1,132 research outputs found

    Making Digital Artifacts on the Web Verifiable and Reliable

    Get PDF
    The current Web has no general mechanisms to make digital artifacts --- such as datasets, code, texts, and images --- verifiable and permanent. For digital artifacts that are supposed to be immutable, there is moreover no commonly accepted method to enforce this immutability. These shortcomings have a serious negative impact on the ability to reproduce the results of processes that rely on Web resources, which in turn heavily impacts areas such as science where reproducibility is important. To solve this problem, we propose trusty URIs containing cryptographic hash values. We show how trusty URIs can be used for the verification of digital artifacts, in a manner that is independent of the serialization format in the case of structured data files such as nanopublications. We demonstrate how the contents of these files become immutable, including dependencies to external digital artifacts and thereby extending the range of verifiability to the entire reference tree. Our approach sticks to the core principles of the Web, namely openness and decentralized architecture, and is fully compatible with existing standards and protocols. Evaluation of our reference implementations shows that these design goals are indeed accomplished by our approach, and that it remains practical even for very large files.Comment: Extended version of conference paper: arXiv:1401.577

    AMaχoS—Abstract Machine for Xcerpt

    Get PDF
    Web query languages promise convenient and efficient access to Web data such as XML, RDF, or Topic Maps. Xcerpt is one such Web query language with strong emphasis on novel high-level constructs for effective and convenient query authoring, particularly tailored to versatile access to data in different Web formats such as XML or RDF. However, so far it lacks an efficient implementation to supplement the convenient language features. AMaχoS is an abstract machine implementation for Xcerpt that aims at efficiency and ease of deployment. It strictly separates compilation and execution of queries: Queries are compiled once to abstract machine code that consists in (1) a code segment with instructions for evaluating each rule and (2) a hint segment that provides the abstract machine with optimization hints derived by the query compilation. This article summarizes the motivation and principles behind AMaχoS and discusses how its current architecture realizes these principles

    Parallel and distributed Gr\"obner bases computation in JAS

    Full text link
    This paper considers parallel Gr\"obner bases algorithms on distributed memory parallel computers with multi-core compute nodes. We summarize three different Gr\"obner bases implementations: shared memory parallel, pure distributed memory parallel and distributed memory combined with shared memory parallelism. The last algorithm, called distributed hybrid, uses only one control communication channel between the master node and the worker nodes and keeps polynomials in shared memory on a node. The polynomials are transported asynchronous to the control-flow of the algorithm in a separate distributed data structure. The implementation is generic and works for all implemented (exact) fields. We present new performance measurements and discuss the performance of the algorithms.Comment: 14 pages, 8 tables, 13 figure

    Kevoree Modeling Framework (KMF): Efficient modeling techniques for runtime use

    Get PDF
    The creation of Domain Specific Languages(DSL) counts as one of the main goals in the field of Model-Driven Software Engineering (MDSE). The main purpose of these DSLs is to facilitate the manipulation of domain specific concepts, by providing developers with specific tools for their domain of expertise. A natural approach to create DSLs is to reuse existing modeling standards and tools. In this area, the Eclipse Modeling Framework (EMF) has rapidly become the defacto standard in the MDSE for building Domain Specific Languages (DSL) and tools based on generative techniques. However, the use of EMF generated tools in domains like Internet of Things (IoT), Cloud Computing or Models@Runtime reaches several limitations. In this paper, we identify several properties the generated tools must comply with to be usable in other domains than desktop-based software systems. We then challenge EMF on these properties and describe our approach to overcome the limitations. Our approach, implemented in the Kevoree Modeling Framework (KMF), is finally evaluated according to the identified properties and compared to EMF.Comment: ISBN 978-2-87971-131-7; N° TR-SnT-2014-11 (2014

    Low Latency Reliable Data Sharing Mechanism for UAV Swarm Missions

    Get PDF
    The use of Unmanned Aerial Vehicle (UAV) swarms is increasing in many commercial applications as well as military applications (such as reconnaissance missions, search and rescue missions). Autonomous UAV swarm systems rely on multi-node interhost communication, which is used in coordination for complex tasks. Reliability and low latency in data transfer play an important role in the maintenance of UAV coordination for these tasks. In these applications, the control of UAVs is performed by autonomous software and any failure in data reception may have catastrophic consequences. On the other hand, there are lots of factors that affect communication link performance such as path loss, interference, etc. in communication technology (WIFI, 5G, etc.), transport layer protocol, network topology, and so on. Therefore, the necessity of reliable and low latency data sharing mechanisms among UAVs comes into prominence gradually. This paper examines available middleware solutions, transport layer protocols, and data serialization formats. Based on evaluation results, this research proposes a middleware concept for mobile wireless networks like UAV swarm systems

    Interoperability With Moby 1.0 - It's Better Than Sharing Your Toothbrush!

    Get PDF
    The BioMoby project was initiated in 2001 from within the model organism database community. It aimed to standardize methodologies to facilitate information exchange and access to analytical resources, using a consensus driven approach. Six years later, the BioMoby development community is pleased to announce the release of the 1.0 version of the interoperability framework, registry API, and supporting Perl and Java code-bases. Together, these provide interoperable access to over 1400 bioinformatics resources worldwide through the BioMoby platform, and this number continues to grow. Here we highlight and discuss the features of BioMoby that make it distinct from other Semantic Web Service and interoperability initiatives, and that have been instrumental to its deployment and use by a wide community of bioinformatics service providers. The standard, client software, and supporting code libraries are all freely available at http://www.biomoby.org
    • 

    corecore