1,032 research outputs found

    Haptic Media Scenes

    Get PDF
    The aim of this thesis is to apply new media phenomenological and enactive embodied cognition approaches to explain the role of haptic sensitivity and communication in personal computer environments for productivity. Prior theory has given little attention to the role of haptic senses in influencing cognitive processes, and do not frame the richness of haptic communication in interaction design—as haptic interactivity in HCI has historically tended to be designed and analyzed from a perspective on communication as transmissions, sending and receiving haptic signals. The haptic sense may not only mediate contact confirmation and affirmation, but also rich semiotic and affective messages—yet this is a strong contrast between this inherent ability of haptic perception, and current day support for such haptic communication interfaces. I therefore ask: How do the haptic senses (touch and proprioception) impact our cognitive faculty when mediated through digital and sensor technologies? How may these insights be employed in interface design to facilitate rich haptic communication? To answer these questions, I use theoretical close readings that embrace two research fields, new media phenomenology and enactive embodied cognition. The theoretical discussion is supported by neuroscientific evidence, and tested empirically through case studies centered on digital art. I use these insights to develop the concept of the haptic figura, an analytical tool to frame the communicative qualities of haptic media. The concept gauges rich machine- mediated haptic interactivity and communication in systems with a material solution supporting active haptic perception, and the mediation of semiotic and affective messages that are understood and felt. As such the concept may function as a design tool for developers, but also for media critics evaluating haptic media. The tool is used to frame a discussion on opportunities and shortcomings of haptic interfaces for productivity, differentiating between media systems for the hand and the full body. The significance of this investigation is demonstrating that haptic communication is an underutilized element in personal computer environments for productivity and providing an analytical framework for a more nuanced understanding of haptic communication as enabling the mediation of a range of semiotic and affective messages, beyond notification and confirmation interactivity

