420 research outputs found

    JWalk: a tool for lazy, systematic testing of java classes by design introspection and user interaction

    Get PDF
    Popular software testing tools, such as JUnit, allow frequent retesting of modified code; yet the manually created test scripts are often seriously incomplete. A unit-testing tool called JWalk has therefore been developed to address the need for systematic unit testing within the context of agile methods. The tool operates directly on the compiled code for Java classes and uses a new lazy method for inducing the changing design of a class on the fly. This is achieved partly through introspection, using Java’s reflection capability, and partly through interaction with the user, constructing and saving test oracles on the fly. Predictive rules reduce the number of oracle values that must be confirmed by the tester. Without human intervention, JWalk performs bounded exhaustive exploration of the class’s method protocols and may be directed to explore the space of algebraic constructions, or the intended design state-space of the tested class. With some human interaction, JWalk performs up to the equivalent of fully automated state-based testing, from a specification that was acquired incrementally

    Predicate Abstraction in Program Verification: Survey and Current Trends

    Get PDF
    A popular approach to verification of software system correctness is model checking. To achieve scalability needed for large systems, model checking has to be augmented with abstraction. In this paper, we provide an overview of selected techniques of program verification based on predicate abstraction. We focus on techniques that advanced the state-of-the-art in a significant way, including counterexample-guided abstraction refinement, lazy abstraction, and current trends in the form of extensions targeting, for example, data structures and multi-threading. We discuss limitations of these techniques and present our plans for addressing some of them

    Test Input Generation for Red-Black Trees using Abstraction

    Get PDF
    We consider the problem of test input generation for code that manipulates complex data structures. Test inputs are sequences of method calls from the data structure interface. We describe test input generation techniques that rely on state matching to avoid generation of redundant tests. Exhaustive techniques use explicit state model checking to explore all the possible test sequences up to predefined input sizes. Lossy techniques rely on abstraction mappings to compute and store abstract versions of the concrete states; they explore under-approximations of all the possible test sequences. We have implemented the techniques on top of the Java PathFinder model checker and we evaluate them using a Java implementation of red-black trees

    Program Model Checking: A Practitioner's Guide

    Get PDF
    Program model checking is a verification technology that uses state-space exploration to evaluate large numbers of potential program executions. Program model checking provides improved coverage over testing by systematically evaluating all possible test inputs and all possible interleavings of threads in a multithreaded system. Model-checking algorithms use several classes of optimizations to reduce the time and memory requirements for analysis, as well as heuristics for meaningful analysis of partial areas of the state space Our goal in this guidebook is to assemble, distill, and demonstrate emerging best practices for applying program model checking. We offer it as a starting point and introduction for those who want to apply model checking to software verification and validation. The guidebook will not discuss any specific tool in great detail, but we provide references for specific tools

    UNIT-LEVEL ISOLATION AND TESTING OF BUGGY CODE

    Get PDF
    In real-world software development, maintenance plays a major role and developers spend 50-80% of their time in maintenance-related activities. During software maintenance, a significant amount of effort is spent on ending and fixing bugs. In some cases, the fix does not completely eliminate the buggy behavior; though it addresses the reported problem, it fails to account for conditions that could lead to similar failures. There could be many possible reasons: the conditions may have been overlooked or difficult to reproduce, e.g., when the components that invoke the code or the underlying components it interacts with can not put it in a state where latent errors appear. We posit that such latent errors can be discovered sooner if the buggy section can be tested more thoroughly in a separate environment, a strategy that is loosely analogous to the medical procedure of performing a biopsy where tissue is removed, examined and subjected to a battery of tests to determine the presence of a disease. In this thesis, we propose a process in which the buggy code is extracted and isolated in a test framework. Test drivers and stubs are added to exercise the code and observe its interactions with its dependencies. We lay the groundwork for the creation of an automated tool for isolating code by studying its feasibility and investigating existing testing technologies that can facilitate the creation of such drivers and stubs. We investigate mocking frameworks, symbolic execution and model checking tools and test their capabilities by examining real bugs from the Apache Tomcat project. We demonstrate the merits of performing unit-level symbolic execution and model checking to discover runtime exceptions and logical errors. The process is shown to have high coverage and able to uncover latent errors due to insufficient fixes

    Verifying temporal specifications of Java programs

    Get PDF
    none5Many Java programs encode temporal behaviors in their source code, typically mixing three features provided by the Java language: (1) pausing the execution for a limited amount of time, (2) waiting for an event that has to occur before a deadline expires, and (3) comparing timestamps. In this work, we show how to exploit modern SMT solvers together with static analysis in order to produce a network of timed automata approximating the temporal behavior of a set of Java threads. We also prove that the presented abstraction preserves the truth of MTL and ATCTL formulae, two well-known logics for expressing timed specifications. As far as we know, this is the first feasible approach enabling the user to automatically model check timed specifications of Java software directly from the source code.openSpegni F.; Spalazzi L.; Liva G.; Pinzger M.; Bollin A.Spegni, F.; Spalazzi, L.; Liva, G.; Pinzger, M.; Bollin, A

    Verifying temporal specifications of Java programs

    Get PDF
    Many Java programs encode temporal behaviors in their source code, typically mixing three features provided by the Java language: (1) pausing the execution for a limited amount of time, (2) waiting for an event that has to occur before a deadline expires, and (3) comparing timestamps. In this work, we show how to exploit modern SMT solvers together with static analysis in order to produce a network of timed automata approximating the temporal behavior of a set of Java threads. We also prove that the presented abstraction preserves the truth of MTL and ATCTL formulae, two well-known logics for expressing timed specifications. As far as we know, this is the first feasible approach enabling the user to automatically model check timed specifications of Java software directly from the source code

    Software Certification for Temporal Properties With Affordable Tool Qualification

    Get PDF
    It has been recognized that a framework based on proof-carrying code (also called semantic-based software certification in its community) could be used as a candidate software certification process for the avionics industry. To meet this goal, tools in the "trust base" of a proof-carrying code system must be qualified by regulatory authorities. A family of semantic-based software certification approaches is described, each different in expressive power, level of automation and trust base. Of particular interest is the so-called abstraction-carrying code, which can certify temporal properties. When a pure abstraction-carrying code method is used in the context of industrial software certification, the fact that the trust base includes a model checker would incur a high qualification cost. This position paper proposes a hybrid of abstraction-based and proof-based certification methods so that the model checker used by a client can be significantly simplified, thereby leading to lower cost in tool qualification

    A Survey of Symbolic Execution Techniques

    Get PDF
    Many security and software testing applications require checking whether certain properties of a program hold for any possible usage scenario. For instance, a tool for identifying software vulnerabilities may need to rule out the existence of any backdoor to bypass a program's authentication. One approach would be to test the program using different, possibly random inputs. As the backdoor may only be hit for very specific program workloads, automated exploration of the space of possible inputs is of the essence. Symbolic execution provides an elegant solution to the problem, by systematically exploring many possible execution paths at the same time without necessarily requiring concrete inputs. Rather than taking on fully specified input values, the technique abstractly represents them as symbols, resorting to constraint solvers to construct actual instances that would cause property violations. Symbolic execution has been incubated in dozens of tools developed over the last four decades, leading to major practical breakthroughs in a number of prominent software reliability applications. The goal of this survey is to provide an overview of the main ideas, challenges, and solutions developed in the area, distilling them for a broad audience. The present survey has been accepted for publication at ACM Computing Surveys. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5FvcComment: This is the authors pre-print copy. If you are considering citing this survey, we would appreciate if you could use the following BibTeX entry: http://goo.gl/Hf5Fv
    • …
    corecore