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On input-to-state stability of stochastic retarded

systems with Markovian switching

Lirong Huang and Xuerong Mao

Abstract

This note develops a Razumikhin-type theorem on pth moment input-to-state stability of hybrid

stochastic retarded systems (also known as stochastic retarded systems with Markovian switching),

which is an improvement of an existing result. An application to hybrid stochastic delay systems verifies

the effectiveness of the improved result.

Index Terms

stochastic systems, time delay, Razumikhin-type theorems, ISS, Markov chain.

I. INTRODUCTION

Since Markov jump linear systems were firstly introduced in early 1960s (see, e.g., [26],

[33] and [42]), the hybrid systems driven by continuous-time Markov chains have been widely

employed to model many practical systems where they may experience abrupt changes in system

structure and parameters such as failure prone manufacturing, power systems, solar-powered

systems and battle management in command, control and communication systems (see [1], [6],

[21], [26], [34] and references therein). An area of particular interest has been the stability

analysis of this class of hybrid systems and its applications to automatic control (see, e.g.,

[4], [10], [26] and [33]). When time delays and environmental noise are taken into account,

which are often encounterd in real systems and may be the cause of poor performance and
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instability, the hybrid systems are described with stochastic functional differential equations with

Markovian switching and called hybrid stochastic retarded systems (HSRSs). One of the most

important HSRSs that frequently appear in engineering is those called hybrid stochastic delay

systems (HSDSs), which are also known as stochastic delay systems with Markovian switching

(SDSwMS) and described with stochastic differential delay equations with Markovian switching

(see, e.g., [21], [23], [24] and [41]).

Recently, hybrid stochastic retarded systems (HSRSs) have been widely used since stochastic

modelling plays an important role in many branches of science and engineering. Consequently,

stability analysis of HSRSs and HSDSs has been studied by many works, see, e.g., [9], [17], [19],

[21], [39], [41] and [42]. Among the key results, Mao et al. (see [17], [23], [24]) and Huang

et al. ([9]) proposed the Razumikhin-type theorems on stability of hybrid stochastic retarded

systems and their applications to hybrid stochastic delay systems. The Razumikhin method is

developed to cope with the difficulty arisen from the large, fast varying and nondifferentiable

time delays (see, e.g., [21] and [23]). This note is to improve the the Razumikhin-type theorem

proposed in [9] and make it more applicable (see Remark 3.2 and Example 4.1).

II. NOTATION

Throughout the note, unless otherwise specified, we shall employ the following notation. Let

(Ω,F , {Ft}t≥0, P) be a complete probability space with a filtration {Ft}t≥0 satisfying the usual

conditions (i.e. it is right continuous and F0 contains all P-null sets) and E[·] be the expectation

operator with respect to the probability measure. Let B(t) = (B1(t), · · · , Bm(t))T be an m-

dimensional Brownian motion defined on the probability space. If x, y are real numbers, then

x ∨ y denotes the maximum of x and y, and x ∧ y stands for the minimum of x and y. Let

| · | denote the Euclidean norm in Rn. Let τ ≥ 0 and C([−τ, 0]; Rn) denote the family of all

continuous Rn-valued functions ϕ on [−τ, 0] with the norm ‖ϕ‖ = sup{|ϕ(θ)| : −τ ≤ θ ≤ 0}.

Let Cb
F0

([−τ, 0]; Rn) be the family of all F0-measurable bounded C([−τ, 0]; Rn)-valued random

variables ξ = {ξ(θ) : −τ ≤ θ ≤ 0}. For p > 0 and t ≥ 0, denote by Lp
Ft

([−τ, 0]; Rn) the

family of all Ft-measurable C([−τ, 0]; Rn)-valued random processes φ = {φ(θ) : −τ ≤ θ ≤ 0}

such that sup−τ≤θ≤0E|φ(θ)|p < ∞. We let K denote the class of continuous strictly increasing

functions µ from R+ to R+ with µ(0) = 0. Let K∞ denote the class of functions µ ∈ K with
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µ(r) →∞ as r →∞. Functions in K and K∞ are called class K and K∞ functions, respectively.

