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Abstract

The BioMoby project was initiated in 2001 from within the model organism database 

community.  It aimed to standardize methodologies to facilitate information exchange 

and access to analytical resources, using a consensus driven approach.  Six years later, 

the BioMoby development community is pleased to announce the release of the 1.0 

version of the interoperability framework, registry API, and supporting Perl and Java 

code-bases.  Together, these provide interoperable access to over 1400 bioinformatics 

resources worldwide through the BioMoby platform, and this number continues to grow. 

Here we highlight and discuss the features of BioMoby that make it distinct from other 

Semantic Web Service and interoperability initiatives, and that have been instrumental to 

its deployment and use by a wide community of bioinformatics service providers.  The 

standard, client software, and supporting code libraries are all freely available at 

http://www.biomoby.org/.

Biographical Note

BioMoby is a project within the larger Open Bioinformatics Foundation.  The BioMoby 

Consortium consists of more than 40 participants spanning 13 nations, and participation 
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is free and open to all.

Key Points

- BioMoby’s interoperability is achieved through a novel type of XML schema 

which is derived from an ontology.

- The BioMoby ontologies were constructed through an open, community-driven 

process and are accessible for update through an open API.

- Though it does not use the World Wide Web Consortium’s Semantic Web 

technologies, BioMoby exhibits many behaviours predicted for the Semantic Web

- Tooling for BioMoby is now sufficiently rich that both providers and consumers 

of BioMoby services are well-supported.

Introduction

Discovery of, and easy access to, biological data and bioinformatics software is the 

critical bottleneck for systems biologists, resulting in missed scientific opportunities and 

lost productivity due to expensive and unsustainable efforts in data warehousing, or the 

design of ad hoc and transient Web-based analytical workflows.  Workflow-design itself 
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is neither trivial nor reliable for most systems biology researchers since, often, a high 

level of prior-knowledge and understanding of available Web-based resources is required 

from the biologist.  Indeed, in his article “Creating a Bioinformatics Nation” [1], Lincoln 

Stein suggests that it is the lack of interoperable standards that has hindered the 

integration of scientific datasets worldwide.  Conversely, in her keynote address to the 

EGEE ‘06 conference, Carole Goble purposely misquoted Michael Ashburner [2] when 

she stated “Scientists would rather share their toothbrush than their data!”  These 

statements highlight the two somewhat opposing requirements that must be considered 

when designing interoperable systems for the bioinformatics domain.  On one hand, the 

bioinformatics service provider community is composed of individuals with a wide 

variety of different expertise, thus any interoperability proposal must be limited in 

complexity and must focus on comprehensibility to non-computer-scientists; on the other 

hand, the functionality gained by participating in the interoperability framework must be 

sufficiently compelling for individual providers to be willing to openly share data that is, 

in some cases, personally precious.  These considerations were key in establishing the 

technologies and practices defined by the BioMoby project [3-5].  Now, with the release 

of the 1.0 version of the BioMoby Application Programming Interface (API) and 

supporting code-bases and end-user applications, it is useful to examine the successes and 

failures of the BioMoby project as it explored this question.  We intend this manuscript, 

and the supplementary information provided with it, to be a comprehensive and canonical 
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description of the defining features of BioMoby, and its behaviours.

An example of the utility of BioMoby for the biologist

The semi-fictitious story below describes one example of the type of day-to-day data 

exploration activities undertaken by biologists.  The difficulty they experience in 

pursuing these activities, due to the large amounts of data and the disparity between 

resource interfaces, provided the motivation for BioMoby’s invention and development. 

The workflow described below does, in fact, exist and is currently being prepared for 

publication elsewhere.  

“Dr. Davies is an Antirrhinum (Snapdragon) researcher.  He is studying a  

new class of mutations but has so far been unable to clone any of the loci.  

Moreover, he is constantly frustrated by the lack of a complete Antirrhinum 

genome sequence, though there are a large number of mapped mutations and  

ESTs.  The taxonomically closest sequenced model organism is Arabidopsis,  

however there are no explicit links between the Arabidopsis data in The  

Arabidopsis Information Resource (TAIR), and the Snapdragon data in  

DragonDB.  In an attempt to bootstrap his cloning efforts, he decides to look-

up which loci from Arabidopsis have mutant phenotypes that share  

characteristics with his loci of interest; whether or not these have been  

mapped; or if there may be homologous ESTs from Snapdragon available for  
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him to attempt a co-segregation analysis.  He knows that both TAIR (in the  

USA) and DragonDB (in Germany) have provided many of their resources as  

BioMoby services, so he begins.  He first asks Moby Central if DragonDB 

provides keyword phenotypic lookup, which it does.  With a single click, he  

has gathered the list of loci matching his phenotypic criteria.  He then asks the  

same question from TAIR, and with a single click has gathered all matching  

Arabidopsis loci.  BioMoby alerts him that TAIR can provide the sequences for  

these loci if he wishes, and in a single click he has retrieved all of these  

sequences.  BioMoby then alerts him that DragonDB is capable of executing a  

BLAST analysis on those sequences, and with a single click he sends all  

sequences into the BLAST service.  The returning Blast reports contain a  

myriad of “hits”, and he becomes concerned that he may need to do a large  

number of look-ups; however BioMoby alerts him that DragonDB provides a  

Blast parsing service that will extract the “hits”, and he selects this option.  

From the resulting list of “hits”, he asks BioMoby to retrieve the map  

locations for these sequences.  In addition, he queries if any services are  

capable of transforming those sequence IDs into their associated locus IDs,  

and such a service is automatically discovered and executed for him.  With this  

list of Antirrhinum Locus IDs resulting from the Blast search, he then requests  
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that it be cross-referenced with the list of Antirrhinum locus IDs resulting from 

the keyword search.  BioMoby suggests a set-intersection service  available  

from the iCAPTURE Centre in Canada, and with a single click he has now 

gathered the list of loci that share both phenotypic and sequence similarity.  

BioMoby suggests that he might also wish to retrieve photographs of the  

associated mutants, and with a single click he has retrieved these images.  

From this complex but filtered set of data, gathered within just a few minutes,  

he begins a biological assessment of whether any of his genes of interest have  

been mapped and/or sequenced.”

