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ABSTRACT 
 

ALMARRIDI, ABEER, ZIAD, Masters: January : [2018], Masters of Science in Computing 

Title: Optimal resource allocation using Deep learning-based adaptive compression for mHealth 
applications. 
  

Supervisor of Thesis: Dr. Amr Mahmoud Mohamed 

Co-supervisor of Thesis: Dr. Aiman Erbad 

In the last few years the number of patients with chronic diseases that require 

constant monitoring increases rapidly; which motivates the researchers to develop scalable 

remote health applications. Nevertheless, transmitting big real-time data through a dynamic 

network limited by the bandwidth, end-to-end delay and transmission energy; will be an 

obstacle against having an efficient transmission of the data. The problem can be resolved 

by applying data reduction techniques on the vital signs at the transmitter side and 

reconstructing the data at the receiver side (i.e. the m-Health center). However, a new 

problem will be introduced which is the ability to receive the vital signs at the server side 

with an acceptable distortion rate (i.e. deformation of vital signs because of inefficient data 

reduction). 

In this thesis, we integrate efficient data reduction with wireless networking to 

deliver an adaptive compression with an acceptable distortion, while reacting to the 

wireless network dynamics such as channel fading and user mobility. A Deep Learning 

(DL) approach was used to implement an adaptive compression technique to compress and 

reconstruct the vital signs in general and specifically the Electroencephalogram Signal 

(EEG) with the minimum distortion. Then, a resource allocation framework was introduced 

to minimize the transmission energy along with the distortion of the reconstructed signal 
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while considering different network and applications constraints such as the available 

bandwidth, distortion threshold, data rate threshold and the end to end delay. 

 Thereafter, this thesis evaluates the performance of using Convolutional 

Autoencoder (CAE) as Deep learning approach in compressing and reconstructing vital 

signs (i.e. EEG signals). The results show that using CAE approach in compression 

provides efficient distortion rate while maximizing compression ratio. However, learning 

makes CAE application-specific, where each CAE model is designed specifically for 

certain application (i.e. dataset). In some applications, CAE may provide maximum levels 

of compression with an acceptable distortion, eliminating the need for optimal network 

resource allocation, which simplifies the network layer. In other cases, network resource 

optimization will still be applied to complement vital sign compression and address the 

trade-off between the transmission energy and distortion of the reconstructed signal with 

respect to the network and application requirements.  

Moreover, the results of the resources allocation optimization problem for multiple 

users illustrate that using CAE technique for compressing and reconstructing the data, 

while considering the bandwidth as a decision parameter, will minimize the transmission 

energy of the data compared with using constant equally assigned bandwidth among all 

users. Comparison between the results of the resource allocation using CAE and Discrete 

wavelet transforms (DWT)was also captured, where CAE outperforms DWT as it 

minimizes both the distortion and the transmission energy efficiently. 
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CHAPTER 1: INTRODUCTION 

This chapter discusses m-Health systems and their importance. It includes a 

motivation behind processing data at the edge level, before transmitting through the 

wireless network. This chapter also explains the main objectives of the thesis and shows 

the thesis organization. 

1.1 Motivation  

Nowadays, the spending on health care increases rapidly and it is considered as a top 

priority worldwide. The reason behind that is the rising number of different diseases. The 

United States spends around $2.6 trillion for health care, as it is the highest spending on 

healthcare which expected to be doubled by 2023 [1]. Lately, the number of the patients 

who need continuous monitoring increases swiftly, and the physical contact with the 

caregiver is essential; but it causes a burden for both the patients and the doctors. This 

limits the one-to-one relationship between the patient and the doctor, posing a real 

challenge for the scalability of the healthcare system. 

One key solution to this problem is to exploit the fast developments of mobile, 

wearable devices and wireless technologies to build and improve the mobile-health systems 

(m-Health). The idea behind m-health is to use any communication device such as mobile 

phones, tablet computers and patient data aggregator along with wearable devices such as 

small sensors in/on or around the patient body to aggregate information about the human 

body. Various wearable devices were developed to sense the vital signs of the human such 

as electroencephalogram (EEG), Electrocardiography (ECG) and Electromyogram (EMG).  

These wearable devices should send the data through the wireless network toward the 

m-Health center to control and diagnose the situation of the patient as soon as possible.  
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These systems minimize the probability of losing lives of patients if the data was sent 

at the right time to the caregiver. The delivery of such vital signs is constrained by the 

wireless bandwidth provisioned from the network, which in some cases causes long delays 

especially for vital signs that require intensive raw data to be delivered in a short time for 

timely diagnoses e.g. EEG, ECG, etc. For mobile devices with limited energy sources, 

communication energy is usually the highest source of energy consumption, causing the 

delivery of raw vital signs to be very energy consuming. 

1.2 Problem Statement 

Transmitting important big real-time data through the network will be hindered and 

influenced by the network and application constraints such as the following: 

• The limited bandwidth of the network: Many users are using the network 

for different purposes and transmitting vital signs particularly consumes a huge amount of 

the network bandwidth; which is not applicable at any time.   

• Power consumption: Devices with power constraints e.g. smartphone will 

not be able to manage the huge amount of raw vital signs.  

• Delay: The application layer limitations on the end-to-end delay might be 

hard to achieve when dealing with huge amount of data and limited network resources, 

which will affect the efficiency of early detection.  

• Movement of the patients with respect to the wireless access point will 

affect the quality of the network and therefore the efficiency of transmitting the data.   

As a result, smart techniques are required to preprocess and compress the data at 

edge level (Patient Data Aggregator, e.g. smartphone), before transmitting the data, taking 
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into consideration the network state and the application requirements such as distortion of 

the reconstructed vital sign signal.  There are different compression techniques that can be 

applied to the data before transmission without considering the conditions of the network 

and the application. Our main focus is to verify the efficiency of compressing the vital 

signs data (like electroencephalogram EEG) using convolutional autoencoder to facilitate 

the transmission over the dynamic wireless network and reconstruct the data at the m-

Health center with an acceptable distortion based on the application requirements.   

 

1.3 Thesis Objective 

The main objective of this thesis is to design an edge computing solution, 

leveraging Deep Learning (DL) based technique for adaptive vital sign compression, and 

cross-layer design for optimal resource allocation to adapt to the network state and 

dynamics; which change frequently. 

 Additionally, considering the application requirements while setting the 

appropriate compression rate, the compression approach should offer a high compression 

ratio with minimal distortion between the original and reconstructed data and transmission 

within an acceptable end-to-end delay. 
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1.4 Contributions 

The contribution of this thesis can be summarized as follows: 

1. Designing an adaptive neural network to process and compress the vital 

signs such as electroencephalogram (EEG), inside the network at the edge level based on 

the network state and reconstruct the data with the minimal distortion at the m-Health 

center based on the application requirements. 

2. Applying Spatio-TEmporal Parametric Stepping (STEPS) mobility model 

for network resource optimization to define the locations of each patient with respect to the 

base station (wireless access point) during a certain duration of time.  

3. Design an optimization problem to manage the trade-off between the 

transmission energy in the wireless environment and the distortion of the reconstructed 

compressed data under the following constraints: 

a. The amount of applied compression. Compression ratio 

b. The data rate of each user which should not exceed a certain threshold.  

c. The distortion of the reconstructed signal generated by each user should 

be less than the distortion threshold, based on the application 

requirements. 

d. The end to end delay deadline. 

e. The bandwidth consumed by all users should be less than the maximum 

bandwidth of the network. 

f. The location of the user with respect to the wireless access point. 

4. Providing performance evaluation and a comparative study of both the 

compression approach and the network resource allocation. 
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1.5 Thesis Organization 

The rest of the thesis is organized as follows. In Chapter 2, we briefly provide a 

background on Deep learning, EEG signals, as well as summarize the related work in the 

literature. In Chapter 3, the methodology of the proposed solution is explained. The 

obtained experimental results are analyzed and discussed in Chapter 4. Finally, In Chapter 

5, the conclusion of the thesis and the future work. An Appendix is also provided to present 

the signals before compression and after being reconstructed at different compression ratios 

for certain dataset.  

1.6 Summary 

This Chapter has covered an introduction to the importance of m-Health systems, 

providing an enhancement to raise its efficiency by implementing an edge computing 

approach for adaptive data compression using Deep Learning based on the network state, 

before transmitting the data and reconstructing them at the m-Health center with respect to 

the application constraints. Problem statement, objectives, contributions and the thesis 

organization are also covered. 
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 CHAPTER 2: LITERATURE REVIEW AND BACKGROUND 

 This Chapter addresses the recent approaches in data reduction and compression, 

different wireless network resource allocation methods and compression of the data over 

the edge network. Moreover, the Chapter includes a background about the main concepts 

that will be used in this thesis.  

2.1 Literature Review 

2.1.1 Data Reduction and Compression 

 Due to recent trends and technologies such as the Internet of Things (IoT), the 

amount of data needed to be processed, transmitted and analyzed increase rapidly. As a 

result, different approaches were proposed to manage big data delivery using efficient data 

reduction techniques for analysis, and efficient transmission over bandwidth constrained 

networks. Data reduction is one technique to change the representation of the data and it 

could be done in different ways. Many researchers proposed different methods which aim 

to reduce the size of the data [2,3,4,5]. Further to this, some researchers have taken into 

considerations the network, and application requirements and constraints such as [6].  

 A fuzzy data reduction technique was proposed in [6] to obtain the most 

representative electroencephalogram (EEG) samples and neglecting redundant ones 

without loss of knowledge. The authors used fuzzy Formal Concept Analysis (FCA) with 

Smart Sensing (SS) approach to optimize the complexity, reduce the size of the stored data 

and maximize the lifetime of the battery-operated devices that need to run for a long time 

without replacement [6].  
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The authors in [7] modify Block Sparse Bayesian Learning-BO BSBL-BO method 

to manage both linear and nonlinear dependency structure of EEG raw signal. Moreover, a 

vector representation was applied on multichannel signal to achieve improved block 

sparsity structure. The experimental results show that even in high compression ratios the 

algorithm produces low reconstruction error. However, the technique has high complexity, 

where the sensing and processing power need to be optimized in order to be used on 

Wireless Body Area Networks (WBAN). 

 Compression is one type of data reduction methods, which will be used in this work. 

Generally, lossless and lossy compression are two main types of data compression. 

Lossless compression ensures reconstructing the original data from the compressed version 

without distortion. However, this will add a limitation on the compression ratio; as it would 

be hard to apply high compression ratios. On the other hand, the lossy approach can achieve 

high compression ratios, but it introduces distortion on the reconstructed signal.  

