-atom distance distributions. That approach makes the dubious assertion that 
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Boltzmann energetics apply, assuming a particular exponential functional form to 

transform distance distributions into binding energies. [157] RF-Score uses Random 

Forest to predict binding affinities from both structural data and the affinity data that 

are left unused in most knowledge-based approaches, yielding a much more accurate 

and flexible scoring function. 

In order to make the scores of differently sized ligands comparable, and to compensate 

for the intrinsic size-dependency of scoring functions, we calibrate RF-Score according 

to the number of heavy atoms (N) of its ligand. [158,159] Figure 11 illustrates the 

variation of the unadjusted scores, which we empirically fitted to a small number of 

physically justifiable functional forms. We empirically found that the best fitting function 

defining the expected score (E) for a ligand of given size was 

E = 2.222 N1/3 

For each ligand, we calculate the unadjusted RF-Score (R), the expected score (E), and 

the normalised score (R/E).  

 

Figure 11 – Normalisation of RF-Score. 

Each point represents an individual RF-Score of a different protein-ligand complex 

selected from the PDBbind database [150] used in this study as part of the subset of 

orthosteric sites within the training set. The fitted curve illustrates the function used to 

calibrate the scores with the ligand size. 
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3.9.3 Temperature Factor 

To include features that describe flexibility, we have used the temperature factor (or B-

factor). The B-factor, which reflects the degree of atomic displacement from their 

equilibrium positions in the crystals due to thermal motion, was extracted from the X-

ray crystallographic structures of the protein-ligand complexes in the PDB. A higher B-

factor implies that the atom has greater mobility. The average B-factor of the contact 

residues is divided by that of the protein to obtain values that reveal the differences in 

flexibility of the ligand binding region with respect to the entire protein. Firstly, to 

consider the bias arising from chain termini; the average B-factor of the protein with 

gradual omission of up to 10 residues at both ends was calculated. The results showed 

no significant change in the average B-factor between each omission; accordingly, 

proteins have been kept without terminal elimination. Secondly, the solvent and other 

ligands or cofactors were removed to obtain a B-factor resulting solely from the protein 

residues. The contact residues herein were defined as residues having at least one atom 

within 4Å of the centre of any atom of the ligand. B-factors of all the atoms of the contact 

residues and the protein are averaged and were included both as ratios and as separate 

descriptors in this study.  

 

3.9.4 Contact Residues  

Contact residues, which were defined as residues with an atom (or atoms) that are 

closer than 4Å to any atom of the ligand (as defined above), were utilized as descriptors 

to reflect the physicochemical composition of the ligand binding site. This includes a 

simple count of the total number of residues and the occurrence frequency of each of the 

20 amino acids. Moreover, the contact residues are further grouped according to their 

side chain chemistry into charged (R, H, K, D and E), polar (S, T, N and Q), hydrophobic 

(A, V, I, L, M, F, Y and W), aromatic (F, Y, W and H) and special (C, G and P) categories. 

Each count was taken as an individual descriptor.  

 

3.9.5 Small Molecule Descriptors  

We used the Chemistry Development Kit (CDK) [160] to compute descriptors for small 

molecules. CDK is an open source library written in Java for structural informatics 

calculations. First, the chemical structures of the ligand were inputted as SMILES 

extracted from each ligand structure file (in SDF format). Second, we calculated 277 CDK 



52 

 

descriptors for each compound, and removed features without discriminant power, 

those having either the same or an undefined value for all compounds in any of the 

training subsets. As a result, only the remaining 141 CDK descriptors were kept for 

further analysis.  

 

3.10  Result and Discussion 

3.10.1 Predictive performance (OOB) 

Prediction is based on a majority vote over the set of 10,000 trees (ntree). One vote is 

made by each tree for each instance that is OOB (not used in building the tree, because it 

was not chosen during the bootstrap sampling) by passing the OOB data down each tree 

to obtain a class prediction. From the aggregated OOB predictions, classes are assigned 

to each OOB instance by a majority vote of the trees. The OOB error, which shows the 

percentage of misclassification in the dataset, was calculated based on the known and 

predicted class labels. Separately, we also test the Random Forest’s predictivity by 

passing down each tree the external test set comprising those data that were omitted 

from the balanced set (46 R, 106 T and 6 A sites). 

Random Forest is insensitive to values of mtry except close to its high and low extreme 

values. [161] It was empirically shown in [147] that the performance of the Random 

Forest remains unchanged over a wide range of mtry values, and the defaults work the 

best for the majority of cases. For all 10 repeats (each of 10,000 trees per model), the 

default mtry was used. Five models were built using various sets of descriptors, which 

are classified as either small molecule or binding site descriptors according to the 

physicochemical features captured. Some of the most significant descriptors are listed in 

Table 2. For each model, we computed the average OOB error to estimate the prediction 

error thus to assess the accuracy that is independent of particular repeats; see Table 3. 

The OOB error is sensitive to the random determination of which protein-ligand 

complexes are kept in the training set, in general, with 3-4% deviation from the average. 

The first Random Forest model was trained using a total of 151 small molecule 

descriptors including 141 CDK descriptors and the heavy atom counts of each ligand. 

(see Table 2 in Appendix for the lists) The average OOB error of the Random Forest 

models obtained is 36.48% on the stratified balanced set, in which the pocket has been 

assigned a class label solely based on the small molecule descriptors of the ligand that 

binds to it. By the addition of 43 binding site descriptors, the second Random Forest 

model which includes properties of all calculated descriptors of both the bound ligand 
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and the site has a slightly improved error of 33.64%. Both models contained descriptors 

based on the structures of the small ligand molecules. These are invariant within the 

CHES set as the same compound CHES was used to characterise the pocket in each case. 

Thus, those models are not used in predicting our CHES set since these are descriptors 

without discriminating power for that set.  

Our third model used 43 binding site descriptors that describe ligand binding in terms of 

predicted affinity (RF-score), a percentage scoring scale for ligand burial (CavSeek), 

binding site flexibility (B-factor) and binding site hydrophilicity or hydrophobicity 

derived from analysis of the pocket composition. The model produced an average OOB 

error of 38.6% on the stratified balanced set. Subsequently, it was used on the CHES set 

to generate predictions for the CHES-protein binding pockets.  

Table 3 - Average OOB error rates for the different models.  

 

The OOB errors are presented as the percentage of misclassified data points in the 

stratified balanced set and separately in the external test set (comprising data excluded 

from the stratified set). Standard deviations are calculated over a hundred runs using 

different random seeds (10,000 trees per run), using N-1 = 99 in the denominator. 

 

3.10.2 Descriptor importance 

The importance of the individual descriptors can be evaluated either with the 

permutation method by observing the effect on the predictivity of Random Forest 

models of ‘noising up’ each descriptor, or alternatively with the Gini index, an impurity 

measure. The mean decrease Gini (MDG) (calculated over all trees) is a measure of 

improvement to the purity when that descriptor is made available to split the trees, thus 

producing greater purity in the resulting nodes. The decreases in Gini impurity for each 

descriptor used to form splits are summed over all trees and then normalised. A higher 

value implies greater importance of the variable concerned. Here, we report the results 

of variable importance as measured by impurity reduction, see Figure 12.  
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The top ranked binding site descriptors obtained by averaging the Gini importance 

values from 10 repeats are obtained. The leading descriptors are: first the product of the 

RF-Score and the average score of CavSeek (RFSCCSK), second the RF-Score values 

(RF.score), followed in third place (but with a significant decrease in importance) by 

protein flexibility (abbreviated to B_protein), fourth the residue count of the ligand 

binding site (noContact_resi), and fifth the normalised RF-Score (NormRFScore).  

The subsequent important descriptors are: sixth the flexibility based on the contact 

residues (B_pocket), and seventh the expected RF-Score (Function_F195, computed by 

size calibration with the number of heavy atoms N to the original score as 2.222N⅓). 

Those two have very similar Gini importance values. 

Similar importance rankings were found in all ten repeats, but they sometimes slightly 

differed in order. The calculation of relative importance allows a further assessment 

firstly of the classifiers based on the full set and secondly on classifiers based only on a 

few of the most important descriptors as a potential way to improve the performance, 

since generalisation tends to perform better in a lower dimension. To achieve this, we 

select the top 7 descriptors (from which to build the fourth model) and top 5 descriptors 

(for the fifth model) due to the breaks in the curve of the Gini importance plot, Figure 

12, indicating a considerable drop of importance from the fifth to the sixth variables and 

similarly from the seventh to the eighth. The predictive ability of the models with 

reduced numbers of descriptors, as measured by the OOB error, is shown in Table 3. An 

increased overall OOB error is observed as the number of variables is decreased by 

3.04% and 4.83% for the stratified set, relative to the model based on all binding site 

descriptors. Apart from the OOB error calculated, we also look for consensus of the 

results of computational predictions and literature findings, as discussed below.  

The results also show that our largest threshold of 2Å is desirable for CavSeek to achieve 

optimal discrimination between binding sites, based on the relative descriptor 

importance of the CavSeek scores at different thresholds. The version with the 2Å 

threshold is listed eighth in the variable importance ranking. CavSeek is combined with 

RF-Score by multiplication to increase their discriminative power, hence avoiding the 

difficulties inherent in adding or subtracting quantities with different dimensions. The 

combined descriptor of RF-Score and CavSeek improved the RF-Score by itself and is 

listed as the most important variable averaged from ten runs. RF-Score itself is listed as 

the second.  
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Figure 12 - The mean Gini importance values of each descriptor from the third model, 

averaged over ten repeats.  

The plot shows variable importance on the y-axis ordered from the most to the least 

important. The descriptors with the highest decrease in Gini impurity make the major 

contributions to partitioning the data into homogeneous classes.  

 

3.10.3 Predictions for the CHES set 

Here we collate the number of times each class is predicted for each CHES binding 

instance and report the class with majority votes from hundred repeats. (Appendix 

Table 3 and 4) The numbers assigned to each class are given so as to express the 

approximate level of confidence with which a class has been assigned from hundred 

repeats.  
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The model trained using all binding site descriptors returns six orthosteric (T) sites, of 

which four (pdb codes: 2VW2, two sites in 3OQI, and 3NOQ) showed matches with the 

manual annotation. The remaining two were known bind to the domain interface (both 

in 2ICH) interacting with conserved residues which were inferred to have functional role 

among homologs. [162] 

Among the 15 CHES binding instances predicted as allosteric (A), there is lack of 

literature for 4DQ0 and 3G8W. Both contain multiple CHES binding instances. Our 

results uncover three potential allosteric sites, which are not known orthosteric sites, 

supported by the literature. Four were found experimentally in sites considered [145] 

likely to be orthosteric (two in 3RIG, 1Q1Q and 1V30), see Table 3 in Appendix. 

Since CHES is not a natural cognate ligand for any protein it binds to, it is perhaps not 

surprising that orthosteric sites where the CHES binds (active sites evolved to bind other 

ligands) have been predicted as allosteric. The ligands in the orthosteric (T) subset of 

the training set from which the model was built were chosen to be more specific to the 

corresponding protein; thus, the more buried and stronger binding ligands were 

expected to be the cognate ones. In the potential future use of this methodology to 

predict allosteric sites using serendipitous binders, the workflow would therefore be 

designed to filter out known orthosteric sites from the set of allosteric predictions.  

In contrast, our fifth model using the top 5 descriptors resulted in more promising 

results. Five orthosteric sites have been predicted of which four are consistent with the 

previously discussed full binding site descriptor model (2VW2, two sites in 2ICH, and 

3OQI). An equal number of predictions amongst the 10 repeats assigned 3OQI to the 

orthosteric and allosteric classes. Three out of five orthosteric predictions were indeed 

experimentally determined to be orthosteric (2VW2, 3OQI and 1V30), while the 

remaining two are found at the domain interface (2ICH).  

The top 5 descriptor model identified 30 allosteric sites, of which 15 lack definitive 

description in the literature, six pockets correspond to manually annotated orthosteric 

sites (two in 3RIG, and one in each of 1Q1Q, 3OB9, 3NIB, and 4H75), and nine pockets 

were potential allosteric sites. The allosteric sites we have referred to are non-

orthosteric clefts, based on the literature. Yet, it is not known whether those pockets are 

functional allosteric sites, see Table 4 in Appendix. 

Unfortunately, the allosteric site obtained manually (2VW2, A1001) by Brear and 

Westwood [145] was not predicted correctly by either model; the cleft was identified as 

regular (R). We observed that CHES shares this pocket with a glycerol molecule which is 

lying deeper in the cavity. (Figure 13) 
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Figure 13 – View of a glycerol (coloured in green) bound to the same pocket with CHES 

(orange). Structure taken from PDB ID: 2VW2 (purple). 

We notice that three interface cavities were assigned to classes A or T (two in 2ICH, and 

4ATG), implying that there may be shared features of interface interaction common to 

the allosteric and orthosteric subsets. Indeed, the interface can potentially act as a 

binding site for an allosteric modulator. Binding of allosteric modulators at the interface 

between subunits of GABA receptor has been shown to have varying effects on the 

receptor's function. [163] Stanget et al. [164] revealed an allosteric binding site at the 

homodimeric interface of caspase-6 zymogen that impairs function. Descriptors to 

identify specifically the interaction interface can be exploited; perhaps interface cavities 

might be included in future work as an independent subset. 

One positive note is that, in spite of high error rates (38.6% for the full binding site 

descriptor model and 43.43% for the top 5 descriptor model) estimated using OOB data, 

both models have given promising results for potential allosteric sites. Nearly half of our 

prediction instances are not confirmed by the literature, yet instances that can be found 

in the literature are annotated as either orthosteric or in a binding cavity different from 

the orthosteric site. In fact, our top 5 descriptor model predicts most of the defined 

pockets (10 out of 14) that have been identified by Brear and Westwood to be either 

allosteric or orthosteric.  
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Our method provides a fast and low computational cost way to identify potential 

allosteric sites on large number of crystal structures. The co-crystallised non-cognate 

ligands and buffers that are commonly seen on most crystal structures are used, from 

which we extract binding site features. It is implicitly assumed that the crystal structures 

downloaded from the PDB have the correct ligand binding orientations, though we note 

that docking and ligand reoptimisation may in future play a role. The predictions were 

made based only on structures with non-cognate ligand bound. Thus, an adequate 

description of a binding cleft might not be possible. Also, potential allosteric sites 

containing no co-crystallised compound are invisible to our trained algorithm. The 

models were not trained to predict based on specific families. Thus, the number of 

regular sites included for each of the four structural classes at the C-level of the CATH 

classification [152] is roughly proportional to its prevalence in the CATH database. 

However, we noted that a known allosteric site is dominant in some families [137] or 

perhaps may only exist in particular families, thus introducing a systematic bias. Even 

though these issues may have contributed to the difficulties in predicting allosteric sites, 

resulting in a higher-than-ideal error rate, many of our allosteric sites predictions are in 

agreement with literature findings. Moreover, those non-cognate ligands that co-

crystallised with potential allosteric sites can be used as starting structures for the 

design of probes specifically created for these sites.  

 

3.11  Conclusion 

Allostery is a regulatory mechanism that affects protein function by the binding of small 

molecules to a site distinct from the active site. In contrast to traditional drug design by 

mimicking natural substrates, allosteric effectors offer therapeutic benefit for target-

specific drug design. The discovery of new allosteric sites in protein cavities has 

emerged as a new drug design approach to identify novel pharmaceutical agents.  

In this study, we have used Random Forest to build a three-way classification model for 

predicting allosteric pockets. We then report the results for a test set in which we 

consider instances of a buffer molecule, CHES, as a potential binder to allosteric sites; 

Brear and Westwood [145] observe 14 matches supported by the literature and 

structural analysis, wherein 10 of these 14 pockets were identified as either the 

allosteric or orthosteric sites of the protein by our top 5 descriptor (final) model. 

Although it is questionable whether other predicted pockets are truly functional, the 

implementation of a machine learning scheme allows discrimination between binding 

sites according to features that are captured from the protein-bound ligand 



59 

 

conformations. This can help reduce the number of PDB files needing to be looked at 

when hunting for potential novel allosteric sites, prioritising those which are predicted 

to belong to the allosteric category. Thus, this study shows promising results from using 

adventitiously binding buffer molecules as agents for allosteric site discovery. However, 

we also note that predictions of orthosteric pockets were hardly ever made for binding 

sites of CHES, a non-natural ligand for any protein. CHES appeared to be associated with 

lower binding affinity and lower burial in protein cavities compared to the ligands of the 

orthosteric subset used in the model’s training. However, mispredictions of orthosteric 

sites as allosteric will be easy to remove from a set of allosteric predictions, since the 

orthosteric sites are generally known for the PDB structures we are using. We found 

several CHES molecules bound in sites predicted to be either allosteric or orthosteric, 

though actually located at an interface. These can potentially be allosteric modulator 

binding sites. 