Workflows such as the one described above could be constructed, utilized, visualized, 

and executed using a wide range of BioMoby-enabled end-user applications, and it is 

beyond the scope of this manuscript to describe these interfaces in any detail; however a 

series of screenshots have been made available in the Supplementary Information Section 

5 where a similar workflow is constructed and executed using the Gbrowse-Moby end-

user interface.  These screenshots demonstrate one way in which BioMoby could be used 

to suggest next-steps in an analytical pathway, and how it facilitates the automatic 

execution and visualization of those analytical or exploratory results.
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Web Services Overview

The Web Services model is a framework for communication between computer 

applications over the World Wide Web [6].  Traditionally, they expose Web-based 

application interfaces in the form of a Web Services Description Language (WSDL) 

document [7] describing the input(s), output(s), function, and location of a Web Service. 

The limitation of traditional Web Services lies primarily in that, while the WSDL 

interface definition is machine-readable, the meaning of the input and output, and the 

intent of the operations that are being executed to derive that output – the “semantics” of 

the service – are opaque to the machine accessing it.  The barriers posed by these 

limitations are further evidenced by a recent candidate specification for the semantic 

markup of WSDL documents [8].  Currently, therefore, the creation of meaningful 

workflows requires manual intervention to first select appropriate services and then to 

accurately map the output of one service into the input of the next; automated service 

composition is an error-prone computational task [9-14].  At least part of the limitation 

results from traditional Web Services consuming and producing their data in the form of 

Extensible Markup Language (XML) documents [15].  Until recently [16], there have 

been no attempts to standardize the schemas of these XML documents in the 

bioinformatics domain, and thus software had to be specifically developed to access each 

Web Service, by individuals familiar with the Service interfaces.  This software was 
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generally task-specific, and needed to be re-written for each new analysis.

To overcome this limitation, the BioMoby framework defines an extended set of formats 

and conventions that allows the creation of “Semantic Web Services”.  Semantic Web 

Services have interfaces defined and/or annotated with terms grounded in ontologies.  As 

such, it is possible to create software capable of utilizing the knowledge in these 

ontologies to support fully- or semi-automatic service discovery and workflow 

composition [17].  Of the three Semantic Web Services projects in widespread use – 

myGrid, caBIO, and BioMoby (reviewed, compared, and contrasted in [18,19]), 

BioMoby is unique in its utilization of ontologies to define not only the biological intent 

and/or semantics of the data that are passed into and out of a service, but also to define 

the syntax of that data.  In much the same way that the HTML standard syntax made it 

possible to develop generic Web browsers, standards for Web Service representation 

(data-types, data syntaxes, and interface functional annotations) such as those developed 

in the BioMoby initiative are enabling the development of generic Semantic Web Service 

browsers [20].  Semantically-enhanced Web Services are more interoperable, easier to 

pipeline together, more semantically transparent, and will empower the citizens of the 

bioinformatics nation, allowing them to share their data more intuitively [21].
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Results

Stylistic conventions

Here, we represent ontological class names using Capitalized Bold, ontological class 

properties using fixed-width font, and ontological class relationships using bold  

italics.

Framework Overview

This paper describes the stable version 1.0 of the MOBY specification for use by the 

whole bioinformatics community; the culmination of 6 years of the specification's steady 

evolution based on early adopters’ feedback.  The BioMoby interoperability framework 

extends and modifies the core Web Services specification by further defining:

• An end-user-extensible, ontology-based data representation syntax (Object 

Ontology)

• An end-user-extensible ontology of data domains (Namespace Ontology)

• An end-user-extensible ontology of Web Service operational descriptions 

(Service Ontology)

• A predictable Web Service message structure, including explicitly defined 

locations and formats for provision of metadata and cross-referencing 

information, as well as structured and machine-interpretable error messages
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• A Web Service registry in which all service interface definitions are represented 

in terms of the above ontologies, and where the registry can utilize these 

ontologies to aid discovery of task-appropriate services.

These features work together to enable the development of generic software systems that 

can interact with myriad diverse bioinformatics data and analytical tool providers. The 

biologist using that software requires little or no knowledge of the existence of the tool, 

nor of the kinds of resources it provides, nor of the specific user interface through which 

it functions [20,21].  It is worth noting that, although the three ontologies "define" 

various bioinformatics concepts, that they are world-editable and constantly evolving. 

As such, they "define" concepts based on the community's consensus at any given time, 

but are constantly adapting to new ideas, new resources, and new data-types as they arise 

in the community.

The Namespace Ontology – “What data are we talking about?”

There is little consensus in the bioinformatics community around how to identify records. 

Often, records are simply numbered, and this requires contextualization to imbue any 

meaning.  To assist with this contextualization, these numeric identifiers are sometimes 

prefixed, for example GO:0003487 for a Gene Ontology (GO) term, or gi|163483 for a 

GenBank record; however this is not done consistently or reliably by all resources, nor is 
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the separator between the prefix and the identifier consistent between different resource 

providers.  For the biologist, this inconsistency can make it difficult to locate records in 

the wide variety of interfaces available to them, and can lead to problems with integrating 

data from multiple sources that may use different conventions for representing the same 

record.  The BioMoby Namespace Ontology is an attempt to resolve this inconsistency 

such that data records are unambiguously and predictably identified in the datasets 

returned to the biologist.

The Namespace Ontology (currently a simple, flat controlled vocabulary) defines all 

valid data “namespaces” – the underlying source of a given data record – in the BioMoby 

system.  Examples include KEGG_ID for KEGG records or NCBI_gi for GenBank 

records.  There are over 300 different BioMoby Namespaces ranging from the most 

prominent public resources such as PubMed, to lesser known resources such as 

DragonDB.  The Namespace Ontology is, in fact, an extension of the Cross-reference 

abbreviations list [22] from the Gene Ontology consortium [23].  New resources who 

wish to participate in the BioMoby framework simply register the namespaces they 

consume and/or generate in the Namespace Ontology, and any BioMoby service provider 

can then interpret the underlying source of data passed in that Namespace.  

The combination of a namespace and an id for a BioMoby Object represents a unique 
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identifier for a piece of data. Since not all data is identified – for example, some data 

exists only transiently during the process of an analysis – use of a Namespace is not 

always required in the BioMoby framework.

The Object Ontology – “How is that data represented?”

For the biologist, data is often presented to them in ad hoc formats, or in formats that are 

governed by a visual layout such as a web-page.  This diversity of data formats often 

forces biologists to undertake copy/paste operations to extract data from their query 

results into their local database or spreadsheet.  The purpose of the Object Ontology from 

the perspective of the biologist is to create a consistent, machine-readable data syntax 

such that the transformation of data from one common format to another, and the 

integration of that data, can be automated.

