183 research outputs found

    The Recoverable Robust Tail Assignment Problem

    Get PDF
    This is the author accepted manuscript. The final version is available from Institute for Operations Research and the Management Sciences (INFORMS) via the DOI in this record Schedule disruptions are commonplace in the airline industry with many flight-delaying events occurring each day. Recently there has been a focus on introducing robustness into airline planning stages to reduce the effect of these disruptions. We propose a recoverable robustness technique as an alternative to robust optimisation to reduce the effect of disruptions and the cost of recovery. We formulate the recoverable robust tail assignment problem (RRTAP) as a stochastic program, solved using column generation in the master and subproblems of the Benders decomposition. We implement a two-phase algorithm for the Benders decomposition incorporating the Magnanti-Wong [21] enhancement techniques. The RRTAP includes costs due to flight delays, cancellation, and passenger rerouting, and the recovery stage includes cancellation, delay, and swapping options. To highlight the benefits of simultaneously solving planning and recovery problems in the RRTAP we compare our tail assignment solution with the tail assignment generated using a connection cost function presented in Gr¨onkvist [15]. Using airline data we demonstrate that by developing a better tail assignment plan via the RRTAP framework, one can reduce recovery costs in the event of a disruption.Australian Research Council Centre of Excellence for MathematicsMASCOS

    Solving the optimum communication spanning tree problem

    Get PDF
    This paper presents an algorithm based on Benders decomposition to solve the optimum communication spanning tree problem. The algorithm integrates within a branch-and-cut framework a stronger reformulation of the problem, combinatorial lower bounds, in-tree heuristics, fast separation algorithms, and a tailored branching rule. Computational experiments show solution time savings of up to three orders of magnitude compared to state-of-the-art exact algorithms. In addition, our algorithm is able to prove optimality for five unsolved instances in the literature and four from a new set of larger instances.Peer ReviewedPostprint (author's final draft

    A Neural Benders Decomposition for the Hub Location Routing Problem

    Full text link
    In this study, we propose an imitation learning framework designed to enhance the Benders decomposition method. Our primary focus is addressing degeneracy in subproblems with multiple dual optima, among which Magnanti-Wong technique identifies the non-dominant solution. We develop two policies. In the first policy, we replicate the Magnanti-Wong method and learn from each iteration. In the second policy, our objective is to determine a trajectory that expedites the attainment of the final subproblem dual solution. We train and assess these two policies through extensive computational experiments on a network design problem with flow subproblem, confirming that the presence of such learned policies significantly enhances the efficiency of the decomposition process

    Quadratic Assignment of Hubs in p-Hub Median Problem

    Get PDF

    Designing Satellite Communication Networks by Zero-One Quadratic Programming

    Get PDF
    In satellite communications networks, distinctive facilities called homing stations perform special transmission functions. Local demand nodes clustered around each homing station communicate with each other via a local switch at the homing station; demand nodes in different clusters communicate with each other via satellite earth stations at the homing stations. Designing such a communication network requires choices on the locations of the earth stations and on the assignments of demand nodes to the local clusters at the earth stations. We formulate this problem as a zero-one quadratic facility location problem and transform it into an equivalent zero-one integer linear program. Computational experience on real data shows that a branch and bound procedure is effective in solving problems with up to forty demand nodes (major cities) and that the solutions that this algorithm finds improve considerably upon management generated solutions. We also show that a greedy add heuristic, as implemented on an IBM PC, consistently generates optimal or near-optimal solutions

    Recoverable robust single day aircraft maintenance routing problem

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record Aircraft maintenance planning is of critical importance to the safe and efficient operations of an airline. It is common to solve the aircraft routing and maintenance planning problems many months in advance, with the solution spanning multiple days. An unfortunate consequence of this approach is the possible infeasibility of the maintenance plan due to frequent perturbations occurring in operations. There is an emerging concept that focuses on the generation of aircraft routes for a single day to ensure maintenance coverage that night, alleviating the effects of schedule perturbations from preceding days. In this paper, we present a novel approach to ensure that a sufficient number of aircraft routes are provided each day so maintenance critical aircraft receive maintenance that night. By penalising the under supply of routes terminating at maintenance stations from each overnight airport, we construct a single day routing to provide the best possible maintenance plan. This single day aircraft maintenance routing problem (SDAMRP) is further protected from disruptions by applying the recoverable robustness framework. To efficiently solve the recoverable robust SDAMRP acceleration techniques, such as identifying Pareto-optimal cuts and a trust region approach, have been applied. The SDAMRP is evaluated against a set of flight schedules and the results demonstrate a significantly improved aircraft maintenance plan. Further, the results demonstrate the magnitude of recoverability improvement that is achieved by employing recoverable robustness to the SDAMRP.Australian Research Council Centre of Excellence for Mathematics and Statistics of Complex SystemsNatural Sciences and Engineering Research Council of Canada

    Benders decomposition for the mixed no-idle permutation flowshop scheduling problem