We will discuss different proposed compression technique using different 

approaches in the coming subsections.  
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2.1.1.1 Lossless/Near Lossless Compression Techniques   

 A novel near lossless compression algorithm for EEG signals was introduced in [8] 

to satisfy low power, latency, and low complexity by combining different state-of-the-art 

tools for data compression and signal processing. The encoder and decoder use the previous 

encoded value for prediction. The prediction is defined as a tree where the parents give the 

predicted value to the children and the root get its predicted value using past samples. 

Recursive Least Squares (RLS) algorithm was used to compute all (least-squares optimal) 

predictions efficiently. 

 The authors in [9] enhance the algorithm proposed by [8] to take into consideration 

the distortion threshold while looking for the best compression rates. The enhancement was 

by replacing RLS predictor with a multi-channel predictor that uses integer addition and 

multiplication. Approximating the exponential weighting was used to remove the floating-

point arithmetic. The improved method reduces all the computation requirements without 

affecting the compression ratio. In the modified algorithm, the authors find the set of 

predictors empirically, where they use four main predictors to improve the cost 

performance at certain compression rate. 

 Moreover, neural networks were used for compression in [10, 11, 12, 13, 14, 15, 

16].  A combination of Discrete Cosine Transform (DCT) and Artificial Neural Network 

(ANN) was used to develop a near lossless EEG compression approach.  The authors in 

[10] first apply DCT and then perform ANN on the DCT coefficients. Two main benefits 

of applying ANN are reducing the dimensions of the coefficients of EEG data and 

estimating the original coefficients in the reconstruction phase. Arithmetic coding was used 

to quantize the difference between the original coefficients and the estimated ones to 
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improve the reconstruction performance. Figure 1 presents the procedure of compression 

used.  

 

 

 

 

 

 

The experimental results show that the technique in [10] can give better 

compression ratios and less distortion compared to state-of-the-art. The authors did not use 

ANN directly on the EEG datasets; as training, will require more data and it would be hard 

to get the same reconstruction accuracy as what they achieve. Also, the two-stage 

compression approach tends to have high complexity to estimate the DCT coefficients, and 

apply ANNC for large data dimensions. 

  Another near lossless EEG compression approach was proposed by [11] using the 

neural network predictors, where the author tried four models of neural network and 

compare them with LMS adaptive linear and autoregressive (AR) model. The author found 

that single layer perceptron predictor produces the best results. In [12] the authors enhance 

Figure 1:The Diagram of Encoder in the Proposed Compression Method in [10] 



  
   

10 
 

the proposed near lossless EEG compression technique used in [11] by adding a 

preprocessing stage using the concept of correlation dimension (CD). 

 In [15], the neural network was used for EEG data compression, where a complete 

study about the effectiveness of this compression approach with respect to the overall 

energy consumption was presented. Their compression approach used Stacked 

AutoEncoder SAE which has mainly two functions encoding and decoding. The encoder 

transforms the original data to the compressed version with lower dimensionality using 

certain activation function and the decoder construct the data using another activation 

function. The bottleneck layer is the compressed data. Training is an expensive operation 

in SAE in terms of time, due to that, it was done offline at the server level to obtain the 

optimal set of weights and biases that will be used on the PDA. The authors’ model is 

represented using three main layers, where the second layer is the bottleneck, and the 

compression ratio can be described by the number of neurons in this layer [15].  

In [16], the authors consider the correlation among multiple modalities, by 

proposing deep learning approach using Stacked AutoEncoder (SAE) for compression and 

feature extraction as it considers both the intra-correlation and inter-correlation of the data 

from multiple modalities. The model implemented in [16] involves EEG and EMG 

pathways where each path can be considered as a separate SAE dedicated to learn the intra-

modality correlation of the data and at a certain level, a layer that merges the features of 

both joint layers will be used. Training the model is done offline on the server side and the 

optimal configurations are obtained and leveraged by the devices attached to the patients 

(PDA), to apply the right compression using the pre-calculated weights and biases for 

different network conditions. DEAP dataset was used in their experiments and a 
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comparison between SAE, DWT, CS and the 2D compression approach was done. The 

results show that having high compression ratios SAE would outperform the state-of-the-

art methods. 

2.1.1.2 Lossy Compression Techniques   

 The main idea behind lossy compression algorithms is to remove low energy (i.e. 

less important) coefficients, as a result of transforming the data into a specific domain, 

based on specific criteria, while keeping the most significant coefficients. Lossy 

compression has three main layers: transformation, quantization, and encoding.  Discrete 

Fourier Transform (DFT), Discrete Cosine Transform (DCT) and Discrete Wavelet 

Transform (DWT) are examples of transformation algorithms that change the original 

signal to the frequency domain coefficient, which has the important coefficients that will 

be used in the later stages. Compressing a range of values into discrete values is done by 

the quantization layer, DCT and DWT are also used for quantization. Predictive coding, 

arithmetic encoder or Set Partitioning In Hierarchical Trees (SPIHT) can be used to support 

the last layer which is the encoding. 

 1.5-D Multi-Channel EEG compression algorithm was proposed by [17] to manage 

the transmission of EEG signals through the network with low complexity and high 

reliability. The algorithm combines DWT with 1D to reduce the computational complexity 

and No List Set Partitioning In Hierarchical Trees (NLSPIHT) algorithm to perform better 

compression rate. At the same compression ratio, the proposed algorithm achieves better 

results than 2-D NLSPIHT algorithm; while 2-D SPIHT algorithm has better performance 

in lower compression ratios. Preprocessing the raw data in [17] is done using 1D DWT, 
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then the wavelet coefficients were reshaped into a matrix and used by   2-D NLSPIHT 

encoding algorithm to manage the compression. 

 Table 2-1 shows the relation between compression ratio and distortion using the 

three methods, where the 1.5-D Multi-Channel EEG compression algorithm has an 

effective performance, especially with high compression ratios.  

A combination of DWT and Compressive Sensing (CS) in wireless sensors was 

proposed in [18] as a lossy compression technique to control both compression and energy 

consumption of encoder and transmitter, having certain energy threshold. However, the 

authors in [16] believe that CS is not efficient for EEG compression. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Table 2- 1 

PRD (%) vs CR Comparison between 2-D SPIHT, 2-D NLSPIHT and 1.5-D NLSPIHT [17] 
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Real-time lossy EEG compression technique was proposed by Daou, Labeauin 

[19]. The method uses DWT and dynamic reference lists to get the decorrelated sub-band 

coefficients. SPIHT was used as source coder. The algorithm relies on the redundancy 

between different frequency sub-bands presented in different EEG segments of one channel 

in different time segments. The experiments expose the efficiency of the method in both 

compression and detecting seizure activity.  

The authors stated that their approach is unlike the previous techniques which use 

the same time segment to extract the correlation and ignore the characteristic of EEG in 

which different EEG segments can give similar features that can be eliminated for the case 

of compression. 

In [20], a lossy compression approach for an authentication system was developed 

by combining SPIHT compression algorithm with Discrete Wavelet to compress and 

reconstruct the signals. On the other hand, the approach used by [21] depends on pre-

processing the parts of EEG signal, which need to be transmitted and stored by performing 

spectral band separation, then Discrete Wavelets Transform with the appropriate wavelets 

was performed to achieve better results compared with Discrete Fourier Transform.  

2.1.1.3 Hybrid Compression Techniques   

 

Discrete cosine transforms, and Huffman coding was used in [22] to outcome a 

hybrid lossless EEG compression technique; which could outperform 1-D SPIHT,2-D 

SPIHT-AC, 2-D SPIHT and JPEG2000. Another hybrid approach was proposed in [23] 

where reshaping of the signals was applied before performing the compression to utilize 

the channel correlation. Two representations of the data were proposed, image (matrix) or 
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volumetric data (tensor).  The authors use these two representations into two-stage 

compression, starting by wavelet-based lossy coding layer, followed by arithmetic coding 

on the residual as a lossless fashion, which allows having restrictions on the distortion of 

the residual; and facilitate the signal reconstruction. 

 In [24], the authors propose lossy and lossless techniques to achieve good 

compression and reconstruction of the EEG signal. The method starts by applying a lossy 

method either DCT or DWT based on the user decision, to get rid of the redundancy in the 

data; since all the coefficients below a certain selected threshold will be replaced by zeros.  

At this stage, a lossless compression using either Run Length Encoding (RLE) or 

Arithmetic Encoding should be applied to the data to get high compression ratios without 

distortion.  

Our work regarding compression will enhance the work done in [15], where 

convolutional autoencoder will be used instead of staked autoencoder, to respect the 

correlations presented in EEG signals, by arranging the EEG data into 2D formations that 

take into consideration the spatio-temporal correlation amongst the EEG samples.  
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Table 2-2 and Table 2-3 present all mentioned compression techniques, the datasets 

used for evaluating and performance metric if applicable. 

Abbreviations used in Table 2-2 and Table 2-3: 

• SNR: Signal to Noise Ratio. [8] 

• MAE: Mean Absolute Error. [8]  

• CR: Compression Ratio. [15]  

• PRD: Percent-root mean square distortion. [15] 

• MSE: Mean Square Error. [21] 

• PSNR: Peak signal to noise ratio. [21] 
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Table 2- 2  

Summary of Different Compression Techniques 

 

 

Approach Compression 

type 

Dataset used Performance 

metric 

Comments 

Stacked 

autoencoder 

neural 

networks 

(SAE) 

 [15, 16] 

Lossless • BCI-IV-2a 

• BCI-IV-2b 

• DEAP dataset 

• PRD 

• CR  

Deep learning 

approach 

outperforms 

other 

techniques in 

high CR, but 

DWT is the 

best in low CR 

DWT and 

dynamic 

reference 

lists [19] 

Lossy • Dataset 1- MIT dB 

• Dataset 2- MNI 

dB. 

• PRD 

• CR 

 

Statistical 

modeling 

and 

encoding  

[8, 9, 25] 

 

Lossless • DB1a, b from 

BCI2000 system. 

• DB2a, b from BCI 

Competition III 

• DB3 from BCI 

Competition IV2 

• DB4 from BCI 

Competition IV4 

•  Diagnostic ECG 

DB 

• CR 

• MAE 

• SNR 

 

DWT in 1D 

and No List 

Set 

Partitioning 

in 

Hierarchical 

Trees 

(NLSPIHT) 

algorithm 

[17] 

Lossy CHB-MIT Scalp EEG 

Database 
• PRD 

• CR 

• MAE 

 

The proposed 

algorithm has 

an effective 

performance 

especially with 

high 

compression 

ratios 

 

Wavelet-

based lossy 

coding layer, 

and 

arithmetic 

coding [23] 

Hybrid • EEG-MMI 

• BCI3-MI 

• BCI4-MI 

 

• CR 

• PRD 

• MAE 
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Table 2- 3  

Summary of Different Compression Techniques 

 

Approach Compression 

type 

Dataset used Performance 

metric 

Comments 

Spectral 

band 

separation 

with DWT 

[21] 

Lossy • Partial EEG 

• Epileptic 

EEG 

datasets 

• CR 

• PSNR 

• MSE 

Compared to 

Discrete 

Fourier 

Transform, 

this approach 

gives better 

results.  

