321 research outputs found

    On almost sure stability of hybrid stochastic systems with mode-dependent interval delays

    Get PDF
    This note develops a criterion for almost sure stability of hybrid stochastic systems with mode-dependent interval time delays, which improves an existing result by exploiting the relation between the bounds of the time delays and the generator of the continuous-time Markov chain. The improved result shows that the presence of Markovian switching is quite involved in the stability analysis of delay systems. Numerical examples are given to verify the effectiveness

    A survey on gain-scheduled control and filtering for parameter-varying systems

    Get PDF
    Copyright © 2014 Guoliang Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This paper presents an overview of the recent developments in the gain-scheduled control and filtering problems for the parameter-varying systems. First of all, we recall several important algorithms suitable for gain-scheduling method including gain-scheduled proportional-integral derivative (PID) control, H 2, H ∞ and mixed H 2 / H ∞ gain-scheduling methods as well as fuzzy gain-scheduling techniques. Secondly, various important parameter-varying system models are reviewed, for which gain-scheduled control and filtering issues are usually dealt with. In particular, in view of the randomly occurring phenomena with time-varying probability distributions, some results of our recent work based on the probability-dependent gain-scheduling methods are reviewed. Furthermore, some latest progress in this area is discussed. Finally, conclusions are drawn and several potential future research directions are outlined.The National Natural Science Foundation of China under Grants 61074016, 61374039, 61304010, and 61329301; the Natural Science Foundation of Jiangsu Province of China under Grant BK20130766; the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning; the Program for New Century Excellent Talents in University under Grant NCET-11-1051, the Leverhulme Trust of the U.K., the Alexander von Humboldt Foundation of Germany

    On input-to-state stability of stochastic retarded systems with Markovian switching

    Get PDF
    This note develops a Razumikhin-type theorem on pth moment input-to-state stability of hybrid stochastic retarded systems (also known as stochastic retarded systems with Markovian switching), which is an improvement of an existing result. An application to hybrid stochastic delay systems verifies the effectiveness of the improved result

    Exponential synchronization of complex networks with Markovian jump and mixed delays

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link - Copyright 2008 Elsevier LtdIn this Letter, we investigate the exponential synchronization problem for an array of N linearly coupled complex networks with Markovian jump and mixed time-delays. The complex network consists of m modes and the network switches from one mode to another according to a Markovian chain with known transition probability. The mixed time-delays are composed of discrete and distributed delays, both of which are mode-dependent. The nonlinearities imbedded with the complex networks are assumed to satisfy the sector condition that is more general than the commonly used Lipschitz condition. By making use of the Kronecker product and the stochastic analysis tool, we propose a novel Lyapunov–Krasovskii functional suitable for handling distributed delays and then show that the addressed synchronization problem is solvable if a set of linear matrix inequalities (LMIs) are feasible. Therefore, a unified LMI approach is developed to establish sufficient conditions for the coupled complex network to be globally exponentially synchronized in the mean square. Note that the LMIs can be easily solved by using the Matlab LMI toolbox and no tuning of parameters is required. A simulation example is provided to demonstrate the usefulness of the main results obtained.This work was supported in part by the Biotechnology and Biological Sciences Research Council (BBSRC) of the UK under Grants BB/C506264/1 and 100/EGM17735, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grants GR/S27658/01 and EP/C524586/1, an International Joint Project sponsored by the Royal Society of the UK, the Natural Science Foundation of Jiangsu Province of China under Grant BK2007075, the National Natural Science Foundation of China under Grant 60774073, and the Alexander von Humboldt Foundation of Germany

    Stabilization of markovian systems via probability rate synthesis and output feedback

    Get PDF
    This technical note is concerned with the stabilization problem of Markovian jump linear systems via designing switching probability rate matrices and static output-feedback gains. A novel necessary and sufficient condition is established to characterize the switching probability rate matrices that guarantee the mean square stability of Markovian jump linear systems. Based on this, a necessary and sufficient condition is provided for the existence of desired controller gains and probability rate matrices. Extensions to the polytopic uncertain case are also provided. All the conditions are formulated in terms of linear matrix inequalities with some equality constraints, which can be solved by two modified cone complementarity linearization algorithms. Examples are given to show the effectiveness of the proposed method. © 2010 IEEE.published_or_final_versio

    Nonlinear filtering for state delayed systems with Markovian switching

    Get PDF
    This paper deals with the filtering problem for a general class of nonlinear time-delay systems with Markovian jumping parameters. The nonlinear time-delay stochastic systems may switch from one to the others according to the behavior of a Markov chain. The purpose of the problem addressed is to design a nonlinear full-order filter such that the dynamics of the estimation error is guaranteed to be stochastically exponentially stable in the mean square. Both filter analysis and synthesis problems are investigated. Sufficient conditions are established for the existence of the desired exponential filters, which are expressed in terms of the solutions to a set of Linear Matrix Inequalities (LMIs). The explicit expression of the desired filters is also provided.published_or_final_versio

    Lyapunov and Riccati equations of discrete-time descriptor systems

    Get PDF
    In this paper, we further develop the generalized Lyapunov equations for discrete-time descriptor systems given by Bender. We associate a stable discrete-time descriptor system with a Lyapunov equation which has a unique solution. Furthermore, under the assumptions of reachability and observability, the solutions are guaranteed to be positive definite. All results are valid for causal and noncausal descriptor systems. This provides a unification of Lyapunov equations and theories established for both normal and descriptor systems. Based on the developed Lyapunov equation, a Riccati equation is also obtained for solving the state-feedback stabilization problem.published_or_final_versio

    Almost sure state estimation with H2-type performance constraints for nonlinear hybrid stochastic systems

    Get PDF
    This paper is concerned with the problem of almost sure state estimation for general nonlinear hybrid stochastic systems whose coefficients only satisfy local Lipschitz conditions. By utilizing the stopping time method combined with martingale inequalities, a theoretical framework is established for analyzing the so-called almost surely asymptotic stability of the addressed system. Within such a theoretical framework, some sufficient conditions are derived under which the estimation dynamics is almost sure asymptotically stable and the upper bound of estimation error is also determined. Furthermore, a suboptimal state estimator is obtained by solving an optimization problem in the H2 sense. According to the obtained results, for a class of special nonlinear hybrid stochastic systems, the corresponding conditions reduce to a set of matrix inequalities for the purpose of easy implementation. Finally, two numerical simulation examples are used to demonstrate the effectiveness of the results derived.This work was supported in part by the National Natural Science Foundation of China under Grants 61134009 and 61329301, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    H

    Get PDF
    This paper addresses the problem of H∞ control for a class of uncertain stochastic systems with Markovian switching and time-varying delays. The system under consideration is subject to time-varying norm-bounded parameter uncertainties and an unknown nonlinear function in the state. An integral sliding surface corresponding to every mode is first constructed, and the given sliding mode controller concerning the transition rates of modes can deal with the effect of Markovian switching. The synthesized sliding mode control law ensures the reachability of the sliding surface for corresponding subsystems and the global stochastic stability of the sliding mode dynamics. A simulation example is presented to illustrate the proposed method
    corecore