The Object Ontology’s structure was designed to resemble that of the GO, due to the 

elegant simplicity of GO, and the familiarity and acceptance of it within the target 

community.  Like GO, the Object Ontology is an asserted subclass (“is-a”) hierarchy, and 

includes two additional partite relationships (“has-a” and “has”) representing parts in 

cardinality “one”, or parts in cardinality “zero or more” respectively.  The root class of 

the ontology – Object – possesses three properties – namespace, id, and 

articleName – and is designed to represent record identifiers (“ID numbers”) from 
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well-known resources (e.g., GenBank, EMBL, GO, etc.) in a well-defined and 

predictable manner.  The value of the namespace property is a member of the 

Namespace Ontology, the value of the id property is the record-identifier within that 

resource, and the value of the articleName property indicates (as a human-readable 

phrase) the semantic nature of the relationship between a given class and a class that is in 

a has or has-a relationship to it.  Figure 1A shows a small portion of the Sequence-

branch of the BioMoby Object Ontology, revealing how these various components are 

used to construct new and more complex classes.  Figure 1B shows the XML 

representation of specific cases (“instances”) of these ontological classes.  A more 

complete description of inheritance between classes in the Object Ontology, and 

derivation of the XML representation of instances of these ontological classes, is 

presented in Section 2 of the Supplementary Information.

Perhaps the most important aspect of the Object Ontology is that it is end-user extensible. 

Any BioMoby service provider can create a new Object class by simply registering its 

definition in the Object Ontology in code via the Moby Central API or through a freely 

available graphical “BioMoby Dashboard” application [24].  The new Object’s definition 

includes a human-readable explanation of the purpose of the data-type, and a technical 

description of how this data-type relates to existing data-types in the ontology.  Thus, 
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machines receiving this novel data-type as part of a Web Service transaction need only 

look-up the data-type in the Object Ontology to determine its syntax.  Moreover, since all 

sub-components of all data-types are themselves BioMoby Objects, generic re-usable 

software is capable of extracting and/or assembling the data components of any possible 

BioMoby object, including objects that did not exist when that software was created. The 

ability to create generic object parsers and assemblers significantly reduces the 

software’s anticipated legacy problems and update/patch-cycles.

The Object Ontology currently consists of over 300 different data syntax definitions, 

including many of the common legacy flat-file formats, as well as novel objects that have 

been constructed de novo by participating service providers.

The Service Ontology – “What types of things can I do with this data?”

Biologists are faced with thousands of analytical tools both in their local applications as 

well as on the Web.  Many of these tools are redundant and/or do very similar tasks, and 

it is the responsibility of the biologist to know (a) that a tool exists; (b) what it is called in 

order to locate it; and (c) what kinds of operations that tool is capable of performing.  The 

Service Ontology is an attempt to organize bioinformatics tools into a categorization 

system, such that tools of similar functions are grouped together, and can be discovered 

by the biologist using a consistent naming system.
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The Service Ontology is a simple, asserted subclass (is-a) hierarchy that defines a set of 

data manipulation and/or bioinformatics analysis types.  These include classes such as 

Retrieval for retrieval of records from a database, Parsing for the extraction of 

information from various flat-file formats, or Conversion for data-type syntax changes. 

Sub-classing is used to define more precise types of service operation.  For example, an 

instance of a BLAST Service may have service type Pairwise_Sequence_Comparison 

which is a sub-class of Analysis.  The BioMoby Service Ontology serves a purpose 

similar to the Bioinformatics Task Ontology from the myGrid project [25].

BioMoby Web Services – “What resources are out there to do it?”

When interacting with analytical tools, biologists are often required to learn a new 

interface for each tool they wish to use, and the lack of standardization results in different 

layouts even for functionally-identical tools.  Moreover, most Web-based tools are not 

amenable to bulk-uploads or automation, since the interfaces are designed specifically for 

human end-users.  BioMoby Web Services attempt to standardize these interfaces 

through defining a machine-readable messaging structure that can be utilized by all 

analytical tools and through utilizing the Object Ontology to define the syntax of the 

input and output data.  Thus, the interaction between the biologist and any analytical tool 

exposed as a BioMoby service can be accomplished through a single, common interface.
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BioMoby Services, for example a database lookup, a ClustalW alignment tool, or a 

BLAST report parser, are globally distributed, and perform a single operation each. 

Input and output messages follow a well-defined message format (described in Section 3 

of the Supplementary Information).  Services consume one or more instances of an 

Object within this message; they execute a single operation on that Object as described 

by an appropriate Service Ontology term; and finally, the output is returned to the caller 

as one or more instances of another Object within a well-defined output message 

structure.  These details are registered in the BioMoby Central Service registry, along 

with the service endpoint (URL + service name) and a textual description of the service 

function for the end-user.  There is library support in Java, Perl and to a more limited 

extent Python, to support the extraction of input data from BioMoby messages, and to 

construct appropriate output messages.  As such, the service provider’s primary concern 

is the business logic of their Service, with none to only modest additional code required. 

To be compliant with existing standards, service providers can report a wide variety of 

error conditions in a standardized way using the Life Sciences Analysis Engine 

(LSAE[28]) framework.  Software designed to minimize service provider effort in setting 

up new Services is available for both Java (MobyServlet [26], MoSeS[27]) and Perl 

(MoSeS).
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Unlike other successful Web Service interoperability systems [29], BioMoby services are 

standalone, and are not overtly designed to be inter-dependent; there is no over-arching 

BioMoby standard defining what types of Services can exist, what functions they must 

provide, or how they will interoperate.  Moreover, Services are highly modular, each 

executing a single straightforward function (e.g. record retrieval, or file parsing), such 

that a service provider approaching BioMoby for the first time can have a simple 

compliant Service running within minutes. The service provider can therefore gradually 

migrate their host resources, piecemeal, into the BioMoby framework over time, or re-

present their existing resources in parallel.  Complex operations in BioMoby are achieved 

by chaining together multiple Services, or running multiple Services in parallel to extract 

the individual pieces of data required, and this is well-supported by existing client 

applications such as Taverna [17].

The BioMoby Central Registry – “How do I find the resource provider I want?”