DWT and 

SPIHT [20] 

Lossy • Graz dataset 

A and B in 

the BCI 

Competition 

• Australian 

EEG 

Database 

recorded at 

the John 

Hunter 

Hospital 

• CR 

• PRD 

 

Discrete 

cosine 

transforms, 

and 

Huffman 

coding [22] 

Hybrid • Five 

datasets (A-

E) from 

Bone 

University 

database 

• CR 

• PRD 

Outperforms 

1-D 

SPIHT,2-D 

SPIHT+AC, 

2-D SPIHT 

and 

JPEG2000 

DCT and 

ANN [10] 

Near-

lossless 
• BCI2 

Dataset-IV 

• BCI3 

Dataset-II 

• BCI4 

Dataset-I 

• Bonn 

university 

Dataset  

• CR 

• PRD 
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2.1.2 Wireless Network Resource Allocation 

To facilitate patient’s remote monitoring while the patient is mobile, wireless 

technologies are commonly used to deliver the patient’s vital signs through dynamic 

wireless channel, which has lots of channel impairments such as fading, path loss, etc. 

Therefore, resource allocation is one of the most important techniques that guarantees 

maximum channel utilization, while providing Quality of Service (QoS) for multiple users. 

Due to this importance of network resource allocation; different approaches were addressed 

in the literature. In [26] these approaches were classified into four main classes, cost-

function based, decision-making processes using game theory, Markov decision processes 

(MDPs), and optimization based.  

Performing cost based resource allocation in the network to find the optimal 

solution such as [27]. The authors use distributed Lagrangian method to allocate a certain 

amount of resources for each node while minimizing the cost and satisfying the constraints 

of each node. However, using this approach in some cases would be hard as in [28], 

especially if it’s not the only factor affecting the allocation. The authors in [29, 30] propose 

a technique using a game theoretic approach, where a competition for getting the 

bandwidth from different network occurs between the users. The computational 

complexity of this approach can be considered as a drawback that needs to be resolved. 

Also, getting the optimal solution is not a must in this approach where an inefficient 

utilization may occur [31].  

Studying network switching between different RATs can be done using Markov 

and Semi-Markov decision processes [32, 33, 34]. Nevertheless, the size of the network 
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has a great impact on the complexity where the larger the network, the harder it is to get a 

solution [31].  

Optimization based approach would be hard to accomplish in some cases as finding 

an optimal resource allocation and user association with certain constraints might be an 

NP-hard problem; which could be managed by either relaxing the optimization or online 

adaptive learning for network selection as presented in [35].   

In [36] the authors develop a user-centric approach which integrate both the 

network and application requirements such as transmission energy, application quality of 

service and monetary cost to find the suitable RAN(s) that allows all users to meet the 

system obligations. An enhancement was added to [36] by implementing adaptivity to the 

system using dynamic weights update mechanism to maximize the operating time of user 

equipment (UE) and finding the optimal decision even under dynamic changes to the 

network [26].  

The authors in [37, 38] study the allocation problem to maximize the energy 

efficiency. In [37] a combination of four allocation schemes: antenna selection, time 

allocation, subcarrier and power allocation to improve the energy efficiency (EE) of the 

system was proposed. While in [38], an integration between Visible Light Communication 

(VLC) and Radio Frequency (RF)-based network in the wireless environment, was 

proposed to enhance the EE.  

Characterizing the comparative advantage of several Virtual Network Function 

(VNF) was used to allocate the computing resources efficiently [39]. Some researchers 

focus on uplink scheduling such as [40, 41, 42, 43]. In [40] the authors propose an efficient 

use of the uplink radio resources to the machine-to-machine (M2M) and a user equipment 
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(UE) by applying an extended random access (RA) scheme in two stages. The authors in 

[41] used uplink scheduling to allocate the resources for a user equipment (UE) with high-

priority data while performing an acceptable performance for other users.  

A fast-distributed gradient method (FGM) was proposed by [44] to solve the 

network utility maximization (NUM) problem. The authors found that their approach 

overcomes all the sub-gradient methods, which suffer from a certain rate of convergence.  

In [45], the authors proposed a multi-objective framework to manage the resource 

allocation while minimizing the transmission power, maximizing the energy efficiency and 

considering the Quality of Service (QoS) requirements and the limitations of the channel 

state information at the transmitter side. 

2.1.3 In-Network Processing for Data Reduction and Resource Allocation 

In-network processing focuses on processing vital signs at the edge network 

adaptively to respond to wireless network dynamics while addressing application-level 

requirements. Data reduction plays an important role in network resource allocation as 

optimizing the network and maximizing the use of resources is always a goal. Recently 

processing and transmitting medical data through the network became very active research 

area; due to the great enhancement of wireless and mobile communication technologies.  

Many researchers went through different resource allocation schemes; since the 

challenges behind the design of Mobile-Health (m-Health) systems with Body Area Sensor 

Networks (BASNs) need to be considered; such as the limitation of small sensors, which 

get affected by the consumed energy, storage and computational resources, let alone 

addressing the application level requirements.  
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The design of the wireless sensor was considered by researchers through 

minimizing the size and complexity of the signal compression techniques. For example, 

the authors in [46, 47] studied the practical performance of different compressive sensing 

implementations when applied to scalp EEG signals. [48] discussed their proposed low-

cost quadratic level compression algorithm to reduce the encoding delay, hardware cost of 

the minimized sensors along with the transmission energy. However, others concentrated 

on the in-network processing to manage the transmission of huge real-time data through 

the network. In [49], an encoding distortion model of DWT-based compression was 

proposed to analyze, controlling, and optimizing the behavior of the wireless EEG 

monitoring systems. The main decision parameters that affect distortion at the receiver side 

are compression ratio, wavelet filter length, and the channel models. 

An efficient user-centric network association mechanism over Device-to-Device 

(D2D) communication integrated into heterogeneous wireless networks to enhance the 

system performance and support reliable connectivity was proposed in [50]. The solution 

composed of three main stages to identify the RAN(s) and/or inner node(s) that optimize 

the user’s objective, while allowing all users to meet the system constraints. The authors 

in [51] propose ProbCache resource management algorithm for in-network caching, to 

allocate spaces based on the length of the path from the source to destination in order to 

reduce the caching redundancy and network traffic. However, their approach adds high 

computation complexity to the system. 

Prolong the lifetime of the wireless BASNs can be done by minimizing the total 

consumption energy. In [52], the authors claim to optimize the Energy-Cost-Distortion 
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using Lagrangian duality theory, where at the edge level (Patient Data Aggregator-PDA) 

the algorithm should run to find the optimal transmission rate and compression ratio, which 

satisfy the application layer constraints while providing the optimal trade-off among energy 

consumption, monetary cost and signal distortion. The proposed distributed cross-layer 

solution can be applied in heterogeneous wireless m-health systems. The authors in [53] 

developed an Energy–Rate-Distortion cross-layer framework which performs an optimal 

resource allocation for all users. The total energy consumption was minimized, having data 

delay deadline and distortion threshold as constraints.  An Energy-Delay–Distortion cross-

layer framework was proposed as an enhancement to the work in [53,54] to guarantee a 

good quality transmission of medical signals while having limited power and computation 

resources [55]. In [56] the authors introduced a cross-layer framework to minimize and 

adapt the total transmission time with respect to Bit error rate (BER), source coding 

distortion, encoding energy and transmission energy by applying a dynamic time-

frequency slot allocation, instead of the conventional Time Division Multiple Access 

(TDMA) scheme which uses constant bandwidth allocation.  

Unlike the work discussed above, we have proposed an Energy- Distortion cross-

layer framework, where the data rate, compression, bandwidth and end-to-end delay are 

the decision parameters of the resource allocation problem, while considering practical 

mobility pattern of the patient to study the impact of mobility as a source of network 

dynamics on the in-network processing and resource allocation techniques. In Chapter 3, a 

detailed explanation is provided.    
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2.2 Background  

2.2.1 Deep Learning 

Deep learning is a subfield of machine learning, which aims to introduce artificial 

intelligence in machine learning. This intelligence can be achieved by learning, which 

can be supervised, partially supervised or unsupervised. Usually, deep neural network 

composes of multiple layers for feature extraction, where the output of a layer is used as 

an input for the successive layer and each layer consists of a certain number of neurons. 

Neurons work like the human brain to learn without the need for human input. The 

neuron in the first layer extracts the simple feature of the input and passes them to the 

next layer, which learns with time more detailed features about the input. The more the 

layers, the more feature extraction, which may in some cases affect the classification 

accuracy [57]. We call the layers between the input and the output as hidden layers; 

Figure 2 shows a simple representation of the neural network. 
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Deep neural network is not a new field in the research. In 1986 back-propagation 

was introduced for the first time by Rumelhart. However, most neural networks were a 

single layer due to the cost of computation and availability of data. In July 2006 Hinton 

and Salakhutdinov, introduce the multi-layer neural network to reduce the dimensionality 

of the data in order to facilitate the classification, visualization, communication, and 

storage of high-dimensional data. In 2010, the first strong work has been published since 

2006 by Abdel-rahman Mohamed, George Dahl, and Geoffrey Hinton, where they used 

deep neural networks in acoustic modeling. There are four major architectures of deep 

Figure 2: Simple Representation of a Neural Network, Where the Circles Corresponds to 

Neurons 
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neural networks where all the layers could apply three main operations: forward 

propagation, backward propagation, and update which performs updates to the weights of 

the layer during training. 

I. Recurrent Neural Networks (RNN) 

Usually, RNN used with the data that have good interdependencies to maintain 

information about what happened in all the previous layers, where the output of a layer 

depends on the previous computations. This type of neural network does not go through 

the update operation of the weights; since it uses the same weighs across all the layers. 

Due to that, the total number of parameter that the network needs to learn will be reduced. 

It’s worth to mention that RNN has great achievements in language modeling, 

bioinformatics and speech recognition applications [58].  

II. Autoencoder (AE): will be explained in the coming subsection. 

III. Convolutional Neural Networks (CNN): will be explained in the coming 

subsection. 

