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Abstract The mixed no-idle flowshop scheduling problem arises in the mod-
ern industry including integrated circuits, ceramic frit and steel production,
among others, and where some machines are not allowed to remain idle be-
tween jobs. This paper describes an exact algorithm that uses Benders decom-
position with a simple yet effective enhancement mechanism that entails the
generation of additional cuts by using a referenced local search to help speed
up convergence. Using only a single additional optimality cut at each iteration,
and combined with combinatorial cuts, the algorithm can optimally solve in-
stances with up to 500 jobs and 15 machines, that are otherwise not within the
reach of off-the-shelf optimization software and easily surpass ad-hoc existing
metaheuristics. To the best of the authors’ knowledge, the algorithm described
here is the only exact method for solving the mixed no-idle permutation flow-
shop scheduling problem.
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1 Introduction

The permutation flow shop scheduling problem (PFSP) is concerned with se-
quencing a set N of n jobs on a set M of m machines in a sequential manner.
Each job j has a known, fixed and a non-negative amount of processing time
on machine i denoted by pij (i = 1, . . . ,m; j = 1, . . . , n). At any point in time,
each job can be processed by at most one machine and each machine can pro-
cess at most one job. When a machine starts processing a job, it must complete
that job without interruption as no preemption is allowed. The sequence of
jobs to be processed is the same for each machine, implying that there are n!
possible solutions of the problem. One extension of the PFSP is the no-idle
permutation flow shop scheduling problem (NPFSP), where machines should
run continuously from the time that they start the first job until they com-
plete the last job, i.e., idle times are not allowed at machine in between the
processing of consecutive jobs. The problem arises in production environments
where setup times or machine operating costs are significant such that it is not
cost-effective to let the machines sit idle at any point during the production
run (Pan and Ruiz, 2014), such as foundry production (Saadani et al., 2003),
fiber glass processing (Kalczynski and Kamburowski, 2005), production of in-
tegrated circuits and steel industry (Pan and Ruiz, 2014). In other real life
cases, and as pointed out by Ruiz et al. (2009), there might be technological
constraints impeding idleness at machines, like high temperature frit kilns, for
example.

The first study on the NPFSP is by Adiri and Pohoryles (1982), defined on
two-machines with the objective of minimizing the sum of completion times.
A more popular objective has been to minimize the total makespan, namely
the sum of the completion times of the last job processed on each machine,
for which the first study is due to Vachajitpan (1982), where mathematical
models and branch-and-bound methods for solving small-scale instances were
presented. One exact method using branch-and-bound was described by Bap-
tiste and Hguny (1997). Comprehensive reviews on the problem can be found
in Ruiz and Maroto (2005) and Goncharov and Sevastyanov (2009), which
indicate an abundance of heuristic algorithms described to solve the problem,
including discrete differential evolution and particle swarm optimization (Pan
and Wang, 2008a,b), iterated greedy search (Ruiz et al., 2009), variable neigh-
borhood search (Tasgetiren et al., 2013) and memetic algorithms (Shao et al.,
2017). To date, however, no effective exact approach has been proposed for
NPFSP and those that exist can solve instances with only more than a handful
of jobs (Pan and Ruiz, 2014).

The mixed no-idle permutation flow shop scheduling problem (MNPFSP)
arises as a more general case of the NPFSP when some machines are allowed to
be idle, and others not. Examples can be found in the production of integrated
circuits and ceramic frit, as well as in the steel industry (Pan and Ruiz, 2014).
In the ceramic frit production, for example, only the central fusing kiln has the
no-idle constraint. As an extension of the PFSP, which is known to be NP-Hard
for three or more machines (see, e.g., Röck, 1984), the MNPFSP is also NP-
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Hard in the strong sense (Pan and Ruiz, 2014). The only study on this problem
that minimizes makespan is that of Pan and Ruiz (2014), which describes a
mixed integer programming model for the problem, an effective iterated greedy
(IG) algorithm and enhancements to accelerate the calculation of insertions
used within the local search. Computational results showed that in comparison
to the existing methods, the IG algorithm was able to identify solutions for
the NPFSP instances that were 61% better on average, with respect to the
makespan. However, no exact method, to our knowledge, has been proposed to
solve the MNPFSP, which is the aim of this paper. In particular, we contribute
to the literature by describing an application of Benders decomposition that
is enhanced with a referenced local search (RLS), that is used to generate
additional cuts to accelerate the convergence of the algorithm. We propose
and test three cut generating strategies, and use combinatorial cuts to discard
solutions already evaluated. The algorithms described in this paper are all
exact, the performance of which we computationally assess on a test bed of
literature instances, and compare with the commercial optimizer CPLEX and
its automated Benders decomposition algorithm.