“Moby Central” is a registry for BioMoby-compliant Web Services.  For the biologist, it 

acts as a “search engine”, helping them discover all resource providers capable of 

executing the operation they wish to undertake.  Moreover, the search can be made 

“context sensitive”, such that only those providers who can operate on the data that the 

biologist has in-hand are discovered.
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Moby Central provides a Simple Object Access Protocol (SOAP[30]) based API that 

allows addition of new Services to the registry, removal of Services from the registry, 

and searching over registered Services in a variety of ways.  Importantly, the registry is 

aware of all three BioMoby ontologies, and can thus optionally utilize the semantics 

embedded in these ontologies to enhance search success.  For example, searching for 

Services that generate b64_encoded _GIF would, if semantic searching were enabled, 

also discover BioMoby Services that generated the more complex 

annotated_b64_encoded_GIF through traversal of the Object Ontology towards its leaf 

nodes.  Similarly, and perhaps more importantly, searching for Services that consume 

specific, sometimes very complex data-types, for example an annotated_FASTA object, 

would also discover Services that consumed the more simplistic FASTA objects, or even 

base Object (i.e. a simple ID number) through traversal of the Object Ontology towards 

its root.  Complex or provider-specific data-types therefore do not (necessarily) thwart 

automated discovery of Services that can consume that data, since the ontologies allows 

the registry (or the client) to infer the semantics of that data-type and thereby infer which 

Services can operate on it.  Moreover, the ontologically-governed XML schema that is 

used to represent data in BioMoby allows service discovery based on any sub-component 

of a data-type.  For example, a MultipleAlignment contains several instances of 
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GenericSequence, each representing one of the aligned sequences.  A generic client 

application can reliably decompose the MultipleAlignment object and use the 

GenericSequence objects in queries to Moby Central to discover Services that operate 

on them.

Summary

Through adoption of these extensions to traditional Web Services, it is possible to design 

software systems that enable bench scientists and other non-programmers to automate the 

discovery and connection of independent Web Services into large analytical pipelines 

without any task-specific tooling, nor any deep understanding of BioMoby, Web 

Services, or any of the individual BioMoby Web Service interfaces.  Generic workflow 

environments such as Taverna [17, 32], MOWServ [33], Remora [34], Gbrowse-Moby 

[20], Bluejay [35], and Seahawk [36] can (and do) suggest, and automatically connect, 

appropriate Web-based resources into complex pipelines without requiring any technical 

knowledge by the end-user.  Rather, they rely on the expert knowledge of the biologist to 

select appropriate Services from the limited number of suggestions provided through 

queries to the BioMoby registry based on their stated requirements.  Currently, more than 

40 data and/or analytical service providers worldwide are using the BioMoby 

interoperability framework to provide over 1400 interoperable Services, and this number 

continues to grow almost daily.
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Discussion

BioMoby has made several key decisions which distinguish it from other prominent Web 

Service interoperability frameworks in the bioinformatics domain, and result in the 

interoperable behaviors observed when using it in practice.  Some of these decisions are 

part of the BioMoby specification, while others have simply arisen as a community-

consensus on best practices for Web Service provision.

Closed world

The first distinguishing feature of BioMoby is that it operates in an extensible, but 

closed-world of data semantics.  The XML Schema within a traditional WSDL document 

defines valid XML tags for any given service, but these are not (predictably) bound to 

any standard external machine-readable interpretation.  Thus the XML tags, and the 

content of these tags, from one Web Service are not reliably compatible with the XML 

tags or content from another arbitrarily chosen Web Service.  As a result, automated 

pipelining of non-coordinated services in other interoperability initiatives is extremely 

difficult using traditional Web Services.  In contrast, the Object, Namespace, and Service 

Ontologies provide a common binding for all services and client software in the 

BioMoby framework such that a given XML tag appearing in any BioMoby message has 

one and only one interpretation, and this interpretation is available for automated look-up 

through shared ontologies.  In this way, BioMoby finesses the extremely complex 
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problem of open-world Web Service composition by defining the allowable world of data 

syntax and semantics via publicly extensible ontologies.

Nevertheless, it can equally be argued that operating in a closed world is artificial, 

unsustainable, and overly-limiting.  In constraining itself to its three boutique ontologies, 

BioMoby does not natively take advantage of the wealth of knowledge captured in third-

party ontologies such as those provided by the Open Biological Ontologies (OBO) [37] 

consortium.  Indeed, a partner project that has branched-off from the original BioMoby 

project is the Simple Semantic Web Architecture and Protocol (SSWAP [38]).  SSWAP 

proposes to use an open world of data semantics, relying on third-party ontologies to 

define the nature and syntax of the inputs and outputs of Web resources, and defining 

only a minimal messaging structure within the project itself.  SSWAP has shown exciting 

early success in achieving interoperability between a small number of participating 

providers.  It remains to be seen, however, if the complexity of reasoning over an open-

world system, and/or the potential dilution of compatibility between resources due to the 

increasing number of ontological possibilities, will interfere with the desired goal of 

straight-forward, maximal interoperability between bioinformatics Web resources.  

Modularity

The second distinguishing feature is that BioMoby services tend to be extremely 

- 22 -

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
08

.1
48

6.
1 

: P
os

te
d 

3 
Ja

n 
20

08



lightweight, highly modular, and execute very fine-grained operations on incoming data. 

This was not a behaviour mandated within the project specification; however it has 

become a convention among the majority of BioMoby service providers. This may be 

because it is more straight-forward and/or is more advantageous to do so (i.e., promoting 

code re-use at the level of the Service, rather than duplicating functionally similar code 

fragments between sets of similar but more complex Services ), but it is also at least in 

part due to the constraints arising from the simplistic Moby ontologies.

Data-types defined in the Object Ontology tend to be quite straightforward, seldom 

merging more than two or three related data elements into any given Object.  Contrast 

this with other commonly used Web Service systems such as the NCBI e-Utilities [39]. 

Input of a gene identifier, for example [40], to the e-Fetch Web Service returns an XML 

document containing a single record of 250kb that includes 120 distinct XML tags 

ranging from organism and taxonomy information to detailed gene structure, cross-

references, and even PubMed identifiers and GO terms.  While this is efficient and likely 

useful for software applications that have been designed specifically to utilize e-fetch 

data, the nonspecific “give me everything” operation that happens within e-Fetch Web 

Services is difficult to semantically describe, and therefore hard to integrate using any 

“generic” Web Service software.  The extreme modularity of BioMoby services reduces 

message size in many cases, reduces computational load, simplifies service description, 
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enables the creation of generic parsers, and yet allows retrieval of arbitrarily complex 

data-sets through a “Lego block” approach of combining operations of high granularity.