We have evaluated the descriptor importance by the Gini importance measure. RF-Score 

and its combination with CavSeek appeared to have significant discriminative power in 

identifying the binding pockets. These descriptors reflected the binding states of ligands 

with respect to their strength of interaction and to their degree of burial in the cleft of 

the protein. 
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CHAPTER 4. Docking Novel Ratiometric Sensors for Guanine 

Quadruplex Structures 

 

4.1 Introduction to DNA G-quadruplex 

A non-canonical DNA structure, a G-quadruplex, is composed of stacks of guanine 

tetrads, G-quartets, stabilised by coordinated cations within the central cavity and by π-

π stacking interactions between adjacent G-quartets. A G-quartet is a planar association 

of four Hoogsteen hydrogen-bonded guanines arranged in a cyclic fashion. These four-

stranded DNA structures can be formed in guanine-rich DNA and RNA sequences, and 

adopt different conformations as a result of different sequences, experimental 

conditions such as different cations (Na+ or K+) or different concentrations and degree 

of molecular crowding. [165] For example, experiments have demonstrated that G-

quadruplexes are stabilised by K+ ions at 10-50 mM concentration. [166] Molecular 

crowding, chaperones and dehydrating conditions would accelerate the folding of G-

quadruplexes. [167] 

In 1910, Bang [168] observed a gel-like aggregate formed from concentrated guanylic 

acid. X-ray diffraction studies in the 1960’s found this aggregate to be four guanine bases 

hydrogen bonded together in one plane. [169] A decade later, it was found that guanine 

repeats can form four-stranded nucleic acid secondary structures, named G-

quadruplexes. In 1989, Williamson et al. [170] reported G-quadruplex to be stabilised by 

central monovalent cations. 

Quadruplex structures can be of two types, depending on strand polarity: parallel 

quadruplexes, in which all guanine glycosidic bonds are in the anti-conformation, and 

anti-parallel quadruplexes, in which both syn- and anti-conformations are present. [171] 

Balagurumoorthy and Brahmachari [172] suggest that Na+-rich solutions seem to 

promote the formation of intramolecular anti-parallel folds, whereas the presence of K+ 

appeared to promote parallel fold conformation.  

Repetitive G-rich sequences can also be found in promoter regions (i.e. c-Myc, H-Ras and 

K-Ras), 5’ and 3’ untranslated regions (UTRs), introns, and the 3’ single-stranded end of 

the telomere (which is 100-200 bases long in a human). In general, G-quadruplexes 

could fold into either: 1) intramolecular structures formed by folding of a single strand, 

that could potentially regulate gene expression and chromosome stability or 2) 

intermolecular G-quadruplexes formed by two (dimeric) or four (tetrameric) separate 
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strands, which are structures formed as intermediates or precursors to recombination 

(DNA exchange between chromatids) and/or viral integration. (Figure 14) [173] 

 

Figure 14 - Modified from [174] shows the structure of intra- and inter-molecular G-

quadruplexes. 

G-quadruplex specific nucleases have been identified in yeast KEM1 [175] and in human 

GQN1 (G-quartet nuclease 1) [176], which cut single-stranded DNA located upstream 

(toward 5’) of a quadruplex structure, releasing intact quartets. These endonucleases 

function to cleave: a) intramolecular G-quadruplexes at telomeres, to allow access of 

telomerase for telomere maintenance, and b) intermolecular G-quadruplexes that form 

during chromosome pairing in meiosis. [177] G-quadruplexes function as regulatory 

elements in gene expression; the characterisation of G-quadruplex specific nucleases 

clearly supports this view, indicating that G-quadruplexes could be a viable target for 

therapy. Efforts have been made to identify small molecules that can bind to G-

quadruplexes with high specificity, such as N-methyl mesoporphyrin (NMM) [178] and 

telomestatin [179]. (Figure 15) 
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Figure 15– Chemical structures of (a) N-methyl mesoporphyrin (NMM) [180] (b) 

telomestatin and (c) TMPyP4 [181]. 

 

4.2 The significance of docking to G-quadruplexes 

G-quadruplexes have been shown to influence carcinogenesis through transcription 

regulation, and inhibition of telomere elongation by telomerase (Figure 16). The Hurley 

Lab has uncovered a correlation between G-quadruplex stabilisation and the 

suppression of promoter activity. Binding of small molecules such as TMPyP4 (Figure 

15), a well-known G-quadruplex stabiliser, to G-quadruplex was found to decrease the 

promoter activity by more than 50%. [182] Potential G-quadruplex-forming motifs 

(G3+N1-7)4+ (where G is guanosine and N is any nucleotide) have been found in 30-40% 

of human promoters. The formation of a G-quadruplex in the promoter region of c-MYB 

oncogene containing GGA repeats has been reported to be involved in both 

transcriptional activation and repression. Targeting G-quadruplexes has emerged as a 

strategy to deactivate the promoters of oncogenes, suppressing transcription by using G-

quadruplex-targeting ligands. [183] 

Human telomeric DNA typically consists of tandem 5’-TTAGGG-3’ repeats with a G-rich 3’ 

overhang (capable of folding into G-quadruplex). Telomeres protect chromosome ends 

from recombination, from degradation and end to end fusions, and from inappropriate 

repair processes (to distinguish it from double-stranded breaks). Telomeres, however, 

shorten with every cell cycle, and this leads to aging. The formation of G-quadruplex 

structures in telomeric DNA has been shown to disrupt telomeric capping and 

maintenance (to be sensed as DNA damage, inducing apoptosis) and to disrupt 

telomerase from telomere, thereby inhibiting over-elongation of telomeres in 80-85% of 

human tumor cells. Such DNA-containing G-quadruplex structures are no longer 

recognised as substrates by telomerase. Cellular events such as recombination and 

replication involve separation of the DNA strands, thus providing opportunities for the 
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G-rich strand to form the G-quadruplex structures. G-quadruplex ligands that induce 

and/or stabilise G-quadruplexes are promising therapeutic agents for the treatment of 

cancer, and are able to inhibit telomerase activity and activate a DNA-damage response, 

leading to apoptosis or replicative senescence. [184] 

 

Figure 16 - Modified from [173]. G-quadruplexes can reduce the expression of oncogenes 

and inhibit telomerase activity. 

Unfortunately, most chemotherapy agents used bind nonspecifically to DNA. Possible 

anticancer drugs, however, occupy two types of binding sites for G-quadruplex ligands. 

(Figure 17) Firstly, co-facial end-stacking or hemi-intercalation binding mechanisms 

involve polyaromatic molecules (called end-stackers) with planar geometries, for 

binding to the ends of the G-quartets; stabilising the quadruplex via π-π stacking 

interactions. Many of these compounds are porphyrin derivatives. However, these 

molecules generally have poor drug-like properties and selectivity. Secondly, a small 

drug molecule may bind to grooves and/or loop regions. Binding is sensitive to subtle 

variations in topologies, groove widths, and loop sequences conferring selectivity. 

Groove binders are more selective than end-stackers, and are specific to different groove 

conformations, suggesting promising potential for site-specific design. [185] Examples 

are steroids and their derivatives, which recognise DNA particularly, and show a 15-fold 

higher selectivity for G-quadruplex compared to dsDNA.  
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Figure 17 - Binding modes of small molecules with G-quadruplexes. 

 

4.3 Ligand-ratiometric sensor 

The ligand that was used is 2-(2′-hydroxyphenyl)-3H-imidazo[4,5-b]pyridine (HPIP-b) 

which binds all kinds of G-quadruplex structures. 

 

Figure 18 - Molecular structures of the normal (N) form of HPIP-b and the tautomer (T) 

form obtained after ESIPT. 

HPIP-b is a ratiometric fluorescent sensor. In the ground state, HPIP-b exists in 

equilibrium between two isomeric normal (N) species: the cis-form, which is the most 

stable form, and the trans-form. Upon excitation (which triggers protonation or 

deprotonation), an intramolecular proton transfer occurs along the hydrogen bond 

coordinate to give the tautomer (T). (Figure 18) This process of excited state 

intramolecular proton transfer (ESIPT) occurs only in the cis-form, as it requires both 

the acidic and basic groups to be in close proximity in the same molecule. [186] 
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Figure 19 - Obtained from Penedo-Esteiro’s group, fluorescence spectra of HPIP-b in 

aqueous buffer with emission of tautomer (T) and normal (N), Tautomer/normal ratio 

of HPIP-b at different concentration of telomeric sequence (middle and right graph) The 

darker the line, the higher the concentration of telomeric DNA.  

HPIP-b exhibits a dual fluorescence band emission (Figure 19, Left). The normal (N) 

species is responsible for the emission band at 380nm, and the emission at 480nm is due 

to the tautomer (T). From experiment, we known that 80% of HPIP-b is in the trans-

form in water, and perhaps the majority of the ligand is still in the trans-form upon 

binding. So, we used the trans-form to carry out this study. However, as the 

concentration of DNA increases, the equilibrium shifts towards a higher concentration of 

the bound T form conformer, so that the ligand somehow undergoes a change from the 

N/trans- to the N/cis-form. Thus, it becomes structurally possible to undergo an ESIPT 

process upon excitation, giving the tautomer, as shown by a binding isotherm graph 

(Figure 19, Right). The middle graph shows their relative intensity changes with the 

concentration of quadruplex. The tautomer becomes dominant at a higher concentration 

of quadruplex. Their ratio is affected by solvent polarity, and by the pH of the medium. 

These two isomers display different excited-state properties, making HPIP-b an excited-

state proton transfer probe with high sensitivity to the environment. Due to this dual-

band ratiomatic property, HPIP-b is an attractive sensor for studying binding 

interactions of G-quadruplexes. HPIP-b also interacts with double strand DNA, though 

this is thought to be a much weaker interaction. 

 

4.4 Method 

We performed a docking study to investigate the binding pattern of HPIP-b upon G-

quadruplexes [AGGG(TTAGGG)3]. We used molecular dynamics to firstly simulate large-

scale conformational changes of G-quadruplex in the presence of explicit solvent and 

ions, and secondly to explore more possible binding sites, from which snapshots of the 

G-quadruplex structures were extracted for subsequent docking. An ensemble docking 
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strategy was adopted to implicitly account for receptor flexibility. At the end of the 

simulation, we extracted five snapshots at 200ps intervals. Subsequently, each rigid 

receptor structure will undergo an independent docking run. AutoDock [187] was used 

to perform a blind docking against each of the snapshots, to obtain the most probable 

binding modes presented, indicated by better estimated binding energies. Due to the 

limitations posed by docking, there arises the need to adopt a theoretical method to 

account for a certain degree of protein flexibility. In this regard, we carried out a post-

docking refinement step using a two-layer QM:QM ONIOM model to optimise and 

rescore docked complexes. The ONIOM method (our own N-layer integrated molecular 

orbital molecular mechanics) developed by Morokuma et al. [188], employs a 

subtractive (or extrapolative) QM/MM scheme, in which the total energy of the system, 

𝐸𝑄𝑀/𝑀𝑀(𝑠𝑦𝑠𝑡𝑒𝑚), is calculated using Equation 11. Here, 𝐸𝑀𝑀(𝑠𝑦𝑠𝑡𝑒𝑚), is the MM 

energy of the whole system, 𝐸𝑄𝑀(𝑄𝑀), is the QM energy of the QM region and 

𝐸𝑀𝑀(𝑄𝑀), is the MM energy of the QM region. [189]  

Equation 11 – The energy of a two-layer ONIOM(QM:MM) calculation: 

𝐸𝑄𝑀/𝑀𝑀(𝑠𝑦𝑠𝑡𝑒𝑚) = 𝐸𝑀𝑀(𝑠𝑦𝑠𝑡𝑒𝑚) + 𝐸𝑄𝑀(𝑄𝑀) − 𝐸𝑀𝑀(𝑄𝑀) 

In the end, we reported our docking studies from AutoDock, which revealed electrostatic 

effects between HPIP-b and G-quadruplexes. 

 

4.4.1 Structure preparation  

DNA 

The crystal structure of the parallel 22-mer human telomeric G-quadruplex (PDB entry 

1KF1), sequence d [AGGG(TTAGGG)3], was obtained from the PDB. The structure 

consists of three G-quartets and three external TTA loops extended outward from the 

guanine core resulting in a propeller-like shape. (Figure 20) Adjacent G-quartets are 

stacked with a 30° twist and are separated by 3.13Å. [190] The loops connect the 

adjacent parallel chains, from the top of one strand to the bottom of the other. The 

second thymine of each TTA loop is located at the tip of the loop, within the adenine base 

swung back, intercalated between two thymine bases. These loops are thought to be 

involved in intermolecular interactions, for example hydrogen bonding, and stacking 

interactions with telomeric proteins.  
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This initial structure was arranged into a dimer using Chimera, making use of 

crystallographic symmetry information from the PDB file. This dimer was used in this 

study to model the structure of extended quadruplex telomeric sequences. Packing of 

two G-quadruplexes through G-quartets results in a stacked 5' to 5' hydrophobic surface. 

In contrast, a 3' surface is more hydrophilic. The dimer structure consists of a core of six 

G-quartets and five K+ ions in the central channel.  

 

Figure 20 - Chemical structure of the G-quartets. (PBD ID: 1KF1) 

Internal K+ ions were retained between consecutive G-quartets throughout these 

studies. The double-stranded DNA of similar sequence 5’-GTTAGGGTTAGGG-3’ (PDB 

entry 1IV6) was used for comparison. (Table 4) 

 

G-quadruplex dsDNA 

1KF1 (Human telomeric DNA) 1IV6 

5’-AGGG(TTAGGG)3-3’ 5’-GTTAGGGTTAGGG-3’ 

3’-CAATCCCAATCCC-5’ 

Single stranded Double stranded with base pairing 

Table 4 - The structures and sequences of the DNA used in this study. 
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4.4.2 Molecular Dynamics 

MD simulations were carried out with GROMACS version 4.6.7 [191,192,193] using the 

Amber03 force field. The dimeric G-quadruplex was solvated in a 6.55Å3 box, with 8687 

TIP3P water molecules and neutralised by replacing random water molecules with 18 

Mg2+ ions and 1 K+ ion to bring the net charge to zero. Periodic boundary conditions 

were applied to minimise edge effects. 

During pre-optimisation, the solvent was relaxed at 0K by a steepest descent 

optimisation with restrained nucleic acids, followed by an overall system optimisation. 

The steepest descent method, which uses first derivatives in energy minimisation, is 

applied in all simulations to avoid failure when the force is large, and to remove thermal 

noise. The method takes a step downhill by moving in the direction of the greatest 

negative gradient.  

The hydrogen bonds are constrained with the P-LINC algorithm. The system was 

gradually heated from 0 to 300K with 100ps equilibration for each successive 

temperature step and equilibrated at 300K for 100ps, using a time step of 0.001ps. This 

equilibration was followed by 1000ps simulations under NPT (fixed pressure, 

temperature and number of atoms) conditions at 300K, during which coordinates were 

saved to the trajectory every 10ps, resulting in a set of 101 coordinates.  

The same procedure was repeated with dsDNA in a cubic box of 6.41Å edges with 8452 

TIP3P water molecules. Five structures saved after every 200ps along a 1000ps MD 

simulation were obtained for use in the following docking studies.  

 

4.4.3 Molecular Docking 

Dockings of HPIP-b to parallel telomeric G-quadruplexes (PDB ID: 1KF1) were carried 

out using AutoDock 4.2 [187], employing a Lamarckian genetic search algorithm (LGA) 

to generate docked poses, and a semi-empirical force-field-based scoring function to 

estimate the free energy of binding. A HPIP-b molecule was built and optimised with the 

semi-empirical PM3 method using Gaussian 09, and was in the trans-configuration 

during docking. 

Five G-quadruplex structures were extracted from the MD trajectory for docking using 

AutoDock Tools (ADT) version 1.5.6 [187], a graphical user interface, used to a) merge 

non-polar hydrogens, by adding Gasteiger charges [194] to each constituent atom of the 
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ligand and the receptor, and b) assign rotatable bonds prior to the docking. AutoGrid 

was used to generate grid maps for each atom type in the docked ligand, which store 

grids of interaction energy used as a lookup table, to speed up the interaction energy 

calculation during the conformational search (sampling stage). Default values were used 

for AutoGrid parameters. A grid map with 126 x 126 x 126 points, and a grid spacing of 

0.375Å was used, and the maps were centred on the DNA, covering the entire DNA. The 

DNA was kept rigid, while the ligand was allowed to be flexible during sampling. 