    Enhancing interaction in mixed reality

    Get PDF
    With continuous technological innovation, we observe mixed reality emerging from research labs into the mainstream. The arrival of capable mixed reality devices transforms how we are entertained, consume information, and interact with computing systems, with the most recent being able to present synthesized stimuli to any of the human senses and substantially blur the boundaries between the real and virtual worlds. In order to build expressive and practical mixed reality experiences, designers, developers, and stakeholders need to understand and meet its upcoming challenges. This research contributes a novel taxonomy for categorizing mixed reality experiences and guidelines for designing mixed reality experiences. We present the results of seven studies examining the challenges and opportunities of mixed reality experiences, the impact of modalities and interaction techniques on the user experience, and how to enhance the experiences. We begin with a study determining user attitudes towards mixed reality in domestic and educational environments, followed by six research probes that each investigate an aspect of reality or virtuality. In the first, a levitating steerable projector enables us to investigate how the real world can be enhanced without instrumenting the user. We show that the presentation of in-situ instructions for navigational tasks leads to a significantly higher ability to observe and recall real-world landmarks. With the second probe, we enhance the perception of reality by superimposing information usually not visible to the human eye. In amplifying the human vision, we enable users to perceive thermal radiation visually. Further, we examine the effect of substituting physical components with non-functional tangible proxies or entirely virtual representations. With the third research probe, we explore how to enhance virtuality to enable a user to input text on a physical keyboard while being immersed in the virtual world. Our prototype tracked the user’s hands and keyboard to enable generic text input. Our analysis of text entry performance showed the importance and effect of different hand representations. We then investigate how to touch virtuality by simulating generic haptic feedback for virtual reality and show how tactile feedback through quadcopters can significantly increase the sense of presence. Our final research probe investigates the usability and input space of smartphones within mixed reality environments, pairing the user’s smartphone as an input device with a secondary physical screen. Based on our learnings from these individual research probes, we developed a novel taxonomy for categorizing mixed reality experiences and guidelines for designing mixed reality experiences. The taxonomy is based on the human sensory system and human capabilities of articulation. We showcased its versatility and set our research probes into perspective by organizing them inside the taxonomic space. The design guidelines are divided into user-centered and technology-centered. It is our hope that these will contribute to the bright future of mixed reality systems while emphasizing the new underlining interaction paradigm.Mixed Reality (vermischte Realitäten) gehen aufgrund kontinuierlicher technologischer Innovationen langsam von der reinen Forschung in den Massenmarkt über. Mit der Einführung von leistungsfähigen Mixed-Reality-Geräten verändert sich die Art und Weise, wie wir Unterhaltungsmedien und Informationen konsumieren und wie wir mit Computersystemen interagieren. Verschiedene existierende Geräte sind in der Lage, jeden der menschlichen Sinne mit synthetischen Reizen zu stimulieren. Hierdurch verschwimmt zunehmend die Grenze zwischen der realen und der virtuellen Welt. Um eindrucksstarke und praktische Mixed-Reality-Erfahrungen zu kreieren, müssen Designer und Entwicklerinnen die künftigen Herausforderungen und neuen Möglichkeiten verstehen. In dieser Dissertation präsentieren wir eine neue Taxonomie zur Kategorisierung von Mixed-Reality-Erfahrungen sowie Richtlinien für die Gestaltung von solchen. Wir stellen die Ergebnisse von sieben Studien vor, in denen die Herausforderungen und Chancen von Mixed-Reality-Erfahrungen, die Auswirkungen von Modalitäten und Interaktionstechniken auf die Benutzererfahrung und die Möglichkeiten zur Verbesserung dieser Erfahrungen untersucht werden. Wir beginnen mit einer Studie, in der die Haltung der nutzenden Person gegenüber Mixed Reality in häuslichen und Bildungsumgebungen analysiert wird. In sechs weiteren Fallstudien wird jeweils ein Aspekt der Realität oder Virtualität untersucht. In der ersten Fallstudie wird mithilfe eines schwebenden und steuerbaren Projektors untersucht, wie die Wahrnehmung der realen Welt erweitert werden kann, ohne dabei die Person mit Technologie auszustatten. Wir zeigen, dass die Darstellung von in-situ-Anweisungen für Navigationsaufgaben zu einer deutlich höheren Fähigkeit führt, Sehenswürdigkeiten der realen Welt zu beobachten und wiederzufinden. In der zweiten Fallstudie erweitern wir die Wahrnehmung der Realität durch Überlagerung von Echtzeitinformationen, die für das menschliche Auge normalerweise unsichtbar sind. Durch die Erweiterung des menschlichen Sehvermögens ermöglichen wir den Anwender:innen, Wärmestrahlung visuell wahrzunehmen. Darüber hinaus untersuchen wir, wie sich das Ersetzen von physischen Komponenten durch nicht funktionale, aber greifbare Replikate oder durch die vollständig virtuelle Darstellung auswirkt. In der dritten Fallstudie untersuchen wir, wie virtuelle Realitäten verbessert werden können, damit eine Person, die in der virtuellen Welt verweilt, Text auf einer physischen Tastatur eingeben kann. Unser Versuchsdemonstrator detektiert die Hände und die Tastatur, zeigt diese in der vermischen Realität an und ermöglicht somit die verbesserte Texteingaben. Unsere Analyse der Texteingabequalität zeigte die Wichtigkeit und Wirkung verschiedener Handdarstellungen. Anschließend untersuchen wir, wie man Virtualität berühren kann, indem wir generisches haptisches Feedback für virtuelle Realitäten simulieren. Wir zeigen, wie Quadrokopter taktiles Feedback ermöglichen und dadurch das Präsenzgefühl deutlich steigern können. Unsere letzte Fallstudie untersucht die Benutzerfreundlichkeit und den Eingaberaum von Smartphones in Mixed-Reality-Umgebungen. Hierbei wird das Smartphone der Person als Eingabegerät mit einem sekundären physischen Bildschirm verbunden, um die Ein- und Ausgabemodalitäten zu erweitern. Basierend auf unseren Erkenntnissen aus den einzelnen Fallstudien haben wir eine neuartige Taxonomie zur Kategorisierung von Mixed-Reality-Erfahrungen sowie Richtlinien für die Gestaltung von solchen entwickelt. Die Taxonomie basiert auf dem menschlichen Sinnessystem und den Artikulationsfähigkeiten. Wir stellen die vielseitige Verwendbarkeit vor und setzen unsere Fallstudien in Kontext, indem wir sie innerhalb des taxonomischen Raums einordnen. Die Gestaltungsrichtlinien sind in nutzerzentrierte und technologiezentrierte Richtlinien unterteilt. Es ist unsere Anliegen, dass diese Gestaltungsrichtlinien zu einer erfolgreichen Zukunft von Mixed-Reality-Systemen beitragen und gleichzeitig die neuen Interaktionsparadigmen hervorheben

