
Embedded Self Organizing Systems (Vol 9. No 3. 2022) (pp.62-69) 

 

 
Special Issue Topic: “International Symposium on Computer Science and Educational Technology“ 

Low Latency Reliable Data Sharing Mechanism 

for UAV Swarm Missions 
 

Fatih Kilic 

Department of Computer Engineering 

Technische Universität Chemnitz  

Chemnitz, Germany 

fatih.kilic@informatik.tu-chemnitz.de 

Wolfram Hardt  

Department of Computer Engineering  

Technische Universität Chemnitz 

Chemnitz, Germany 

wolfram.hardt@informatik.tu-chemnitz.de 
 

 
 

Abstract — The use of Unmanned Aerial Vehicle (UAV) swarms 

is increasing in many commercial applications as well as military 

applications (such as reconnaissance missions, search and rescue 

missions). Autonomous UAV swarm systems rely on multi-node 

interhost communication, which is used in coordination for 

complex tasks. Reliability and low latency in data transfer play an 

important role in the maintenance of UAV coordination for these 

tasks. In these applications, the control of UAVs is performed by 

autonomous software and any failure in data reception may have 

catastrophic consequences. On the other hand, there are lots of 

factors that affect communication link performance such as path 

loss, interference, etc. in communication technology (WIFI, 5G, 

etc.), transport layer protocol, network topology, and so on. 

Therefore, the necessity of reliable and low latency data sharing 

mechanisms among UAVs comes into prominence gradually. This 

paper examines available middleware solutions, transport layer 

protocols, and data serialization formats. Based on evaluation 

results, this research proposes a middleware concept for mobile 

wireless networks like UAV swarm systems. 

Index Terms— middleware, transport protocol, data 

serialization, UAV swarm 

 

                    I. IN T RO D U C T IO N 

Cyber-physical systems (CPSs) like autonomous vehicles and 

UAVs can be capable of making decisions and operating 

independently by generally combining sensor networks with 

embedded computing to monitor and control the physical 

environment. This requires reliable and low-latency real-time data 

exchange. Data Distribution Service (DDS), which is also a 

middleware that enables reliable, high-performance, real-time data 

exchange using a publish-subscribe pattern among these cyber-

physical systems [1].  

DDS addresses the needs of applications like aerospace 

and defense, air-traffic control, autonomous vehicles, 

medical devices, robotics, power generation, simulation 

and testing, smart grid management, transportation 

systems, and other applications that require real-time data 

exchange [1]. To give an example for the use case of DDS 

in autonomous vehicles, cooperative perception is one of 

the most important DDS use cases where data exchange is 

very critical. It is also known as cooperative sensing or 

collective perception which enables vehicles and 

infrastructure nodes to detect objects (e.g. non-connected 

vehicles, pedestrians, obstacles) beyond their local sensing 

capabilities. Its goal is to enable the wireless exchange of 

sensor information between vehicles and infrastructure 

nodes in order to overcome the limitations. For example, in 

situations where the sensor’s field of vision is blocked (by 

other vehicles or buildings) and cooperative perception 

improves the perception capabilities of the vehicles [2] [3]. 

    In Fig. 1, the white car is unaware of the pedestrians 

on the crosswalk and this information is transferred by 

the red car to the white car, similarly, the red car is 

unaware of the obstacle on the way in Fig. 2 and the 

obstacle information is provided by the blue car to the 

red car in order to prevent an accident in both situations. 

 

 
 

         Fig. 1: Collective Perception [2] 
 

 
 

         Fig. 2: Collective Perception [3] 
 

Cooperative surveillance and collaboration systems are 

examples of a DDS use case in the UAV application area. 

62 

mailto:fatih.kilic@informatik.tu-chemnitz.de
mailto:wolfram.hardt@informatik.tu-chemnitz.de


Fatih Kilic, Wolfram Hardt  ESS (Vol 9. No 3. 2022) (pp.62-69) 

 
 

In Fig. 3, each UAV and Unmanned Ground Vehicle 

(UGV) have a different range of coverage areas and 

tasks to establish. They exchange information in real-

time in order to effectively complete a cooperative 

surveillance mission. 