IV. Recursive Neural Networks:  

Like Recurrent Neural networks as it has a shared weight matrix, however, it uses 

a variation of backpropagation called backpropagation through the structure (BPTS) since 

it uses binary tree structure in learning [59]. 
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2.2.1.1 Autoencoder 

Autoencoder (AE) is a neural network usually used for unsupervised learning as it 

aims to recreate the input rather than classify it under certain classes [60]. The number of 

neurons in the input layer equals to the number of neurons in the output layer. Unlike other 

neural networks, the hidden layers have a smaller number of neurons compared to 

input/output layers. This is because autoencoder proposed to encode the data with lower 

dimensionality and extract the discriminative features. The number of hidden layers 

depends on the dimensionality of the input as single hidden layer will not be sufficient to 

represent high dimensionality data, and in this case, we call the model as deep Autoencoder 

model [58]. General representation of autoencoder presented in Figure 3. 

 

Figure 3: General Representation of Autoencoder 
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2.2.1.2 Convolutional Neural Networks 

It was proposed in 2012 by Krizhevsky, Sutskever, and Hinton in [61], where they 

called it AlexNet. Many other configurations were developed after that such as Clarifai, 

VGG, and GoogleNet. 

Convolutional Neural Network (CNN) is an efficient artificial neural network 

approach, which was proposed to manage the data that has local correlations while 

minimizing the number of training parameters. It was called convolutional because it 

performs a complex operation using convolutional filters on the entire image instead of 

using neurons in its layers. Using filters decrease the number of connections between the 

layers. CNN was able to outperform the state-of-the-art techniques in advanced computer 

vision and natural language processing tasks [62].  

There are three main types of layers used in a convolutional neural network, which 

are the following:  

I. Fully connected layer: 

They are usually used as the last layer after the convolutional and pooling layers to 

convert the 2D input into 1D output. Nonlinear activation function could be used in these 

layers in order to get the class prediction of the output [62].  

II. Convolutional layer: 

Consist of filters with certain dimensions to extract the features from the input. 

Filters are another representation of neurons, which generate an output value of a weighted 

input. The filter should move through the input and capture the features. If the size of the 

input is not divisible by the size of the filter; then padding technique should be performed 

on the input.  Convolutional layers can expect as an input either normal pixels values if it 
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is an input layer or feature map if it is a hidden layer. Feature map is the output of a filter 

in the previous layer, where we might get multiple feature maps from the previous layer 

based on the number of filters used [62]. 

III. Pooling layer:  

It is called down-sampling layer, which usually located after the convolutional layer 

to reduce the spatial dimensions of the input for the next convolutional layers. Pooling 

layers usually used to minimize the following [62]: 

•  Computational overhead. 

• Computational costs; since the number of parameters will be reduced. 

• Chance of getting over-fitting  

2.2.1.3 Convolutional Autoencoder 

A combination of Convolutional Neural Networks (CNN) and Autoencoder 

produce Convolutional AutoEncoder model (CAE). The fully connected layers in SAE will 

be replaced by convolutional layers in both encoder and decoder sides.  This type of models 

usually used in image processing; because of having convolutional layers. . 

 We will use this model in our proposed compression solution as the encoder will 

apply compression of the EEG signal on the sender side (PDA) and the decoder will 

reconstruct the signal at the receiver side (m-Health center). The main advantage of using 

Convolutional Autoencoder model is applying high compression ratios since the number 

of filters in the bottleneck layer corresponds to the compression ratio and better 

reconstruction of the EEG signal as CNN respects the correlation occurred between and 

within the input, and EEG signals have spatio-temporal correlation amongst it samples. In 
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this thesis, the power of convolutional layers will be used to consider this aspect.  

 

 

 

 

Figure 4: Representation of Convolutional Autoencoder 

 

 

2.2.2 Electroencephalogram Signals (EEG) 

The nervous system of the human controls the functioning of the brain by sending 

continues electrical pulses to different parts of the brain. The electroencephalogram (EEG) 

is a monitoring technique that records the electrical activity (electrical pulses) of the brain 

from the scalp through a group of sensors called electrodes, which collect and transmit the 

EEG signals to another device/station to be analyzed [24]. EEG signals are considered to 

be one of the richest sources of information about the human body. Hence, it can be used 
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to diagnose different brain disorders such as epilepsy, loss of consciousness or dementia, 

check the status of the brain if dead for a person in a coma, sleep disorder and much more.  

However, analyzing EEG is also very challenging since they contain several 

artifacts from different parts of the body. EEG signals usually have both intra-correlation 

and inter-correlation, which may opportunistically lead to efficient application-specific 

representations. Many representations were proposed to manage these correlations as 

mentioned above [23]. 

 There are five main frequency bands in EEG signals; which are delta, theta, alpha, 

beta and gamma [21].  

• Delta: it has a frequency range of 4 Hz or below. It tends to have high amplitude 

and the slow waves, where it’s usual representation of dominant rhythm in infants 

up to one year and may occur in certain sleep stages.  

• Theta: it has a frequency of 4 to 7.5 Hz and it tends to have low-medium amplitude 

and too slow activity. It is normal to have theta waves in children up to 13 years, 

while sleeping and an adult in unconsciousness state. 

• Alpha: it has a frequency between 7.5 and 13 Hz. It appears in normal relaxed adults 

as it disappears while opening the eyes or doing any operation. Alpha waves tend 

to have considerably low amplitude. 

• Beta: has a frequency of between 13 and 30 Hz and it tends to have low amplitude. 

It can be used for a patient in alert or anxious case. Gamma: it has a frequency of 

30 Hz and above. Gamma appears normally while processing information such as 

working memory and attention. 
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2.2.3 Discrete Wavelet Transforms (DWT) 

 

DWT is one of the most known algorithms that can be used for compression, 

quantization, and encoding on the raw EEG data, where the wavelets are discretely 

sampled, and it can capture both frequency and location information; which make it 

efficient in analyzing such non-stationary signals like EEG [63, 20].   

Discrete wavelet transforms decompose the input signal into two frequency bands 

using high and low pass filters as part of the processing and compressing the signal. The 

high pass filter uses wavelet functions, while the lowpass filter uses scaling functions. 

These filters will output two types of coefficients. The filtering process in DWT 

can be done in different levels, which give different resolution for the same input signal. 

The approximation coefficients correspond to low frequency and detail coefficients 

corresponded to high frequency. Inverse Discrete Wavelet Transform (IDWT) is the 

technique used to reconstruct the compressed signal with a certain amount of distortion. 

2.2.4 Spatio-TEmporal Parametric Stepping Mobility Model (STEPS) 

 

Spatio-TEmporal Parametric Stepping (STEPS) is a mobility model that can cover 

a large spectrum of human mobility patterns and from the name, it uses the power law to 

rule the movement of the node and make abstraction of Spatio-temporal preferences in 

human mobility. Implementing STEPS model is easy, flexible to configure and 

theoretically tractable [64]. Other mobility models ignore the purpose of the user 

movement during certain time; as most models focus on spatial features of human mobility, 
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while ignoring the temporal features (when they visit the location) and most likely the users 

in STEPS spend more time in their favorite locations [65]. There are many mobility models 

that represent the movement of human/objects. However, we decided to use STEPS 

mobility model as it’s the closest representations of movement in certain zones, which can 

be described as the movement of the patients within the hospital or at home for example. 

We have used the implementation of STEPS mobility model where we can specify the 

dimensions of the zones “it should be 𝑁 × 𝑁”, the minimum and maximum speed of the 

users/patients, total number of users/patients and finally the simulation time. The output of 

running the model is an array of (𝑥 , 𝑦) location for all users at each time slot of the 

simulation. Figure 5 represents a snapshot of the animation when running the model in 

MATLAB.  

 

 
 

 

Figure 5:  Snapshot of Running STEPS Mobility Model, having 4 Users, 16 

Different Zones, Minimum Speed 2 and Maximum Speed 6. " Only for 

Demonstration” 
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CHAPTER 3: METHODOLOGY 

In this Chapter, our proposed approach will be presented for implementing an 

adaptive EEG compression technique on the client side at the edge network and reconstruct 

the signals on the server side at the health center with the minimum distortion possible 

while considering the changes in the wireless network. In the following sections, we will 

explain (1) Preprocessing steps, (2) The adaptive compression technique using Deep 

Learning and (3) The optimization of resources in a wireless network. Figure 6 summarizes 

the workflow of our proposed solution. 

 

 

 

 

 

 

Figure 6: The Workflow of Our Proposed Solution 
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A representation of the system model in Figure 7. The scenario supposes that a 

different number of users changing their locations, where each patient has a wearable 

device or some sensors attached in/on his/her body to collect the EEG signals and send 

them to the Patient Data Aggregator (PDA). 

The PDA should find the best compression ratio to compress the data based on the 

current network state and the application requirements by running the resource allocation 

algorithm. After that, it applies the proposed compression technique on the data before 

transmitting through the wireless network to the m-Health center. 

 

 

 

 

 

 

 

 

Figure 7: Scenario Where the Proposed Solution Can be Used 
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3.1 Preprocessing 

In this subsection, a detailed description will be discussed for the pre-processing 

steps that aim to improve the quality of compressing the EEG signals, and minimizing the 

distortion of the reconstructed signal while applying the maximum possible compression 

ratio. For this purpose, reshaping and normalizing the data was used. The preprocessing 

step is done in the edge level of the network (at the PDA).  

3.1.1 Reshaping the Data 

Our datasets of Electroencephalogram (EEG) signals were represented in a 2D 

matrix; where each row represents an EEG sample. After that, ZigZag approach described 

in [66] was applied as only the even rows are flipped. The authors believe that this approach 

will exploit both spatial and temporal correlations of the EEG and hence enhance the 

performance of compressing EEG signals as they achieve the maximum correlations 

between the EEG signals. This approach was used in image compression algorithms as 

well. We have applied our compression/reconstruction technique without considering the 

ZigZag approach and it was found that the visualization and distortion rate occurred get 

worse compared with applying the ZigZag approach. Therefore, in the following, we fix 

the reshaping to use the ZigZag approach.  Figure 8 represents an illusion of ZigZag 

approach applied to metrics. 
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3.1.2 Normalizing the Data 

In machine learning, normalizing the data is an efficient step during the training 

and testing. According to [62], normalizing the data to make the values between zero and 

one as a pre-processing step before usage will guarantee a stable convergence of weights 

and biases. Moreover, in deep neural networks, training is a very important step, and 

keeping the data without normalizing will make the training step more complicated and 

slow. This phenomenon called internal covariate shift and solving it can be achieved by 

normalizing the training data before being used in the input layer [67]. We have used 

equation (3.1) to normalize the data. 