If µ ∈ K, its inverse function is denoted by µ−1 with domain [0, µ(∞)). We denote by µ ∈ VK

and µ ∈ CK if µ ∈ K and µ is convex and concave, respectively. In this note, a function

β : R+ ×R+ → R+ is said to be of class KL if for each fixed t the mapping β(·, t) is of class

K and for each fixed s β(s, t) is decreasing to zero on t as t →∞. We also let Ll
∞ denote the

class of essentially bounded functions u : R+ → Rl with ||u||∞ = ess supt≥0 |u(t)| < ∞.

Let r(t), t ≥ 0, be a right-continuous Markov chain on the probability space taking values

in a finite state space S = {1, 2, · · · , N} with generator Γ = (γij)N×N given by

P {r(t + ∆) = j : r(t) = i} =

 γij∆ + o(∆) if i 6= j,

1 + γii∆ + o(∆) if i = j,

where ∆ > 0 and γij ≥ 0 is the transition rate from i to j if i 6= j while γii = −
∑

j 6=i γij .

Assume that the Markov chain r(·) is independent of the Brownian motion B(·). It is known

that almost all sample paths of r(t) are right-continuous step functions with a finite number of

simple jumps in any finite subinterval of R+ := [0,∞).

Let us consider an n-dimensional HSRS

dx(t) = f(xt, t, r(t), ud(t))dt + g(xt, t, r(t), ud(t))dB(t) (1)

on t ≥ 0 with initial data x0 = {x(θ) : −τ ≤ θ ≤ 0} = ξ ∈ Cb
F0

([−τ, 0]; Rn) and r(0) = r0 ∈ S,

where xt = {x(t + θ) : −τ ≤ θ ≤ 0} is regarded as a C([−τ, 0]; Rn)-valued random variable

and ud ∈ Ll
∞ the disturbance input. Moreover, f : C([−τ, 0]; Rn) × R+ × S × Rl → Rn and

g : C([−τ, 0]; Rn)× R+ × S × Rl → Rn×m are measurable functions with f(0, t, i, 0) ≡ 0 and

g(0, t, i, 0) ≡ 0 for all t ≥ 0. So equation (1) admits a trivial solution x(t; 0) ≡ 0. We assume

that f and g are sufficiently smooth so that equation (1) has a unique solution on t ≥ −τ

(see, e.g., [12], [15], [16], [17], [18], [21], [22], [25], [29] and [41] ), which is denoted by

x(t; x0, r(0)) or x(t; ξ, r0) in this note. It should be noted that equation (1) is a very general type

of equation and includes stochastic differential equations, stochastic delay differential equations,

integro-differential equations and those with Markovian switching. Much more equations are

also included in equation (1) (see, e.g., [7]).

Let C2,1(Rn × R+ × S; R+) denote the family of all nonnegative functions V (x, t, i) on

Rn × R+ × S that are twice continuously differentiable in x and once in t. If V ∈ C2,1(Rn ×
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R+ × S; R+), define an operator associated with system (1), L, from C([−τ, 0]; Rn)×R+ × S

to R by

LV (xt, t, i) = Vt(x, t, i) + Vx(x, t, i)f(xt, t, i, ud)

+
1

2
trace

[
gT (xt, t, i, ud)Vxx(x, t, i)g(xt, t, i, ud)

]
+

N∑
j=1

γijV (x, t, j), (2)

where Vt(x, t, i) = ∂V (x,t,i)
∂t

, Vx(x, t, i) =
(

∂V (x,t,i)
∂x1

, · · · , ∂V (x,t,i)
∂xn

)
and Vxx(x, t, i) =

(
∂2V (x,t,i)

∂xi∂xj

)
n×n

.