50 independent docking runs were performed for each G-quadruplex structure, with an 

initial population size of 50 individuals, a maximum number of 5 x 107 energy 

evaluations per run, and a maximum number of 27000 generations. Mutation and 

crossover were applied at rates of 0.02 and 0.8, respectively. All other parameters were 

set to default values. The local search was based on the Solis and Wets method, with a 

maximum of 300 iterations per search, local search rate of 0.06, step sizes of 0.2Å for 

translations and 5° for orientations and torsions. The resulting docked structures were 

clustered, using the Clusterings module in ADT, by the conformation with the lowest free 

binding energy (with a 2Å cut-off RMSD), to obtain clusters of similar binding modes. 

The low-energy conformations were chosen from the largest and lowest-energy cluster 

for further processing. This same process was applied to the dsDNA for comparative 

purposes in this work. 

This docking process is semi-flexible, where the ligands are allowed to explore their 

conformational space, while keeping the DNA rigid. The flexibility of a ligand molecule is 

modelled with six external degrees of freedom (three translations along the coordinate 

axes and three rotations) plus internal (conformational) degrees of freedom due to 

rotations around bonds. Since it is impractical to fully explore the conformational space 

in practice, an approximation (i.e. the rigid body approximation, treating each DNA as a 

rigid body) is assumed to reduce the dimensionality of the space. [195] In the next 

experiment, ONIOM was employed to optimise and rescore the docked complexes, for 

considering a certain degree of protein flexibility explicitly after the docking process 

(post-docking refinement).  

 

4.4.4 Thermodynamic cycle-ONIOM QM/QM 

To quantify the electrostatic effects arising from the binding region of the docked ligand, 

a two-layer ONIOM QM/QM calculation using hybrid density functional theory (DFT) 

and PM6 was performed with Gaussian 09. Using the ONIOM scheme the binding region 

was divided into subsystems that are treated at different levels of theory. This is in the 



71 

 

interest of making a challenging and time consuming calculation more readily tackled on 

currently available hardware while still providing a reasonable degree of accuracy and 

insight. The system was built upon the docked position of HPIP-b containing residues 

that are within 4Å of the ligand. This included water molecules in order to account for 

electrostatic solvation effects and hydrogen bonding (which are crucial in describing 

ligand effects). As shown in Figure 21, hydrogen atoms were used for capping the lower 

layer. The ligand was fully optimised using DFT at the M06/6-31G(d,p) level, whereas in 

its surroundings atoms heavier than hydrogen are fixed and treated by PM6.  

  

Figure 21 - ONIOM was applied upon the docked position of the ligand including 4Å 

around the ligand. The ligand (circled in dash) is treated at DFT (M06) level, while the 

remainder is treated at a lower level of theory (PM6).  

We constructed a thermodynamic cycle (Figure 22), used to determine the electrostatic 

forces in the ligand docked region. In this cycle, the capital in the bracket indicates 

where the ligand has been optimised (W refers to water) while the superscript indicates 

where the calculation was performed; either in the gas phase, in a PCM solvent model, or 

in the point charge field of DNA. The ligand was optimised with DFT at M06/6-31G(d,p) 

level via a self-consistent reaction field (SCRF) method using the polarisable continuum 

model (PCM), developed by Tomasi et al. [196]. PCM is used to simulate implicit solvent 

effects, [Ligand, W], wherein the solute is embedded in a spherical cavity surrounded by 

a homogeneous dielectric continuum, which is dependent on its dielectric constant. The 

optimised ligand was then calculated in the gas phase at the same geometry using DFT at 

M06/6-31G(d,p) level, from which the energy differences are calculated to obtain the 

solvation energy of the ligand (left arrow of Figure 22 (a)). 
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The ligand was optimised in DNA (by ONIOM). The optimised ligand was calculated in 

the gas phase and subsequently in the point charge field of neighbouring structures 

updated with optimised (PM6) hydrogen position. In this portion of the model, every 

atom, including the whole DNA and solvent within 15Å of the optimised ligand, was 

considered as a point charge using Amber03 and TIP3P parameters from Gromacs. We 

calculated the energy difference between the ligand in the gas phase and embedded in 

the point charge field, to obtain a measure of electrostatic forces at the ligand docked 

region. (right arrow in Figure 22 (b)) 

The energy differences (EGeom) between optimised structure of the ligand from the 

water and DNA calculated in the gas phase allowed us to calculate the energy cost of 

changing the geometry upon binding, represented by the top arrow in the 

thermodynamic cycle shown in Figure 22 (c). 

The energy differences of the ligand between its different optimised structures in water 

and its binding conformation in the DNA represented by a point charge field (PCF) is 

calculated to obtain the binding energy (bottom arrow, Figure 22 (d)). 

 

Figure 22 - Thermodynamic cycle employed for electrostatic calculations.  

 

4.4.5 Potential energy surface  

We explore a potential energy surface (PES) that gives the ground state electronic 

energy contained in a molecule at a given nuclear geometry. Since there is a relatively 

large difference in mass between electrons and nuclei, the nuclear equations of motion 

can be described either by quantum mechanics, or else classically via Newton's 

equations. The nuclei appear to stay motionless (be fixed) in their equilibrium positions 

in space compared to the fast-moving electrons that adjust themselves instantly to 

changes in molecular conformation, thereby following the Born-Oppenheimer 

approximation (formulated by Max Born and Julius Robert Oppenheimer in 1927), 
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according to which electronic and nuclear motions are treated separately. The dynamics 

of nuclear motions on the ground state electronic surface are obtained from solving the 

time independent Schrödinger equation for the electrons, and the changes in the 

electronic energy due to nuclear displacement are independent of the kinetic energy of 

the nuclei, and are independent too of the nucleus mass. Hence, isotopic species result in 

the same potential surface, unless vibrations of the nuclei have been taken into 

consideration. [197] 

A relaxed PES scan with respect to two dihedral angles, for rotation around the hydroxyl 

and the C3-C4 bond (see Figure 25 for structure), was performed by DFT at the M06/6-

31G(d,p) level, each to be scanned from 0 to 360 degrees by varying the torsion angle 

H(11)-O(10)-C(5)-C(4) and N(8)-C(3)-C(4)-C(12) in steps of 15 degree increments of 

24 steps in total to get the potential energy surface and the lowest energy configuration 

of HPIP-b. 

 

4.5 Result and Discussion 

4.5.1 RMSD plot 

 

Figure 23 – Backbone RMSD from the trajectories of the simulations of dsDNA and G-

quadruplex. 
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The RMSD (the root mean square difference) of the DNA backbone with respect to the 

staring structure (the first frame of the production run) were calculated over the 1ns 

trajectory, as can be seen a rapid increase occurs during the first 100ps and then levels 

off, and remains stable for the rest of the simulation time. The differences in fluctuation 

amplitudes show that G-quadruplex (indicated by the red line) is more rigid than dsDNA 

(black). (Figure 23) 

 

4.5.2 Ligand Scan 

A contour plot of the PES is shown in Figure 24. The resulting energy surface has two 

minima and the lowest corresponds to the cis-form (Figure 25, C), which forms an 

intramolecular hydrogen bonded cyclic ring with a planar geometry, and is as expected, 

the most stable form [198]. The trans-form (Figure 25, A), which can be stabilised by an 

intramolecular hydrogen bond between the OH-group and the N-H hydrogen on 

imidazole ring, corresponds to a local minimum (Figure 24A). It is found that trans-form 

is more stable than cis-form in solution due to hydrogen bonding with the solvents. 

[199] The energy difference between the trans- and cis-form (A and C) is about 7.51 

kJ/mol, and between conformers A and B is about 22.81 kJ/mol. 

 

Figure 24 - Contour plot of the potential energy surface for HPIP-b resulting from the 

DFT scan, with energy in atomic units (a.u.). The dihedral angle H(11)-O(10)-C(5)-C(4) 

(y-axis) and the N(8)-C(3)-C(4)-C(12) (x-axis) in degree. 
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Figure 25 - The cis- and trans- conformers of HPIP-b, corresponding to the minima on 

the PES (Figure 24). 

 

4.5.3 Predicted binding modes (Docking) 

To obtain probable binding sites and orientations of HPIP-b on G-quadruplex structures, 

50 independent docking runs to each of the five snapshot G-quadruplex structures were 

performed (saved every 200ps from the MD trajectory), and the resulting docked poses 

were clustered (independently for each snapshot) using a cut-off distance of 2Å.  

As expected, no end-stacking was observed. All 5 x 50 runs with HPIP-b resulted in 

binding to either the loop or groove regions of the G-quadruplexes. Among all docking 

runs, the best docked conformation, with the lowest binding free energy of -7.5 

kcal/mol, is formed through the loop, binding to the equilibrated structure obtained at 

200ps from the MD trajectory (Table 5a). This is followed by the second-best 

conformation (-7.13 kcal/mol), which also binds to the loop region to the same snapshot 

structure. HPIP-b displays a higher affinity overall to this structure (at 200ps). However, 

these configurations were not in the most populated cluster. Instead, the fifth (second to 

last) cluster consisting of 20 members out of 50 was the most populated, with an 

average binding free energy of -6.58 kcal/mol by binding to the groove, see Figure 26(a). 

As can be seen from the lowest-energy cluster of each snapshot (the charts of Figure 26), 

the loops form the preferred site of binding of HPIP-b to the 200ps and 1000ps snapshot 

structures, with the latter having an average binding free energy of -6.78 kcal/mol. 

However, this finding is not conclusive, as the lowest-energy cluster and the most 

populated cluster obtained from other structures (extracted at different time points) 

suggested that HPIP-b binds at the groove. (Figure 26(b), 26(c), 26(d)) In fact, only 

groove bindings have been reported for a snapshot at 800ps with the lowest binding free 

energy of -6.50 kcal/mol; and no cluster is significantly populated for a snapshot at 

400ps, in which the differences in binding free energy and population between clusters 
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are small; ranging from 2 (the least energetically favourable conformation -5.76 

kcal/mol) for the smallest cluster to 8 (the first and the third cluster that the HPIP-b 

binds to the groove and the loop, respectively) for the largest cluster.  

 

Table 5 - Shows the binding free energy of the best docked conformation (ΔGbest), 

corresponding to the docked complex in Figure 26, and the average energy of the lowest-

energy cluster (ΔGaverage) for each G-quadruplex structure. Units are in kcal/mol. 

Selection of the best conformer is typically primarily based on the lowest-energy cluster, 

and secondly the most populated cluster. Cluster analysis reveals that, in general, the 

binding energy differences between clusters are small. In cases where the lowest-energy 

cluster is less populated, the binding free energies of the most populated cluster are all 

within 2.5 kcal/mol energy difference, the estimated standard error of the AutoDock 

scoring function. Thus, it is hard to say which of the configurations is the more probable 

solution. The overall finding seems to suggest that groove and loop binding showed no 

significant differences in terms of binding free energy. To be specific, we defined 1) 

groove binding in which HPIP-b was either in the cavities bound by the neighboring 

phosphate backbones or within the extra cavities adjacent to the loops at the sides of the 

G-quadruplex units and 2) loop binding occurred when HPIP-b was buried in between 

the external loop and the G-quartets. HPIP-b is nearly rigid and conformationally 

restricted with only a single rotatable bond, via the hydroxyl group, during docking. Such 

docking is similar to a lock and key mechanism, as AutoDock does not account for 

receptor flexibility during docking. Thus, docking of HPIP-b is likely to be dependent on 

the target selected conformation. The resulting docked conformation of HPIP-b from the 

best cluster (both the most populated and the lowest-energy cluster) have unfavourable 

(positive) internal energy (not shown). However, the binding free energy obtained from 

the default value of Autodock 4.2 assume that the internal energy of the ligand in 

solution is the same as in the complex, thus results in a zero contribution of internal 

energy to the total binding energy. The results given were all calculated based on the 

above assumption. In general, binding a frozen ligand is more likely to overestimate the 

gain of free energy of binding, mostly due to the energy required to distort the ligand 

 Clus Rank Run Num in Clus ΔGbest ΔGaverage Binding mode 

a 1 42 5 -7.50 -7.50 Loop 

b 1 43 8 -7.02 -7.00 groove 

c 1 33 26 -6.32 -6.32 groove 

d 1 4 24 -6.50 -6.48 groove 

e 1 25 16 -6.78 -6.78 Loop 
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from the preferred unbound to the bound conformation. The consideration of the 

internal energy is necessary to obtain a result that is close to reality.  

A comparative study has been applied on dsDNA of a similar sequence. All runs of dsDNA 

resulted in minor groove recognition, with a very favourable average binding energy of -

6.61 kcal/mol and the most favourable docked conformation (-6.62 kcal/mol). (Table 

6c) This is in comparison to docking G-quadruplexes, where a relatively larger number 

of clusters were found, possibly reflecting the complexity and the large surface tested of 

the G-quadruplex structures. The results are in agreement with experimental findings 

that HPIP-b displays slightly stronger interactions with the G-quadruplex than with 

dsDNA.  

 

 Clus Rank Run Num in Clus ΔGbest ΔGaverage Binding mode 

a 1 32 34 -6.31 -6.30 groove 

b 1 36 41 -6.02 -6.01 groove 

c 1 39 46 -6.62 -6.61 groove 

d 1 49 22 -6.31 -6.31 groove 

e 1 35 29 -6.29 -6.14 groove 

Table 6 - Shows the binding free energy of the best docked conformation (ΔGbest), 

corresponding to the docked complex in Figure 27, and the average energy of the lowest-

energy cluster (ΔGaverage) for each dsDNA structure. Units are in kcal/mol. 

In summary, we performed blind docking to obtain putative binding sites of HPIP-b on G-

quadruplex and dsDNA with no prior assumption of binding sites. Autodock does not 

account for the receptor flexibility. We obtained a rather small difference between 

energetically similar cluster for HPIP-b with the binding energies ranging from -4.5 

kcal/mol to -7.5 kcal/mol with results in either loop or groove binding. However, these 

docking studies could be the start of using a more sophisticated force field or methods 

for post-processing of docking results. To further ensure the stability of the binding 

structure of ligand, we carried out a higher level of calculation for a comparison between 

MM energies and QM energies. We selected the lowest energy conformation from each 

cluster to represent the whole cluster for further analysis. 

Docking can produce both false positives and false negatives. [200] It is known that most 

docking programs use rigid receptor models, and that these errors could occur because 

DNA is a rather flexible molecule existing as an ensemble of isoforms, not modelled well 

with rigidity. To take receptor flexibility into account, we performed ensemble docking, 

in which the ligand is docked to a pre-generated ensemble of rigid structures, 
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to implicitly account for receptor flexibility. However, this leads to two observations. 

Firstly, the docking performance is biased by the selected structural ensembles. A 

selection strategy to choose representative conformations from MD trajectories is still 

needed; and secondly, MD simulations normally explore only local minima and have 

difficulty overcoming high energy barriers. In some cases, using an ensemble of 

conformations did not outperform using a single structure. [201]  
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Figure 26 - Cluster profiles from docking of HPIP-b to G-quadruplex structures extracted from MD every 200ps, (a) at 200ps, (b) at 400ps, and so on. Each 

cluster is a bar, where the height of the bar indicates the number of conformations in the cluster (50 in total) and the colour indicates the binding mode: loop 

in blue and groove in green. Only the best docked pose with the lowest binding free energy score are shown, with unit in kcal/mol. 
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Figure 27 - Cluster profiles from docking of HPIP-b to dsDNA structures extracted from MD every 200ps, (a) at 200ps, (b) at 400ps, and so on. Each cluster is 

a bar, where the height of the bar indicates the number of conformations in the cluster (50 in total) and the colour indicates the binding mode: loop in blue 

and groove in green. Only the best docked pose with the lowest binding free energy score are shown, with unit in kcal/mol. 
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4.5.4 QM Binding energy 

ONIOM was used to refine the docking poses, allowing limited ligand/receptor induced 

fit effects to be modelled, with optimised positions of the hydrogen atoms of the 

receptor, while holding all other atoms fixed. We selected the lowest-energy docked 

structure from each cluster as a sample conformation for each pocket.  

 

Figure 28 - Structure of HPIP-b with atomic labelling and definition of the dihedral 

angles A and B considered in the PES scan. 