The remainder of this paper is structured as follows. Section 2 formally
defines the problem and presents a formulation. The proposed algorithm is
described in detail in Section 3. Computational results are presented in Sec-
tion 4, followed by conclusions and future research in Section 5.

2 The Mixed No-Idle Permutation Flowshop Scheduling Problem

We denote by π(j) the job occupying position j in a given permutation π.
The PFSP requires the condition ci,π(j)

≥ ci,π(j−1)
+ pi,π(j)

to hold for any
two consecutive jobs in any permutation, where ci,j is the completion time
of task j at machine i. A key difference between the NPFSP and the PFSP
is that the former forbids any idle time inbetween any two consecutive tasks,
thus transforming the previous inequality into an equality as ci,π(j)

= ci,π(j−1)
+

pi,π(j)
. The mixed no-idle problem generalizes the two problems in which there

exists a subset M ′ ⊆ M of m′ ‘no-idle’ machines, and it is only for those
machines in M \M ′ that any idle running is allowed. Apart from these key
differences, the common PFSP assumptions hold (Baker, 1974): (1) Jobs are
independent from each other and are available for their processing from time
0; (2) machines are always available (no breakdowns); (3) machines might
only process one task at any given time; (4) jobs can only be processed by one
machine at all times; (5) tasks have to be processed without interruptions once
started and until their completion (no preemptions allowed); (6) setup times
are either sequence-independent and can be directly included in the processing
times, or are considered negligible and therefore ignored; and finally (7) there
is an infinite in-process buffer capacity between any two machines in the shop.

In the remainder of the paper, we make use of the integer programming
formulation below of the problem described in Pan and Ruiz (2014), provided
here for the sake of completeness. In this formulation, a binary variable xjk
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takes the value 1 if job j is in position k of the sequence, and 0 otherwise.
Continuous variables ci,k denote the completion time of job k = 1, . . . , n on
machine i = 1, . . . ,m.

Minimize cm,n (1)

subject to

n∑
k=1

xjk = 1 j = 1, . . . , n (2)

n∑
j=1

xjk = 1 k = 1, . . . , n (3)

c1,k ≥
n∑
j=1

p1jxj1 k = 1, . . . , n (4)

ci,k − ci−1,k ≥
n∑
j=1

pijxjk k = 1, . . . , n; i = 2, . . . ,m (5)

ci,k − ci,k−1 =

n∑
j=1

pijxjk k = 2, . . . , n; i ∈M ′ (6)

ci,k − ci,k−1 ≥
n∑
j=1

pijxjk k = 2, . . . , n; i ∈M \M ′ (7)

ci,k ≥ 0 k = 1, . . . , n; i = 1, . . . ,m (8)

xjk ∈ {0, 1} j, k = 1, . . . , n. (9)

Objective function (1) minimizes the makespan among all jobs. In the
PFSP and also for the MNPFSP, the makespan corresponds to the comple-
tion time of the last job in the permutation at the last machine of the shop
(cm,n). With constraints (2) and (3) we force that any job occupies one po-
sition in the permutation and also that each position at any permutation is
occupied by one job. Constraints (4) control the completion time of the first
job in the permutation. Constraints (5) enforce that the completion times of
jobs on the second and subsequent machines are larger than the completion
times of the preceding tasks of the same job on previous machines plus their
processing time, effectively avoiding overlaps of the tasks of the same job. The
key characteristic of the MNPFSP is shown in constraints (6) and (7). Con-
straint (6) forbids idle time at ‘no-idle’ machines by making the completion
time of a job equal completion time of the previous job in the sequence plus
its processing time. Inequality (7) is the usual PFSP constraint that forbids
overlaps of jobs on the same machine and at the same time allows for idle
time.
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3 Benders Decomposition

In this section, we first describe an application of the traditional Benders
decomposition followed by the proposed cut generation strategy using a local
search algorithm.