 

 

 
 

Fig. 3: Cooperative Surveillance using UAV Swarms [4] 
 

 
In Fig. 4, each UAV has different sensors and is 

responsible for different tasks such as human detection, 

perceiving breath signals using bio-radar, and carrying 

emergency relief supplies in order to complete a 

complex mission by exchanging information. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

               Fig. 4: UAV Swarms’ Collaboration System [5]  

II.  MOT I VAT I O N 

Wireless communication environment has various problems like 

path loss, shadowing, signal fading, and interference. These pose a 

significant threat to achievable throughput, latency, and reliability 

of data transmission for autonomous UAVs and vehicles. There has 

been a significant improvement in communication 

technologies such as 5G and IEEE 802.11p in the last decade. 

These technologies especially contributed to latency and 

throughput which aim to achieve highly reliable 

communication among autonomous systems. However, today’s 

middleware solutions mostly use TCP, UDP, or optimized 

UDP that integrates a QoS mechanism on top of UDP; as a 

transport layer protocol. 

TCP is known for its reliability and UDP for its simplicity and 

low latency. The drawbacks of TCP and UDP have a significant 

effect on the communication for data exchange in autonomous 

systems. While TCP has high reliability, it overloads the network 

with packets when a loss packet is encountered. This causes 

latency and is not suitable for CPSs where the latency is 

significant. While UDP has low latency, it lacks reliability which 

may cause major problems in real-time systems. Some of the 

middleware solutions use Real Time Publish Subscribe (RTPS) 

protocol or their own QoS mechanism in order to ensure data 

reliability and low latency. However, these solutions, 

unfortunately, do not have adaptation between application-level 

requirements and communication channel constraints which is 

important for CPSs, which briefly means that the transport layer 

protocol is aware of latencies that occur at runtime. This helps to 

avoid the latency in the first place or accurately predict them if it 

cannot be avoided. In order to overcome this problem, this paper 

compares state-of-the-art transport layer protocols and available 

middleware solutions, and then proposes the use of Predictably 

Reliable Real-Time (PRRT) transport layer protocol which is 

highly reliable, has low latency, and is specially designed for 

CPSs in order to propose a reliable low latency data sharing 

mechanism [6]. Additionally, the performance of different 

types of data serialization formats is evaluated using the 

PRRT protocol. 
 

III. STAT E O F T H E ART 
 
     In this section, the state-of-the-art research includes three main 

points; 
• Available open-source middleware solutions such as 

eCAL, LCM, etc. as well as eProsima Fast DDS and 

Eclipse Cyclone DDS which implement open-source DDS 

\& RTPS. 

• Comparison of transport layer protocols with respect to 

various metrics like reliability, error control mechanism, 

etc. 

• Data serialization formats and their latency evaluation 

using PRRT protocol 
 
 
A. Middlewares 

DDS is a networking middleware that implements a 

publish-subscribe pattern for sending and receiving data, 

events, and commands among the nodes. Nodes 

generating information are known as publishers. 

Publishers create "topics" (e.g., temperature, location, 

pressure) and publish "samples". DDS delivers these 

samples to subscribers that declare an interest in that topic

63 



Fatih Kilic, Wolfram Hardt  ESS (Vol 9. No 3. 2022) (pp.62-69) 

(e.g., temperature) [1]. Some open-source DDS 

implementations like eProsima Fast DDS use Real -

time Publish-Subscribe Protocol (RTPS). RTPS was 

specifically developed to support the unique 

requirements of DDSs and is designed to be able to run 

over multicast and connectionless best -effort 

transports such as UDP/IP [7]. 

As can be seen in Table 1, popular middlewares use RTPS 

protocol over UDP as a transport layer protocol, while others 

use TCP\&UDP, and almost all utilize Inter-process 

Communications (IPC) to share data between services on a 

single machine. There are also many popular middlewares 

used in IoT such as ZeroMQ, MQTT, MQTT-SN, RabbitMQ, 

ActiveMQ, and gRPC, etc. Data distribution in most of these 

middleware solutions is based on a message broker, message 

queue mechanism, or TCP which is beneficial for different use 

cases but not suitable for CPSs [8].  

In [9], it is stated that eProsima FastRTPS for DDS 

delivers high performance in the round-trip time (RTT) of 

packages sent to the server. According to the performance 

evaluations in [10] [11], it is striking fast and performs 

better than alternatives such as ZeroMQ and other DDS 

middleware solutions. Therefore, eProsima Fast DDS is 

chosen as a state-of-the-art solution to compare its 

performance with the PRRT protocol (explained in the 

next subsection). 