As expected, the ligand adopts an energetically more favourable conformation in solvent 

than in DNA (positive values for EGeom). This may arise as the ligand does not adopt its 

lowest energy conformation in the binding site with the energetic cost of binding from 

solvent offset by interactions with the binding site. Normally, this higher energy 

conformation can be compensated with the gain of the aforementioned interaction 

energy with the receptor such as forming of hydrogen bonds or van der Waals 

interactions. The ligand in PCM solvent model adopts a virtually planar conformation 

(the torsion angle of H11-O10-C5-C4 and N8-C3-C4-C12 are -179.9° and 179.9°, 

respectively; see Figure 28) corresponding to the local minimum (A) on the potential 

energy surface (PES) in Figure 24. Comparing the energy value of EGeom to the dsDNA, 

the bound ligand in G-quadruplex may be more restricted in terms of the conformation it 

can adopt. As a result, the geometric energy cost that is paid for binding with the G-

quadruplex is greater than that associated with binding to dsDNA. We expect that this is 

due to the more complex structure of G-quadruplex. The solvation energy is -33.926 

kJ/mol. The experimental measured desolvation of polar group OH is 36.4 kJ/mol, [202] 

and the desolvation of a polar group is enthalpically unfavourable. The nitrogen offers an 
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additional hydrogen bonding moiety, so might impact the total solvation energy 

accordingly. 

We inspected the docked poses and positions which give the lowest binding energy to 

study how these changes contribute to the electrostatic and binding energy. The analysis 

of the hydrogen-bonding patterns was carried out using VMD (version1.9.3) [203], with 

a distance cut-off of 4Å and an angle cut-off of 40°, and for producing figures (Figure 29 

and 30). The obtained energy considered only the effect of electrostatics (previous work 

has found that electrostatic interactions are the primary interactions from DNA [204]). A 

positive value for Ebind corresponds to an unfavourable interaction. We obtained five 

most favourable binding energies which are lower than -100 kJ/mol (four for G-

quadruplex, one for the dsDNA). HPIP-b interacts with G-quadruplex through both the 

grooves (in cases of 60_39 and 20_39) and the loops (for 60_04 and 20_11), see Table 7. 

 

Figure 29 - The lowest energy configuration of docking to G-quadruplex. (60_04 in Table 

7) 

The energy cost from the conformational change of the ligand on binding to the receptor 

is 50.347 kJ/mol (60_04 in Table 7). The dihedrals are measured: 11-10-5-4=84.6, 8-3-

4-12=164.7 (see Figure 28 for labelled structure). The ligand does not hydrogen bond 

to its docked cleft, formed by a TTA propeller-type loop, but is hydrogen bonded by its 

OH group and N-H moiety of the heteroaromatic ring, with two vicinity oxygens of the 

phosphate group on the stand connecting the G-quartets. It also shows hydrogen 
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bonding with three nearby water molecules. Here, the nitrogen lone pair (an area of 

negative charge) is creating the hydrogen bond to the water hydrogen (positively 

charged). The water is also used to hydrogen bond with other sections of the G-

quadraplex. The electrostatic energy obtained is -210.029 kJ/mol, which is the largest 

amongst the 27 binding instances studied. However, from manual inspection, a large 

amount of the electrostatic interactions that result in a total favourable binding energy is 

more likely due to a hydrogen bond network formed by water molecules around the 

ligand.  

 

Figure 30 - The lowest energy configuration of docking to dsDNA. (ds80_27 in Table 7) 

We note that a binding instance to dsDNA (ds80_27 in Table 7) achieved the lowest 

binding energy value (-132.027 kJ/mol) of all complexes in this test set, which is 

unexpected as we know from the experimental collaboration and results furnished from 

these studies that HPIP-b binds more strongly to the G-quadruplex. However, from the 

energy calculations, we see that the docked conformation is relatively energetically 

favourable with only a small additional conformational energy cost of 7.549 kJ/mol. This 

is because the ligand adopts an approximately planar conformation 11-10-5-4=161.3, 

8-3-4-12=-170.8 when complexed with the DNA. The energy cost might be due to the 

hydroxyl group pointing to the solvent, which was found able to form a hydrogen bond 

with nearby water (1.641Å). On the opposite site of the ligand, the nitrogen (N7) in 

imidazole could hydrogen bond to the guanine backbone. The electrostatic energy from 

the point charge field of the surrounding it is the largest at -173.502 kJ/mol.  
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Mutual polarisation of the ligand and the DNA structures are included in ONIOM, while 

the docking program used a force field method; such a MM approach is limited to set 

parameters which may not completely or accurately describe the system in question. 

Binding energies obtained by the docking do not show significant difference. As the 

protein motion is ignored, the difference in the intramolecular energy of the bound and 

unbound state of the receptor is zero. The intramolecular energy difference is also zero, 

as it is assumed the bound and unbound configuration of HPIP-b is the same, 

nevertheless HPIP-b is rather rigid.   

DNA flexibility plays an important role during ligand binding. Our best four results from 

docking to G-quadruplex structures seem to focus on two snapshots of the conformation 

(60ps and 20ps). Water molecules contribute electrostatic effects to the binding energy. 

As observed in Figure 29, a hydrogen bond network is formed which leads to strong 

electrostatic effects, it appears that hydrogen bonding has occurred between the ligand 

and G-quadruplex backbone, the ligand and the water molecules, and water to G-

quadruplex. A possible improvement to the methodology is the expulsion of water from 

the binding site and calculation of the electrostatic effects purely due to the DNA.  

The loop confers conformational polymorphism, and is considered to make 

intermolecular interactions. The grooves in G-quadruplexes are V-shaped and do not 

simply comprise phosphate-sugar backbones, distinct from double-stranded DNA. A 

dimeric G-quadruplex structure has eight phosphate grooves, together with the extra 

cavities adjacent to the loops, providing extra binding surface for binding. [190] The 

complexity of the loop conformation may confer greater specificity.  

The special structural arrangement of G-quadruplexes makes it possible to provide 

distinct surfaces for interaction with small molecules in which quartets provide a 

hydrophobic aromatic planar surface, and loops provide a hydrogen bonding surface. 

Also, the grooves are involved in hydrogen bonding to water molecules with the sugar 

(O3'), the phosphate O1P atom or guanine (N2 atom) in the quadruplex grooves. 
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Table 7 - The docked poses are ranked according to the binding energy (Ebind). The top panel is computed from the G-quadruplex structures, whereas the 

bottom is obtained from dsDNAs. The name of the docked ligand is expressed as 60_04 where this denotes that the structure was taken at 60ps of the MD 

trajectory, and it is the 4th out of 50 docking runs. Units are in kJ/mol.
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4.6 Conclusion 

G-quadruplexes have emerged as an attractive target for site-specific drugs for anti-

cancer therapy. Guanine-rich sequences, known to form polymorphic quadruplexes, can 

be found in the promoter regions of oncogenes, introns and human telomeres. 

A docking study to predict the binding mode of HPIP-b to G-quadruplex was performed 

using ensemble docking. Our docking protocol involves three steps. First, multiple 

conformations of the target are generated by molecular dynamic simulations, using NPT 

and periodic boundary conditions for the production run of 1000ps, from which five 

snapshot are extracted at 200ps intervals. Second, docking is performed to each 

snapshot structure, to implicitly account for receptor flexibility. Third, we use a two-

layer ONIOM QM:QM to perform a post-docking refinement to optimise and rescore the 

docked complexes. 

Semi-flexible docking does not simulate conformational changes of the receptor which 

occur upon ligand binding, unlike the real docking process, and thus limits its 

applicability in practice. Of the 50 x5 docking trials, HPIP-b resulted in binding to either 

the loop 55 (22%) or groove regions (78%) of the G-quadruplexes. 

Our findings indicate that the inclusion of water molecules lead to strong electrostatic 

effects which are related to the formation of a hydrogen bond network between the 

aromatic NH and OH groups of HPIP-b to (a) G-quadruplex backbone (b) to water 

molecules and (c) between water molecules with other sections of the G-quadruplex, 

thus result in a total favourable binding energy.  
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CHAPTER 5. How Conformations Change: A new model for activating 

the blue-light sensing using flavin photoreceptor domain 

 

5.1 Introduction to the photoreceptor system 

Plants and photosynthetic organisms rely on photosensory receptors that allow them to 

perceive the changing environment and to adjust their metabolism or behaviour 

accordingly to better adapt to variations in light conditions (including the intensity, 

wavelength, direction and duration of ambient light) which is essential for optimal 

photosynthesis. Currently, six photoreceptor protein (referred to as light sensory 

proteins) families are known: the rhodopsins, (bacterio) phytochromes, xanthopsins, 

and the three blue-light photoreceptor families utilising flavin conjugates as cofactors; 

these are the cryptochromes (cry), phototropins (containing light-oxygen-voltage (LOV) 

domains) and BLUF (sensor of Blue Light Using FAD or flavin adenine dinucleotide) 

containing photoreceptors. Blue light which falls within the wavelength range of 455nm 

to 492nm is known to be an important signal for its effects upon mediating 

phototropism and photosynthesis, and is used to activate photolyases, enzymes involved 

in UV-damaged DNA repair.  

The photoreceptor consists of a protein moiety and an (or several) embedded light-

absorbing molecule(s) either covalently or non-covalently attached, known as 

chromophores involved as cofactors and whose presence is essential for photoreceptors 

to function. On absorption of a photon, the chromophore induces the so-called primary 

photoreaction (photochemical reaction); that is, the initial chemical changes result 

directly from irradiation with light. It begins with a photochemical change of the 

chromophore making a transition to an excited state [205], in which the electrons are 

rearranged, thereby making the various photochemical reactions possible. The 

photochemical reactions are specific with regard to the photoreceptor domain at hand 

but are consistently accompanied by a conformational change of the chromophore-

protein complex that moves from the ground equilibrium (resting) state to the 

electronic excited metastable (signaling) state conformation for a period of time before 

returning back to the ground state. Accordingly, the photoreceptor serves as a signal 

converter whereby the external light signal perceived by the light sensitive portion of the 

photoreceptors is transduced from the signalling molecule into a biological signalling 

cascade, which is known to affect different downstream effectors involved in mediating 

various physiological responses [206].  



88 

 

The photochemical reaction leading to the formation of the signalling state is specific to 

each photoreceptor type. The photochemical reaction of xanthopsins, phytochromes and 

rhodopsins causes a cis-trans isomerization at the C=C double bond of the chromophore 

upon light irradiation. This excitation involves a transition of an electron from π to 

π* orbital, whereby the planar geometry of the double bond is distorted, and a 90° 

rotation about the bond becomes energetically favourable in the excited state. The 

subsequent relaxation of the molecule back to planarity can lead to either the cis- or 

trans-configuration, resulting in cis-trans isomerization of the double bond. In contrast, 

the photoexcited flavin-binding photoreceptors are known to undergo an intramolecular 

electron transfer (ET) from the close-by aromatic residues (from an adjacent tyrosine 

for BLUF and a conserved triad of tryptophan for cry) to the excited state (oxidised) 

flavin, where it acts as an electron acceptor. Electron transfer gives rise to the radical 

intermediate which undergoes a photochemical reaction, that produces a 

conformational change of the protein.  

Each of the three types of flavin-binding photoreceptors gives rise to different 

photochemistry even though they share the same flavin chromophore; any difference in 

photochemistry must be attributed to the protein environment surrounding the flavin. 

The photochemically active flavin in cry undergoes photoreduction by which it formed a 

relatively long lived radical (signalling) state. [207] For LOV domains, light excitation of 

the flavin leads to a covalent adduct between a conserved cysteine residue in the LOV 

domain and the flavin at the C-4a position (Figure 31) as the signalling state and this 

adduct is reversed in the dark. The BLUF domains, on the other hand, undergo a 

photocycle involving a subtle rearrangement of the hydrogen-bond network between the 

flavin and nearby residue side chains, and such an alteration in hydrogen bonding is 

thought to be dependent on flavin-radical intermediates. [208]  

Focusing on the blue light system, the essential cofactors used in the blue-light 

photoreceptors are flavins, specifically riboflavin (vitamin B2) derivatives 

(flavoprotein), most commonly seen in the form of flavin mononucleotide (FMN) or 

flavin adenine dinucleotide (FAD), which consists of a tricyclic isoalloxazine ring (Figure 

31) substituted at the N-10 position with a ribityl phosphate (for FMN) or a ribityl 

adenine diphosphate (in case of FAD).  
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Figure 31 - Structure with atom numbering of the isoalloxazine moiety. 

 

5.2 BLUF photocycle 

BLUF domains are found primarily in prokaryotes and eukaryotic algae, but not in 

plants. In the dark, the BLUF domains contain flavin in the oxidised state (FAD), which 

acts as an electron acceptor upon irradiation. Light excitation of the flavin leads to an 

electron transfer from the proximal tyrosine to the excited flavin (which occurs on 

timescale of fs or a few ps depending on their distances and orientations relative to one 

another) and thereby initiates a reversible photocycle.  

The formation of the anionic semiquinone (one electron reduced) radical (FAD•−) 

resulting from the single electron transfer is subsequently protonated by the 

neighbouring tyrosine to form the neutral semiquinone radical (FADH•) in 7-9ps, with 

this process generally referred to as proton-coupled electron transfer (PCET). (Figure 

32) PCET is an essential part of signalling state formation. [209] The changes in the 

redox state of the flavin (formation of radical intermediates) will induce a 

conformational change that leads to reorientation of several residues (see later on 

“photoactivation mechanism”), affecting the hydrogen bond network in the flavin-

binding pocket. The hydroxyl proton of Tyr21 is presumably attracted by the negatively 

charged N5 of the flavin as a result of electron transfer and thereby disrupts its hydrogen 

bond with Gln63, which in turn destabilises the hydrogen bonding network, enabling 

Gln63 reorientation to occur, leading to an altered hydrogen bonding pattern between 

Gln63 with its immediate environment. [210]  
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Figure 32 - Modified from [206]. The BLUF domains undergo a photocycle, in which two 

intermediates anionic (FAD•−) and neutral (FADH•) flavin semiquinones are formed, the 

latter subsequently decay to form the red-shifted signaling state (FADred). 

Indeed, the side chain of the nearby Gln63 is assumed to rotate (and/or tautomerize 

[211]) to form a new hydrogen bond to the C4=O carbonyl of the flavin, followed by the 

decay of the semiquinone radical, probably occurring through a radical-pair 

recombination which locks the newly oriented Gln63 into place and results in the 

signalling state. [212,213] A semi-empirical calculation (AMPAC program using AM1 

Hamiltonian) [214] shows that an increase in electron density at the N5 of the flavin due 

to photoexcitation does appear to be correlated with an increase in the proton affinity. 

[215] The fast formation of the signalling state (photoproduct) of the BLUF domain (in 

less than 1ns) would cause a spectral red shift of 10-15nm-1 in the UV-vis spectrum with 

respect to the initial dark state. The red shift is due to the additional hydrogen bond to 

flavin at O(=C4) as evidenced by the FTIR spectrum of AppA (activation of 

photopigment and puc expression A), which shows the stretching vibration of C(4)=O is 

downshifted by about 20cm-1 upon light excitation. [216] As observed, the neutral flavin 

radical decays into the red-shifted photoproduct within 10ns. [212] Kraft et al. described 

photoproduct formation as a biphasic process in which 10nm red-shifted of flavin 

absorption is quickly formed after light excitation (in less than 1μs), followed by a 

slower conformational change of the protein on a 5ms timescale. [217]  

The photocycle is completed by the decay of the red-shifted signalling state back to the 

initial (ground) state, and known to have a relatively long half-life ranging from seconds 

to tens of minutes. A multi-exponential excited state decay of FAD was observed, which 

is attributed to structural microheterogeneity of the mutual orientation of Tyr21 and 
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flavin in the resting state. Irradiation of flavin results in only minor changes in the 

structure, unlike in LOV domains, where light causes the formation of a covalent adduct. 

Furthermore, the flavin redox state is unchanged in both the dark-adapted and light-

induced states, remaining in the fully oxidised state as evident from the UV-visible 

absorption spectrum. [209] 

Fukushima et al. [218] reported on the photocycle of T110078 (cyanobacterial BLUF 

protein). They suggest that the 5-nm red shift occurring at a low temperature (below 

50K) is caused by local changes limited to the chromophore and/or its immediate 

surroundings, and that a 10-nm red shift occurs above 50K, indicative of a further 

conformational change that is allowed only at higher temperatures.  