Value after Normalization= 
𝑉𝑎𝑙𝑢𝑒 𝐵𝑒𝑓𝑜𝑟𝑒 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛−𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒−𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒
          (3.1) 

 

3.2 Data Compression and Reconstruction Using the Proposed Solution 

As mentioned earlier we decided to explore the power of deep learning in 

compressing and reconstructing EEG signals. Two main models in deep learning were 

combined in order to create our proposed model. Autoencoder and convolutional neural 

Figure 8: A Simple Example Represents the Zigzag Approach Used in [66] 
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networks were combined to end up with convolutional autoencoder. Convolutional 

Autoencoder (CAE) was used before in many image and motion processing applications 

[68, 69, 70]. However, our main aim here is to compress the EEG signal to the maximum 

while being able to reconstruct the signal with the minimum distortion. Figure 9 denotes 

our model, which consists of the input layer, multiple hidden layers, and an output layer.  

The output of each layer (feature map) is an input to the next layer, until reaching to the 

output layer. Since we are using Convolutional layers the EEG signal will be reshaped in 

2D and the number of filters in each layer changes regularly until reaching to the bottleneck 

layer which gives certain compression ratio. We believe that the usage of convolutional 

layers instead of fully connected layers will utilize efficiently the significant correlations 

in EEG signals. CNN can also learn the internal features representation to expect the spatial 

relationship between the entries of the input, hence provides efficient representation of the 

EEG as a challenging non-stationary signal. 

The general network architecture used for a certain dataset can be summarized as 

follows:  

• Input layer: it represents the input (EEG signal) in 2D. 

• Convolutional 2D layer: the input will be processed by a certain number of 

filters with certain kernel size.  

• Max pooling layer: reduce the dimensions of the input “feature map” by a 

certain value.  
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• Convolutional 2D layer: its input is the reduced feature map from the previous 

layer and it will be processed by a certain number of filters which is less than 

the number of filters in the first convolutional layer.  

• Max pooling layer:  reduce the dimensions of the input “feature map” by a 

certain value.  

• Convolutional 2D layer: its input is the reduced feature map from the previous 

layer and it will be processed by a certain number of filters which is less than 

the number of filters in the second convolutional layer.  

• Max pooling layer: reduce the dimensions of the input “feature map” by a 

certain value and this layer considered as the bottleneck layer, where the 

number of filters represents the compression ratio that should be applied to the 

data. 

The same number of layers will be repeated in the decoder side but instead of using 

max-pooling layers, up-sampling layers will be used. The first part of the model which is 

the encoder compresses the data to some limit while the second part is the decoder that 

works on reconstructing the data to get the original signal with the minimum distortion.  

The training of the network is done offline and once a good performance is 

achieved, the model configuration (matrix) will be saved and used on the PDA of the client.  

 After running the optimization resource allocation problem to find the suitable 

compression (if needed), the configuration matrix corresponding to the compression ratio 

will be multiplied with the data to transmit the compressed data through the network. 
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Figure 9: Deeper Representation of the Proposed Compression Approach on Certain 

Dataset 
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Here is an abstract explanation about each used layer in the proposed model, where 

fully connected layers are not used in the proposed model as the aim of the model to 

compress and reconstruct the data not to classify them into classes. 

• Convolutional 2D layer: it was used for the output and hidden layers. 

• Max-Pooling layer: max-pooling layers were used in the model, where the max 

filter is used to get the maximum value of a certain region of the input, ending up 

with a matrix of the maximum values of all regions. Figure 10 represents a simple 

example of how max-pooling layers work.  

Max pooling layer affects only the width and the height of the input, but the depth 

stays the same. For example, if the dimension of the input is (𝑥, 𝑦) after applying max 

pooling with non-overlapping kernel size (𝑘, 𝑘), then the dimensions of the output will be 

(
𝑥

𝑘
 , 

𝑦

𝑘
 ). 

 

 

  

Figure 10: A Simple Example of How Max Pooling Layer Works 
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• Upsampling layer: it is the opposite operation of pooling, where it tries to 

reconstruct and approximate the original input, by repeating the rows and 

columns of the data.  

An explanation of how to calculate the number of filters that represent certain 

compression ratio is illustrated by the example below with the following assumptions: 

• Input size as a vector is 512. Since we are using CNN, then we should 

reshape it in 2D where the size of the input will have the dimensions of 

32×16. 

• If the bottleneck layer has an expected input size of 4×2 then having 1 

filter at this layer will give around 98% compression.  

The compression ratio (𝐶𝑅) is defined as the data reduction in size relative to the 

uncompressed size of the data, represented by equation (3.2) below, where 𝐹 is the number 

of filters,  𝑀𝑖 × 𝑁𝑖  is the dimensions of the input for the bottleneck layer and 𝑂𝑆𝑎𝑚𝑝𝑙𝑒is 

the size of the original data. 

Compression ratio (CR) =  |
(F ×  𝑀𝑖 × 𝑁𝑖 ) − 𝑂𝑆𝑎𝑚𝑝𝑙𝑒

𝑂𝑆𝑎𝑚𝑝𝑙𝑒
| ×  100% 

(3.2) 
 

Compression ratio =  |
(1×4×2)−512

512
| ×  100% = 98.4 % 

 

So, if we are looking to compress 90% of the data then the number of filters needed 

should be calculated as the following: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 (𝐹) =
𝑂𝑆𝑎𝑚𝑝𝑙𝑒 − (𝐶𝑅 × 𝑂𝑆𝑎𝑚𝑝𝑙𝑒)

𝑀𝑖 × 𝑁𝑖  
 

                                                                                                                                  (3.3) 
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𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 =
512 − (0.9 × 512)

4 × 2
= 6.4 = ⌊6.4⌋ = 6 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 

 

Note that the value of the filter should be an integer, if not then floor function will 

be applied if the decimal value is less than 5, else we apply ceil function. In this example, 

we applied floor function which gives 6 as the number of filters. However, we are not 

compressing exactly 90%. To calculate the new compression ratio, we should apply the 

compression ratio equation to the following: 

Compression ratio (CR) =  |
(6×4×2)−512

512
| × 100% = 90.625 % 

From this example, we can conclude that the size of the dataset and then the size of 

the input in the bottleneck layer decides the maximum compression ratio applied to the 

signal.  

It is worth mentioning that the runtime complexity of using CAE approach can be 

represented by equation 3.4  

𝑂(∑ 𝐿𝑖 ×
𝑀𝑖×𝑁𝑖

𝐾2
𝑑
𝑖=1 )                                                  (3.4) 

Where 𝑑 is the number of convolutional layers in the neural network, 𝐿𝑖 is the 

number of filters in layer 𝑖, 𝐾 is the kernel size and 𝑀𝑖 × 𝑁𝑖  is the dimensions of the input 

for the 𝑖𝑡ℎ layer.  

In our proposed CAE models, the size of the input is always divisible by the kernel 

size. The size of the input changes regularly, as a result of having max-pooling layers.  
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Summary: 

Using Convolutional Autoencoder as a technique to compress the medical data is a 

new approach, which was not addressed before. Three main types of layers were used to 

build our model, convolutional, max-pooling and up-sampling layers. Unlike any other 

compression technique, deep learning is dataset and application specific. As we can’t use 

the same model for different datasets, this outcome will be shown and discussed more in 

Chapter 4.   

3.3 The Optimization of Resources in a Wireless Network 

In practice, the state of a wireless network changes frequently, which denotes the 

importance of making the compression adaptive to the network state. In this subsection, 

the communication between patients’ mobile devices and m-Health cloud, using wireless 

infrastructure will be managed as well as an explanation of the optimization problem of 

allocating the network resources having a huge amount of data transmission and limited 

resources. As mentioned before, our main focus is minimizing the transmission energy of 

the compressed data and the distortion of the reconstructed data of the patient while having 

different bandwidth and transmission rates. 

The mobility of users was considered, where compressing and transmitting the data 

while the user is moving should be applicable; as it will affect some parameters of the 

optimization problem.  

We used Spatio-TEmporal Parametric Stepping (STEPS) mobility model which 

was explained in Chapter 2, Section (2.2). The output of running the STEPS mobility model 

is an array of the 𝑥 and 𝑦 locations for all users at each time slot of the simulation. These 
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locations were used to calculate the distance between the users and the base station 

(wireless access point), which assumed to be at 𝑥0 = 0 and 𝑦0 = 0.  

By the end of this step, a two-dimensional array represents the distance between 

different users and the base station at different time slots is created and used in the 

optimization problem while solving for the optimum solution.  It’s important to note that 

changing the distance will affect the channel and the amount of compression applied to the 

data, causing changes in the distortion and transmission energy as stated in Chapter 4.  

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √(𝑥𝑖 − 𝑥0)2 + (𝑦𝑖 − 𝑦0)2                                         (3.5) 

 

The optimization problem is solved with respect to five different decision 

parameters, which are:  

• 𝐶𝑅: The amount of compression ratio applied to the data of each user before 

transmitting. 

• 𝑅: The data rate of each user should not exceed a certain threshold.  

• 𝐷: The distortion of the reconstructed signal generated by each user should be 

less than the distortion threshold (𝐷𝑡ℎ).  

• The total end to end delay should be less than delay deadline. 

• 𝑤: The bandwidth consumed by all users, which should be less than the 

maximum bandwidth of the network. 

• The location of the user with respect to the base station.  
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To present a wireless communication environment, we use Rayleigh channel model 

[52], where the signal to the receiver is affected by both path loss and multi-path fading.  

As stated earlier, we propose to optimize the transmission energy and the distortion 

in a wireless environment. Equation (3.6) represents the transmission energy for a user at 

certain time slot while having certain channel characteristic; which will be affected by the 

location (distance between the user and the base station) of the user at that time slot. 

𝐸𝑇 =  
𝑥𝑖×𝑙×𝑤𝑖×𝑘𝑖×2

𝑟𝑖
𝑤𝑖

𝑟𝑖
                                                      (3.6) 

 

Where 𝐸𝑇 is the transmission energy for user 𝑖, 𝑥𝑖  is the channel gain for user i, l is 

the packet length, 𝑘𝑖 is the transmitted data, 𝑟𝑖  and 𝑤𝑖 are the data rate and bandwidth of 

user i respectively.  

Equation (3.7) represents the relation between transmitted data and distortion for 

certain user 𝑖 using our proposed model. The values of the parameters 𝑐1 and 𝑐2 change 

based on the application (dataset).  

𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 (𝐷) = 𝑐1𝑘𝑖
𝑐2                                             (3.7) 

 

DWT is one of the most known algorithms, which was mentioned in Chapter 2, 

Section (2.2). We have used the DWT equation proposed by [52] for compression. 