Modularity of services has another more important consequence in simplifying service 

discovery.  An operation performed by a given BioMoby service must be unambiguously 

described by a single term from the Service Ontology (e.g. Parsing).  This severe 

restruction forces service providers to make their services highly granular.  At this level 

of granularity, the semantics of a service become nearly transparent, with the intent of 

making automated discovery of appropriate or desired services easier and more accurate. 

In practice, however, the Service Ontology is hopelessly insufficient to adequately 

describe many even straightforward services built within the BioMoby framework.  A 

Web Service can seldom be described in a single word or phrase, and thus many service 

providers put the full semantics of their service functionality into the human readable 

service name and description.  This creates a barrier to fully-automated service pipeline 

composition; nevertheless, despite being the most obvious weaknesses of the BioMoby 

system, users (bioinformaticians and biologists) seem comfortable choosing an analytical 

strategy from the limited set of sensible possibilities presented to them through more 

general registry queries, rather than having the precise choice made for them by the 

system itself.
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Extensibility

The fact that the closed-world of BioMoby ontologies is end-user extensible was, we 

believe, critical to its adoption by a community that embraces open-world behaviors. 

While BioMoby encourages consensus on data models, it does not dictate them; end-

users are allowed to construct, register, and use alternative data models as they see fit 

(though they limit their interoperability with other resources by doing so).  

Giving end-users the ability to define their own data-types, service types, and 

namespaces was considered a risky approach in the early days of the project, particularly 

since ontology-development has historically been undertaken by a curation team of 

domain experts [41].  However, in the past five years, the Object ontology has only 

required significant curation twice.  No “organized” curation has been done on either the 

Namespace or Service ontologies.  As such, the BioMoby ontologies, while imperfect, 

have required no centralized investment of time or money, and are largely self-curating 

through an open and public API.  The open model takes advantage of the “passive 

altruism” of a collaborative community of providers acting on their shared desire to 

enhance interoperability for their own individual purposes.

BioMoby vs. peer semantic and schema technologies

The development of BioMoby was influenced significantly by the growth in popularity of 
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Web Services, WSDL, and XML Schema in 2001/2002, but developed independently of, 

and was largely uninfluenced by, the emergent Semantic Web activity taking place within 

the World Wide Web Consortium (W3C) between 2001 and 2004.  Thus, it is interesting 

to compare the semantic aspects of various peer technologies, and examine where the 

benefits and/or limitations of each approach might lie.

BioMoby vs. W3C XML Schema

The W3C XML Schema (XSD) specification describes the structure of an XML 

document, but not its intent or its semantics.  In this sense, as described in Table 1, XSD 

are class-like, but are not grounded in a semantic definition of what that a class “means”, 

and thus are semantically opaque to software applications.  Other limitations of XSD are 

that, while XSD are modular (in that it is possible to refer to an external or third-party 

XSD fragment from within a local Schema document) XSD are not natively extensible; 

inheritance is not part of the XSD specification, and one must use non-standard 

extensions[42] to describe the semantic relationship between embedded schema 

fragments.  Projects such as HOBIT [16] are attempting to add more semantics into XSD 

by providing a universal grounding for a curated set of XSD such that both the intent and 

the syntax are shared by all consumers and providers.  Unfortunately, this is occurring 

through manual curation, and is limited only to the “outer-most” element of the XML 

document; embedded XML tags, while representing real-world identifiable data-types, 
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are not included in this semantic annotation, and thus cannot be utilized in a generic way 

to construct novel inputs to downstream Web Services, as can be achieved by 

“decomposing” BioMoby Objects.  BioMoby achieves schema specification through its 

Object Ontology; however, the sub-classes and embedded classes within these schema 

are similarly grounded in and the same Ontology and the semantic relationships between 

embedded classes are indicated by the articleName property.   Thus many of the 

limitations, in particular the lack of heritability and the semantic opacity of XML 

Schema-based data definitions, are overcome within the BioMoby data typing 

framework.

BioMoby vs. OWL/RDF

In early 2004, the World Wide Web Consortium (W3C) formally announced the two core 

Semantic Web technologies: Web Ontology Language (OWL [43]) and Resource 

Description Framework (RDF [44]).  OWL is an abstract language for defining classes 

and their properties.  Many OWL ontologies are “decidable”, meaning (simplistically) 

that a Description Logic (DL) reasoner (FaCT++ [45], RACER [46], Pellet [47]) can 

computationally infer both the internal consistency of the ontology as well as 

computationally classify instance data to be members of a particular OWL class(es). 

RDF is an abstract language for describing resources as subject-predicate-object graphs. 

Resources described in RDF can be grounded as instances of an OWL class definition 
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either by direct assertion or by computationally inferred DL-based classification.  OWL 

ontologies can be represented in RDF, and RDF has a defined serialization into XML 

(called RDF-XML) which is among the most common representation formats for both 

OWL and RDF on the Semantic Web.

Although the early releases of BioMoby preceded the W3C’s formal announcement of 

OWL/RDF by several years, BioMoby nevertheless exhibits many of the behaviors that 

are expected from the emergent Semantic Web, such as automated discovery of 

appropriate resources, interoperability between them, and the ability to automatically 

compose and decompose data types in novel and meaningful combinations.  In fact, the 

BioMoby framework resembles the OWL/RDF duo of Semantic Web technologies in 

several key respects, and these are detailed in Table 1.  

The “semantics” of ontologically-based systems arise in three ways.  The first is through 

the human-readable definition of the class, which can be used as grounding for all 

software that utilizes that ontology.  In this aspect, OWL, BioMoby, and many of the 

other ontologies in the bioinformatics domain (e.g. most of the OBO ontologies) are 

identical in that all three allow for human-readable class definitions.  The second way of 

adding semantic meaning into an ontology is through asserting subclass (is-a) 

relationships.  Again, OWL, BioMoby, and most other bioinformatics ontologies share 
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this level of complexity.  The final level of semantics comes from the explicit elaboration 

of the properties that define a given class.  While many of the most commonly used 

bioinformatics ontologies do not take this final step of semantics, BioMoby does; 

however to maintain simplicity and robustness within the Web Service use-case, property 

definitions in BioMoby are managed differently than those in OWL/RDF, which leads to 

both positive outcomes as well as limitations.  Though a comprehensive discussion of 

this topic is provided in Section 4 of the Supplementary Information, it can be 

summarized in the observation that BioMoby achieves its interoperability largely through 

agreement between humans, rather than through machine-interpretation.  In BioMoby, 

individuals (people) agree on (a) the meaning/intent of a particular class/concept, and (b) 

the syntax by which that shared concept will be represented.  Therein the system achieves 

its semantic behaviours.  There is little, if any, computational reasoning over the 

semantics of BioMoby messages, and it seems that for an important subset of existing 

bioinformatics problems, machine interpretation is simply not required.  So long as all 

service providers output a FASTA file in a FASTA Object, another service provider can 

safely interpret that an incoming FASTA Object contains a FASTA file, and ensure that 

their software parses it as such.  In essence, the semantics of BioMoby resides in the 

brains of the service providers themselves.  BioMoby thus behaves much like a human 

language, where the spelling of words and structure of a sentence is sufficient to 
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communicate between two individuals since the meaning of those words and structures is 

commonly held between them.