The BLUF domain as a FAD-containing photosensor domain was first discovered in 

AppA, which is a regulatory protein negatively regulating the photosynthetic gene 

expression in the purple bacterium Rhodobacter sphaeroides in response to light and 

oxygen. The BLUF domain, as the name suggests, contains flavin as the light receptor 

molecule specialised for blue light, and was later found in many bacteria and algae. The 

N-terminal photosensory domain of about 100-110 residues is organised in a 

ferredoxin-like βαββαββ fold in which the isoalloxazine ring of flavin is bound non-

covalently in a cleft between two α-helices (α1 and α2), oriented perpendicular to a five-

stranded antiparallel/parallel β-sheet with a strand order of 4-1-3-2-5. (Figure 33) The 

ends of the domain are capped by α-helices of roughly 40-50 residues acting as linkers, 

connecting to the C-terminal effector domain mostly involved in cyclic nucleotide 

metabolism. [219] Light induced conformational changes are propagated to the effector 

domain where regulation takes place affecting enzymatic activity and quaternary 

structure (signal transduction) [220]. AppA acts as an antirepressor to the 

photopigment suppressor protein R (PpsR) protein, a transcription repressor of 

photosynthetic genes, through the activity of the cysteine-rich C-terminal catalytic 

domain to reduce a disulfide bond in PpsR and due to the formation of the PpsR2-AppA 

complex, the PpsR lost its ability to bind DNA in the anaerobic dark state. On the other 

hand, upon aerobic illumination, a conformational change occurred that prevented the 

light-activated AppA from interacting with PpsR; as a means to achieve regulation. [221] 

Essentially, most of the conserved residues that are located around the flavin appeared 

to be involved in hydrogen-bonding interactions. 
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Figure 33 – The crystal structure of AppA BLUF (PDB ID 2IYG) contains a ferredoxin-like 

domain. The flavin (shown in green stick) is noncovalently bound between the two α-

helices. 

 

5.3 Structural Models  

There remains a debate due to the contradictory findings among studies of the side-

chain orientation and/or position of several key residues close to the flavin 

chromophore for both the resting and signalling states of BLUF, these include:  

1) Gln63, which is known essential for the photocycle (which actually involves Tyr21 

and Gln63, as previously discussed), and depending on its orientation, the Gln63 side 

chain can give rise to two sets of hydrogen bonds. So far, the available crystal 

structures of BLUF are not informative enough to distinguish between the side chain 

amidic oxygen and nitrogen atoms.  

 

2) Trp104 (and Met106) was found to adopt two different conformations; either with 

its side chain (Nε-H) in close proximity to flavin located at hydrogen-bonding 

distance to Gln63(O), denoted as Trp-in, or on the surface of the β-sheet, denoted as 

Trp-out. The β-sheet was found either to act as a dimerization interface or to be 

shielded from solvent by the C-terminal capping helices. The positioning of Trp104 

and Met106 leads to different hydrogen bonding patterns: Gln63 to Trp104 (Trp-in) 

or as a possible hydrogen bond donor to Met106 (Trp-out).  
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3) Other residues, Ser41 and Asn45 (Figure 34), whose mechanisms have remained 

obscure, are found conserved among the BLUF domains. Ser41 [222] appears to have 

two conformations, with the oxygen atom oriented towards (Sflav) or away from 

flavin (Sback, for backbone). Since different forms exhibit different spectral behavior, 

the light-induced switching of Ser41 from Sflav to Sback has a red-shifted response, 

thereby making a contribution to the overall (by ~10nm) red shift observed in the 

absorption spectra. Since the different orientations of Trp104 do not affect the 

absorption spectrum [222], the other contribution arises from the switching of 

Gln63. This movement breaks the hydrogen bond with Trp104 leading to a change in 

the β5 strand, and a consequent exchange of the Trp104/Met106 pair occurs [223] 

(possibly Trp104 moves out while Met106 moves in to fill the void [222] or changes 

orientation [224] upon illumination). Also, as a result of this change, a hydrogen 

bond is formed between Gln63 and the (C4=O) flavin; this new additional hydrogen 

bond to flavin is indicated by a red shift in the absorption spectra. However, 

experimental evidence for a direct effect of the Gln63 rotation on the conformational 

switch of Trp104 and Met106 is still lacking. Asn45 [224], on the other hand, forms 

hydrogen bonding with flavin, with an increase in the strength of the hydrogen bond 

upon photoexcitation promoting a red shift. 

 

 

Figure 34 – The key residues close to the flavin, from PDB ID (a) 2IYG (b) 1YRX 

showing the position of residues Ser41 and Asn45 relative to flavin. Met106 is 

located near the flavin (the Trp-out conformation) instead of Trp104.  
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The role of relevant residues has been investigated. Site-directed mutants of AppA 

replacing Tyr21 with either leucine or phenylalanine were found to abolish the 

photocycle activity. The results from an early study assumed that Tyr21 may form a π-π 

stacking interaction with the isoalloxazine of flavin which would induce the photocycle. 

[217] However, the structural analysis reveals that the two rings are actually 

perpendicular to one another. Mutating Tyr21 to phenylalanine disrupts its hydrogen 

bond with Gln63 and the photochemical reaction. Tyr21 and Gln63 are considered as 

being responsible for the photocycle of AppA. Mutation of a conserved Trp104 to alanine 

or phenylalanine reduces the stability of the signalling state, and no structural changes 

of the β-sheet are observed, suggesting Trp104 has a role in transforming the light signal 

into changes in β-sheet structure. [223] Confusingly, by comparison with analogous 

mutations in SyPixD and bPAC, Trp104Phe leads to stabilisation but Trp104Ala leads to 

destabilisation of the structure. [225] It was observed that some variants lack of 

essential residues (i.e. glutamine and tyrosine) show a weaker signalling, suggesting the 

formation of a transient radical is sufficient to drive the signalling transduction. [226] 

 

5.4 Photoactivation Mechanisms 

Critical residues in the flavin binding pocket are in dynamic conformational exchange of 

both side chains and the backbone. Since NMR experiments suffer from the difficulty of 

assigning resides due to line broadening, multiple orientations can be proposed on the 

basis of NMR data. Thus, there are debates on what immediately surrounds the flavin. 

Two conflicting experimental structures of the BLUF domains are the PDB entries 1YRX 

(Trp-in) and 2IYG (Trp-out) which show considerable differences in:  

(1) the backbone conformations of β5, where a kink is formed that introduces a shift of 

two residues in 2IYG. The carbonyl oxygen of His105 in 2IYG forms a hydrogen bond 

with the amide of Asn45. Met106 is hydrogen bonded to Gln63, whereas Trp104 is 

exposed to the solvent, as shown in Figure 35 (a). In contrast, in the Anderson dark-

state structure (Figure 35 (b)), the amide of Asn45 is perpendicular to the indole 

ring of Trp104, found in close proximity to flavin. The carbonyl oxygen of His105 is 

hydrogen bonded to Leu54 (not shown). Met106 and Trp104 are both relevant for 

the photocycle, conserved in the BLUF domains, and both forming a H-bond to 

Gln63.  
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(2) the side chain of Gln63. Anderson et al. [221] claimed that the Trp-in conformation 

belongs to the dark-state. The Gln63 makes hydrogen bonds with the Tyr21, Trp104 

and to the FMN(N5), and upon excitation this hydrogen bond breaks and Gln63 

undergoes a rotation. A light-induced rotation of the Gln63 side chain was shown to 

disrupt its hydrogen bonding with Trp104, thus it adopts a conformation that allows 

hydrogen bond formation between Gln63(NH2) and FMN(O4). 

 

Figure 35 - Modified from [224]. The dark-state of the flavin-binding pocket (a) 2IYG 

(Trp-out conformation) (b)1YRX (Trp-in conformation). 

Alternatively, Jung et al. [224] proposed a different orientation of Gln63, with oxygen 

toward the Tyr21 in the ground state such that the formation of protonated N5 leads to 

unfavourable interactions which promote the reorientation of Gln63.  

Overall, the experimental evidence agrees: a hydrogen bond is formed between 

FMN(O4) and the protein matrix in the signalling state. [227] This observation could 

only be explained by a Gln63 rotation as the oxygen atom of the Gln63 must be pointed 

toward the Trp104 so that the Gln63(NH2) to FMN(O4) hydrogen bond formation could 

be possible, assuming the Trp-in is in the signalling state. Domratcheva et al. suggest a 

Gln63 rotation occurring in the signalling state. [228] Other groups say that Gln63 could 

be presented in a tautomeric form, thus suggesting that it could be the bond donor and 

acceptor at the same time. [229]  
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Comparisons among available studies are difficult. First of all, this could be due to 

variations in the BLUF sequence. For example, BlrP1 BLUF contains a threonine instead 

of the conserved Trp104, which is known to be of functional importance as discussed 

above. This significant difference from the BLUF domain of AppA makes comparison 

difficult. Secondly, the models are different in size, depending on the presence of capping 

of the helices (as linkers) at the C-terminus. Some studies work on BLUF domains in 

solution by using dimeric models derived from the x-ray crystal structure. Those 

structures variance will expect to perform differently during simulations. In this work, 

we cut the chains to analogous length to obtain equally sized proteins. [230] 

 

5.5 Aims and Objectives 

The aim of this project is to investigate whether the redistributed charges in the flavin 

binding site of the BLUF domain would result in a driving force to change the 

conformational preference of the protein domain, in such a way to simulate the 

formation of FAD•− after a light-induced electron transfer from tyrosine to the flavin 

chromophore as the first step of the BLUF photocycle. At the end of this work we will be 

able to assign the Trp-in and Trp-out conformations to either of the two states ‘active’ or 

‘resting’. A better understanding of the BLUF domains would lead to applications in 

optogenetics, which uses light to control cellular events.  

To do this, we used two conflicting structures, differing in the position of the tryptophan 

(Trp104 in AppA), which can be either exposed to the solvent (the ‘Trp-out’) or close to 

flavin (the ‘Trp-in’ conformation). Both of these structures have been attributed to the 

dark state (as reported by Jung et al (PDB code: 2IYG) [224] and by Anderson et al (PDB 

code: 1YRX) [221]). Both structures were used as the starting geometry of the protein 

domain to construct a “2 by 2” scheme of four calculation sets. Due to various 

contradictory claims on the assignment of the Trp-in and Trp-out conformations to the 

functional states of the BLUF domain, we make no assumptions as to the state of the 

structure prior to our experiments. In this work, we considered the state of the flavin 

binding site, described by two set of charges for each structure, the regular AmberGS 

charges and an altered set of charges as mimicking the electronically excited state of the 

flavin binding site.  
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A further aim of this work was to investigate the structural basis in response to the 

charge difference. We analyse the repositioning of the nearby residues around the 

Flavin: 1) we measured the distance between two atoms focusing on functionally 

relevant residues. 2) we studied the side chain orientation of Gln63 as it might convert 

to the other conformation over the course of the simulations. 

 

5.6 Methods 

As observed earlier, on photoexcitation, the N-terminal domain of AppA undergoes a 

photocycle that is indistinguishable from that of the full-length AppA [210]. As a result, 

current computational works on BLUF are mainly on the N-terminal domain. According 

to Rieff et al. (2011) [231], the structures of 1YRX and 2IYG are the most reliable. We 

adopted 1YRX Trp-in and 2IYG Trp-out conformations as starting geometries. We cut the 

origin structure extracted from the PDB to include equal size (including residue 13-121) 

for a fair comparison.  

We considered excitation from the starting geometry of the protein focusing on the 

flavin binding site, applying individually both ground state (GS) charge taken from 

AmberGS and a set of relocated charges based on the AmberGS force field, from which 

charges for the excited Tyr21-flavin charge transfer state (ES) were calculated using 

time-dependent density functional theory.  

Previous studies mainly focus on reproduction of UV/vis and IR spectra from MD 

snapshots, which are normally carried out on a single structure. This procedure is 

potentially statistically insufficient, as can be seen from the diversity of results obtained. 

This indicates that it is necessary to study the system dynamically. We applied MD to 

study the thermal movement of BLUF using snapshots from a preliminary MD trajectory 

generated by Bilal as described in the preprocessing section. Götze et al. (2012) have 

proposed that the initial velocity could affect the consequent hydrogen bonding 

behaviour of Gln63. [232] Therefore, we have repeated eight times for each of four 

calculation sets (16 trajectories for each calculation set, 8 for the GS and 8 for ES) to 

obtain the average effects.   

As a result of this work, we aim to provide another activation model for the BLUF 

domain. The proposed driving force for activation is provided by a charge distribution. 

We used standard MD simulations to investigate the conformational change. Previous 

pure MD studies on multiple ns trajectories mainly focused on hydrogen bonding 
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between BLUF domain and its effector domain. [233] Other MD studies which aim at 

resolving the hydrogen bonding patterns in the flavin binding site, however, are hard to 

compare due to the use of different force field, equilibrium parameters and protonated 

state of histidine. [232,234,235] 

 

5.6.1 Preprocessing 

All simulations were carried out with Gromacs 4.3.6 using the AmberGS force field [236] 

for the protein and ions, and an explicit solvent (TIP3P model). The charges of the FMN 

were taken from Schneider & Sühnel (1999). [237] The force field was chosen by 

comparing the optimised structure obtained using different force fields with the original 

crystal structure, and choosing that which gave the smallest RMSD. 

The structures of the BLUF domains of AppA were taken from PDB code 2IYG (the Trp-

out) [224] and 1YRX (the Trp-in conformation) [221]. Both were cut out into equal sized 

residues comprising the residues 13-121 of the chain A. The MD simulation systems 

consisted of either structure solvated in a box of TIP3P water then subjected to energy 

minimisation using the steepest descent method with convergence criterion of either a 

maximum number of 50000 steps or until forces reached 10 kJ mol-1 nm-1. Periodic 

boundary conditions were applied and electrostatic forces were evaluated using the 

particle Mesh Ewald algorithm with a short range cut off radius of 1nm.  

After energy minimisation, the systems were gradually heated up from 0K to 300K, 

during which a 100ps NPT equilibration was performed at each successive temperature 

step, followed by a 1ns production run at 300K with a time step of 0.001ps. The H-bonds 

were constrained using P-LINCS. The initial structure was heated up (from initial 

temperature 0K) eight times with velocities randomly assigned from a Maxwell-

Boltzmann distribution, resulting in eight 1ns trajectories for each structure.  

 

5.6.2 Assignment of atomic charges for the excited state 

A random snapshot was taken from each of the resulting 1ns trajectories for each 

structure. (eight for 1YRX and eight for 2IYG) from Bilal’s work. To obtain average 

charge redistribution between the Tyr21 and the flavin (FMN) upon excitation, we have 

limited the system to tyrosine and the isoalloxazine ring in which the link atoms are 
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replaced by hydrogens. (Figure 36) The system was calculated using TD-DFT at the 

CAM-B3LYP/6-31G* level with the rest of the protein atoms and the solvent 10 Ångstron 

radii around the protein represented as point charges. We identified the excited state 

where electron density moves from Tyr21 to FMN and used the excited state number 

(root) with key word density to set up a calculation for the excited state charge 

distribution. The changes in redistribution of the charge from the ground to excited state 

for each Tyr21 and flavin pair over eight were averaged and the amount of change was 

applied to the regular charges to obtain the excited Tyr21-flavin charge.  

  

Figure 36 - Setup for TD-DFT. 

 

5.6.3 Dynamic simulations 

Snapshots were extracted every 100ps from each 1ns trajectory (resulting in 10×8 for 

each structure), as shown in Figure 37. We performed a 100ps run for each snapshot 

with regular AmberGS charges and the excited charges. We made comparisons between 

the two trajectories, analysing the conformational changes during the course of the 

simulations. All simulations were performed at 300K using an NVT ensemble. 
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Figure 37 - Scheme of the methodology.  

 

5.6.4 Criteria of comparison between GS & ES 

5.6.4.1 Distance 

To investigate the repositioning of residues at the flavin-binding site in response to the 

change in charges, we calculated the average distance between each of the selected two 

atoms restricted to functionally relevant residues around flavin over the 100ps 

simulation. (see Table 8) We excluded the first 20ps to allow the conformations to reach 

their equilibrium. 

 

 Atom pairs 

1 OH(Y21) - N5(FMN) 

2 OH(Y21) - OE1(Q63) 

3 OH(Y21) - NE2(Q63) 

4 NE1(W104) / S(M106) - N5(FMN) 

5 NE1(W104) / S(M106) - OE1(Q63) 

6 NE1(W104) / S(M106) - NE2(Q63) 

7 OH(S41) - N5(FMN) 

8 OH(S41) - S(M106) 

9 N5(FMN) - OE1(Q63) 

10 N5(FMN) - NE2(Q63) 

Table 8 - Lists pairs of atoms for distance measures.  
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5.6.4.2 Dihedral angle 

Current crystal structures have insufficient resolution to distinguish between side chain 

amidic oxygen and nitrogen of Gln63. One could have a hydrogen bond between 

Tyr21(OH) to Gln63(OE1) or to Gln63(NE2) for the dark-state 2IYG and 1YRX, 

respectively, as shown in Figure 35. In order to study the changes in the orientation of 

the Gln63 side chain over the 100ps simulation, two dihedral angles were measured 

formed by the atoms Y21(CZ)-Q63(CG)-Q63(CD)-Q63(NE2) and Y21(CZ)-Q63(CG)-

Q63(CD)-Q63(OE1).  