3.1 Application of Benders decomposition

Benders decomposition (Benders, 1962) is a cutting plane algorithm to solve a
Benders reformulation of a given model that enables it to be decomposed into
two simpler formulations, namely the master problem and the subproblem.
The master problem contains only a subset of the variables and of the con-
straints of the original model. The subproblem is the original model in which
the master problem variables are fixed, and the solution of which yields either
an optimality or a feasibility cut for the master problem (Costa et al., 2012).
Benders reformulation is typically solved using a delayed constraint genera-
tion algorithm that iterates between the master and the subproblem, until an
optimal solution is identified.

Let M(c, x) denote the formulation (1)–(9) where x = {xjk|j, k = 1, . . . , n}
and c = {cik|k = 1, . . . , n; i = 1, . . . ,m} are the vectors of the decision vari-
ables. Let us suppose that variables x have been fixed as x = x̂ ∈ X =
{x|x satisfies (2), (3), (9)}. The resulting formulation, shown by M(c, x̂), con-
sists only of the variables c, and the constraints of which are assigned the dual
variables α and β corresponding to constraints (4) and (5), respectively, and γ
corresponding to constraints (6) and (7), respectively. The dual D(α, β, γ, x̂)
of M(c, x̂) formulation is given by the following:

Maximize

n∑
j=1

x̂j1p1j

n∑
k=1

αk +

n∑
k=1

m∑
i=2

βik

n∑
j=1

x̂jkpij +

n∑
k=2

m∑
i=1

γik

n∑
j=1

x̂jkpij (10)

subject to

αk − βi+1,k − γi,k+1 ≤ 0 k = i = 1 (11)

αk − βi+1,k + γi,k − γi,k+1 ≤ 0 k = 2, . . . , n− 1; i = 1 (12)

αk − βi+1,k + γi,k ≤ 0 k = n, i = 1 (13)

βi,k − βi+1,k − γi,k+1 ≤ 0 k = 1; i = 2, . . . ,m− 1 (14)

βi,k − βi+1,k + γi,k − γi,k+1 ≤ 0 k = 2, . . . , n− 1; i = 2, . . . ,m− 1 (15)

βi,k − βi+1,k + γi,k ≤ 0 k = n; i = 2, . . . ,m− 1 (16)

βi,k − γi,k+1 ≤ 0 k = 1; i = m (17)

βi,k + γi,k − γi,k+1 ≤ 0 k = 2, . . . , n− 1; i = m (18)

βi,k + γi,k ≤ 1 k = n; i = m (19)

αk ≥ 0 k = 1, . . . , n (20)

βi,k ≥ 0 k = 1, . . . , n; i = 2, . . . ,m (21)

γi,k ≥ 0 k = 2, . . . , n; i ∈M \M ′. (22)
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The procedure to calculate the makespan we use here is the one proposed
in Pan and Ruiz (2014), which calculates the start and completion times of the
jobs in the order that they appear in a given permutation, with the makespan
being equal to the completion of the job in the last position. The procedure
runs in O(nm) time, and implies that M(c, x̂) always admits a feasible solution
for a given x̂ ∈ X. This, in turn, means that D(α, β, γ, x̂) is always feasible

for a given x̂ ∈ X, and for an optimal solution (α̂, β̂, γ̂) of the dual problem,
one obtains the following Benders optimality cuts:

z ≥
n∑
j=1

Ajxj1 +

n∑
j=1

n∑
k=2

Bjkxjk,

where z is a lower bound on the optimal solution value of M(c, x), Aj =
n∑
k=1

α̂kp1j +

m∑
i=2

β̂i1pij and Bjk =

m∑
i=2

β̂ikpij +

m∑
i=1

γ̂ikpij . Using this result, we

are now ready to present the following reformulation of M(c, x), referred to
as the master problem constructed using the set PD of extreme points of the
polytope defined by the dual problem D(α, β, γ, x̂), and shown as MP(PD)
below:

Minimize z (23)

subject to

n∑
k=1

xjk = 1 j = 1, . . . , n (24)

n∑
j=1

xjk = 1 k = 1, . . . , n (25)

z ≥
n∑
j=1

Ajxj1 +

n∑
j=1

n∑
k=2

Bjkxjk (α, β, γ) ∈ PD (26)

xjk ∈ {0, 1} j, k = 1, . . . , n,

As the MP includes a large number of optimality cuts, it can be solved using
a cutting plane algorithm in practice, normally starting with MP(∅) with
no optimality cuts (26), and generating the cuts on an as-needed basis. The
algorithm stops after solving a certain MP(P ), where P ⊆ PD.

To help speed up the convergence of the algorithm, we also use the following
combinatorial Benders cuts using any solution x̂ ∈ X in the master problem,∑

(j,k):x̂jk=1

xjk ≤ n− 2, (27)

which can be used to cut solution x̂ off from the set of feasible solutions
to M(c, x). In particular, after the addition of constraint (27), any solution
obtained by the formulation will differ from solution x̂ with respect to the
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position of at least two jobs. This follows from the fact that changing the
position of one job in a given sequence implicitly requires the change of position
of another job in the sequence.

3.2 Referenced local search algorithm

Another ingredient of our algorithm is a referenced local search (RLS), pro-
posed by Pan et al. (2008), which is initialized with a seed permutation πref

obtained by a good constructive heuristic. In this paper, the reference permu-
tation πref is taken from the master problem solution. Let Cmax(π) denote
the makespan of permutation π. The RLS procedure first finds the referenced
job, which is determined by using the index i in RLS procedure, in the cur-
rent permutation π. The referenced job is removed from π and inserted into
all possible positions of π. If this operation results in a permutation π∗ with
a lower Cmax(π∗) as compared to Cmax(π), then the current permutation is
replaced with π∗ and the value of the counter controlling the number of runs
in RLS is set to 1. Otherwise, the value of the counter is increased by one. This
procedure is repeated until the value of the counter reaches the number of jobs
in the problem. RLS keeps a list S with the best solutions found. The pseudo
code of RLS is given in Algorithm 1. Note that the accelerated makespan cal-
culations and speed-ups proposed in Pan and Ruiz (2014) are employed in the
proposed RLS local search.

Algorithm 1 RLS(πref )

1: i← 1; counter ← 0, π ← πref , S ← πref

2: while (counter ≤ n) do

3: Locate and extract job πref(i) from π

4: Insert job πref(i) in all possible positions of π and let π∗ be the permuta-

tion resulting in the best Cmax

5: if (Cmax(π∗) < Cmax(π)) then
6: π ← π∗; counter ← 1; update set S of best solutions
7: else
8: counter ← counter + 1
9: end if

10: i← mod(i+ 1, n)
11: end while
12: return π, S
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3.3 Cut generation using referenced local search

The choice of various ingredients used within Benders decomposition can
have a significant effect on the performance of the algorithm. These range
from model selection (Magnanti and Wong, 1981), cut improvement (e.g. Pa-
padakos, 2008; Saharidis and Ierapetritou, 2013) and strengthening the master
problem through the addition of pre-generated valid inequalities (e.g., Cordeau
et al., 2006). However, the choice of the integer solutions obtained from the
master problem and the improvement thereof has received much less attention.
In particular, the question around the effect of the quality of a feasible solution
and the strength of the corresponding cut subsequently added to the master
problem on the convergence of the Benders decomposition algorithm has not
yet been fully investigated. Costa et al. (2012), for example, suggest the use of
intermediate solutions within Benders decomposition, either obtained during
the course of the branch-and-cut algorithm, or through local search, and report
encouraging results for the fixed charge network design problem. In this paper,
we seek to explore this question further and propose a Benders decomposition
algorithm that embeds the bespoke RLS into the algorithm for solving the
MNPFSP. The aim is to enhance the performance of the algorithm by gener-
ating extra cuts within the algorithm induced by the heuristic solutions. This
section explains the details of the algorithm, and describes and tests various
strategies for an effective implementation.