The purpose of this note is to develop the Razumihkin-type theorem on pth moment input-

to-state stability (ISS) of HSRSs and its applications. For definitions of pth moment stability

and input-to-state stability, readers are referred to, e.g., [8], [9], [11], [13], [28], [31], [32] and

[35]. Let us introduce the definition of pth moment ISS of HSRSs, which is consistent with the

definition of ISS for deterministic systems (see, e.g., [11], [31], [32] and [35]).

Definition 2.1: The system (1) is said to be pth (p > 0) moment input-to-state stable (ISS)

if there exist β ∈ KL and γ ∈ K such that the solution x(t) = x(t; ξ, r0) satisfies

E|x(t)|p ≤ β(E||ξ||p, t) + γ(||ud||∞) ∀t ≥ 0 (3)

for any essentially bounded input ud ∈ Ll
∞ and any initial data ξ ∈ Cb

F0
([−τ, 0]; Rn), r0 ∈ S.

III. RAZUMIKHIN-TYPE THEOREM ON ISS OF HSRSS

As the main result of this note, we present a Razumikhin-type theorem on pth moment ISS

of HSRSs (1) as follows.

Theorem 3.1: Let p > 0, u ∈ VK∞, v ∈ K∞ and λ ∈ K. Assume that there exists a function

V ∈ C2,1(Rn ×R+ × S; R+) such that

u(|x|p) ≤ V (x, t, i) ≤ v(|x|p), ∀(x, t, i) ∈ Rn × [−τ,∞)× S (4)

and, moreover, for all 1 ≤ i ≤ N ,

ELV (φ, t, i) ≤ λ(|ud(t)|)− Ew(φ(0), i) (5)

for all t ≥ 0 and those φ ∈ Lp
Ft

([−τ, 0]; Rn) satisfying

min
k∈S

EV (φ(θ), t + θ, k) < Eq(φ(0), t, i) (6)
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on −τ ≤ θ ≤ 0, where w : Rn × S → R+ is a nonnegative function such that there is w̄ ∈ K∞
with w(x, i) ≥ w̄(|x|) and lim|x|→∞

w̄(|x|)
v(|x|p)

> 0 for all i ∈ S; q : Rn×R+×S → R is a function

such that q(x, t, i) − V (x, t, i) ≥ ζ(|x|) for all (x, t, i) ∈ Rn × [−τ,∞) × S with ζ ∈ K∞ and

lim|x|→∞
ζ(|x|)
v(|x|p)

> 0. Then system (1) is pth moment ISS.

In order to prove this theorem, let us present the following useful lemmas

Lemma 3.1: Let V (t) = V (x(t), t, r(t)) for t ≥ 0, then EV (t) is continuous on t ≥ 0.

Proof For any initial data ξ ∈ Cb
F0

([−τ, 0]; Rn), write x(t) = x(t; ξ) and extend r(t) to

[−τ, 0) by setting r(t) = r(0) = r0 for all t ∈ [−τ, 0). For convenience of the readers, the

generalized Itô’s formula is cited as follows (see [30] and [41])

V (x(t), t, r(t)) = V (x(0), 0, r(0)) +

∫ t

0

LV (xs, s, r(s))ds

+

∫ t

0

Vx(x(s), s, r(s))g(xs, s, r(s))dB(s)

+

∫ t

0

∫
R

[V (x(s), s, r(0) + h(r(s), l))− V (x(s), s, r(s))]µ(ds, dl) (7)

for all t ≥ 0, where function h(·, ·) and martingale measure µ(·, ·) are defined as, e.g., (2.6) and

(2.7) in [41] (see also [6] and [2]).