 

B. Transport Layer Protocols 

Many successful protocols have emerged such as RTP, QUIC, 

SRT, etc. for real-time applications.  

RTP (Real-time Transport Protocol): "provides end-to-

end network transport functions suitable for applications 

trans- mitting real-time data such as audio, video   or 

simulation data, over multicast or unicast network 

services" [12, p.1]. 

QUIC: is a multiplexed transport over UDP [13]. 

SRT (Secure Reliable Transport Protocol):  is a transport 

protocol that was developed for low latency live video 

and audio streaming, as well as data transfer [14]. 

In Table 2, the comparison of transport layer 

protocols is given. Each of these protocols provides 

well-tuned functionality for specific purposes or 

application domains. Among these protocols, PRRT 

has two major application domains: live multimedia 

applications and control applications [6].  

PRRT as a transport protocol adapts application-level 

requirements with communication channel constraints. It 

provides low latency and reliability for live multimedia as well 

as control applications. It uses adaptive hybrid error coding 

architecture that “enables the protocol to adaptively follow the 

dynamic capacity of the packet-erasure channels generated by 

a wide range of Internet protocol infrastructures. Combined 

with packet loss notifications via negative acknowledgments, it 

provides capacity-approaching coding efficiency in point-to-

point as well as one-to-many transmission scenarios” [15, p.1]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Predictable Reliability [16] 
 

PRRT only requires addressing and multiplexing to be done 

by the lower layer (e.g., UDP/IP, Ethernet). Therefore, it is not 

relying on communication processes (e.g. WIFI, LTE, 

Ethernet) used for the application. It is aware of the varying 

parameters in the channels established between 

communication processes and copes with them to ensure the 

reliability and latency constraints of the application [6].  

“This holistic awareness is leveraged in decisions about 

the configuration of hybrid error control, loss-avoiding 

congestion control, as well as cross-layer packet pacing-

leading to predictably low latencies and hence reliable 

timing” [6,p.6].  

Due to the benefits of the PRRT protocol explained earlier 

and advantages given in Table 2 such as latency awareness and 

latency-predictability, the PRRT transport layer protocol is 

chosen to compare its performance with the state-of-the-art 

middleware solution "eProsima Fast DDS". 

 

C. Data Serialization Formats 

    Data serialization is the process of encoding data objects into 

a byte stream in order to store, transfer and distribute this byte 

stream on physical devices 17]. There are different data 

serialization types and many formats available such as text-

based "XML" and binary "Protobuf". The selection of data 

serialization type and format is determined by the intended 

application considering various factors such as data complexity, 

need for human readability, speed, and storage space 

constraints. The amount of data and the serialization or 

deserialization speed also directly affect the processing time 

and memory utilization [18]. 

A comprehensive comparison of data serialization formats is 

given in Table 3. Considering the disadvantages of data 

serialization formats like; N3, it is not chosen due to its time 

consumption during parsing, or Apache Thrift, it is not chosen 

due to lack of support for streaming large amounts of data [19]. 

CSV, JSON, YAML, BSON, MessagePack, and Protobuf are 

chosen according to the evaluations in [17]. FlatBuffers has 

not been tested due to the issues occurred in implementation. It 

will be evaluated and given with further development results.

64 



Fatih Kilic, Wolfram Hardt  ESS (Vol 9. No 3. 2022) (pp.62-69) 

TABLE I: Comparison of Middlewares 
 

Name Operation mode 

Transport between 

processes on a single 

machine 

Network 

transport 
Security 

Language 

support 

eProsima Fast 

DDS [20] 
publish-subscribe IPC 

TCP, RTPS 

(over UDP) 

authentication, 

access control 

encryption) 

Python, C++ 

Eclipse Cyclone 

DDS [21] 
publish-subscribe IPC RTPS (over UDP) 

authentication, 

access control 

encryption) 

C 

eCAL [22] 
publish-subscribe, 

server-client 
IPC TCP, UDP N.A. Python, C, C++) 

LCM [23] publish-subscribe IPC UDP N.A. 
Python, C, C++ 

and more. 

Aeron [24] publish-subscribe IPC 
Aeron 

(over UDP) 
encryption Java, C++ 

UAVCAN [25] 
publish-subscribe, 

server-client 
CAN Bus N.A. N.A. Python, C, C++ 

MAVLink [26] 
publish-subscribe, 

server-client 
N.A. TCP, UDP) authentication 

Python, C, C++ 

and more. 