Conclusion

BioMoby has been running with open, public participation for approximately five years, 

and its continued adoption by new bioinformatics resources worldwide is testament to its 

simplicity and successful use by third-party providers.  We believe the experiences of the 

BioMoby development community offer significant insight into successful approaches to 

Web Services interoperability platforms and best-practices in service provision on the 

emergent Semantic Web.  As Web Services and Semantic Web Services increasingly 

become the architecture for bioinformatics, we believe that BioMoby and BioMoby-like 

frameworks will have a significant role to play in this future. 

Materials and Methods

The BioMoby ontologies are available as RDF/OWL documents and/or can be queried 

through the BioMoby Central API.  The Moby Central API is implemented as a Perl 

SOAP service, and the ontologies and service information is stored and fetched from a 

mySQL database.  Support libraries for clients and service providers are available in Perl, 

Java, and to a limited extent in Python.  All code is available under the Perl Artistic 
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License, via the BioMoby project homepage.
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Tables

Table 1:  Comparison of the features of the BioMoby Object Ontology versus that of an OWL 

ontology and their respective instances.  A comparison with XML Schema is also included to  

show the gains achieved by moving towards ontologically-based data structures.

Feature OWL/RDF BioMoby

Objects

W3C XML 

Schema

Declared Classes Yes Yes Sort of

Classes have class properties Yes Yes Sort of

Classes have literal properties Yes Yes Sort of

Extensible Class definitions Yes Yes Sort of

Heritable Class definitions Yes Yes No

Reasoning over instances based on 
asserted ontological subclasses

Yes Yes No

Reasoning over instances based on 
instance properties

Yes No No

Figure Legends

Figure 1:  Sequential construction of complex objects in the BioMoby Objects Ontology, 

and the corresponding XML serialization of their instances.  (A) The creation of 
BioMoby Object Classes starting from the root object “Object” (a), to a VirtualSequence 
(b) which inherits from Object and has-a Integer (Length), to a GenericSequence (c) 
which inherits from VirtualSequence, and adds a String (SequenceString) through the 
has-a relationship, and finally a DNASequence (d) which simply inherits from and thus 
further specializes the GenericSequence Object semantically.  (B) The serialization of the 
objects (a,b,c,d) from above.  The outermost XML tag is the ontological class name. 
Child tags are added by the has or has-a relationships (b), or are inherited from parent 
classes (c).  Specialization of an existing class (d) simply changes the outermost tag 
name.
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Figure 1
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Section 2: 

A comprehensive description of the Moby Object Ontology, and its XML 

representation

The intent of the Object Ontology is to define an extensible, machine-readable, and 

hierarchical syntax for representing bioinformatics data that provides grounding for all 

structures and sub-structures in that data, and further, allows automated inferences to be 

made about the structure or sub-structure of an object.  In the Moby Object Ontology, 

there is a root class – Object – that is intended to represent identifiers.  It has three 

properties – namespace, id, and articleName.  These properties are inherited 

by all child nodes in the ontology.  Importantly, so-called “primitive” data-types are 

defined as subclasses of the root Object node.  At present, only 5 primitive data-types 

have been defined in the Object Ontology:  Integer, Float, String, DateTime, and 

Boolean.  To simplify the design of software that requires strict typing of data (e.g. Java) 

these 5 classes cannot be further sub-classed, thus more specific types of Strings, 

Integers, etc. can only be constructed through creating a new class that has-a or has an 

instance of the desired primitive type.  Though to those familiar with the W3C XML 

Schema (XSD) it might seem that we have ignored or re-invented the XSD datatype 

hierarchy, this architectural decision was necessary in order to have a consistent Web 
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Service discovery behaviour over all data-types – both complex and primitive.  It was our 

intention that appropriate services could be discovered by searching for services that 

consume “Integers” in exactly the same way as a search for services that consume “DNA 

Sequences”.  As such, all primitive data-types had to become first-order objects in the 

BioMoby Object Ontology.

Instances of Object Ontology classes are represented in XML, with the structure of the 

XML document being determined by the is-a, has-a and has relationships defined for that 

class in the ontology.  The is-a relationship indicates that all features (has-a, has) that 

exist in instances of the parent class will also exist in instances of the child class.  The 

has-a and has relationships indicate that instances of the designated class will be present 

as one or more (respectively) child nodes in the XML representation of instances of the 

parent class.  When decomposed, the object instance has or has-a primitive object 

members, and container classes with biologically meaningful names.  Only instances of 

primitive data types are allowed to contain (parsed) character data other than identifiers, 

and that data is of the indicated type (Integer, String, etc.).

Figure 1B shows sample XML serialized instances of the classes described in Figure 1A. 

In this way, the Object Ontology acts as a novel type of dynamic XML schema, precisely 
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stating the tags and hierarchical Document Object Model (DOM) constraints of all valid 

XML-serialized object instances within the BioMoby framework.

The wide variety of legacy and third-party bioinformatics data formats such as EMBL 

and GenBank records, FASTA files, or MAGE-ML files are handled by defining an 

appropriately named Object class (e.g. the EMBL class is used to represent EMBL 

records) that inherit from the text-formatted class (Figure 2A), which has-a String that 

contains the EMBL record (Figure 2B). Thus any client or server in the BioMoby 

framework can receive any data-type and unambiguously determine the nature of that 

data without having to parse it or use regular-expression-based clues.  Importantly, the 

Object Ontology does not re-define legacy or third-party data-types, it simply makes their 

type explicit, thus the myriad of existing parsers and analytical tools that consume these 

file formats can still be utilized.