Since ξ ∈ Cb
F0

([−τ, 0]; Rn), we can find an integer k0 such that ||ξ|| < k0 a.s.. For any

integer k > k0, define the stopping time

ρk = inf{t ≥ 0 : |x(t)| ≥ k} , (8)

where we set inf ∅ = ∞ as usual. Note that x(t) is continuous and so are |x(t)| and v(|x(t)|) on

t ≥ −τ . Clearly, ρk →∞ almost surely as k →∞. Moreover, since x0 = ξ ∈ Cb
F0

([−τ, 0]; Rn),

EV (x(0), 0, r(0)) ≤ Ev(|ξ(0)|) ≤ v(k0). It then follows from (7) that

EV (x(tk), tk, r(tk)) = EV (x(0), 0, r(0)) + E
∫ tk

0

LV (xs, s, r(s))ds (9)

where tk = t ∧ ρk. So, letting k →∞, by Fubini’s theorem, we have

EV (t) = EV (0) + E
∫ t

0

LV (xs, s, r(s))ds = EV (0) +

∫ t

0

ELV (xs, s, r(s))ds (10)

for all t ≥ 0. This implies EV (t) is continuous on t ≥ 0.

Lemma 3.2: For any t ≥ 0, there is aw > 0 such that Ew(x, i) ≥ aw for all i ∈ S whenever

EV (x, t, i) ≥ av > 0.

January 22, 2009 DRAFT
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Proof It immediately follows the desired conclusion if we show there is µw ∈ K∞ such that

Ew̄(|x(t)|) ≥ µw(av) (11)

whenever Ev(|x|p) ≥ EV (x, t, i) ≥ av > 0.

Fix t for the moment. We define a nondecreasing function b : R+ → R+ as

b(y) = inf
|x|p≥v−1(y/2)

w̄(|x|)
v(|x|p)

, y ≥ 0. (12)

By property of function w̄(·), b(y) > 0 when y > 0. So, for any av > 0, we have

Ew̄(|x|) ≥
∫
|x|p≥v−1(av

2
)

w̄(|x|)dP ≥ b(av)

∫
v(|x|p)≥av

2

v(|x|p)dP ≥ avb(av)

2

whenever Ev(|x|p) ≥ EV (x, t, i) ≥ av. Inequality (11) holds with µw(av) = avb(av)
2

.

Lemma 3.3: For any t ≥ 0, there is aq > 0 such that Eq(x, t, i) ≥ aq + EV (x, t, i) for all

i ∈ S whenever EV (x, t, i) ≥ av > 0.

Proof It is noted that Eq(x, t, i) − EV (x, t, i) ≥ Eζ(|x|) for all t ≥ 0. According to the

property of functionζ(|x|), the rest of the proof is similar to that of Lemma 3.2 and hence

omitted.

We can now begin to prove Theorem 3.1.

Proof Denote αλ = λ(||ud||∞) and V̄0 = u(E||ξ||p). Without loss of generality, assume

0 < µ−1
w (2αλ) < u(sup−τ≤θ≤0 E|ξ(θ)|p) ≤ V̄0. For any t ≥ 0, by Lemma 3.2, Ew(x(t), i) ≥ 2αλ

whenever EV (x, t, i) ≥ µ−1
w (2αλ) for all i ∈ S. By Lemma 3.3, there is a > 0 such that

Eq(x, t, i) − EV (x, t, i) ≥ a, i ∈ S, whenever EV (x, t, i) ≥ µ−1
w (2αλ). Let J be the minimal

nonnegative integer such that M0 = µ−1
w (2αλ)+Ja > V̄0. Moreover, let τ̃ = τ ∨ M0

αλ
and tj = jτ̃

for j = 0, 1, 2, · · · , J . We claim that

EV (x(t), t, r(t)) ≤ V̄0 ∧Mj (13)

for all t ≥ tj , where Mj = µ−1
w (2αλ) + (J − j)a and j = 0, 1, 2, · · · , J .

