29 research outputs found

    Medically Relevant Criteria used in EEG Compression for Improved Post-Compression Seizure Detection

    Full text link
    Biomedical signals aid in the diagnosis of different disorders and abnormalities. When targeting lossy compression of such signals, the medically relevant information that lies within the data should maintain its accuracy and thus its reliability. In fact, signal models that are inspired by the bio-physical properties of the signals at hand allow for a compression that preserves more naturally the clinically significant features of these signals. In this paper, we illustrate this through the example of EEG signals; more specifically, we analyze three specific lossy EEG compression schemes. These schemes are based on signal models that have different degrees of reliance on signal production and physiological characteristics of EEG. The resilience of these schemes is illustrated through the performance of seizure detection post compression.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Optimal Resource Allocation Using Deep Learning-Based Adaptive Compression For Mhealth Applications

    Get PDF
    In the last few years the number of patients with chronic diseases that require constant monitoring increases rapidly; which motivates the researchers to develop scalable remote health applications. Nevertheless, transmitting big real-time data through a dynamic network limited by the bandwidth, end-to-end delay and transmission energy; will be an obstacle against having an efficient transmission of the data. The problem can be resolved by applying data reduction techniques on the vital signs at the transmitter side and reconstructing the data at the receiver side (i.e. the m-Health center). However, a new problem will be introduced which is the ability to receive the vital signs at the server side with an acceptable distortion rate (i.e. deformation of vital signs because of inefficient data reduction). In this thesis, we integrate efficient data reduction with wireless networking to deliver an adaptive compression with an acceptable distortion, while reacting to the wireless network dynamics such as channel fading and user mobility. A Deep Learning (DL) approach was used to implement an adaptive compression technique to compress and reconstruct the vital signs in general and specifically the Electroencephalogram Signal (EEG) with the minimum distortion. Then, a resource allocation framework was introduced to minimize the transmission energy along with the distortion of the reconstructed signa

    A High-Performance Lossless Compression Scheme for EEG Signals Using Wavelet Transform and Neural Network Predictors

    Get PDF
    Developments of new classes of efficient compression algorithms, software systems, and hardware for data intensive applications in today's digital health care systems provide timely and meaningful solutions in response to exponentially growing patient information data complexity and associated analysis requirements. Of the different 1D medical signals, electroencephalography (EEG) data is of great importance to the neurologist for detecting brain-related disorders. The volume of digitized EEG data generated and preserved for future reference exceeds the capacity of recent developments in digital storage and communication media and hence there is a need for an efficient compression system. This paper presents a new and efficient high performance lossless EEG compression using wavelet transform and neural network predictors. The coefficients generated from the EEG signal by integer wavelet transform are used to train the neural network predictors. The error residues are further encoded using a combinational entropy encoder, Lempel-Ziv-arithmetic encoder. Also a new context-based error modeling is also investigated to improve the compression efficiency. A compression ratio of 2.99 (with compression efficiency of 67%) is achieved with the proposed scheme with less encoding time thereby providing diagnostic reliability for lossless transmission as well as recovery of EEG signals for telemedicine applications

    Design of a secure architecture for the exchange of biomedical information in m-Health scenarios