However, we have used the regression model as depicted in [52], but we are looking to 

solve the optimization using CVX optimization tool instead of using transformations and 

solve using Lagrangian. Equation (3.8) represents the modified equation for distortion, 

where 𝐷 is the distortion of the reconstructed signal, 𝐹  is the wavelet filter length, 𝑘𝑖 is 

the transmitted data for the 𝑖 𝑡ℎuser and 𝑐11, 𝑐22, 𝑐33, 𝑐44, 𝑐55 and 𝑐66 are the model 
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parameters which are estimated by the statistics of the typical EEG encoder. 

𝐷 = 𝑐11. 𝐹−𝑐22 + 𝑐33. 𝑒𝑐44𝑘𝑖 + 𝑐55. (𝑘𝑖 × 100)−𝑐66                         (3.8) 

Equation (3.9) is the general representation of the objective function where the 

optimization was applied to find a trade-off between the transmission energy and the 

distortion of the reconstructed signal for all users at the certain time considering the 

mentioned constraints in the beginning of Section (3.3). Both transmission energy and 

distortion were normalized by dividing the total value by the maximum value of both as 

presented in (3.9). The maximum value for the distortion rate is 100. The 𝑤 is the weighting 

factor, which has a value between 0 and 1, and can be set based on the desired transmission 

energy and distortion trade-off. When the value of the weight equals to 1, this represents 

minimizing the transmission energy only and neglecting the distortion. On the contrary, 

when the weight equals to 0, then the transmission energy will be neglected, and only the 

distortion will be considered. 𝑛 is the number of users, 𝐸𝑚𝑎𝑥 represents the maximum 

energy, 𝐸𝑇 which was defined in (3.6) and  𝐷𝑖 is the distortion represented in (3.7 and 3.8) 

for user 𝑖. 𝑤 is the weighting factor, 𝑟𝑖 is the data rate for user 𝑖, 𝑘𝑖 is the transmitted data 

for user 𝑖, 𝑤𝑖 is the bandwidth allocated for the 𝑖𝑡ℎ user, 𝑑𝑖 is the end-to-end delay for user 

𝑖; 𝑑𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 is the delay deadline, 𝑊𝑚𝑎𝑥 is the maximum bandwidth and 𝐷𝑡ℎ is the distortion 

threshold which will change within a certain range (e.g. Between 8% and 12%).  
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𝑃: 𝑚𝑖𝑛 (  ∑ ((
𝑤 

𝐸𝑚𝑎𝑥
× 𝐸𝑇) + (

1−𝑤

100
× 𝐷𝑖))𝑛

𝑖=1  )(3.9) 

Subject to: 

𝑟𝑖 > 0                                                                     (3.10)  

1 ≥ 𝑘𝑖 > 0                                                        (3.11) 

𝑤𝑖 > 0                                                         (3.12) 

∑ 𝑤𝑖
𝑛
𝑖=1 < 𝑊𝑚𝑎𝑥                                                 (3.13) 

∑ 𝑑𝑖
𝑛
𝑖=1 ≤ 𝑑𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒                                           (3.14) 

𝐷𝑖 < 𝐷𝑡ℎ                                                  (3.15) 

Equation (3.16) represents the maximum data rate; where l is the packet length and 

𝑑𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 is the delay deadline. 

𝑅𝑚𝑎𝑥 =  
𝑙

𝑑𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒
                                               (3.16) 

 

The maximum energy represented in equation (3.17) below: 

𝐸𝑚𝑎𝑥 =  
𝑥×𝑊𝑚𝑎𝑥×𝑙×2

𝑅𝑚𝑎𝑥
𝑊𝑚𝑎𝑥

𝑊𝑚𝑎𝑥
                                              (3.17) 

 

 x is the channel gain of the user, 𝑊𝑚𝑎𝑥is the maximum bandwidth available in the 

network, l is the packet length, 𝑅𝑚𝑎𝑥is the maximum data rate of a user.  

In Chapter 4, we will go through the setup of the models and the analysis of the 

results. 
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CHAPTER 4: RESULTS AND DISCUSSION 

In this chapter, we will present the results of both our proposed compression 

technique and solving the optimal resource allocation in a wireless environment. 

4.1 Datasets  

We conduct our experimental analysis on three datasets  

• BCI-IV-2a from the BCI Competition IV [72]: These EEG signals recorded from 

9 subjects, 22 electrodes, four different motor imagery tasks: the imagination of 

movement of the left and right hands, both feet and tongue. The EEG signals were 

sampled at 250 Hz and bandpass-filtered between 0.5 Hz and 100 Hz. The dataset 

contains a total of 7548 data samples. We divide it into 6416 for training and 1132 

for testing. 

• BCI-IV-2b from the BCI Competition IV [73]: These EEG signals recorded from 

three bipolar recordings: C3, Cz, and C4 with a sampling frequency of 250Hz 

from 9 participants. Like BCI-IV-2a, the signals were bandpass-filtered between 

0.5 Hz and 100 Hz. The dataset contains a total of 5892 data samples. We divided 

it into 5202 for training and 690 for testing. 

• DEAP dataset [74]: EEG recording of 32 participants where we have a total of 

11520 data sample for both testing and training. 
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4.2 Setup environment 

4.2.1 Compression  

We have used Lenovo IdeaPad Z570 (Intel Core i5) with Ubuntu 14.4 operating 

system. Python programming language was used to build our compression CAE model as 

it has professional easy to use built-in libraries such as SciPy for scientific computation 

and scikit-learn which is a professional grade machine library.  

TensorFlow and Theano are two main numerical libraries for building a deep neural 

network, in Python. We have used TensorFlow which was released by Google, and it can 

be used directly to build the model or using wrapper libraries built on top of TensorFlow 

to simplify the process.  

Python has a simple library called Keras, which run on top of TensorFlow to hide 

the complexity behind the TensorFlow neural network models and facilitate the process of 

building deep learning for research and development. Keras can run on both GPUs and 

CPU which make it more powerful and effective; since using GPU will reduce the time 

required for training a model [62]. 

As mentioned in Chapter 3, CAE was built using three types of layers, 

convolutional 2D layer, pooling layer, and up-sampling layer. Each layer was used for a 

certain purpose and here is the detailed information about the parameters used in each layer 

on both BCI2-IV-2a and BCI-IV-2b dataset; since deep learning approach is dataset 

specific as we will explain later in the Chapter.  
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• Input layer: it will receive the input and reshape it in 2D, for BCI-IV-2a dataset 

the dimensions of the input is 32 × 16, and the dimension used for BCI-IV-2b 

32 × 24. 

• Convolutional 2D layer: 4 × 4 kernel size was used for the filters and Relu 

activation function in all convolutional hidden layers. The number of filters 

changes based on the amount of compression that needs to be applied to the data. 

The number of hidden Convolutional layers in BCI-IV-2a equals to three in both, 

the encoder and decoder and the one bottleneck layer. In BCI-IV-2b, two 

convolutional layers were used for most of the cases and one bottleneck layer.   

• Pooling layer: we used a max-pooling layer to apply the reduction of the input 

size by 2.  

• Up-sampling layer: we used 2 as the up-sampling factor for rows and columns. 

The model was compiled and configured for training using Adam optimizer, mean 

square error loss function and mean absolute error, percentage root distortion rate 

and accuracy as a compilation metrics. The model was trained for 70 epochs with a batch 

size of 5.   

At the end of the training and after the testing, the input signal and the predict 

signals which represent the reconstructed signal should be saved in mat representation to 

give us the chance of visual evaluation 

The figure below shows encoder and decoder models when applying 61% 

compression on BCI-IV-2a dataset 
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4.2.2 Optimization of the Network Resources  

We have used Lenovo T460s (intel Corei7) with Microsoft Windows 10 Pro 

operating system to run the optimization problem. MATLAB was used to build the system 

model where the optimization problem should run. The CVX modeling system for convex 

optimization was used to build and solve the optimization problem by defining a set of 

constraints and objectives of the optimization problem [75].  

 

Figure 11: (a) Represents the Encoder Part of the Model Which Should be 

Implemented in the Edge Level of the Network (like PDA). (b) Represents the Decoder 

Part of the Model Which Should be Implemented on the Server Side of the Network 

(m-Health Server). 
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In Chapter 3 we discussed the system model, where the patients change their 

locations while sending their EEG records through the network with respect to the network 

and application requirements. Table 4-1 represents the simulation parameter used when 

solving the optimization problem. 

 

 

Table 4- 1 

The Simulation Parameter Used When Solving the Optimization Problem 
 

Parameter Value Parameter Value 

Maximum data rate 

(𝑹𝒎𝒂𝒙) 

2000000 bit/s Packet length 

(l) 

50000 

bits 

Maximum 

bandwidth(𝑾𝒎𝒂𝒙) 

1.5×106Hz Minimum 

bandwidth 

(𝑾𝒎𝒊𝒏) 

0 Hz 

Time Steps 60 s Distortion 

threshold 

Between 

8% and 

16% 

Noise spectral 

density (𝑵𝟎) 

−3.98×10−21 

dBm/Hz 

Doppler 

frequency 

0.1 Hz 

Delay Deadline 0.025 s 𝐜𝟏 4.9404 

𝐜𝟐 -0.351 F (filter length) 2 

𝐜𝟏𝟏 2.2 𝐜𝟒𝟒 1 

𝐜𝟐𝟐 0.3 𝐜𝟓𝟓 3620 

𝐜𝟑𝟑 1.4752 𝐜𝟔𝟔 1.465 
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4.3 Results and Discussion  

4.3.1 Compression using CAE 

As mentioned above, our compression approach is based on convolutional 

autoencoder neural network (CAE). The architecture of the model is highly dependent on 

the dataset, as each dataset should have its own model. Using the same (CAE) model for 

different datasets while changing only the bottleneck layer is applicable but it does not give 

good results.   

Our performance metrics are the following: 

• Compression ratio (𝐶𝑅): Each dataset has maximum compression ratio based on 

the size of each dataset. For example, BCI-IV-2a dataset can reach up to 98.4% 

compression which means we are sending only 1.6% of the data However, 93 % 

compression is the maximum compression ratio can be achieved on DEAP and 

BCI-IV-2b datasets. The compression ratio was calculated as mentioned in 

Chapter 3.  

• Percent-root mean square distortion (𝑃𝑅𝐷): 𝑂𝑆𝑎𝑚𝑝𝑙𝑒 corresponds to the original 

signal, 𝑅𝑆𝑎𝑚𝑝𝑙𝑒 corresponds to the reconstructed signal and N is the size of the 

data. 

𝑃𝑅𝐷 (%) = √
∑ (𝑂𝑆𝑎𝑚𝑝𝑙𝑒 − 𝑅𝑆𝑎𝑚𝑝𝑙𝑒)2𝑁

𝑖=1

∑ 𝑂𝑆𝑎𝑚𝑝𝑙𝑒
2𝑁

𝑖=1

× 100% 

          (4.1) 
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• Mean Absolute Error (MAE): it was used during the fitting of the model, where 

it was implemented and defined as a new evaluation metric in our model. 