First we show that

EV (x(t), t, r(t)) ≤ V̄0, ∀ t ≥ t0 . (14)

Suppose that ta = inf{t > t0 : EV (x(t), t, r(t)) > V̄0} < ∞. Since EV (x(t), t, r(t)) is

continuous on t ≥ 0, there exist a pair of constants tb and tc such that t0 ≤ tb ≤ ta < tc

January 22, 2009 DRAFT
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and  EV (x(t), t, r(t)) = V̄0, t = tb;

V̄0 < EV (x(t), t, r(t)) < V̄0 + a, tb < t ≤ tc.
(15)

However, by equation (10) and condition (5), we have

EV (x(t), t, r(t)) = EV (x(tb), tb, r(tb)) +

∫ t

tb

ELV (xs, s, r(s))ds ≤ V̄0 − αλ(t− tb) < V̄0

for every t ∈ (tb, tc], which contradicts (16). So inequality (14) must be true.

We further show that EV (x(t), t, r(t)) ≤ M1 for all t ≥ t1. Let τ1 = inf{t ≥ t0 :

EV (x(t), t, r(t)) ≤ M1}. If τ1 > t1, then, ∀t0 ≤ t ≤ t1, we have

Eq(x(t), t, r(t)) ≥ EV (x(t), t, r(t)) + a > M1 + a > V̄0

≥ EV (x(t + θ), t + θ, r(t + θ)) ≥ min
1≤k≤N

EV (φ(θ), t + θ, k), ∀ θ ∈ [−τ, 0].

This, by condition (5), implies ELV (xt, t, r(t)) ≤ −αλ a.e. on [t0, t1]. Consequently, by (10), we

have EV (x(t1), t1, r(t1)) ≤ V̄0−αλτ̃ < 0, which contradicts the property of EV (x(t), t, r(t)) ≥ 0

for all t ≥ 0. So we must have τ1 ≤ t1. Let t1a = inf{t > τ1 : EV (x(t), t, r(t)) > M1}. If

t1a < ∞, then there are constants t1b and t1c such that t1 ≤ t1b ≤ t1a < t1c and EV (x(t), t, r(t)) = M1, t = t1b;

M1 < EV (x(t), t, r(t)) < M1 + a, t1b < t ≤ t1c.
(16)

Similarly, by (10) and (5), we find a contradiction and hence have (13) for j = 1.

Define τj = inf{t ≥ tj−1 : EV (x(t), t, r(t)) ≤ Mj} for j = 2, 3, · · · , J . By the same type

of reasoning, we have EV (x(t), t, r(t)) ≤ Mj for all t ≥ tj and j = 2, 3, · · · , J . Particularly,

EV (x(t), t, r(t)) ≤ MJ = µ−1
w (2αλ) for all t ≥ tJ . By Jensen’s inequality, we have

E|x(t)|p ≤ γ(||ud||∞), ∀ t ≥ tJ (17)

where γ(·) = u−1(µ−1
w (2λ(·))).

Let k = V̄0−MJ−1

tJ−1
. Choose β̃ ∈ KL such that β̃(V̄0, t) ≥ 2V̄0 − kt for all 0 ≤ t ≤ tJ . So we

have EV (x(t), t, r(t)) ≤ β̃(V̄0, t) for all 0 ≤ t ≤ tJ , which implies

E|x(t)|p ≤ u−1(β̃(V̄0, t)) = β(E||ξ||p, t), ∀ 0 ≤ t ≤ tJ (18)

where β(·, ·) = u−1(β̃(u(·), ·)) is a KL function. This completes the proof.
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Remark 3.1: Obviously, inequality (3) implies that system (1) with ud(t) ≡ 0 is globally pth

moment asymptotically stable. Moreover, it is not difficult to show that if |u(t)| → 0 as t →∞,

so does E|x(t)|p (see, e.g., Exercise 4.58, [11]). Therefore, by Theorem 3.1, it is easy to find

that the HSDS, considered in Example 2.1 [41] but with mode-dependent and time-varying delay

τ̃ : R+ × S → [0, τ ], is mean-quare asymptotically stable while the results in [41] do not work.