 

                                                                                            TABLE II: Transport Layer Protocols [6] 
 

 PRRT TCP UDP RTP QUIC SRT 

Reliability 
< 100% 

(configurable) 
100% best effort 

configurable via 

profile 
100% < 100% 

Error Control HARQ ARQ N.A. 
configurable via 

profile 
ARQ & XORFEC ARQ 

Acknowledgment 

Scheme 
SACK 

CACK & 

SACK 
N.A. 

configurable via 

profile 

SACK& 

NACK 

SACK& 

NACK 

Congestion Control BBR based various N.A. see [27] various 
custom (live & 

file mode) 

Segmentation no yes no yes yes yes 

Latency Awareness yes no no no no no 

Latency Predictability high low low low low low 

 

                                                                                             TABLE III:  Data Serialization Formats 
 

Name Type Applications Advantages Disadvantages 

XML 
text 

based 

exchange of information 

through web services [28] 

large user base [29], does not require 

library support [6] 

overly verbose, not efficient due to the size 

overhead & complex encoding mechanisms 

[30] 

JSON 
text 

based 

common standard   for   many 

applications on the web [18] 

lightweight and a more efficient 

alternative to XML [29], does not require 

library support [30] 

lack of namespace support and input 

validation [29], power consumption 

YAML 
text 

based 
web applications [18] higher readability than JSON [18] 

relatively high complexity implies low 

parsing speed [18] 

CSV 
text 

based 
large dataset transmission [31] 

compact and efficient way to transfer 

large datasets [31] 

only supports serialization of a single 

result set [31] 

N3 
text 

based 

Serialization of Resource 

Description Framework [32] 

more readable than regular RDF/XML 

notation [33] 

supports RDF rules, consumes more time 

to parse [32] 

EN 
text 

based 

sensors with limited 

computation and 

communication capabilities [34] 

one of the least payload sizes, 

comparatively has the lowest latency and 

minimal resource usage [19] 

uses a predefined template created by the 

user, processing large data structures can 

require considerable resources. EN does 

not support nesting [34] 

Continued on next page 
65 



Fatih Kilic, Wolfram Hardt  ESS (Vol 9. No 3. 2022) (pp.62-69) 
 

Name Type Applications Advantages Disadvantages 

Message- 

Pack 

binary IoT applications [30] schemaless, implementation concept is 

simpler than Protobuf and FlatBuffers 

[30] 

require library support [30] 

Protobuf binary IoT applications where sensor 

nodes that deal mostly   with 

numeric sensor readings [30] 

efficient   encoding [35], high   energy   

efficiency [35], extremely    lightweight 

[29], platform-neutral and language-

neutral [30] 

requires library support and is based on 

schema [30] 

FlatBuffe

rs 

binary developed for performance 

critical applications [30] 

better memory efficiency and speed 

compared to Protobuf [30] 

requires library support and is based on 

schema [30] 

BSON binary MongoDB&NoSQL   databases 

[36], IoT applications [37] 

similar to JSON but faster and not 

human readable [37] 

has a limit to a maximum size of 

document no more than 16Mb [37] 

Apache 

Thrift 

binary web applications [30] extremely   lightweight [29], fast to 

serialize and deserialize [29] 

lack of support for streaming large 

amounts of data [29] 

XDR binary exchange of information 

through web services [28] 
efficient encoding [35], high   energy   

efficiency [35] 

lack of schema, has limited code generator 

and library support in modern 

programming languages [35] 

 
                                IV. CONCEPT 
 

Based on the advantages of the PRRT protocol, the middleware 

shown in Fig. 6 is being developed and tested by using the PRRT 

transport protocol. The middleware implements four main 

modules at the moment. 

• Preliminary Tasks Module is responsible for general tasks 

such as node discovery which allows a device to obtain the 

available topic’s “data” and its publisher’s “IP address”. 

Additionally, each device keeps the track of its subscriber 

list for required topics. The development of this module is 

still in progress. 

• Data Serialization Module is used to serialize\slash 

deserialize the data before\slash after the data transfer. In 

this module, data serialization formats such as JSON, 

BSON, YAML, MessagePack, and Protobuf are used to 

encode/decode data. 