𝑀𝐴𝐸(%) = |
∑ 𝑂𝑆𝑎𝑚𝑝𝑙𝑒 − 𝑅𝑆𝑎𝑚𝑝𝑙𝑒

𝑁
𝑖=1

𝑁
| × 100% 

           (4.2) 

4.3.1.1 BCI-IV-2a Dataset  

4.3.1.1.1 Compression and Distortion Relation  

Figure 12 shows the relation between compression ratio (defined as data saving as 

stated in equation(3.2) and the distortion of the reconstructed data calculated using 

percentage root distortion rate (𝑃𝑅𝐷). The distortion of the data is extremely low with 

respect to the high compression ratios as we managed to send around 2% (around 98% 

compression) of the data with distortion less than 1.5%. 

 

 

Figure 12: Relation between Compression Ratio and PRD (BCI-IV-2a Dataset) 
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Figure 13: (a) Relation between Compression Ratio and Distortion (PRD) Applied to 

BCI-IV-2a Dataset. In (b) Another Distortion Scale was Used 

 

 

Our approach was able to outperform all other state-of-the-art approaches, as a  

comparison between our proposed CAE model used in BCI-IV-2a dataset with another 

state of the art techniques used on the same dataset was done. Figure 13 presents that the 

values of the distortion (𝑃𝑅𝐷) start to increase at 90% compression using CAE, as it was 

almost in a steady state before that. The proposed Stacked Autoencoder (SAE) [15] was 

able to compress up to 90% with a distortion of 33.5%. DWT was able to outperform 

SAE, SPIHT-3, and SPIHT-6 at low compression ratios as it reaches to 1.5% distortion 

at 35% compression. However, using CAE was able to achieve 0.3% distortion at 35% 

compression. This shows the effectiveness of using convolutional layers instead of fully 

connected layers.   
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4.3.1.1.2 Compression Sampling Error Rate Relation  

In addition to distortion, we also calculated the sample error rate as part of 

evaluating our model. As in the reconstructed signal, only the samples that have the same 

value as the original signal will be counted else it will be considered an error. In order to 

be reliable, we accept 1% more or less than the original sample. Figure 14 represents the 

sample error rate in different compression ratios for one reconstructed signal of the dataset. 

As it has the same inclination as the compression with distortion. In equation (4.3)  𝑁𝑠  is 

the total number of samples and  𝑁𝑐𝑠  is the number of correct samples after the 

reconstruction of the original signal.  

𝑆𝑎𝑚𝑝𝑙𝑒 𝑒𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒(𝑆𝐸𝑅) =
𝑁𝑠 − 𝑁𝑐𝑠

𝑁𝑠 
× 100% 

 

           (4.3) 

 

 

 

Figure 14: Relation between Compression Ratio and Sample Error Rate (BCI-IV-2a 

Dataset) 
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4.3.1.1.3 Number of Parameters   

The number of parameters in any neural network should increase with the deeper 

network. However, our Convolutional autoencoder is used for compression, so the 

number of parameters decreases until reaching to the bottleneck layer where the number 

of filters will have a certain value with respect the amount of compression needed. The 

figure below represents the relation between the number of parameter and compression 

as well as the number of filters. 

 

Figure 15: The Relation between Number of Parameter and Compression Ratio as well as 

the Number of Filters (BCI-IV-2a Dataset) 
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4.3.1.1.4 Visualization of the Reconstructed Signal 

In addition to the Percent-root mean square distortion (𝑃𝐷𝑅) as a performance 

metric, we tried to visualize any random signal from the dataset and compare it before and 

after being reconstructed. Figure 16 is an example of original and reconstructed signal at 

98% compression. Appendix A includes examples of different compression ratios. 

 
 
 

 
 

 
 
 
 
 
 
 
 
 

Figure 16: Original and Reconstructed Signal at 98.4% Compression (BCI-IV-2a 

Dataset) 
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4.3.1.2 BCI-IV-2b Dataset  

4.3.1.2.1 Compression and Distortion Relation  

Figure 18 shows the relation between compression ratio and the distortion of the 

reconstructed data calculated using 𝑃𝑅𝐷. The distortion of the data is low with respect to 

the high compression ratios but not lower than the distortion achieved on BCI-IV-2a 

dataset. The proposed CAE model for this dataset managed to achieve around 90% 

compression with distortion less than 12%. 

 

 

 

Figure 17: Original and Reconstructed Signal at 98.4% Compression (Zoom-In - BCI-IV-

2a Dataset) 
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The CAE model used to manage BCI-IV-2b dataset is not the same as the model 

used for BCI-IV-2a as we explained in section 4.2. Again the power of using convolutional 

layers instead of fully connected layers can guarantee low distortion at high compression 

ratio compared with another state of the art approaches. However, experimentally it was 

found that the efficiency of CAE model at low compression ratio can’t always outperform 

other techniques. As in BCI-IV-2b dataset, DWT was able to compress 30% of the data 

with 1.6% distortion[15], meanwhile, our CAE model approach achieves 6.7% distortion 

with 30% compression  
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Figure 18: Relation between Compression ratio and Distortion (BCI-IV-2b dataset) 
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4.3.1.2.2 Compression Sampling Error Rate Relation  

We calculated the sample error rate using equation (4.3). The behavior represented 

by Figure 19 gives the same trend as the relation between the compression and distortion, 

where the sample error rate increase while increasing the compression, and this gives a 

good prediction about the visualization results.  

 

 

 
 

Figure 19: Relation between Compression ratio and Sample Error Rate (BCI-IV-2b 

dataset) 

 

 

4.3.1.2.3 Number of Parameters   
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4.3.1.2.4 Visualization of the Reconstructed Signal 

Figure 21 represents a visualization of a reconstructed signal along with the original 

signal at compression ratio ~90%. The reconstructed signal very close to the original signal 

with some shifting.  
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Figure 20: The relation between number of parameter and compression as well as 

the number of filters (BCI-IV-2b dataset) 
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Figure 21: Original and Reconstructed Signal at high compression (Zoom-in BCI-IV-2b) 

 

 

 
Figure 22: Original and Reconstructed Signal at high compression (BCI-IV-2b) 
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4.3.1.3 DEAP dataset 

This subsection was added to show that using the same CAE model of a certain 

dataset on another dataset will not give an acceptable result. In the following the CAE 

model used to compress and reconstruct BCI-IV-2a dataset was applied on DEAP dataset, 

where only changes to the bottleneck layer were applied to manage a certain amount of 

compression ratio. 

4.3.1.3.1 Compression and Distortion Relation  

Figure 23 shows the relation between compression ratio and the distortion of the 

reconstructed signal. The distortion of the data is low compared to the state of the art 

methods. Nevertheless, it has higher distortion than the distortion in BCI datasets. The 

maximum compression ratio here is 93.75% where we managed to send around 6% of the 

data with distortion 31 %. Even though the relation looks consistent and gives an acceptable 

distortion rate. However, evaluating the performance through the sample error rate and 

visualization of the signal gives bad inconsistent results, the coming subsection will show 

it. 
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4.3.1.3.2 Compression Sampling Error Rate Relation  

The sample error rate has an inconsistent trend. We have used equation (4.3) to 

calculate the sample error rate. However, in this relation, we consider an error of ± 10%, 

as we will not be able to draw the relation with less error percentage. The behavior here 

can give a prediction about the bad visualization results of the reconstructed signal. Figure 

24 shows the relation between the compression ratio and the sample error rate. 
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Figure 23: Relation between Compression Ratio and Distortion (DEAP Dataset) 
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4.3.1.3.3 Number of Parameters   

As mentioned before the number of parameters decrease as the number of filters 

decrease and vice versa. Figure 25 denotes the relation between the number of parameter 

and compression as well as the number of filters. 
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Figure 24: Relation between Compression Ratio and Sample Error Rate (DEAP Dataset) 
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4.3.1.3.4 Visualization of the Reconstructed Signal 

Figure 26 represents a visualization of a reconstructed signal along with the original 

signal at compression ratio 43.75%. The signal was destroyed even if the PRD was giving 

an acceptable value compared with other technique.  

 

 

 

Figure 25: The Relation between Number of Parameter and Compression as well as the 

Number of Filters (DEAP Dataset) 
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4.3.1.4 Summary 

Deep learning is a very effective approach that can be used in medical signal 

processing. As discussed in the results Chapter, deep learning and particularly 

Convolutional Autoencoder, unlike any other signal compression approaches as a certain 

model should be used for specific dataset and application. Using the same model for 

different datasets will not achieve the same performance. 

Our models used for BCI datasets were able to outperform the proposed method 

in [15] (DLDC) and though all other techniques such as DWT, 2D-SPIHT-3-ICs, and 2D-

SPIHT-6-ICs.  

 

Figure 26: Original and Reconstructed Signal at 43.75% Compression (DEAP Dataset) 
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 CAE model has low distortion rate in both high and low compression ratios, 

unlike DLDC. Here are some observations about deep learning we found during the 

experimental work for building the model: 

• Deep learning is different from all other signal processing and compression 

techniques, as it applies compression based on previous learning phase.  

• The more training applied to the neural network with more data, the less the 

distortion, and this is the known rule in deep learning, which was proved through 

the experimental phase of building the model.  

• Deep learning is application specific, i.e. not only the type of the data affects its 

architecture, parameters, and performance; but also, the dataset itself, and hence 

the application where the dataset is used for. This point was proved by using the 

model of BCI-IV-2a dataset with DEAP dataset, where we end up with very bad 

results, especially in visualization.  

• Using deep learning may lead to maximum compression ratio with extremely low 

distortion for some applications, using one or two model configurations. For 

example, in the case of BCI-IV-2a dataset, the model configurations can be used 

into the network without adaptive compression and regardless of the network 

state; where we apply the maximum compression ratio at any time, Figure 12. 

However, for other datasets like BCI-IV-2b, Figure 18, where we have good 

results but not optimized. An optimization with respect to different network states 

should be applied to adjust the compression ratio with respect to the network state 

and the application requirements. 
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4.3.2 Optimization of Resource Allocation in Wireless Environment  

The simulation results were generated using the following network topology: 4, 6 

and 10 patients (user) moving into 4 main zones based on STEPS mobility model; where 

the minimum speed of a patient equals to 2 m/s, the maximum speed 6 m/s.  