We plotted the angle vs time graphs taking the whole 100ps simulation time and 

rescaled the angles and count the number of switching events. We averaged the distance 

between Tyr21(OH) and Gln63 before and after the switching event. Depending on the 

starting geometry of the respective trajectory, switches may or may not occur. We aim to 

make a conclusion as to which of the two structures is more disturbed by the change in 

Coulomb parameters. 

 

5.7 Results & Discussion 

5.7.1 Charge 

Light excitation of the flavin initiates an electron transfer from the proximal tyrosine 

(Y21) to the flavin creating Tyr21 (+)/FMN (-) radical pair. The electron density 

increases at the isoalloxazine ring and, as expected, an increased electron density at N5 

of the flavin is observed from the relocated (ES) charges, see Table 5 in Appendix. 

 

5.7.2 Distance 

The system behaves as expected, with a drop in Tyr21 (+) and FMN (-) distance 

compared to the distance between their neutral counterparts. A shorter distance can be 

seen from both structures which is a favourable conformation for the electron transfer. 

Previous work [238] observed a decrease in distance between 1) Tyr21(OH) and 

Gln63(O) and 2) Gln63(NH2) and FMN(N5) based on 2IYG, our results clearly 

confirmed these findings. In the “Trp-out” conformation, a more negative FMN(O4) (also 

FMN(N5)) will result in Gln63(NH2) getting closer to FMN(O4). However, we observe 
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an increase in distance between Gln63(NH2) and FMN(N5) in 1YRX. We rationalise this 

is due to the Gln63 rotation, as the Gln63(NH2) is often hydrogen bonding to 

Tyr21(OH), thus with the Gln63(O) oriented towards the FMN. A larger negative charge 

at FMN would repel the Gln63(O) unless a switch occurs. (see Table 11 and 12) 

 

5.7.3 Angle 

The conformational transition (switch) of the Gln63 side chain was analysed. Table 13 is 

a summary of the number of switches on picosecond timescale for 1YRX. The angle vs 

time graphs are plotted in the Appendix. The “Trp-in” conformation (1YRX) with the 

Q63(NH2) oriented towards OH(Y21) should have a dihedral angle Y21(CZ)-Q63(CG)-

Q63(CD)-Q63(NE2) close to zero for the ground state.  

1YRX unfortunately has plenty (>50%) of geometries that effectively start in the 

switched conformation. (see Appendix Figure 1-8) In four (2,6,7,8) trajectories, it is 

completely in the switched Gln63 orientation, which with no evaluation value. Because it 

is no longer in its initial conformation before we apply anything, we hope to see if any 

switch will happen from its initial conformation. No switch is observed for the first set of 

trajectories. Three (3,4,5) trajectories each have one case starting in the switched 

orientation so that the corresponding trajectories are not evaluated. The life time of the 

switched conformation is prolonged in the excited state in comparison to the 

corresponding ground state trajectory. In future work, one may produce more 

trajectories on unswitched 1YRX. 

Here, we reported the average distance between Tyr21(OH) and Gln63 (O) before and 

after the switching event (Table 9). This effect of the switch is the most significant 

among all of our distance measures, as the Gln63(OE) is close to hydrogen-bonding 

distance upon switching, after being far away before the switch. 
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ES 
 

switch time 

(ps) 

avg distance before 

switching (nm) 

avg distance after 

switching (nm) 

Back switching 

(nm) 

3 1000 55 0.761494 0.452574 
 

4 600 20 0.521298 0.260246 
 

 
700 85 0.559946 0.26549 

 

 
800 5 0.445159 0.278662 

 

5 300 35,65 0.424301 0.266453 0.471271  
900 55 0.710382 0.266118 

 

Table 9 - Average distance between Tyr21(OH) and Gln63 (O) before and after a switch 

is occurred. 1nm=10Å . 

In contrast, the position of the Gln63(NH2) group is very random, but appears to form 

weak interactions with FMN in all switching states. (see Appendix Table 6-8) The 

Tyr21(OH) and Gln63(NH2) distance is slightly larger in the switched state, which 

makes sense as the Gln63 (O) forms a hydrogen bond to Tyr21(OH) and Gln63 (O) and 

Gln63(NH2) are located at opposite ends of the end group of Gln63. (Table 10) 

 

ES 
 

switch time 

(ps) 

avg distance before 

switching (nm) 

avg distance after 

switching (nm) 

Back switching 

(nm) 

3 1000 55 0.613805 0.607003 
 

4 600 20 0.408162 0.454528 
 

 
700 85 0.469891 0.411732 

 

 
800 5 0.431713 0.43768 

 

5 300 35,65 0.356078 0.421399 0.331078  
900 55 0.568704 0.429289 

 

Table 10 - Average distance between Tyr21(OH) and Gln63 (NH2) before and after a 

switch is occurred. 

Switching only happens in the 1YRX (Trp-in conformation) state. The 2IYG seems to be 

the signalling state because no switching event has been found after applying an excited 

charged state. (see Appendix Figure 9-16) We have artificially created a state of charge 

reversal, an artificial Tyr (-)/FMN (+) state, where we forced the system to make 

switching happen in the Trp-out. (Table 14) 

The “Trp-out” conformation (2IYG) with the Q63(O) oriented towards OH(Y21) should 

have a dihedral angle Y21(CZ)-Q63(CG)-Q63(CD)-Q63(OE1) close to zero for the ground 

state. The Q63(NE2) graph which is made for comparison will yield a switch for the 

same cases. Using an artificial charge state, switching was observed in 15 out of 80 
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trajectories leading to OH(Y21) and Q63(NE2) bridge. In general, those switches 

happened very early, typically within 5ps. (Table 14 and Appendix Figure 17-24) 

 

5.8 Conclusion 

The BLUF domain is a FAD-binding blue-light-sensing protein, which regulates 

photosynthesis gene expression in the purple bacterium. The BLUF domain undergoes a 

photocycle upon illumination involving a subtle rearrangement of the hydrogen network 

in the flavin binding site. The photochemical reaction involves both electron and proton 

transfer from nearby residues. In this work, we aim to investigate whether the 

redistributed charges in the flavin binding site would result in a driving force to change 

the conformational preference of the protein domain so as to assign the functional state 

of the two conflicting geometries “Trp-in” and “Trp-out”. Our results show that switching 

only happens in the 1YRX (“Trp-in” conformation) state. The switched conformation 

prefers the ES charge distribution, as seen from the few cases where the switches 

happened very early. Our study shows that 2IYG to be the signaling state as no switching 

event was observed from all eight trajectories, suggesting the “Trp-out” conformation 

appears to favour the ES charge distribution. Switching only happens in the Trp-out case 

using an artificial Try21 (-)/FMN (+) state. 
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Table 11 - Presents the distance averaged over the course of the 100ps simulations, excluding 

the first 20ps, for 1YRX (Trp-in conformation).  

 

 
GS ES Change 

  
GS ES Change 

OH(Y21)-N5(FMN)-100 0.5045 0.4489 -0.0557  
 

OH(S41)-N5(FMN)-100 0.3631 0.3782 0.0150  

OH(Y21)-N5(FMN)-200 0.5194 0.4453 -0.0741  
 

OH(S41)-N5(FMN)-200 0.3585 0.3695 0.0110  

OH(Y21)-N5(FMN)-300 0.5174 0.4361 -0.0813  
 

OH(S41)-N5(FMN)-300 0.3529 0.3674 0.0145  

OH(Y21)-N5(FMN)-400 0.5472 0.4288 -0.1185  
 

OH(S41)-N5(FMN)-400 0.3551 0.3696 0.0145  

OH(Y21)-N5(FMN)-500 0.5404 0.4510 -0.0894  
 

OH(S41)-N5(FMN)-500 0.3558 0.3660 0.0102  

OH(Y21)-N5(FMN)-600 0.5095 0.4570 -0.0525  
 

OH(S41)-N5(FMN)-600 0.3540 0.3705 0.0165  

OH(Y21)-N5(FMN)-700 0.5117 0.4537 -0.0581  
 

OH(S41)-N5(FMN)-700 0.3568 0.3634 0.0066  

OH(Y21)-N5(FMN)-800 0.5169 0.4253 -0.0916  
 

OH(S41)-N5(FMN)-800 0.3593 0.3688 0.0095  

OH(Y21)-N5(FMN)-900 0.5287 0.4460 -0.0827  
 

OH(S41)-N5(FMN)-900 0.3560 0.3655 0.0095  

OH(Y21)-N5(FMN)-1000 0.4976 0.4317 -0.0659  
 

OH(S41)-N5(FMN)-1000 0.3568 0.3731 0.0163  

OH(Y21)-OE1(Q63)-100 0.4024 0.3323 -0.0700  
 

OE1(Q63)-N5(FMN)-100 0.3873 0.3995 0.0121  

OH(Y21)-OE1(Q63)-200 0.4762 0.4430 -0.0332  
 

OE1(Q63)-N5(FMN)-200 0.4239 0.4598 0.0360  

OH(Y21)-OE1(Q63)-300 0.5008 0.4116 -0.0892  
 

OE1(Q63)-N5(FMN)-300 0.4367 0.4361 -0.0006  

OH(Y21)-OE1(Q63)-400 0.5279 0.4203 -0.1076  
 

OE1(Q63)-N5(FMN)-400 0.4273 0.4427 0.0154  

OH(Y21)-OE1(Q63)-500 0.5070 0.4768 -0.0302  
 

OE1(Q63)-N5(FMN)-500 0.4249 0.4539 0.0290  

OH(Y21)-OE1(Q63)-600 0.4826 0.4042 -0.0785  
 

OE1(Q63)-N5(FMN)-600 0.4251 0.4239 -0.0012  

OH(Y21)-OE1(Q63)-700 0.4591 0.4498 -0.0093  
 

OE1(Q63)-N5(FMN)-700 0.4269 0.4466 0.0197  

OH(Y21)-OE1(Q63)-800 0.4946 0.3790 -0.1156  
 

OE1(Q63)-N5(FMN)-800 0.4254 0.4367 0.0113  

OH(Y21)-OE1(Q63)-900 0.5058 0.4431 -0.0628  
 

OE1(Q63)-N5(FMN)-900 0.4260 0.4307 0.0047  

OH(Y21)-OE1(Q63)-1000 0.4767 0.4203 -0.0564  
 

OE1(Q63)-N5(FMN)-1000 0.4306 0.4652 0.0346  

OH(Y21)-NE2(Q63)-100 0.4667 0.4571 -0.0096  
 

NE2(Q63)-N5(FMN)-100 0.3445 0.3567 0.0121  

OH(Y21)-NE2(Q63)-200 0.5049 0.4602 -0.0447  
 

NE2(Q63)-N5(FMN)-200 0.3540 0.3779 0.0240  

OH(Y21)-NE2(Q63)-300 0.5177 0.4597 -0.0580  
 

NE2(Q63)-N5(FMN)-300 0.3658 0.3793 0.0135  

OH(Y21)-NE2(Q63)-400 0.5346 0.4418 -0.0928  
 

NE2(Q63)-N5(FMN)-400 0.3417 0.3552 0.0135  

OH(Y21)-NE2(Q63)-500 0.5186 0.4920 -0.0267  
 

NE2(Q63)-N5(FMN)-500 0.3426 0.3798 0.0372  

OH(Y21)-NE2(Q63)-600 0.4949 0.4732 -0.0218  
 

NE2(Q63)-N5(FMN)-600 0.3554 0.3617 0.0062  

OH(Y21)-NE2(Q63)-700 0.4768 0.4813 0.0044  
 

NE2(Q63)-N5(FMN)-700 0.3538 0.3625 0.0087  

OH(Y21)-NE2(Q63)-800 0.4988 0.4446 -0.0542  
 

NE2(Q63)-N5(FMN)-800 0.3573 0.3773 0.0200  

OH(Y21)-NE2(Q63)-900 0.5094 0.4702 -0.0393  
 

NE2(Q63)-N5(FMN)-900 0.3542 0.3636 0.0093  

OH(Y21)-NE2(Q63)-1000 0.4880 0.4749 -0.0131  
 

NE2(Q63)-N5(FMN)-1000 0.3650 0.3970 0.0320  

NE1(W104)-N5(FMN)-100 0.5703 0.5587 -0.0116  
     

NE1(W104)-N5(FMN)-200 0.6042 0.6185 0.0143  
     

NE1(W104)-N5(FMN)-300 0.6258 0.6001 -0.0257  
     

NE1(W104)-N5(FMN)-400 0.6245 0.6255 0.0010  
     

NE1(W104)-N5(FMN)-500 0.6016 0.6234 0.0218  
     

NE1(W104)-N5(FMN)-600 0.6060 0.6018 -0.0043  
     

NE1(W104)-N5(FMN)-700 0.6206 0.6224 0.0018  
     

NE1(W104)-N5(FMN)-800 0.6134 0.6223 0.0089  
     

NE1(W104)-N5(FMN)-900 0.6292 0.6311 0.0018  
     

NE1(W104)-N5(FMN)-1000 0.6188 0.6436 0.0248  
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NE1(W104)-OE1(Q63)-100 0.4826 0.5107 0.0281  
     

NE1(W104)-OE1(Q63)-200 0.4633 0.4431 -0.0203  
     

NE1(W104)-OE1(Q63)-300 0.4509 0.4460 -0.0049  
     

NE1(W104)-OE1(Q63)-400 0.4592 0.4419 -0.0173  
     

NE1(W104)-OE1(Q63)-500 0.4542 0.4291 -0.0250  
     

NE1(W104)-OE1(Q63)-600 0.4374 0.4737 0.0363  
     

NE1(W104)-OE1(Q63)-700 0.4626 0.4531 -0.0095  
     

NE1(W104)-OE1(Q63)-800 0.4437 0.4664 0.0228  
     

NE1(W104)-OE1(Q63)-900 0.4501 0.4696 0.0194  
     

NE1(W104)-OE1(Q63)-1000 0.4390 0.4429 0.0039  
     

NE1(W104)-NE2(Q63)-100 0.4351 0.3921 -0.0430  
     

NE1(W104)-NE2(Q63)-200 0.4457 0.4181 -0.0276  
     

NE1(W104)-NE2(Q63)-300 0.4442 0.4136 -0.0306  
     

NE1(W104)-NE2(Q63)-400 0.4539 0.4258 -0.0281  
     

NE1(W104)-NE2(Q63)-500 0.4430 0.4169 -0.0261  
     

NE1(W104)-NE2(Q63)-600 0.4346 0.4169 -0.0178  
     

NE1(W104)-NE2(Q63)-700 0.4549 0.4238 -0.0311  
     

NE1(W104)-NE2(Q63)-800 0.4419 0.4226 -0.0193  
     

NE1(W104)-NE2(Q63)-900 0.4489 0.4400 -0.0089  
     

NE1(W104)-NE2(Q63)-1000 0.4382 0.4171 -0.0211  
     

 

  



107 

 

Table 12 - Presents the distance averaged over the course of the 100ps simulations, excluding 

the first 20ps, for 2IYG (Trp-out conformation). 