Similarly, binary data is also passed through String objects.  The base64_encoded class 

is the root of all binary data classes (Figure 2A), where the binary data is base64 encoded 

by the client or service provider, and then passed in the ‘content’ member (a String) of 

the text-plain class (Figure 2B).  Importantly, this allows us to extend existing flat-file or 

binary data types at will, by simply inheriting them and/or including them in the 
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definitions of new objects.  This allows, for example, the creation of classes representing 

annotated images or movies, where the annotations are predictably and machine-readably 

separate from the binary data itself.  Though this is true for many existing systems (e.g. 

DICOM), the important difference is that in BioMoby these new formats are end-user 

definable and extensible.

Though it may seem reasonable to do so, there is no formal mapping between the 

Namespace and Object ontologies.  Data records in a particular Namespace can be 

represented by a wide variety of syntaxes (Objects); which Objects would be appropriate 

is not defined.  Any Object may be selected to represent a given data record.  
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Figure 1:  Sequential construction of complex objects in the BioMoby Objects Ontology, and the 

corresponding XML serialization of their instances.  (A) The creation of BioMoby Object Classes 
starting from the root object “Object” (a), to a VirtualSequence (b) which inherits from Object 
and has-a Integer (Length), to a GenericSequence (c) which inherits from VirtualSequence, and 
adds a String (SequenceString) through the has-a relationship, and finally a DNASequence (d) 
which simply inherits from and thus further specializes the GenericSequence Object semantically. 
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(B) The serialization of the objects (a,b,c,d) from above.  The outermost XML tag is the 
ontological class name.  Child tags are added by the has or has-a relationships (b), or are inherited 
from parent classes (c).  Specialization of an existing class (d) simply changes the outermost tag 
name.

- 52 -

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
08

.1
48

6.
1 

: P
os

te
d 

3 
Ja

n 
20

08



Figure 2:  Support for legacy flat-file formats and binaries in BioMoby Objects.  (A) The text-

plain Object class (a) is the root of all Object classes that support both legacy flat-file formats and 
binary data-types.    From this, the text-formatted and base64-encoded classes are derived (b). 
text-formatted is the root of all flat-file formats, while all binaries are inherited as children of the 
base64-encoded class (c).  (B) The XML serialization of the EMBL class (a) representing EMBL 
flat-file records, and a GIF image in the form of a b64_encoded_GIF object (c).
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Section 3

BioMoby Messaging – “How do I interact with a resource provider?”

BioMoby messaging currently utilizes Simple Object Access Protocol (SOAP [30]); 

however, with the exception of asynchronous service invocations, no SOAP-specific 

features are utilized within the BioMoby system, and it is likely that other more 

lightweight protocols such as HTTP POST will be supported in the future.  

The body of the SOAP message (Figure 3) consists of: 

• An outermost XML tag “MOBY”, identifying the message as a BioMoby 

formatted message.

• A child XML element “mobyContent” within which formatted service provision 

information can be placed such as database version, software name and version, 

etc.  In addition, this element is the container for any error reporting and 

exception information that the service provider wishes to pass back to the client.

• One or more “mobyData” XML elements within “mobyContent”, which 

contain:

• Zero or more instances of a BioMoby Object being passed into or out of the 

service.
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Generally speaking, this message structure is completely transparent to both the client 

and the service provider, as it is interpreted and parsed by the libraries provided in the 

BioMoby code-base. A key feature of the message format is that it is symmetric: the 

output of one service can be used verbatim as the input to another, simplifying service 

chaining by client software. 

BioMoby is capable of executing services synchronously, or asynchronously using 

specifications consistent with the Web Service Resource Framework (WSRF) standard 

[31].  This interaction happens in a well-defined manner, with the invocation, polling, 

and retrieval functions all having predictable signatures such that generic software can be 

written that supports all cases and these signatures are described in the WSDL document 

that defines the service interface.  Invocation of the service returns a WSRF 

EndpointReference which can be passed back to the service provider to poll for various 

details about the state of a long-running service.  This information is provided in the form 

of an LSAE Event XML Block [28].  Upon service completion, the EndpointReference 

can be used to retrieve the service output, which takes the form of a normal BioMoby 

output message.

Importantly, service providers do not need to be concerned about the exact structure of 

the incoming data, and do not need to query the ever-changing BioMoby ontologies at 
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regular intervals.  This is because the strict inheritance rules of the Moby XML format 

imply that subsumption (a.k.a. the Liskov Substitution Principle) holds.  Provided that a 

client program is adhering to the BioMoby specification, it is guaranteed to send only 

data that is compliant with what the service provider expects, and the BioMoby API 

ensures that an ontology term that is in use by any registered service cannot be modified 

by a member of the public.  As such, the service provider is guaranteed to receive data 

that their service code can properly parse.  That being said, the data passed into a service 

may be significantly more complex than the service requires (i.e. may be an instance of 

an inheriting class deeper in the Object Ontology); however this fact is irrelevant to the 

service provider, since the serialization of Object instances ensures that the data pieces 

the service provider requires are at a predictable location within the XML DOM, 

regardless of the complexity of the request’s actual object instance.  As such, the code for 

BioMoby services remains as lightweight as the data they use, rather than as heavyweight 

as the input they could receive.

Similarly, though the service provider advertises their output data-type in the Moby 

Central registry, they may, if appropriate, construct and return an instance of a more 

complex Object (inheriting from the advertised output data type) if they have sufficient 

information to do so.  As such, the service provider has the opportunity to pass as much 

data as they feel would be useful back to the client.  Client software can be agnostic to 
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this, since the returned data, by ontological definition, contains all elements it is 

expecting within the DOM structure; moreover, a “smart” client could use this more 

complex data-type to discover services that perform useful functions with this richer data.