    Multimodal interaction: developing an interaction concept for a touchscreen incorporating tactile feedback

    Get PDF
    The touchscreen, as an alternative user interface for applications that normally require mice and keyboards, has become more and more commonplace, showing up on mobile devices, on vending machines, on ATMs and in the control panels of machines in industry, where conventional input devices cannot provide intuitive, rapid and accurate user interaction with the content of the display. The exponential growth in processing power on the PC, together with advances in understanding human communication channels, has had a significant effect on the design of usable, human-factored interfaces on touchscreens, and on the number and complexity of applications available on touchscreens. Although computer-driven touchscreen interfaces provide programmable and dynamic displays, the absence of the expected tactile cues on the hard and static surfaces of conventional touchscreens is challenging interface design and touchscreen usability, in particular for distracting, low-visibility environments. Current technology allows the human tactile modality to be used in touchscreens. While the visual channel converts graphics and text unidirectionally from the computer to the end user, tactile communication features a bidirectional information flow to and from the user as the user perceives and acts on the environment and the system responds to changing contextual information. Tactile sensations such as detents and pulses provide users with cues that make selecting and controlling a more intuitive process. Tactile features can compensate for deficiencies in some of the human senses, especially in tasks which carry a heavy visual or auditory burden. In this study, an interaction concept for tactile touchscreens is developed with a view to employing the key characteristics of the human sense of touch effectively and efficiently, especially in distracting environments where vision is impaired and hearing is overloaded. As a first step toward improving the usability of touchscreens through the integration of tactile effects, different mechanical solutions for producing motion in tactile touchscreens are investigated, to provide a basis for selecting suitable vibration directions when designing tactile displays. Building on these results, design know-how regarding tactile feedback patterns is further developed to enable dynamic simulation of UI controls, in order to give users a sense of perceiving real controls on a highly natural touch interface. To study the value of adding tactile properties to touchscreens, haptically enhanced UI controls are then further investigated with the aim of mapping haptic signals to different usage scenarios to perform primary and secondary tasks with touchscreens. The findings of the study are intended for consideration and discussion as a guide to further development of tactile stimuli, haptically enhanced user interfaces and touchscreen applications

    An Exploratory Study to Bring Meaning of Haptic In Association with Human Emotion

    Get PDF
    The popularity of haptic technologies has permitted daily life, allowing intimate and emotional contact to be conveyed from sender to receiver. However there are weaknesses apart when haptic is being applied into an application, which can result misinterpreted, high complexity and confusion to the user. Research shows that emotion comprise close relationship with haptic feedback, this research project will investigate the effectiveness of emotion to bring haptic meaning. The project has predict the weaknesses of emotion in explore the absolute meaning of haptic, however with the present of multi-model technology the weaknesses could be reduce in order to identify the suitable definition of haptic with association to emotion

    On the use of haptic tablets for UGV teleoperation in unstructured environments: system design and evaluation