    Get PDF
    El paradigma de m-Salud (salud móvil) aboga por la integración masiva de las más avanzadas tecnologías de comunicación, red móvil y sensores en aplicaciones y sistemas de salud, para fomentar el despliegue de un nuevo modelo de atención clínica centrada en el usuario/paciente. Este modelo tiene por objetivos el empoderamiento de los usuarios en la gestión de su propia salud (p.ej. aumentando sus conocimientos, promocionando estilos de vida saludable y previniendo enfermedades), la prestación de una mejor tele-asistencia sanitaria en el hogar para ancianos y pacientes crónicos y una notable disminución del gasto de los Sistemas de Salud gracias a la reducción del número y la duración de las hospitalizaciones. No obstante, estas ventajas, atribuidas a las aplicaciones de m-Salud, suelen venir acompañadas del requisito de un alto grado de disponibilidad de la información biomédica de sus usuarios para garantizar una alta calidad de servicio, p.ej. fusionar varias señales de un usuario para obtener un diagnóstico más preciso. La consecuencia negativa de cumplir esta demanda es el aumento directo de las superficies potencialmente vulnerables a ataques, lo que sitúa a la seguridad (y a la privacidad) del modelo de m-Salud como factor crítico para su éxito. Como requisito no funcional de las aplicaciones de m-Salud, la seguridad ha recibido menos atención que otros requisitos técnicos que eran más urgentes en etapas de desarrollo previas, tales como la robustez, la eficiencia, la interoperabilidad o la usabilidad. Otro factor importante que ha contribuido a retrasar la implementación de políticas de seguridad sólidas es que garantizar un determinado nivel de seguridad implica unos costes que pueden ser muy relevantes en varias dimensiones, en especial en la económica (p.ej. sobrecostes por la inclusión de hardware extra para la autenticación de usuarios), en el rendimiento (p.ej. reducción de la eficiencia y de la interoperabilidad debido a la integración de elementos de seguridad) y en la usabilidad (p.ej. configuración más complicada de dispositivos y aplicaciones de salud debido a las nuevas opciones de seguridad). Por tanto, las soluciones de seguridad que persigan satisfacer a todos los actores del contexto de m-Salud (usuarios, pacientes, personal médico, personal técnico, legisladores, fabricantes de dispositivos y equipos, etc.) deben ser robustas y al mismo tiempo minimizar sus costes asociados. Esta Tesis detalla una propuesta de seguridad, compuesta por cuatro grandes bloques interconectados, para dotar de seguridad a las arquitecturas de m-Salud con unos costes reducidos. El primer bloque define un esquema global que proporciona unos niveles de seguridad e interoperabilidad acordes con las características de las distintas aplicaciones de m-Salud. Este esquema está compuesto por tres capas diferenciadas, diseñadas a la medidas de los dominios de m-Salud y de sus restricciones, incluyendo medidas de seguridad adecuadas para la defensa contra las amenazas asociadas a sus aplicaciones de m-Salud. El segundo bloque establece la extensión de seguridad de aquellos protocolos estándar que permiten la adquisición, el intercambio y/o la administración de información biomédica -- por tanto, usados por muchas aplicaciones de m-Salud -- pero no reúnen los niveles de seguridad detallados en el esquema previo. Estas extensiones se concretan para los estándares biomédicos ISO/IEEE 11073 PHD y SCP-ECG. El tercer bloque propone nuevas formas de fortalecer la seguridad de los tests biomédicos, que constituyen el elemento esencial de muchas aplicaciones de m-Salud de carácter clínico, mediante codificaciones novedosas. Finalmente el cuarto bloque, que se sitúa en paralelo a los anteriores, selecciona herramientas genéricas de seguridad (elementos de autenticación y criptográficos) cuya integración en los otros bloques resulta idónea, y desarrolla nuevas herramientas de seguridad, basadas en señal -- embedding y keytagging --, para reforzar la protección de los test biomédicos.The paradigm of m-Health (mobile health) advocates for the massive integration of advanced mobile communications, network and sensor technologies in healthcare applications and systems to foster the deployment of a new, user/patient-centered healthcare model enabling the empowerment of users in the management of their health (e.g. by increasing their health literacy, promoting healthy lifestyles and the prevention of diseases), a better home-based healthcare delivery for elderly and chronic patients and important savings for healthcare systems due to the reduction of hospitalizations in number and duration. It is a fact that many m-Health applications demand high availability of biomedical information from their users (for further accurate analysis, e.g. by fusion of various signals) to guarantee high quality of service, which on the other hand entails increasing the potential surfaces for attacks. Therefore, it is not surprising that security (and privacy) is commonly included among the most important barriers for the success of m-Health. As a non-functional requirement for m-Health applications, security has received less attention than other technical issues that were more pressing at earlier development stages, such as reliability, eficiency, interoperability or usability. Another fact that has contributed to delaying the enforcement of robust security policies is that guaranteeing a certain security level implies costs that can be very relevant and that span along diferent dimensions. These include budgeting (e.g. the demand of extra hardware for user authentication), performance (e.g. lower eficiency and interoperability due to the addition of security elements) and usability (e.g. cumbersome configuration of devices and applications due to security options). Therefore, security solutions that aim to satisfy all the stakeholders in the m-Health context (users/patients, medical staff, technical staff, systems and devices manufacturers, regulators, etc.) shall be robust and, at the same time, minimize their associated costs. This Thesis details a proposal, composed of four interrelated blocks, to integrate appropriate levels of security in m-Health architectures in a cost-efcient manner. The first block designes a global scheme that provides different security and interoperability levels accordingto how critical are the m-Health applications to be implemented. This consists ofthree layers tailored to the m-Health domains and their constraints, whose security countermeasures defend against the threats of their associated m-Health applications. Next, the second block addresses the security extension of those standard protocols that enable the acquisition, exchange and/or management of biomedical information | thus, used by many m-Health applications | but do not meet the security levels described in the former scheme. These extensions are materialized for the biomedical standards ISO/IEEE 11073 PHD and SCP-ECG. Then, the third block proposes new ways of enhancing the security of biomedical standards, which are the centerpiece of many clinical m-Health applications, by means of novel codings. Finally the fourth block, with is parallel to the others, selects generic security methods (for user authentication and cryptographic protection) whose integration in the other blocks results optimal, and also develops novel signal-based methods (embedding and keytagging) for strengthening the security of biomedical tests. The layer-based extensions of the standards ISO/IEEE 11073 PHD and SCP-ECG can be considered as robust, cost-eficient and respectful with their original features and contents. The former adds no attributes to its data information model, four new frames to the service model |and extends four with new sub-frames|, and only one new sub-state to the communication model. Furthermore, a lightweight architecture consisting of a personal health device mounting a 9 MHz processor and an aggregator mounting a 1 GHz processor is enough to transmit a 3-lead electrocardiogram in real-time implementing the top security layer. The extra requirements associated to this extension are an initial configuration of the health device and the aggregator, tokens for identification/authentication of users if these devices are to be shared and the implementation of certain IHE profiles in the aggregator to enable the integration of measurements in healthcare systems. As regards to the extension of SCP-ECG, it only adds a new section with selected security elements and syntax in order to protect the rest of file contents and provide proper role-based access control. The overhead introduced in the protected SCP-ECG is typically 2{13 % of the regular file size, and the extra delays to protect a newly generated SCP-ECG file and to access it for interpretation are respectively a 2{10 % and a 5 % of the regular delays. As regards to the signal-based security techniques developed, the embedding method is the basis for the proposal of a generic coding for tests composed of biomedical signals, periodic measurements and contextual information. This has been adjusted and evaluated with electrocardiogram and electroencephalogram-based tests, proving the objective clinical quality of the coded tests, the capacity of the coding-access system to operate in real-time (overall delays of 2 s for electrocardiograms and 3.3 s for electroencephalograms) and its high usability. Despite of the embedding of security and metadata to enable m-Health services, the compression ratios obtained by this coding range from ' 3 in real-time transmission to ' 5 in offline operation. Complementarily, keytagging permits associating information to images (and other signals) by means of keys in a secure and non-distorting fashion, which has been availed to implement security measures such as image authentication, integrity control and location of tampered areas, private captioning with role-based access control, traceability and copyright protection. The tests conducted indicate a remarkable robustness-capacity tradeoff that permits implementing all this measures simultaneously, and the compatibility of keytagging with JPEG2000 compression, maintaining this tradeoff while setting the overall keytagging delay in only ' 120 ms for any image size | evidencing the scalability of this technique. As a general conclusion, it has been demonstrated and illustrated with examples that there are various, complementary and structured manners to contribute in the implementation of suitable security levels for m-Health architectures with a moderate cost in budget, performance, interoperability and usability. The m-Health landscape is evolving permanently along all their dimensions, and this Thesis aims to do so with its security. Furthermore, the lessons learned herein may offer further guidance for the elaboration of more comprehensive and updated security schemes, for the extension of other biomedical standards featuring low emphasis on security or privacy, and for the improvement of the state of the art regarding signal-based protection methods and applications