    Get PDF
    [EN] The mixed no-idle flowshop scheduling problem arises in modern industries including integrated circuits, ceramic frit and steel production, among others, and where some machines are not allowed to remain idle between jobs. This paper describes an exact algorithm that uses Benders decomposition with a simple yet effective enhancement mechanism that entails the generation of additional cuts by using a referenced local search to help speed up convergence. Using only a single additional optimality cut at each iteration, and combined with combinatorial cuts, the algorithm can optimally solve instances with up to 500 jobs and 15 machines that are otherwise not within the reach of off-the-shelf optimization software, and can easily surpass ad-hoc existing metaheuristics. To the best of the authors' knowledge, the algorithm described here is the only exact method for solving the mixed no-idle permutation flowshop scheduling problem.This research project was partially supported by the Scientific and Technological Research Council of Turkey (TuBITAK) under Grant 1059B191600107. While writing this paper, Dr Hamzaday was a visiting researcher at the Southampton Business School at the University of Southampton. Ruben Ruiz is supported by the Spanish Ministry of Science, Innovation and Universities, under the Project 'OPTEP-Port Terminal Operations Optimization' (No. RTI2018-094940-B-I00) financed with FEDER funds. Thanks are due to two anonymous reviewers for their careful reading of the paper and helpful suggestions.Bektas, T.; Hamzadayi, A.; Ruiz García, R. (2020). Benders decomposition for the mixed no-idle permutation flowshop scheduling problem. Journal of Scheduling. 23(4):513-523. https://doi.org/10.1007/s10951-020-00637-8S513523234Adiri, I., & Pohoryles, D. (1982). Flowshop no-idle or no-wait scheduling to minimize the sum of completion times. Naval Research Logistics, 29(3), 495–504.Baker, K. R. (1974). Introduction to sequencing and scheduling. New York: Wiley.Baptiste, P., & Hguny, L. K. (1997). A branch and bound algorithm for the FF/no-idle/CmaxC_{max}. In Proceedings of the international conference on industrial engineering and production management, IEPM’97, Lyon, France (Vol. 1, pp. 429–438).Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik, 4(1), 238–252.Cordeau, J. F., Pasin, F., & Solomon, M. (2006). An integrated model for logistics network design. Annals of Operations Research, 144(1), 59–82.Costa, A. M., Cordeau, J. F., Gendron, B., & Laporte, G. (2012). Accelerating benders decomposition with heuristic master problem solutions. Pesquisa Operacional, 32(1), 3–20.Deng, G., & Gu, X. (2012). A hybrid discrete differential evolution algorithm for the no-idle permutation flow shop scheduling problem with makespan criterion. Computers & Operations Research, 39(9), 2152–2160.Goncharov, Y., & Sevastyanov, S. (2009). The flow shop problem with no-idle constraints: A review and approximation. European Journal of Operational Research, 196(2), 450–456.Kalczynski, P. J., & Kamburowski, J. (2005). A heuristic for minimizing the makespan in no-idle permutation flow shops. Computers & Industrial Engineering, 49(1), 146–154.Magnanti, T. L., & Wong, R. T. (1981). Accelerating benders decomposition: Algorithmic enhancement and model selection criteria. Operations Research, 29(3), 464–484.Pan, Q. K., & Ruiz, R. (2014). An effective iterated greedy algorithm for the mixed no-idle flowshop scheduling problem. Omega, 44(1), 41–50.Pan, Q. K., Tasgetiren, M. F., & Liang, Y. C. (2008). A discrete differential evolution algorithm for the permutation flowshop scheduling problem. Computers & Industrial Engineering, 55(4), 795–816.Pan, Q. K., & Wang, L. (2008a). No-idle permutation flow shop scheduling based on a hybrid discrete particle swarm optimization algorithm. International Journal of Advanced Manufacturing Technology, 39(7–8), 796–807.Pan, Q. K., & Wang, L. (2008b). A novel differential evolution algorithm for no-idle permutation flow-shop scheduling problems. European Journal of Industrial Engineering, 2(3), 279–297.Papadakos, N. (2008). Practical enhancements to the Magnanti–Wong method. Operations Research Letters, 36(4), 444–449.Röck, H. (1984). The three-machine no-wait flow shop is NP-complete. Journal of the Association for Computing Machinery, 31(2), 336–345.Ruiz, R., & Maroto, C. (2005). A comprehensive review and evaluation of permutation flowshop heuristics. European Journal of Operational Research, 165(2), 479–494.Ruiz, R., Vallada, E., & Fernández-Martínez, C. (2009). Scheduling in flowshops with no-idle machines. In U. Chakraborty (Ed.), Computational intelligence in flow shop and job shop scheduling, chap 2 (pp. 21–51). New York: Springer.Saadani, N. E. H., Guinet, A., & Moalla, M. (2003). Three stage no-idle flow-shops. Computers & Industrial Engineering, 44(3), 425–434.Saharidis, G., & Ierapetritou, M. (2013). Speed-up Benders decomposition using maximum density cut (MDC) generation. Annals of Operations Research, 210, 101–123.Shao, W., Pi, D., & Shao, Z. (2017). Memetic algorithm with node and edge histogram for no-idle flow shop scheduling problem to minimize the makespan criterion. Applied Soft Computing, 54, 164–182.Tasgetiren, M. F., Buyukdagli, O., Pan, Q. K., & Suganthan, P. N. (2013). A general variable neighborhood search algorithm for the no-idle permutation flowshop scheduling problem. In B. K. Panigrahi, P. N. Suganthan, S. Das, & S. S. Dash (Eds.), Swarm, evolutionary, and memetic computing (pp. 24–34). Cham: Springer.Vachajitpan, P. (1982). Job sequencing with continuous machine operation. Computers & Industrial Engineering, 6(3), 255–259
    • …
    corecore