• Transport Layer Module allows us to send multicast and 

unicast data using PRRT protocol. 

 

 

 

• Inter-process Communication (IPC) Module allows 

low latency data read/write mechanism between 

processes using Shared Memory. The main reason for 

integrating IPC into the proposed middleware is to allow 

internal services access to the shared data on the 

companion board. In our UAV swarm use case scenario, 

the sensor data shared by neighbor UAVs is stored in 

shared memory as soon as it is received by the PRRT 

socket. This enables the software modules such as 

decision mechanism module to use the data to perform 

better in situations like UAV swarm formation or 

collision avoidance. 

In the Result section, the analysis of data serialization 

formats is given with respect to serialization, 

deserialization and total transmission time. The hardware 

and the method to calculate these measurements are also 

explained.

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6: The middleware concept for UAV Swarm Missions using PRRT Protocol 

66 



Fatih Kilic, Wolfram Hardt  ESS (Vol 9. No 3. 2022) (pp.62-69) 

 

                                                         V. RE S U LTS 

The ODROID-XU4 companion board, EW-7811Un WLAN 

adapter, and Belkin N300 wireless router are used for 

implementation and to obtain results in our tests. The 

ODROID-XU4 boards do not have a direct connection to each 

other, they are directly connected to the router. The time 

synchronization between devices is enabled by Network Time 

Protocol (NTP) in order to have accurate results when 

timestamps are used. NTP is the standard for synchronizing 

time between two devices over a network [38].  

Every serialization format takes varying times to perform the 

serialization of data. In order to calculate this, a timestamp is 

recorded before performing serialization and another 

timestamp is recorded right after the serialization of data is 

completed. Hence, the difference between these two 

timestamps gives us the time taken for serialization. The same 

method is used to calculate deserialization time. In addition to 

this, python implementation of serialization formats is used in 

latency measurements. 

The serialization formats were tested with different amounts 

of data (1KB, 5KB, and 1MB) and compared with respect to 

their serialization and deserialization time. It can be clearly 

seen that the MessagePack serialization format has the lowest 

serialization and deserialization times for the different amounts 

of data. 

Additionally, in order to ensure that the receiver is aware of 

the transmission status when the data transfer is completed, a 

UTF-8 encoded data containing the string “END” packet is 

generated. This packet is transmitted by the sender to the 

receiver after the transmission of the serialized data is 

completed. This indicates the end of the data transmission and 

is recognized by the receiver. The receiver initiates the 

deserialization of the received data after receiving the "END" 

packet. 

The “END” packet is also used to calculate the total 

transmission time which is the time taken to transfer serialized 

data from sender to receiver. The total transmission time 

includes network latency. To calculate the total transmission 

time, two timestamps are used. The first timestamp is recorded 

before the start of serialized data transmission at the sender 

side and another timestamp is recorded right after the receiver 

receives UTF-8 encoded string containing the "END" packet. 

The time difference between these timestamps gives us the 

total transmission time. 

Table 4 gives the serialization and deserialization time in 

milliseconds and Table 5 shows the comparison of data 

serialization formats with respect to the total time taken to 

transfer serialized data from sender to receiver in different 

amounts of data using PRRT protocol. The total time of BSON 

and MessagePack formats for 1KB of data is the lowest 

whereas the total time of JSON and MessagePack formats for 

5KB of data is the lowest. However, MessagePack still has the 

best performance for 1MB data, it is quite fast. 

 

TABLE IV: Serialization and deserialization time (ms) 
 

 Serialization Time Deserialization Time 

 
1KB 
data 

5KB 
data 

1MB 
data 

1KB 
data 

5KB 
data 

1MB 
data 

CSV 0.706 1.983 377 0.565 1.183 100 

JSON 0.644 1.752 258 0.621 1.181 153 

YAML 15.638 80.512 14803 31.615 148.963 12063 

BSON 1.391 6.011 1074 0.534 2.17 414 

MsgPack 0.427 0.546 18 0.199 0.411 25 

Protobuf 1.416 1.395 19 0.24 1.265 55 

 
 
             TABLE V: Transfer time of serialized data (ms) 
 

 Transfer Time 

 1KB 
data 

5KB 
data 

1MB data 

CSV 16.022 43.126 3021 

JSON 8.666 12.549 3417 

YAML 6.588 51.535 21989 

BSON 4.288 32.995 3296 

MsgPack 4.923 13.024 1998 

Protobuf 6.579 33.762 4625 
 
 
 

    In conclusion, different amounts of data transmission were 

tested using eProsima Fast DDS middleware and PRRT 

protocol. Additionally, single-value raw data which is a 1KB 

single string, is used in latency measurements. Different 

amounts of data transmission mean that single-value raw data is 

contained e.g. 1 time, 5 times, and 1000 times in 1KB, 5KB, 

and 1MB data, respectively. 