 

 
GS ES Change 

  
GS ES Change 

OH(Y21)-N5(FMN)-100 0.4499 0.4293 -0.0205 
 

OH(S41)-S(M106)-100 0.5551 0.5568 0.0016 

OH(Y21)-N5(FMN)-200 0.4554 0.4218 -0.0336 
 

OH(S41)-S(M106)-200 0.5735 0.5753 0.0018 

OH(Y21)-N5(FMN)-300 0.4623 0.4299 -0.0324 
 

OH(S41)-S(M106)-300 0.5704 0.5771 0.0066 

OH(Y21)-N5(FMN)-400 0.4571 0.4325 -0.0246 
 

OH(S41)-S(M106)-400 0.5710 0.5659 -0.0051 

OH(Y21)-N5(FMN)-500 0.4573 0.4298 -0.0275 
 

OH(S41)-S(M106)-500 0.5670 0.5603 -0.0067 

OH(Y21)-N5(FMN)-600 0.4543 0.4281 -0.0262 
 

OH(S41)-S(M106)-600 0.5640 0.5741 0.0100 

OH(Y21)-N5(FMN)-700 0.4504 0.4326 -0.0178 
 

OH(S41)-S(M106)-700 0.5644 0.5573 -0.0071 

OH(Y21)-N5(FMN)-800 0.4571 0.4384 -0.0187 
 

OH(S41)-S(M106)-800 0.5644 0.5802 0.0158 

OH(Y21)-N5(FMN)-900 0.4605 0.4402 -0.0203 
 

OH(S41)-S(M106)-900 0.5698 0.5642 -0.0056 

OH(Y21)-N5(FMN)-1000 0.4614 0.4310 -0.0304 
 

OH(S41)-S(M106)-1000 0.5683 0.5662 -0.0021 

OH(Y21)-OE1(Q63)-100 0.2726 0.2629 -0.0097 
 

OH(S41)-N5(FMN)-100 0.3556 0.3639 0.0084 

OH(Y21)-OE1(Q63)-200 0.2717 0.2621 -0.0097 
 

OH(S41)-N5(FMN)-200 0.3592 0.3753 0.0162 

OH(Y21)-OE1(Q63)-300 0.2715 0.2620 -0.0095 
 

OH(S41)-N5(FMN)-300 0.3574 0.3755 0.0181 

OH(Y21)-OE1(Q63)-400 0.2722 0.2615 -0.0107 
 

OH(S41)-N5(FMN)-400 0.3537 0.3771 0.0235 

OH(Y21)-OE1(Q63)-500 0.2723 0.2619 -0.0104 
 

OH(S41)-N5(FMN)-500 0.3552 0.3794 0.0242 

OH(Y21)-OE1(Q63)-600 0.2729 0.2623 -0.0106 
 

OH(S41)-N5(FMN)-600 0.3516 0.3773 0.0257 

OH(Y21)-OE1(Q63)-700 0.2730 0.2622 -0.0108 
 

OH(S41)-N5(FMN)-700 0.3596 0.3849 0.0253 

OH(Y21)-OE1(Q63)-800 0.2729 0.2619 -0.0111 
 

OH(S41)-N5(FMN)-800 0.3508 0.3722 0.0214 

OH(Y21)-OE1(Q63)-900 0.2726 0.2620 -0.0107 
 

OH(S41)-N5(FMN)-900 0.3635 0.3832 0.0197 

OH(Y21)-OE1(Q63)-1000 0.2725 0.2619 -0.0107 
 

OH(S41)-N5(FMN)-1000 0.3536 0.3666 0.0130 

OH(Y21)-NE2(Q63)-100 0.4333 0.4314 -0.0019 
 

OE1(Q63)-N5(FMN)-100 0.3533 0.3530 -0.0003 

OH(Y21)-NE2(Q63)-200 0.4371 0.4273 -0.0098 
 

OE1(Q63)-N5(FMN)-200 0.3522 0.3537 0.0014 

OH(Y21)-NE2(Q63)-300 0.4348 0.4319 -0.0029 
 

OE1(Q63)-N5(FMN)-300 0.3575 0.3542 -0.0033 

OH(Y21)-NE2(Q63)-400 0.4343 0.4317 -0.0026 
 

OE1(Q63)-N5(FMN)-400 0.3574 0.3582 0.0007 

OH(Y21)-NE2(Q63)-500 0.4361 0.4297 -0.0064 
 

OE1(Q63)-N5(FMN)-500 0.3558 0.3557 -0.0001 

OH(Y21)-NE2(Q63)-600 0.4345 0.4267 -0.0078 
 

OE1(Q63)-N5(FMN)-600 0.3561 0.3566 0.0005 

OH(Y21)-NE2(Q63)-700 0.4283 0.4333 0.0050 
 

OE1(Q63)-N5(FMN)-700 0.3587 0.3542 -0.0046 

OH(Y21)-NE2(Q63)-800 0.4348 0.4318 -0.0030 
 

OE1(Q63)-N5(FMN)-800 0.3592 0.3583 -0.0010 

OH(Y21)-NE2(Q63)-900 0.4374 0.4351 -0.0024 
 

OE1(Q63)-N5(FMN)-900 0.3599 0.3574 -0.0025 

OH(Y21)-NE2(Q63)-1000 0.4371 0.4303 -0.0068 
 

OE1(Q63)-N5(FMN)-1000 0.3607 0.3578 -0.0029 

S(M106)-N5(FMN)-100 0.5712 0.5733 0.0021 
 

NE2(Q63)-N5(FMN)-100 0.3170 0.3014 -0.0156 

S(M106)-N5(FMN)-200 0.5762 0.5784 0.0022 
 

NE2(Q63)-N5(FMN)-200 0.3144 0.3027 -0.0118 

S(M106)-N5(FMN)-300 0.5707 0.5736 0.0029 
 

NE2(Q63)-N5(FMN)-300 0.3147 0.3020 -0.0127 

S(M106)-N5(FMN)-400 0.5750 0.5749 -0.0001 
 

NE2(Q63)-N5(FMN)-400 0.3168 0.3077 -0.0091 

S(M106)-N5(FMN)-500 0.5786 0.5750 -0.0036 
 

NE2(Q63)-N5(FMN)-500 0.3161 0.3033 -0.0128 

S(M106)-N5(FMN)-600 0.5722 0.5723 0.0001 
 

NE2(Q63)-N5(FMN)-600 0.3167 0.3026 -0.0141 

S(M106)-N5(FMN)-700 0.5711 0.5743 0.0032 
 

NE2(Q63)-N5(FMN)-700 0.3161 0.3032 -0.0129 

S(M106)-N5(FMN)-800 0.5666 0.5692 0.0026 
 

NE2(Q63)-N5(FMN)-800 0.3211 0.3035 -0.0177 

S(M106)-N5(FMN)-900 0.5698 0.5700 0.0002 
 

NE2(Q63)-N5(FMN)-900 0.3175 0.3028 -0.0147 

S(M106)-N5(FMN)-1000 0.5708 0.5719 0.0011 
 

NE2(Q63)-N5(FMN)-1000 0.3174 0.3031 -0.0143 
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S(M106)-OE1(Q63)-100 0.5470 0.5430 -0.0040 
     

S(M106)-OE1(Q63)-200 0.5440 0.5412 -0.0029 
     

S(M106)-OE1(Q63)-300 0.5432 0.5355 -0.0077 
     

S(M106)-OE1(Q63)-400 0.5434 0.5434 -0.0001 
     

S(M106)-OE1(Q63)-500 0.5459 0.5369 -0.0090 
     

S(M106)-OE1(Q63)-600 0.5423 0.5378 -0.0045 
     

S(M106)-OE1(Q63)-700 0.5397 0.5423 0.0026 
     

S(M106)-OE1(Q63)-800 0.5400 0.5367 -0.0033 
     

S(M106)-OE1(Q63)-900 0.5390 0.5333 -0.0057 
     

S(M106)-OE1(Q63)-1000 0.5415 0.5343 -0.0071 
     

S(M106)-NE2(Q63)-100 0.3544 0.3507 -0.0037 
     

S(M106)-NE2(Q63)-200 0.3489 0.3529 0.0040 
     

S(M106)-NE2(Q63)-300 0.3481 0.3465 -0.0016 
     

S(M106)-NE2(Q63)-400 0.3479 0.3537 0.0058 
     

S(M106)-NE2(Q63)-500 0.3512 0.3475 -0.0037 
     

S(M106)-NE2(Q63)-600 0.3476 0.3475 -0.0001 
     

S(M106)-NE2(Q63)-700 0.3453 0.3507 0.0055 
     

S(M106)-NE2(Q63)-800 0.3472 0.3454 -0.0018 
     

S(M106)-NE2(Q63)-900 0.3439 0.3433 -0.0006 
     

S(M106)-NE2(Q63)-1000 0.3469 0.3450 -0.0019 
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Table 13 - Number of switches (on ps timescale) observed from the eight trajectories of 1YRX. 

 

ps 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 (1) 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 

4 (1) 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 

5 (1) 0 0 0 0 0 0 1 1 1 1 2 2 2 2 2 2 2 2 2 2 

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Sum 1 1 1 2 2 2 3 3 3 3 5 5 5 5 5 5 6 6 6 6 

 

 

Table 14 - Number of switches (on ps timescale) observed from the eight trajectories of 2IYG by applying an artificial Tyr (-)/FMN (+) state. 

 

ps 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 

1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

2 3 4 4 4 4 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 

7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 

Sum 9 10 10 10 11 11 12 12 12 13 13 13 14 14 14 14 14 14 15 15 
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Appendix 

Table 1 – List of 59 representative allosteric pockets. 

 
 PDB Ligand 

1 1AO0 ADP 468A 
2 1CSM TRP 501B 
3 1CZA ADP 922N 
4 1EGY 9AP 801A 
5 1ESM COA 403D 
6 1EYJ AMP 341A 
7 1H5U CHI 920A 
8 1I1Q TRP 1001A 
9 1IE9 VDX 500A 

10 1JL0 PUT 2020B 
11 1JQN ASP 884A 
12 1KFL PHE 5354E 
13 1LTH FBP 320R 
14 1M8P PPS 576C 
15 1NTK AY1 383C 
16 1NXG NAD 3000A 
17 1PJ3 FUM 700A 
18 1PSD SER 451A 
19 1RD4 L08 3328D 
20 1S9J BBM 1001A 
21 1SHJ NXN 401B 
22 1T36 U 1093E 
23 1V4S MRK 501A 
24 1W25 C2E 505B 
25 1W96 S1A 1567A 
26 1X88 NAT 802B 
27 1XJF DTP 1001B 
28 1XXA ARG 1F 
29 1YXD LYS 1300B 
30 1ZDQ MSM 1509C 
31 2AL5 4MP 801A 
32 2CLK G3H 1268A 
33 2D5Z L35 1200C 
34 2FZC CTP 901B 
35 2G50 ALA 6106F 
36 2I80 G1L 400A 
37 2JC9 ADN 1497A 
38 2JHR PBQ 1780A 
39 2JJX ATP 1246C 
40 2ONB 7PA 319A 
41 2P2N ASN 8004D 
42 2P9H IPT 998A 
43 2PIV T3 933A 
44 2Q5Q KPV 5004A 
45 2V8Q AMP 1327E 
46 2VD4 P21 1454A 
47 3BEO UD1 372B 
48 3D2P ARG 438B 
49 3DC2 SER 600A 
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50 3F6G ILE 1A 
51 3FZY IHP 8000A 
52 3GCP SB2 361A 
53 3H30 RFZ 337A 
54 3HRF P47 1374A 
55 3I0S RT7 601A 
56 3IAD 15X 901D 
57 3JVR AGX 901A 
58 3KCC CMP 302B 
59 3R1R ATP 762B 
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Table 2 – List of 151 small molecule descriptors. Detailed can be found in the CDK 

documentation. 

 

1 AtomCount:C 
2 AtomCount:O 
3 AtomCount:N 
4 AtomCount:P 
5 AtomCount:Cl 
6 AtomCount:F 
7 AtomCount:S 
8 AtomCount:Br 
9 AtomCount:I 

10 Total_HA 
11 ZagrebIndex:Zagreb 
12 XLogP:XLogP 
13 WienerNumbers:WPOL 
14 WienerNumbers:WPATH 
15 WeightedPath:WTPT-5 
16 WeightedPath:WTPT-4 
17 WeightedPath:WTPT-3 
18 WeightedPath:WTPT-2 
19 WeightedPath:WTPT-1 
20 Weight:MW 
21 VAdjMa:VAdjMat 
22 TPSA:TopoPSA 
23 RuleOfFive:LipinskiFailures 
24 RotatableBondsCount:nRotB 
25 PetitjeanShapeIndex:geomShape 
26 PetitjeanNumber:PetitjeanNumber 
27 MolWt:MWt 
28 MDE:MDEN-33 
29 MDE:MDEN-23 
30 MDE:MDEN-22 
31 MDE:MDEN-13 
32 MDE:MDEN-12 
33 MDE:MDEN-11 
34 MDE:MDEO-22 
35 MDE:MDEO-12 
36 MDE:MDEO-11 
37 MDE:MDEC-44 
38 MDE:MDEC-34 
39 MDE:MDEC-33 
40 MDE:MDEC-24 
41 MDE:MDEC-23 
42 MDE:MDEC-22 
43 MDE:MDEC-14 
44 MDE:MDEC-13 
45 MDE:MDEC-12 
46 MDE:MDEC-11 
47 MannholdLogP:MLogP 
48 LongestAliphaticChain:nAtomLAC 
49 LargestPiSystem:nAtomP 
50 LargestChain:nAtomLC 
51 KierHallSmarts:khs.sssSnH 
52 KierHallSmarts:khs.sSnH3 
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53 KierHallSmarts:khs.sBr 
54 KierHallSmarts:khs.ddssSe 
55 KierHallSmarts:khs.dssSe 
56 KierHallSmarts:khs.aaSe 
57 KierHallSmarts:khs.dSe 
58 KierHallSmarts:khs.sSeH 
59 KierHallSmarts:khs.sssssAs 
60 KierHallSmarts:khs.sssdAs 
61 KierHallSmarts:khs.sssAs 
62 KierHallSmarts:khs.ssAsH 
63 KierHallSmarts:khs.sAsH2 
64 KierHallSmarts:khs.sssGeH 
65 KierHallSmarts:khs.ssGeH2 
66 KierHallSmarts:khs.sGeH3 
67 KierHallSmarts:khs.ddssS 
68 KierHallSmarts:khs.dssS 
69 KierHallSmarts:khs.aaS 
70 KierHallSmarts:khs.ssS 
71 KierHallSmarts:khs.dS 
72 KierHallSmarts:khs.sSH 
73 KierHallSmarts:khs.sssssP 
74 KierHallSmarts:khs.dsssP 
75 KierHallSmarts:khs.sssP 
76 KierHallSmarts:khs.ssPH 
77 KierHallSmarts:khs.sOH 
78 KierHallSmarts:khs.aasN 
79 KierHallSmarts:khs.sssN 
80 KierHallSmarts:khs.sssNH 
81 KierHallSmarts:khs.tCH 
82 KappaShapeIndices:Kier3 
83 KappaShapeIndices:Kier2 
84 KappaShapeIndices:Kier1 
85 HybridizationRatio:HybRatio 
86 HBondDonorCount:nHBDon 
87 HBondAcceptorCount:nHBAcc 
88 FragmentComplexity:fragC 
89 FMF:FMF 
90 EccentricConnectivityIndex:ECCEN 
91 ChiPath:VP-7 
92 ChiPath:VP-6 
93 ChiPath:VP-5 
94 ChiPath:VP-4 
95 ChiPath:VP-3 
96 ChiPath:VP-2 
97 ChiPath:VP-1 
98 ChiPath:VP-0 
99 ChiPath:SP-7 

100 ChiPath:SP-6 
101 ChiPath:SP-5 
102 ChiPath:SP-4 
103 ChiPath:SP-3 
104 ChiPath:SP-2 
105 ChiPath:SP-1 
106 ChiPath:SP-0 
107 ChiPathCluster:VPC-6 
108 ChiPathCluster:VPC-5 
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109 ChiPathCluster:VPC-4 
110 ChiPathCluster:SPC-6 
111 ChiPathCluster:SPC-5 
112 ChiPathCluster:SPC-4 
113 ChiCluster:VC-6 
114 ChiCluster:VC-5 
115 ChiCluster:VC-4 
116 ChiCluster:VC-3 
117 ChiCluster:SC-6 
118 ChiCluster:SC-5 
119 ChiCluster:SC-4 
120 ChiCluster:SC-3 
121 ChiChain:VCH-5 
122 ChiChain:VCH-4 
123 ChiChain:VCH-3 
124 ChiChain:SCH-5 
125 ChiChain:SCH-4 
126 ChiChain:SCH-3 
127 CarbonTypes:C4SP3 
128 CarbonTypes:C3SP3 
129 CarbonTypes:C2SP3 
130 CarbonTypes:C1SP3 
131 CarbonTypes:C3SP2 
132 CarbonTypes:C2SP2 
133 CarbonTypes:C1SP2 
134 CarbonTypes:C2SP1 
135 CarbonTypes:C1SP1 
136 BPol:bpol 
137 BondCount:nB 
138 BCUT:BCUTp-1h 
139 BCUT:BCUTp-1l 
140 BCUT:BCUTc-1h 
141 BCUT:BCUTc-1l 
142 BCUT:BCUTw-1h 
143 BCUT:BCUTw-1l 
144 BasicGroupCount:nBase 
145 AtomCount:nAtom 
146 AromaticBondsCount:nAromBond 
147 APol:apol 
148 AminoAcidCount:nW 
149 AminoAcidCount:nM 
150 AminoAcidCount:nP 
151 AcidicGroupCount:nAcid 
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Table 3 - Results of Model 1 (43 descriptors) for the CHES set. 