    Get PDF
    Teleoperation of Unmanned Ground Vehicles (UGVs), particularly for inspection of unstructured and unfamiliar environments still raises important challenges from the point of view of the operator interface. One of these challenges is caused by the fact that all information available to the operator is presented to the operator through a computer interface, providing only a partial view of the robot situation. The majority of existing interfaces provide information using visual, and, less frequently, sound channels. The lack of Situation Awareness (SA), caused by this partial view, may lead to an incorrect and inefficient response to the current UGV state, usually confusing and frustrating the human operator. For instance, the UGV may become stuck in debris while the operator struggles to move the robot, not understanding the cause of the UGV lack of motion. We address this problem by studying the use of haptic feedback to improve operator SA. More precisely, improving SA with respect to the traction state of the UGV, using a haptic tablet for both commanding the robot and conveying traction state to the user by haptic feedback. We report (1) a teleoperating interface, integrating a haptic tablet with an existing UGV teleoperation interface, and (2) the experimental results of a user study designed to evaluate the advantage of this interface in the teleoperation of a UGV, in a search and rescue scenario. Statistically significant results were found supporting the hypothesis that using the haptic tablet elicits a reduction in the time that the UGV spends in states without traction.info:eu-repo/semantics/publishedVersio

    Haptic Touch and Hand Ability

    Get PDF

    Haptics Rendering and Applications

    Get PDF
    There has been significant progress in haptic technologies but the incorporation of haptics into virtual environments is still in its infancy. A wide range of the new society's human activities including communication, education, art, entertainment, commerce and science would forever change if we learned how to capture, manipulate and reproduce haptic sensory stimuli that are nearly indistinguishable from reality. For the field to move forward, many commercial and technological barriers need to be overcome. By rendering how objects feel through haptic technology, we communicate information that might reflect a desire to speak a physically- based language that has never been explored before. Due to constant improvement in haptics technology and increasing levels of research into and development of haptics-related algorithms, protocols and devices, there is a belief that haptics technology has a promising future

    Augmenting User Interfaces with Haptic Feedback

    Get PDF
    Computer assistive technologies have developed considerably over the past decades. Advances in computer software and hardware have provided motion-impaired operators with much greater access to computer interfaces. For people with motion impairments, the main di�culty in the communication process is the input of data into the system. For example, the use of a mouse or a keyboard demands a high level of dexterity and accuracy. Traditional input devices are designed for able-bodied users and often do not meet the needs of someone with disabilities. As the key feature of most graphical user interfaces (GUIs) is to point-and-click with a cursor this can make a computer inaccessible for many people. Human-computer interaction (HCI) is an important area of research that aims to improve communication between humans and machines. Previous studies have identi�ed haptics as a useful method for improving computer access. However, traditional haptic techniques su�er from a number of shortcomings that have hindered their inclusion with real world software. The focus of this thesis is to develop haptic rendering algorithms that will permit motion-impaired operators to use haptic assistance with existing graphical user interfaces. The main goal is to improve interaction by reducing error rates and improving targeting times. A number of novel haptic assistive techniques are presented that utilise the three degrees-of-freedom (3DOF) capabilities of modern haptic devices to produce assistance that is designed speci�- cally for motion-impaired computer users. To evaluate the e�ectiveness of the new techniques a series of point-and-click experiments were undertaken in parallel with cursor analysis to compare the levels of performance. The task required the operator to produce a prede�ned sentence on the densely populated Windows on-screen keyboard (OSK). The results of the study prove that higher performance levels can be i ii achieved using techniques that are less constricting than traditional assistance

    Multilayer haptic feedback for pen-based tablet interaction

    Get PDF
    We present a novel, multilayer interaction approach that enables state transitions between spatially above-screen and 2D on-screen feedback layers. This approach supports the exploration of haptic features that are hard to simulate using rigid 2D screens. We accomplish this by adding a haptic layer above the screen that can be actuated and interacted with (pressed on) while the user interacts with on-screen content using pen input. The haptic layer provides variable firmness and contour feedback, while its membrane functionality affords additional tactile cues like texture feedback. Through two user studies, we look at how users can use the layer in haptic exploration tasks, showing that users can discriminate well between different firmness levels, and can perceive object contour characteristics. Demonstrated also through an art application, the results show the potential of multilayer feedback to extend on-screen feedback with additional widget, tool and surface properties, and for user guidance
    • …
    corecore