The simulation duration equals 60-time slots. Each patient has some sensor nodes 

that collect the data and send them to the PDA. Flat Rayleigh fading with Doppler 

frequency of 0.1 Hz is used to model small-scale channel variations. Each user will have a 

different distance from the base station during the 60-time slots. However, all users have 

the same data length and the same delay deadline. The weighting factor used in these runs 

will vary between 0 and 1, where 1 means that transmission energy is only considered 

while 0 means that full privilege is given to distortion.  

The distortion relation with respect to the transmitted data which is inferred from 

BCI-IV-2b dataset was used in the optimization problem.  

For the distortion threshold, the simulation will solve the optimization problem for 

5 different distortion thresholds starting from 8 up to16 by incrementing the threshold by 

2 at each iteration; which means that the optimization problem will be solved for 300 times 

and it consumes different time based on the number of users. Running the optimization 

problem for 4 users takes around 10 minutes running while having 10 users takes around 

80 minutes. 
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4.3.2.1 The Effect of Changing the Weighting Factor on the Optimization Problem  

Changing the weighting factor will affect the priority of minimizing the 

transmission energy and distortion of the reconstructed signal. In this subsection, the effect 

of changing the weighting factor on the distortion, transmission energy, and compression 

ratio at different distortion thresholds will be explained. 

 

 

 

Figure 27: Relation between the Average Transmission Energy and the Average Distortion 

at Different Weighting Factors 

 

 

Figure 27 gives a clear conclusion that the transmission energy and the distortion 

are two conflicting objectives; hence our proposed optimization will try to address the 

trade-off between the two objectives. The value of the transmission energy at 1 weighting 
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factor was minimized to the maximum while the distortion was neglected, and it reached 

the highest possible value. Meanwhile, when the weighting factor was 0.1 the average 

distortion reached to the minimum value and the average transmission energy reached to 

the maximum possible value. Figure 28 another representation to the relation with respect 

to compression ratio instead of distortion where the compression decreases while the 

transmission energy increase. The relation between the compression and distortion is 

presented by Figure 29, where the more we compress the higher the distortion occurred on 

the reconstructed signals. 

 

 

 

Figure 28: The Relation Between the Average Transmission Energy and the Average 

Compression for 4 Users at Five Different Distortion Thresholds and at Different 

Weighting Factors 
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Figure 29: The Relation between the Average Distortion and the Average Compression 

for 4 Users at Five Different Distortion Thresholds and at Different Weighting Factors  

 

 

4.3.2.2 Minimizing the Transmission Energy and Distortion with and without 

Considering Network Bandwidth. 

In this study, the bandwidth was considered in the optimization problem as a 

decision parameter where the users need to use a certain amount of the total bandwidth 

based on the channel given to the users and the aggregate bandwidth of all users should not 

exceed the bandwidth threshold. Considering the bandwidth for all users should have a 

great effect, not only on the transmission energy but also the distortion of the reconstructed 

signal. Figure 30 shows the average transmission energy and the average distortion for 3 

scenarios, where the number of users equals to 4, 6 and 10 users. The effectiveness of 
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minimizing the distortion appears clearly for few users and when the number of users 

increases the distortion follow the same trend as having a constant bandwidth.  

However, this is not the case with transmission energy as considering the bandwidth 

during the optimization problem; gives a good implication to the system compared with 

having an equal amount of bandwidth among the users; which decreases when the number 

of users increases.  

 

 

 

 

Figure 30: The Average Transmission Energy and Average Distortion for Different 

Number of Users While Considering and Ignoring the Bandwidth in the Optimization 

Problem 
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the optimization problem. Considering the bandwidth means providing a certain amount 

of bandwidth based on the channel of the user, which is mainly affected by the movement 

of the users with respect to the base station (wireless access point).  In most of the cases, 

the value of the average transmission energy while considering the bandwidth as a 

decision parameter is less than the value of the average transmission energy with constant 

bandwidth. 

 

 

 

 

Figure 31: Average Transmission Energy With and Without Considering Bandwidth as a 

Decision Parameter 
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Figure 32 shows that using CAE while considering the bandwidth will lead to 

minimization in the bandwidth consumption for most of the cases. Bandwidth is one of the 

decision parameters of the optimization problem as mentioned earlier and there are other 

decision parameters that affect the resource allocation problem such as the data rate, which 

would cause allocating more bandwidth for certain users.  

 

 

 

 

 

Figure 33 represents the relation between the transmission energy for 6 users with 

considering and ignoring the bandwidth. The transmission energy decrease while 

increasing the distortion threshold, since increasing the distortion threshold will constrain 
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the amount of compression applied as equation (3.15) states. The dashed lines represent 

users having constant bandwidth, their transmission energy always greater than the case 

where bandwidth is considered in the resources allocation problem; which increase the 

efficiency of the system by almost 54.3% 

 

 

 

Figure 33: Average Transmission Energy of 6 Users Through 5 Different Distortion 

Thresholds 
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34 presents the trade-off between the transmission energy and distortion at different 

weighting factors. It’s clear that whenever setting the priority to the transmission energy it 

decreases, and the distortion increases. 

 

 

 

Figure 34: Trade-off between Transmission Energy and Distortion for 4 Users at Distortion 

Threshold Equals to 12% 
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4.3.2.4 Comparing CAE approach against DWT  

In the following subsections, we will discuss the comparison between using CAE 

and DWT as a compression/reconstruction approach at distortion threshold (𝐷𝑡ℎ) equals to 

12%. The results show that CAE outperforms DWT as it consumes less transmission 

energy, more compression, and less distortion compared to DWT.  

4.3.2.4.1 Transmission Energy   

Figure 37 presents the average transmission energy for both CAE and DWT and it 

shows that increasing the number of users will increase the transmission energy rapidly 

using DWT, compared to CAE. (note: - for Figure 37, logarithmic scale is used for the y-

axis as the difference between energies is really high). 

 

 

 
 

Figure 37: Average Transmission Energy using CAE and DWT Approaches for 4, 6 and 

10 Users 
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Figure 38 shows the transmission energy of 4 users at different weighting factors 

(𝑤), where it ensures the high performance of CAE against DWT. We are using 

logarithmic scale for the y-axis in order to represent both in the chart. The energy is 

minimized significantly using CAE as we increase the weighting factor.  

 

 

 
 

Figure 38: Transmission Energy for DWT and CAE at Different Weighting Factors 
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threshold while applying high compression ratio like 90%, while the maximum 

compression ratio for DWT was around 30%.  

 

 

 

 

Figure 39: Average Distortion for 4,6 and 10 Users Using CAE and DWT 
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and explained. The main outcome of this section can be summarized as follows: 

• Solving the optimization resource allocation problem with respect to the bandwidth 

as a decision parameter increases the efficiency of the system by more than 50%. Both the 

distortion and the transmission will be minimized effectively compared with a scenario that 

gives the same bandwidth to all user’s despite their network state such as the allocated 

channel state. 

• The worse the users’ channel, the more allocated bandwidth, and then more 

transmission energy will be consumed.  

• Increasing the compression ratio means increasing the distortion of the 

reconstructed signal, which implies a decrease in the transmission energy as well as the 

allocated bandwidth.  

• Changing the weighting factor to manage the trade-off between transmission 

energy and distortion of the reconstructed signal effect, gives a clear conclusion that when 

giving the highest priority to the transmission energy the distortion will reach to the 

maximum possible value and vice versa. 
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CHAPTER 5: CONCLUSION AND FUTURE RESEARCH 

In this chapter, we conclude the thesis and provide some ideas for future work that 

can be done based on this work.  

5.1 Conclusion 

In this thesis, an adaptive compression technique using convolutional autoencoder 

model was developed and integrated into a wireless environment, where a huge amount of 

data needs to be compressed and transmitted through the network based on the network 

state as well as the application requirements. Reconstructing the compressed data should 

be within an acceptable range.  

An optimization problem to find the trade-off between the transmission energy and 

distortion was implemented in MATLAB. We found that Deep neural network in general 

and particularly Convolutional Autoencoder (CAE) can be used efficiently to compress 

EEG signals, with an excellent performance that outperforms all the state of the art 

approaches. Using BCI-IV-2a dataset, CAE could send 1.6% of the data and still have a 

distortion less than 1.5%. CAE, unlike any other signal processing approaches, the same 

model cannot fit all datasets even though they have the same type of data. CAE considered 

as dataset and application specific since each dataset needs a certain model.  

It is worth mentioning that using deep learning may in some applications lead to 

maximum compression ratio with extremely low distortion; where minimum data will be 

transmitted into the network, hence the problem of “adaptive” compression becomes 

simple to use one maximum compression regardless of the network state. Therefore, 

resource optimization problem can be solved independently from the adaptive 

compression, leading to the simpler optimization problem. Nevertheless, this not the case 
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for all models and all datasets as solving the optimization resource allocation problem 

becomes essential in order to have an adaptive system.    

5.2 Future Work  

In this thesis, we have considered one type of vital signs which is 

electroencephalogram (EEG), it would be nice to investigate the abilities of CAE on 

different types of data e.g. electrocardiogram (ECG), Magnetic resonance (MRI) or X-ray 

images, etc.  This will require redesigning the CNN architecture, and come up with new 

model configurations, and regression equations similar to equation (3.6) for each data type. 

Another important point that would enhance the overall system by adding a 

classifier using deep learning on the edge level where data with higher priority will be sent 

first.   A different variation of this problem is to design a data reduction technique based 

on historical conditions, where the classifier may be used to suppress any redundant EEG 

samples from being transmitted based on the patient condition. 
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APPENDIX A: EXTRA BCI-IV-2A DATASET VISUALIZATION RESULTS  

The proposed Convolutional Autoencoder (CAE) on BCI-IV-2a dataset has an 

excellent performance as discussed in chapter 4. This appendix contains an example of 

the original and reconstructed signal at different compression ratios to ensure the 

accuracy and effectiveness of the proposed solution. 

 

 

 
 

Figure 40: Original and Reconstructed Signal at 0 % Compression 
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Figure 41: Original and Reconstructed Signal at 1.56 % Compression 

 

 

 

 

 
Figure 42: Original and Reconstructed Signal at 6.25 % Compression 
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Figure 43: Original and Reconstructed Signal at 14 % Compression 

 

 

 

 

 

 

 
Figure 44: Original and Reconstructed Signal at 30 % Compression 
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Figure 45: Original and Reconstructed Signal at 45 % Compression 

 

 

 

 

 

 

 

 
Figure 46: Original and Reconstructed Signal at 61 % Compression 
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Figure 47: Original and Reconstructed Signal at 77 % Compression 

 

 

 

 

 

 

 
Figure 48: Original and Reconstructed Signal at 85 % Compression 
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Figure 49: Original and Reconstructed Signal at 95 % Compression 

 

 

 

 

 

 

 

 

Figure 50: Original and Reconstructed Signal at 97 % Compression 
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