 

 
 

Fig. 7: Comparison of the total amount of time to transfer 

1KB, 5KB and 1MB raw data using eProsima Fast DDS 
 

67 



Fatih Kilic, Wolfram Hardt  ESS (Vol 9. No 3. 2022) (pp.62-69) 

 
 

Fig. 8: Comparison of the total amount of time to transfer 

1KB, 5KB and 10KB raw data using PRRT 

 

                        VI. CO N C LU S I O N 

In this study, the low latency reliable data-sharing mechanism 

concept for UAV Swarm Missions is proposed by analyzing the 

state-of-the-art middleware solutions, transport layer protocols, 

and data serialization formats. The results of this study show that 

PRRT is performing slightly better than eProsima Fast DDS with 

respect to latency in peer-to-peer data transfer. In addition to this, 

MessagePack has the lowest serialization/deserialization time, 

and also it adds very low latency. 

The results of this research support the idea of using PRRT 

protocol for data transfer among UAV swarm nodes since it 

gives promising results compared to eProsima Fast DDS 

middleware. Therefore, the following points will be investigated 

as a next step: comparison of multicast data transfer using PRRT 

and eProsima Fast DDS, integration of Shared Memory (IPC 

Module), and integration of Network Discovery and Pub/Sub 

Pattern features. 

      RE F E R E N C E S 
 

[1] “What     is     DDS?”     dds-foundation.org.     https://www.dds- 

foundation.org/what-is-dds-3 (Accessed: Nov.  23, 2022). 

[2] Garlichs, “Simulative untersuchungen zur kollektiven wahrnehmung,” 

ibr.cs.tu-bs.de. https://www.ibr.cs.tu-bs.de/projects/collective- perception/ 

(Accessed: Nov.  23, 2022). 

[3] H.-J.  Gunther, B .   Mennenga, O .   Trauer, R.  Riebl, and   L.  Wolf, 

“Realizing collective perception in a vehicle,” in 2016 IEEE Vehicular 

Networking Conference (V N   C ).  Columbus, OH, USA: IEEE, December 2016. 

[Online]. Available:  https://doi.org/10.1109/vnc.2016.7835930  

    [4]   D.   H.   Stolfi, M.   R.   Brust, G.   Danoy, and   P.   Bouvry, “UAV-UGV-UMV  

Multi-Swarms for Cooperative Surveillance,” Frontiers in Robotics and AI, vol. 

8, February 2021. [Online]. Available: 

https://doi.org/10.3389/frobt.2021.616950  

[5]  Y. Cao,  F.  Qi, Y. Jing, M.  Zhu, T.  Lei, Z.  Li, J.  Xia, J.  Wang, and G. Lu, 

“Mission Chain Driven Unmanned Aerial Vehicle Swarms Cooperation for 

the Search and Rescue of Outdoor Injured Human Targets,” Drones, vol.  6, 

no. 6, p. 138, May 2022. [Online]. Available: 

https://doi.org/10.3390/drones6060138  

[6] A. Schmidt, “Cross-layer latency-aware and -predictable data communication, 

doi:10.22028/d291-30851,” Ph.D.  dissertation, Fakultät für Mathematik und 

Informatik., Universität des Saarlandes, Saarbrücken, 2019. 

[7]   “About  the  DDS Interoperability  Wire Protocol specification  version 

2.5.” omg.org. https://www.omg.org/spec/DDSI-RTPS/2.5/About-DDSI-

RTPS/  (Accessed: Nov.  23, 2022). 

[8] T.  Treat, “Dissecting message queues, Brave New Geek,” bravenewgeek.com. 

https://bravenewgeek.com/dissecting-message- queues/ (Accessed: Nov.  23, 

2022). 