Remark 3.2: It is noted that inequality (6) removes the maximum operator on the right-hand

side of corresponding conditions in the existing results (see Theorem 2.1, [23] and Theorem 3.2,

[9]), which makes Theorem 3.1 less conservative but more applicable (see Example 4.1).

IV. APPLICATION AND EXAMPLE

Hybrid stochastic delay systems (HSDSs) described with stochastic differential delay equa-

tions with Markovian switching are an important class of HSRSs that are frequently used in

engineering. As an illustrative example of applications of our new result, we consider the

following HSDE

dx(t) = F (x(t), x(t− δ(t, r(t))), t, r(t), ud(t))dt + G(x(t), x(t− δ(t, r(t))), t, r(t), ud(t))dB(t)

(19)

on t ≥ 0, where δ : R+×S → [0, τ ] is Borel measurable while F : Rn×Rn×R+×S×Rl → Rn

and G : Rn×Rn×R+×S×Rl → Rn×m are measurable functions with F (0, 0, t, i, 0) ≡ 0 and

g(0, 0, t, i, 0) ≡ 0 for all t ≥ 0 and i ∈ S. Actually, this is a special case of equation (1) when

f(φ, t, i, ud) = F (φ(0), φ(−δ(t, i)), t, i, ud) and g(φ, t, i, ud) = G(φ(0), φ(−δ(t, i)), t, i, ud) for

(φ, t, i) ∈ C([−τ, 0]; Rn) × R+ × S × Rlwhile the operator L defined in (2) becomes from

Rn ×Rn ×R+ × S to R as

LV (x, y, t, i) = Vt(x, t, i) + Vx(x, t, i)F (x, y, t, i, ud)

+
1

2
trace

[
GT (x, y, t, i, ud)Vxx(x, t, i)G(x, y, t, i, ud)

]
+

N∑
j=1

γijV (x, t, j). (20)

Let us use Theorem 3.1 to establish a useful criterion for system (19).

Theorem 4.1: Let p > 0, u ∈ VK∞, v ∈ K∞, λ ∈ K and κ0i ≥ κ1i ≥ 0, i ∈ S. Assume that

there exists a function V ∈ C2,1(Rn×R+×S; R+) such that inequality (4) holds and, moreover,

LV (x, y, t, i) ≤ λ(|ud(t)|)− ζ̂(x, i)− κ0iV (x, t, i) + κ1i min
1≤k≤N

V (y, t− δ(t, i), k) (21)
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for all (x, y, t, i) ∈ Rn × Rn × R+ × S, where ζ̂ : Rn × S → R is a function such that there is

ŵ ∈ K with ζ̂(x, i) ≥ ŵ(|x|) for all i ∈ S and lim|x|→∞ ŵ(|x|)/v(|x|p) > 0. Then system (19)

is pth moment ISS.

Proof For any i ∈ S, let

w(x, i) =
1

1 + κ0i

ζ̂(x, i) and q(x, t, i) = V (x, t, i) + w(x, i) (22)

in inequalities (5) and (6). By inequality (21) and Fatou’s lemma, we have

ELV (x, y, t, i) ≤ λ(|ud(t)|)− Eζ̂(x, i)− κ0iEV (x, t, i) + κ1i E
[

min
1≤k≤N

V (y, t− δ(t, i), k)

]
≤ λ(|ud(t)|)− κ0i(EV (x, t, i) + Ew(x, i)) + κ1i min

1≤k≤N
EV (y, t− δ(t, i), k)− Ew(x, i)

≤ λ(|ud(t)|)− (κ0i − κ1i)(EV (x, t, i) + Ew(x, i))− Ew(x, i)

≤ λ(|ud(t)|)− Ew(x, i)

for all t ≥ 0, i ∈ S and xt ∈ Lp
Ft

([−τ, 0]; Rn) satisfying condition (6) with function q(x, t, i)

defined in (22), i.e., mink∈S EV (y, t − δ(t, i), k) < EV (x, t, i) + Ew(x, i). Moreover, w̄(·) =

ζ(·) = 1
1+κ

ŵ(·) satisfy the properties required in (5) and (6). By Theorem 3.1, inequality (3)

holds for system (19).