Error reporting in BioMoby is primarily focused on errors relating to the parsing or 

processing of the data payload.  Other errors (e.g. HTTP transport errors) are outside of 

the scope of the BioMoby API, and are handled by their respective protocols.  Error 

handling takes place at the level of the individual input and/or a sub-component of the 

input, and results in the offending input element being referred to in a block of XML 

within the ‘mobyContent’ element of the response message.  Importantly, individual 

error handling allows services processing large batches of input objects to systematically 

return meaningful results for successful executions, while not being silent about 

unprocessed inputs.  Exception reporting includes an exception code, as defined by the 

Object Management Group’s Life Sciences Analysis Engine (LSAE) specification [28] as 

well as a human-readable message indicating the nature and/or cause of the exception, as 

provided by the service provider.
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<moby:MOBY xmlns:moby=”http://biomoby.org”  xmlns=”http://biomoby.org”>

<moby:mobyContent>

  <ProvisionInformation>
        <serviceSoftware software_name="" software_version="" software_comment=""/>
        <serviceDatabase database_name="" database_version="" database_comment=""/>
        <serviceComment>comment here</serviceComment>  
  </ProvisionInformation>

<moby:mobyData queryID=”Q1”>

        <moby:Simple>
              <moby:Object namespace=”X” id=”1”/>
        </moby:Simple>

</moby:mobyData>

<moby:mobyData queryID=”Q2”>

        <moby:Simple>
              <moby:Object namespace=”X” id=”2”/>
        </moby:Simple>

</moby:mobyData>

</moby:mobyContent>

 </moby:MOBY>

  
Figure 3:  The structure of a BioMoby service invocation and response message.  The XML 

structure here is contained within the SOAP Body of the surrounding SOAP message.  The tags, 
from outermost to innermost, are MOBY, mobyContent, and mobyData. An example of service 
provision information is also shown inside of the mobyContent block of XML.
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Section 4

A detailed comparison between OWL/RDF and the BioMoby Ontologies

At the syntactic/structural level, the relationship between the class definitions in the 

Object Ontology and XML instances of those Objects is strikingly similar to the 

relationship between a class defined in an OWL ontology, and the RDF-XML instance of 

that class respectively.  Superficially a class in OWL precisely describes the sub-graph of 

properties that exists (or is asserted to exist) within an instance of that class; while an 

Object class in BioMoby precisely defines a sub-DOM that will exist within an XML 

serialized instance of that class.  

Similarly, the properties of an OWL class may be other OWL classes, just as the relations 

in a BioMoby Object are other BioMoby Objects.  BioMoby is currently somewhat 

stricter than OWL, in that the related Objects contained within the main Object instance 

are strictly limited to being of the type declared in the Object Ontology, and cannot be of 

a child type (subclass); however this aspect of the API is being revisited and an update 

will be released shortly that allows inheritance among contained object-types.  When this 

is enabled, the BioMoby articleName will fulfill a role much like the OWL/RDF 

predicate, indicating the semantic relation between two object instances.
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Looking more deeply, however, there are some significant differences between the 

BioMoby and the OWL/RDF approach to classes and instances.  OWL/RDF allows the 

assertion of class membership for any given individual, regardless of its properties.  As 

such, any given instance of an OWL class may or may not carry all or any of the 

properties defined for that class.  In cases where the properties do not exist, the open-

world reasoning of OWL allows software systems to “assume” that the properties exist, 

despite the fact that they cannot be examined.  Conversely, instances in BioMoby are 

much more rigorous, and are required to carry all components (i.e. the has-a and has 

relationships) that are defined by the ontology.  This additional robustness ensures that 

applications can reliably extract property values from instance data when passing these 

instances between Web Services.  In this respect, BioMoby data is more reliable and 

predictable than RDF/OWL data for the Web Service use-case, and we would contend 

that a similar constraint/convention will need to be adopted by any Semantic Web 

Service project that intends to use the RDF/OWL suite of technologies.

While the two observations above describe what can be determined about the properties 

of an instance by its class membership, more interesting perhaps is what can be 

computationally inferred about the class membership of an instance based on its 

properties.  OWL allows arbitrary definition of properties, and these are semantically 
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rich.  In a well-defined OWL ontology, regardless of the asserted class definition, human-

readable definition, or asserted sub-class relationship, two classes that share the same set 

of defining properties will be inferred to be identical by a DL reasoner; moreover, an 

instance whose properties fulfill that class definition will be inferred as a member of that 

OWL class, regardless of the class into which that instance was asserted.  In BioMoby, 

there are only two non-subclass properties – has-a and has – and these are semantically-

impoverished, intended to represent only the structure of the instance and its various sub-

components, not the semantic relationship between these sub-components.  The 

semantics of these relationships is captured only in a human-readable form – in the 

articleName – and no attempt has yet been made to constrain or to explicitly define 

or to re-use these articleNames.  Though it would not be impossible to design a 

BioMoby reasoner that utilized the semantics in the article name, this would not bring 

any benefit in practice, since the informality of the process so far has resulted in few 

articleNames ever being re-used even when referring to the same encapsulated sub-

object.  Moreover, the same articleName is often re-used in different circumstances 

and to embed different Object types into one another.  Thus, discovery of equivalent 

Objects in BioMoby is limited strictly to the asserted subclass hierarchy and cannot be 

determined by examination of the properties of two objects.  This limitation is described 

in further detail in Figure 4.  Nevertheless, as has been shown in many other 

bioinformatics ontologies, asserted is-a hierarchies are extremely powerful and can solve 
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a large proportion of the most common data representation problems.
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Figure 4:  A demonstration of the problems associated with the BioMoby asserted Object 

hierarchy and lack of articleName semantics.  The two (hypothetical) objects Molecular_Weight 
and Hydrophobicity are defined as containing a float representing the molecular weight and a 
string representing a hydrophobicity profile respectively (1) and two subclasses are also defined 
as inheriting from Molecular_Weight and having Hydrophobicity, or inheriting from 
Hydrophobicity and having Molecular_Weight.  An instance of Hydrophobicity and of 
Molecular_Weight, in the same namespace and with the same id, has been returned from two 
independent service calls (2a, 2b).  Though cognitively it seems plausible that these two objects 
could be combined into one of the two subclasses (e.g. 2c or 2d) in practice this cannot be done 

reliably in an automated manner because there is no way to automatically interpret the intent of 
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the articleName “wt” or the articleName “hydro”.  Moreover, because the intent of the container 
relationships are opaque to the system, it is not possible to infer that 2c and 2d are, in fact, 
identical in their information content and should be able to be utilized by any service that 
consumes both Molecular Weight and Hydrophobicity; rather a service would have to register 
itself as consuming one Object class or the other.  In practice, these kinds of problems are 
resolved by service providers reaching a consensus with one another, and choosing to consume or 
produce only one of the two options, and removing the other option from the ontology.
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Section 5

A sample end-user experience with a BioMoby-enabled application

Please see the powerpoint slideshow containing screenshots of a complete Gbrowse 
Moby data exploration session, available at:  

http://biomoby.org/ExampleMobyBrowsingSession.ppt
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