 

A R T Prediction PDB Ligand Literature 
1 5 94 T 2VW2 A1000 active site    

19 5 76 T 3OQI A258 catalytic pocket    
25 0 75 T 2ICH B2 interdomain interface    
10 16 74 T 3NOQ A501 active site    
29 0 71 T 2ICH A1 interdomain interface    
41 1 58 T 3OQI B258 catalytic pocket    
90 9 1 A 3RIG A2001 active site-acyl pocket   
84 16 0 A 1YI1 A696 ≈20Å from the active site 
68 32 0 A 3RIG B2002 active site-acyl pocket   
67 33 0 A 1Z8N A696 ≈20Å from the active site 
64 35 1 A 1Q1Q A354 active site-competes with substrate  
58 5 37 A 1V30 A2854 probably active site   
51 49 0 A 1YI0 A696 ≈20Å from the active site 
95 5 0 A 4DQ0 C202 to be published   
93 7 0 A 4DQ0 B201 to be published   
66 34 0 A 4DQ0 C201 to be published   
74 26 0 A 3G8W A168 to be published   
68 32 0 A 3G8W A167 to be published   
62 32 6 A 3G8W C167 to be published   
57 24 19 A 3G8W A169 to be published   
43 39 18 A 3G8W C170 to be published   
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Table 4 - Results of Model 5 (five descriptors) for the CHES set. 

 

A R T Prediction PDB Ligand Literature 

15 0 85 T 2ICH A1 interdomain interface    

16 0 84 T 2ICH B2 interdomain interface    

1 20 79 T 2VW2 A1000 active site    

23 27 50 T 1V30 A2854 probably active site   

41 18 41 T/A 3OQI B258 catalytic pocket    

100 0 0 A 1Q1Q A354 active site-competes with substrate  

95 5 0 A 1YI1 A696 ≈20Å  from the active site 

92 7 1 A 3RIG A2001 active site-acyl pocket   

91 9 0 A 1Z8N A696 ≈20Å  from the active site 

88 12 0 A 3RIG B2002 active site-acyl pocket   

86 14 0 A 4EV1 A302 hydrophobic pocket    

84 16 0 A 3GXZ A301 primary oligosaccharide-binding sites   

79 21 0 A 3OB9 A540 peptide (methyllysine) binding pocket  

78 22 0 A 3NIB A276 active site    

72 28 0 A 4H75 A304 aromatic cage for methyllysine binding 

71 29 0 A 1YI0 A696 ≈20Å  from the active site 

67 33 0 A 1YBH A696 ≈20Å  from the active site 

61 39 0 A 1YHY A696 ≈20Å  from the active site 

61 39 0 A 1YHZ A696 ≈20Å  from the active site 

58 42 0 A 4ATG A401 interface of symmetry-related molecules 

95 5 0 A 3G8W A168 to be published   

90 9 1 A 3G8W A167 to be published   

88 12 0 A 3G8W C167 to be published   

87 12 1 A 3G8W C170 to be published   

72 28 0 A 3G8W C168 to be published   

62 38 0 A 3G8W A169 to be published   

62 38 0 A 3G8W C171 to be published   

52 48 0 A 3G8W C169 to be published   

95 5 0 A 3IXS C1 no comment    

92 8 0 A 3CGG A195 to be published   

91 9 0 A 1L5B A301 no comment    

91 9 0 A 3KSP A129 to be published   

83 17 0 A 3R97 A315 to be published   

83 17 0 A 4DQ0 B201 to be published   

76 24 0 A 4DQ0 C202 to be published   
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Table 5 - Lists the atomic charges used to perform MD simulations. The ground or dark-

state (GS) charges were taken from AmberGS force field and a set of relocated charges 

(ES), which was obtained from a TD-DFT CAM-B3LYP/6-31G* calculation.  

 

 1YRX 2IYG 
 GS ES GS ES 

N -0.4157 -0.4157 -0.4157 -0.4157 

H 0.2719 0.2719 0.2719 0.2719 

CA -0.0014 0.0665 -0.0014 0.0677 

HA 0.0876 0.0876 0.0876 0.0876 

CB -0.0152 -0.0991 -0.0152 -0.1062 

HB1 0.0295 0.0860 0.0295 0.0812 

HB2 0.0295 0.0832 0.0295 0.0826 

CG -0.0011 0.1497 -0.0011 0.1683 

CD1 -0.1906 -0.1516 -0.1906 -0.1628 

HD1 0.1699 0.2014 0.1699 0.2056 

CE1 -0.2341 -0.1593 -0.2341 -0.1790 

HE1 0.1656 0.2206 0.1656 0.2161 

CZ 0.3226 0.4721 0.3226 0.4592 

OH -0.5579 -0.3814 -0.5579 -0.3602 

HH 0.3992 0.4213 0.3992 0.4168 

CE2 -0.2341 -0.1823 -0.2341 -0.1378 

HE2 0.1656 0.2156 0.1656 0.2143 

CD2 -0.1906 -0.1394 -0.1906 -0.1864 

HD2 0.1699 0.1992 0.1699 0.2070 

C 0.5973 0.5973 0.5973 0.5973 

O -0.5679 -0.5679 -0.5679 -0.5679 

SUM 0.0000 0.9757 0.0000 0.9597 

     
C10 0.0540 0.0530 0.0540 0.0372 

N1 -0.3250 -0.3756 -0.3250 -0.3717 

C2 0.5490 0.5652 0.5490 0.5780 

O2 -0.4940 -0.5703 -0.4940 -0.5677 

N3 -0.3840 -0.4192 -0.3840 -0.4344 

HN 0.3050 0.2889 0.3050 0.2957 

C4 0.3730 0.3849 0.3730 0.3772 

O4 -0.5350 -0.6298 -0.5350 -0.6285 

C4A 0.5180 0.3623 0.5180 0.3890 

N5 -0.5500 -0.6804 -0.5500 -0.6963 

C5A 0.3630 0.4407 0.3630 0.4383 

C6 -0.2660 -0.4065 -0.2660 -0.3792 

C7 0.0480 0.0657 0.0480 0.0587 

H 0.1820 0.1574 0.1820 0.1549 

C7M -0.2640 -0.2360 -0.2640 -0.2446 
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HM7 0.0780 0.0498 0.0780 0.0563 

HM7 0.0780 0.0442 0.0780 0.0491 

HM7 0.0780 0.0458 0.0780 0.0398 

C8 0.1860 0.0741 0.1860 0.0753 

C9 -0.3040 -0.3033 -0.3040 -0.2862 

H 0.1770 0.1671 0.1770 0.1669 

C8M -0.2710 -0.2230 -0.2710 -0.2467 

HM8 0.0860 0.0563 0.0860 0.0573 

HM8 0.0860 0.0545 0.0860 0.0615 

HM8 0.0860 0.0507 0.0860 0.0620 

C9A -0.0070 -0.0956 -0.0070 -0.1308 

N10 -0.0990 -0.0886 -0.0990 -0.0509 

C1* -0.0060 0.0190 -0.0060 -0.0248 

H11 0.1040 0.0765 0.1040 0.0960 

H12 0.1040 0.0875 0.1040 0.0875 

C2* 0.2140 0.1732 0.2140 0.1855 

O2* -0.6790 -0.6790 -0.6790 -0.6790 

H2' 0.0400 0.0400 0.0400 0.0400 

HO2 0.4450 0.4450 0.4450 0.4450 

C3* 0.1910 0.1910 0.1910 0.1910 

O3* -0.7890 -0.7890 -0.7890 -0.7890 

H3' 0.0350 0.0350 0.0350 0.0350 

HO3 0.5030 0.5030 0.5030 0.5030 

C4* 0.0100 0.0100 0.0100 0.0100 

O4* -0.7270 -0.7270 -0.7270 -0.7270 

H4' 0.1000 0.1000 0.1000 0.1000 

HO4 0.5180 0.5180 0.5180 0.5180 

C5* 0.3210 0.3210 0.3210 0.3210 

H5' 0.0000 0.0000 0.0000 0.0000 

H5' 0.0000 0.0000 0.0000 0.0000 

O5* -0.6750 -0.6750 -0.6750 -0.6750 

P 1.5650 1.5650 1.5650 1.5650 

O1P -1.0090 -1.0090 -1.0090 -1.0090 

O2P -1.0090 -1.0090 -1.0090 -1.0090 

O3P -1.0090 -1.0090 -1.0090 -1.0090 

SUM -2.0050 -2.9807 -2.0050 -2.9647 
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Figure 1 - Time evolution of the dihedral angle from the first trajectory, which characterise the orientation of the Gln63 side chain in the 1YRX (Trp-in 

structure) in the ground state and in the excited state. The X-axis shows the time in ps and Y-axis shows the degree. 
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Figure 2 - Time evolution of the dihedral angle from the second trajectory, which characterise the orientation of the Gln63 side chain in the 1YRX (Trp-in 

structure) in the ground state and in the excited state. The X-axis shows the time in ps and Y-axis shows the degree. 
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Figure 3 - Time evolution of the dihedral angle from the third trajectory, which characterise the orientation of the Gln63 side chain in the 1YRX (Trp-in 

structure) in the ground state and in the excited state. The X-axis shows the time in ps and Y-axis shows the degree. 
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Figure 4 - Time evolution of the dihedral angle from the fourth trajectory, which characterise the orientation of the Gln63 side chain in the 1YRX (Trp-in 

structure) in the ground state and in the excited state. The X-axis shows the time in ps and Y-axis shows the degree. 
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Figure 5 - Time evolution of the dihedral angle from the fifth trajectory, which characterise the orientation of the Gln63 side chain in the 1YRX (Trp-in 

structure) in the ground state and in the excited state. The X-axis shows the time in ps and Y-axis shows the degree. 
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Figure 6 - Time evolution of the dihedral angle from the sixth trajectory, which characterise the orientation of the Gln63 side chain in the 1YRX (Trp-in 

structure) in the ground state and in the excited state. The X-axis shows the time in ps and Y-axis shows the degree. 
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Figure 7 - Time evolution of the dihedral angle from the seventh trajectory, which characterise the orientation of the Gln63 side chain in the 1YRX (Trp-in 

structure) in the ground state and in the excited state. The X-axis shows the time in ps and Y-axis shows the degree. 
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Figure 8 - Time evolution of the dihedral angle from the eighth trajectory, which characterise the orientation of the Gln63 side chain in the 1YRX (Trp-in 

structure) in the ground state and in the excited state. The X-axis shows the time in ps and Y-axis shows the degree. 
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ES 
 

switch time 

(ps) 

avg distance before 

switching (nm) 

avg distance after 

switching (nm) 

Back switching 

(nm) 

3 1000 55 0.499774 0.669862 
 

4 600 20 0.370991 0.303814 
 

 
700 85 0.306844 0.29752 

 

 
800 5 0.323879 0.302298 

 

5 300 35,65 0.383846 0.327932 0.355653  
900 55 0.389436 0.337309 

 

Table 6 - Average distance between Q63(NE2) and FMN(N5) before and after a switch is 

occurred. 

 

ES 
 

switch time 

(ps) 

avg distance before 

switching (nm) 

avg distance after 

switching (nm) 

Back switching 

(nm) 

3 1000 55 0.303034 0.481254 
 

4 600 20 0.286649 0.313888 
 

 
700 85 0.328016 0.332979 

 

 
800 5 0.297015 0.318334 

 

5 300 35,65 0.294771 0.304491 0.315038  
900 55 0.29051 0.303333 

 

Table 7 - Average distance between Q63(NE2) and FMN(O4) before and after a switch is 

occurred. 

 

ES 
 

switch time 

(ps) 

avg distance before 

switching (nm) 

avg distance after 

switching (nm) 

Back switching 

(nm) 

3 1000 55 0.613805 0.607003 
 

4 600 20 0.408162 0.454528 
 

 
700 85 0.469891 0.411732 

 

 
800 5 0.431713 0.43768 

 

5 300 35,65 0.356078 0.421399 0.331078  
900 55 0.568704 0.429289 

 

Table 8 - Average distance between Q63(NE2) and Y21(OH) before and after a switch is 

occurred. 
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Figure 9 - Time evolution of the dihedral angle from the first trajectory, which characterise the orientation of the Gln63 side chain in the 2IYG (Trp-out 

structure) using the AmberGS charges (ground state) and a set of relocated charges (mimicking the excited state). The X-axis shows the time in ps and Y-

axis shows the degree. 
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Figure 10 - Time evolution of the dihedral angle from the second trajectory, which characterise the orientation of the Gln63 side chain in the 2IYG (Trp-

out structure) using the AmberGS charges (ground state) and a set of relocated charges (mimicking the excited state). The X-axis shows the time in ps 

and Y-axis shows the degree. 
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Figure 11 - Time evolution of the dihedral angle from the third trajectory, which characterise the orientation of the Gln63 side chain in the 2IYG (Trp-out 

structure) using the AmberGS charges (ground state) and a set of relocated charges (mimicking the excited state). The X-axis shows the time in ps and Y-

axis shows the degree. 
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Figure 12 - Time evolution of the dihedral angle from the fourth trajectory, which characterise the orientation of the Gln63 side chain in the 2IYG (Trp-out 

structure) using the AmberGS charges (ground state) and a set of relocated charges (mimicking the excited state). The X-axis shows the time in ps and Y-

axis shows the degree. 
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Figure 13 - Time evolution of the dihedral angle from the fifth trajectory, which characterise the orientation of the Gln63 side chain in the 2IYG (Trp-out 

structure) using the AmberGS charges (ground state) and a set of relocated charges (mimicking the excited state). The X-axis shows the time in ps and Y-

axis shows the degree. 
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Figure 14 - Time evolution of the dihedral angle from the sixth trajectory, which characterise the orientation of the Gln63 side chain in the 2IYG (Trp-out 

structure) using the AmberGS charges (ground state) and a set of relocated charges (mimicking the excited state). The X-axis shows the time in ps and Y-

axis shows the degree. 
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Figure 15 - Time evolution of the dihedral angle from the seventh trajectory, which characterise the orientation of the Gln63 side chain in the 2IYG (Trp-

out structure) using the AmberGS charges (ground state) and a set of relocated charges (mimicking the excited state). The X-axis shows the time in ps 

and Y-axis shows the degree. 
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Figure 16 - Time evolution of the dihedral angle from the eighth trajectory, which characterise the orientation of the Gln63 side chain in the 2IYG (Trp-out 

structure) using the AmberGS charges (ground state) and a set of relocated charges (mimicking the excited state). The X-axis shows the time in ps and Y-

axis shows the degree. 
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Figure 17 - Time evolution of the dihedral angle from the first trajectory, which characterise the orientation of the Gln63 side chain in the 2IYG (Trp-out 

structure) using the AmberGS charges (ground state) and a set of artificial charges. The X-axis shows the time in ps and Y-axis shows the degree. 
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Figure 18 - Time evolution of the dihedral angle from the second trajectory, which characterise the orientation of the Gln63 side chain in the 2IYG (Trp-

out structure) using the AmberGS charges (ground state) and a set of artificial charges. The X-axis shows the time in ps and Y-axis shows the degree. 
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Figure 19 - Time evolution of the dihedral angle from the third trajectory, which characterise the orientation of the Gln63 side chain in the 2IYG (Trp-out 

structure) using the AmberGS charges (ground state) and a set of artificial charges. The X-axis shows the time in ps and Y-axis shows the degree. 
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Figure 20 - Time evolution of the dihedral angle from the fourth trajectory, which characterise the orientation of the Gln63 side chain in the 2IYG (Trp-out 

structure) using the AmberGS charges (ground state) and a set of artificial charges. The X-axis shows the time in ps and Y-axis shows the degree. 
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Figure 21 - Time evolution of the dihedral angle from the fifth trajectory, which characterise the orientation of the Gln63 side chain in the 2IYG (Trp-out 

structure) using the AmberGS charges (ground state) and a set of artificial charges. The X-axis shows the time in ps and Y-axis shows the degree. 
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Figure 22 - Time evolution of the dihedral angle from the sixth trajectory, which characterise the orientation of the Gln63 side chain in the 2IYG (Trp-out 

structure) using the AmberGS charges (ground state) and a set of artificial charges. The X-axis shows the time in ps and Y-axis shows the degree. 
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Figure 23 - Time evolution of the dihedral angle from the seventh trajectory, which characterise the orientation of the Gln63 side chain in the 2IYG (Trp-

out structure) using the AmberGS charges (ground state) and a set of artificial charges. The X-axis shows the time in ps and Y-axis shows the degree. 
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Figure 24 - Time evolution of the dihedral angle from the eighth trajectory, which characterise the orientation of the Gln63 side chain in the 2IYG (Trp-out 

structure) using the AmberGS charges (ground state) and a set of artificial charges. The X-axis shows the time in ps and Y-axis shows the degree. 
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