To compare with the existing result in [9], let us consider the following example.

Example 4.1 Let B(t) be a scalar Brownian motion. Let r(t) be a right-continuous Markovian

chain independent of B(t) and taking values in S = {1, 2} with generator Γ = (γij)2×2 =( −1 1
2 −2

)
. Consider a scalar uncertain stochastic delay system with Markovian switching of the

form

dx(t) = f(x(t), t, r(t))dt + g(x(t− δ(t, r(t))), t, r(t))dB(t) (23)

on t ≥ 0, where δ : R+ × S → [−τ, 0] is a continuous but non-differentiable function with

respect to t and

f(x, t, 1) =
1

4
x− 1

8
|x| 3
√

x, f(x, t, 2) = −bx− 1

10
x3,

g(y, t, 1) =
1

4
y cos t, g(y, t, 2) =

√
2y sin t.

with x = x(t), y = x(t− δ(t, r(t))) and positive constant b.
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It is noted that the existing results [21], [23], [39], [41], [42] can not be applied to system

(23), which has mode-dependent and time-varying delay δ(t, r(t)). Observe that

2xf(x, t, 1) ≤ 1

2
x2 − 1

4
|x|

7
3 , 2xf(x, t, 2) ≤ −2bx2 − 1

5
x4,

g2(y, t, 1) ≤ 1

16
y2, g2(y, t, 2) ≤ 2y2.

To examine the stability of system (23), we construct a Lyapunov function candidate V : R×S →

R+ as V (x, i) = αix
2 with α2 = 1 and α1 > 0 to be determined. By computation, we have

LV (x, y, t, 1) ≤ −α1

4
|x|

7
3 − [

α1

2
− 1]x2 +

α1

16
y2, (24)

LV (x, y, t, 2) ≤ −1

5
x4 − (2 + 2b− 2α1)x

2 + 2y2. (25)

According to Theorem 4.2 in [9], inequalities (24) and (25) give

λ01 =
1

2
− 1

α1

, λ11 =
α1

16
, λ(s, 1) =

1

4 7
√

α1

s
7
6 ;

λ02 =
2(1 + b)

α1

− 2, λ12 = 2, λ(s, 2) =
1

5α2
1

s2.

Inequalities λ01 ≥ λ11 and λ02 ≥ λ12 yield α1 = 4 and b ≥ 7. Then, by Theorem 4.2 in [9],

system (23) is mean-square asymptotically stable if b ≥ 7. However, for inequalities (24) and

(25), we have

κ01 =
1

2
− 1

α1

, κ11 =
α1

16
, ζ̂(x, 1) =

α1

4
|x|

7
3 ;

κ02 = 2(1 + b− α1), κ12 = 2, ζ̂(x, 2) =
1

5
x4.

Inequalities κ01 ≥ κ11 and κ02 ≥ κ12 imply α1 = 4 and b ≥ 4. By Theorem 4.1, the sufficient

condition for mean-square asymptotical stability of system (23) is b ≥ 4. Note that, when

4 ≤ b < 7, Theorem 4.2 in [9] does not work while Theorem 4.1 is still applicable to system

(23). This shows Theorem 4.1 is more applicable.

V. CONCLUSION

This note improves an existing result in [9] and develops a Razumikhin-type theorem on

input-to-state stability of HSRSs in pth (p > 0) moment sense. It is seen that this improved

result is less conservative but more applicable (see Remark 3.1, Remark 3.2 and Example 4.1).
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