    Colour image coding with wavelets and matching pursuit

    Get PDF
    This thesis considers sparse approximation of still images as the basis of a lossy compression system. The Matching Pursuit (MP) algorithm is presented as a method particularly suited for application in lossy scalable image coding. Its multichannel extension, capable of exploiting inter-channel correlations, is found to be an efficient way to represent colour data in RGB colour space. Known problems with MP, high computational complexity of encoding and dictionary design, are tackled by finding an appropriate partitioning of an image. The idea of performing MP in the spatio-frequency domain after transform such as Discrete Wavelet Transform (DWT) is explored. The main challenge, though, is to encode the image representation obtained after MP into a bit-stream. Novel approaches for encoding the atomic decomposition of a signal and colour amplitudes quantisation are proposed and evaluated. The image codec that has been built is capable of competing with scalable coders such as JPEG 2000 and SPIHT in terms of compression ratio

    Wavelet Theory

    Get PDF
    The wavelet is a powerful mathematical tool that plays an important role in science and technology. This book looks at some of the most creative and popular applications of wavelets including biomedical signal processing, image processing, communication signal processing, Internet of Things (IoT), acoustical signal processing, financial market data analysis, energy and power management, and COVID-19 pandemic measurements and calculations. The editor’s personal interest is the application of wavelet transform to identify time domain changes on signals and corresponding frequency components and in improving power amplifier behavior

    Hardware realization of discrete wavelet transform cauchy Reed Solomon minimal instruction set computer architecture for wireless visual sensor networks

    Get PDF
    Large amount of image data transmitting across the Wireless Visual Sensor Networks (WVSNs) increases the data transmission rate thus increases the power transmission. This would inevitably decreases the operating lifespan of the sensor nodes and affecting the overall operation of WVSNs. Limiting power consumption to prolong battery lifespan is one of the most important goals in WVSNs. To achieve this goal, this thesis presents a novel low complexity Discrete Wavelet Transform (DWT) Cauchy Reed Solomon (CRS) Minimal Instruction Set Computer (MISC) architecture that performs data compression and data encoding (encryption) in a single architecture. There are four different programme instructions were developed to programme the MISC processor, which are Subtract and Branch if Negative (SBN), Galois Field Multiplier (GF MULT), XOR and 11TO8 instructions. With the use of these programme instructions, the developed DWT CRS MISC were programmed to perform DWT image compression to reduce the image size and then encode the DWT coefficients with CRS code to ensure data security and reliability. Both compression and CRS encoding were performed by a single architecture rather than in two separate modules which require a lot of hardware resources (logic slices). By reducing the number of logic slices, the power consumption can be subsequently reduced. Results show that the proposed new DWT CRS MISC architecture implementation requires 142 Slices (Xilinx Virtex-II), 129 slices (Xilinx Spartan-3E), 144 Slices (Xilinx Spartan-3L) and 66 Slices (Xilinx Spartan-6). The developed DWT CRS MISC architecture has lower hardware complexity as compared to other existing systems, such as Crypto-Processor in Xilinx Spartan-6 (4828 Slices), Low-Density Parity-Check in Xilinx Virtex-II (870 slices) and ECBC in Xilinx Spartan-3E (1691 Slices). With the use of RC10 development board, the developed DWT CRS MISC architecture can be implemented onto the Xilinx Spartan-3L FPGA to simulate an actual visual sensor node. This is to verify the feasibility of developing a joint compression, encryption and error correction processing framework in WVSNs
    corecore