[9]   S. Profanter, A. Tekat, K. Dorofeev, M. Rickert, and A. Knoll, “OPC UAversus      

ROS, DDS, and MQTT:  Performance Evaluation of Industry 4.0 Protocols,” 

in 2019 IEEE International Conference on Industrial Technology (ICIT).    

Melbourne, VIC, Australia:  IEEE, February 2019. [Online]. Available: 

https://doi.org/10.1109/ICIT.2019.8755050  

[10]   “Fast  DDS  Performance,” eprosima.com. 

https://www.eprosima.com/index.php/resources-all/performance  

(Accessed: Nov.  23, 2022). 

[11]   “Fast  DDS  vs Cyclone  DDS,” eprosima.com. 

https://www.eprosima.com/index.php/resources- all/performance/fast-

dds-vs-cyclone-dds-performance (Accessed: Nov. 23, 2022). 

[12]   H.   Schulzrinne, S.  L.   Casner, R.   Frederick, and   V.   Jacobson, “RTP: A 

Transport Protocol for Real-Time Applications,” RFC 3550, Tech. Rep. 3550, 

Jul. 2003. [Online]. Available:  https://www.rfc- editor.org/info/rfc3550 

[13] “QUIC, a multiplexed transport over UDP,” chromium.org. 

https://www.chromium.org/quic/ (Accessed: Nov.  23, 2022). 

[14] “Secure    Reliable    Transport, (SRT) Protocol,” github.com. 

https://github.com/Haivision/srt (Accessed: Nov.  23, 2022). 

[15] “LARN     /     PRRT,” git.nt.unisaarland.de. 

https://git.nt.unisaarland.de/LARN/PRRT (Accessed: Nov.  23, 2022). 

[16]   “PRRT:    Predictably   Reliable    Real-Time    Transport   |   Telecom- 

munications Lab.” nt.uni-saarland.de.  http://www.nt.uni- 

saarland.de/project/prrt-predictably-reliable-real-time-transport/ 

(Accessed: Nov.  23, 2022). 

[17] “Data   serialization,” devopedia.org.  https://devopedia.org/data- 

serialization (Accessed: Nov.  23, 2022). 

[18]   M.  Eriksson and V. Hallberg, “Comparison between json and yaml for data 

serialization,” Bachelor’s Thesis, KTH Royal Institute of Technology, 2011. 

[19]   X.  S.  Altti Ilari Maarala   and   J.   Riekki, “Semantic reasoning   for 

context-aware internet of   things   applications,” IEEE Internet of Things 

Journal, vol. 4, no. 2, p. 461–473, 2016. [Online]. Available: 

https://doi.org/10.48550/arXiv.1604.08340 

[20] “eProsima FastDDS Documen ta t i on ,” buildmedia.readthedocs.org. 

https://buildmedia.readthedocs.org/media/pdf/eprosima-fast- 

rtps/latest/eprosima-fast-rtps.pdf (Accessed: Nov.  23, 2022). 

[21] “Eclipse           Cyclone             DDS™,” projects.eclipse.org. 

https://projects.eclipse.org/projects/iot.cyclonedds (Accessed:   Nov. 

23, 2022). 

[22] “eCAL - enhanced Communication Abstraction Layer,” github.com. 

https://github.com/eclipse-ecal/ecal (Accessed: Nov.  23, 2022). 

[23]  “Lightweight Communications and  Marshalling (LCM),” github.com. 

https://lcm-proj.github.io/ (Accessed: Nov.  23, 2022). 

[24]   “real-logic/aeron:  Efficient  reliable   UDP   unicast,   UDP   multicast, and 

IPC message transport,” github.com. https://github.com/real- logic/aeron 

(Accessed: Nov.  23, 2022). 

[25] “Uncomplicated Application-layer Vehicular Computing And Net- 

working,” uavcan.org.  https://uavcan.org (Accessed: Nov.  23, 2022). 

[26] “Introduction   ·    MAVLink   Developer     Guide,” mavlink.io. 

https://mavlink.io/en/ (Accessed: Nov.  23, 2022). 

[27]   C.  Perkins and V.  Singh, “Multimedia Congestion Control: Circuit 

Breakers for Unicast RTP Sessions,” Internet Engineering Task Force, Tech. 

Rep., March 2017, proposed Standard.  [Online]. Available: https://www.rfc-

editor.org/info/rfc8083 

[28]   D. C. Castillo, J. Rosales, and G. A. T. Blanco, “Optimizing binary seri- 

alization with an independent data definition format,” International 

Journal of Computer Applications, vol. 180, no. 28, pp. 15–18, March 

2018. 

[29]   A.  Sumaray and S. K.  Makki, “A comparison of data serialization formats 

for optimal efficiency on a mobile platform,” in Proceedings of the 6th 

International Conference on Ubiquitous Information Management and 

Communication, ser. ICUIMC ’12.   New York, NY, USA: Association for 

Computing Machinery, February 2012. [Online]. Available:  

https://doi.org/10.1145/2184751.2184810 

[30]   A. K. Biswal and O. Almallah, “Analytical assessment of binary data 

serialization techniques in iot context,” Master’s thesis, Politecnico di 

Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, 

December 2019. 

[31] “CSV format,” docs.servicestack.net. https://docs.servicestack.net/csv- format 

(Accessed: Nov.  23, 2022). 

[32]   X.   Su, H.    Zhang, J.    Riekki, A.   Keränen, J.    K.   Nurminen, and    L.    

Du, “Connecting    IOT    sensors    to   knowledge-based systems   by   

transforming   SenML   to   RDF,” Procedia Computer Science, vol.  32, p. 

215–222, June 2014. [Online]. Available: 

https://doi.org/10.1016/j.procs.2014.05.417 

[33]   B.  R.  Kaithi, “Knowledge graph reasoning   over unseen rdf data,” Master’s 

thesis, Wright State University, 2019.  

[34[   X.  Su, J.   Riekki, and   J.   Haverinen, “Entity   notation:  Enabling knowledge 

representations for resource-constrained sensors,” Personal   and   Ubiquitous   

Computing, vol.   16, p.  819–834, 2012. [Online]. Available:  

https://doi.org/10.1007/s00779-011-0453-6 

68 

http://www.ibr.cs.tu-bs.de/projects/collective-
https://doi.org/10.1109/vnc.2016.7835930
https://doi.org/10.3389/frobt.2021.616950
https://doi.org/10.3390/drones6060138
http://www.omg.org/spec/DDSI-RTPS/2.5/About-
http://www.omg.org/spec/DDSI-RTPS/2.5/About-
http://www.omg.org/spec/DDSI-RTPS/2.5/About-
http://www.omg.org/spec/DDSI-RTPS/2.5/About-
https://doi.org/10.1109/ICIT.2019.8755050
http://www.eprosima.com/index.php/resources-all/performance
http://www.eprosima.com/index.php/resources-all/performance
http://www.eprosima.com/index.php/resources-all/performance
http://www.eprosima.com/index.php/resources-
http://www.eprosima.com/index.php/resources-
http://www.chromium.org/quic/
http://www.chromium.org/quic/
http://www.nt.uni-/
http://www.nt.uni-/
http://www.rfc-editor.org/info/rfc8083
http://www.rfc-editor.org/info/rfc8083
http://www.rfc-editor.org/info/rfc8083
http://www.rfc-editor.org/info/rfc8083


Fatih Kilic, Wolfram Hardt  ESS (Vol 9. No 3. 2022) (pp.62-69) 

[35]   D. Friesel and O. Spinczyk, “Data Serialization Formats for the Inter- net of 

Things,” Electronic Communications of the EASST, vol. 80, 2021. [Online]. 

Available: http://dx.doi.org/10.14279/tuj.eceasst.80.1134 

[36]   J.  C.  Viotti and M.  Kinderkhedia, “A Survey of JSON-compatible Binary 

Serialization Specifications,” CoRR, vol.  abs/2201.02089, January 2022. 

[Online]. Available:  https://arxiv.org/abs/2201.02089v2 

[37]   “MongoDB Limits  and  Thresholds,” mongodb.com. 

https://www.mongodb.com/docs/manual/reference/limits/ (Accessed: Nov.  

23, 2022). 

[38]   “How   to   Install   and    Configure   NTP    on    Linux,”    

timetoolsltd.com. https://timetoolsltd.com/ntp/how-to-install-and-

configure- ntp-on-linux/ (Accessed: Nov.  23, 2022). 

 

 

69 

http://dx.doi.org/10.14279/tuj.eceasst.80.1134
http://www.mongodb.com/docs/manual/reference/limits/
http://www.mongodb.com/docs/manual/reference/limits/
http://www.mongodb.com/docs/manual/reference/limits/