The enhanced Benders decomposition is an iterative algorithm that gen-
erates optimality cuts (26) at each iteration on the basis of an optimal MP
solution x∗, uses x∗ as an input to the RLS to generate a user-defined num-
ber σ of neighbor solutions, each of which induces an additional optimality cut
inserted into the master problem. The reason behind the choice of the RLS, in-
stead of other heuristics and meta-heuristics for the problem, is the simplicity
of its implementation and the lack of any special input parameters. The RLS
has been shown to work effectively for solving the PFSP (Pan et al., 2008),
the NPFSP (Deng and Gu, 2012) and the MNPFSP (Pan and Ruiz, 2014). We
propose three different strategies for generating the additional cuts that are
described below. Let S = {x1, x2, . . . , x|S|} be the set of solutions generated
by RLS and let v(x) denote the objective function value of a feasible solution
x.

– Elite: Choose the first σ solutions in S such that v(x1) ≥ v(x2) ≥ . . . ≥
v(xσ) ≥ v(x∗).

– Highly elite: Choose the best σ solutions in S in terms of the objective
value.

– Random: Choose σ solutions in S at random.

The pseudo-code of the proposed algorithm is given in Algorithm 2.
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Algorithm 2 Benders decomposition

Input: number σ of cuts to add at each iteration, cut generation strategy,
allowable optimality gap ε ≥ 0

1: Set LB ← −∞, UB ← +∞, P ← ∅
2: while LB ≤ UB − ε do
3: Let x0 denote the solution of MP(P ).
4: if (LB < v(x0)) then
5: Set LB ← v(x0)
6: end if
7: Let V ← x0
8: Let S be the set of all neighbor solutions of x0 obtained by the RLS.
9: Let V ← xi where xi is one of the i = 1, 2, . . . , σ solutions obtained

according to the cut generation strategy used (elite, highly elite or ran-
dom)

10: for each solution xi ∈ V do
11: Solve D(α, β, γ, xi) and let (α, β, γ)

i
denote the resulting solution

12: P ← (α, β, γ)i

13: if (v(xi) < UB) then
14: Set UB ← v(xi)
15: Set x∗ ← xi
16: end if
17: Generate a combinatorial cut using solution x0 and add to MP(P ).
18: end for
19: end while

Output: Best solution x∗ and value v(x∗)

4 Computational Results

This section presents a computational study to assess the performance of the
Benders decomposition algorithm proposed in this paper. The algorithm and
its variants are coded in Visual C++, using CPLEX 12.7.1 as the solver.
We have used a Intel Core i5-2450M computer with a 2.5 GHz CPU and 4
GB of memory. The tests are conducted on two sets of instances available at
http://soa.iti.es/rruiz that were originally proposed in Ruiz et al. (2009)
and extended in Pan and Ruiz (2014). The experiments are conducted in four
sets, which will be explained below along with the results.

4.1 Performance of standard Benders decomposition implementations

In the first stage, we first compare our (deliberately) naive implementation of
Benders decomposition (shown by BD) described in Section 3.1, the branch-
and-cut algorithm of CPLEX 12.7.1 (shown by CPLEX) to solve the formu-
lation of the problem shown in Section 2, and the automated Benders de-
composition available within the software (shown by ABD). The aim is to
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show the performance of standard Benders decomposition implementations
on the MNPFSP. For this purpose, we generate relatively small size instances
from the instance I 3 500 50 1 with 500 jobs and 50 machines available at
the above website. A smaller instance with 10 jobs and 3 machines, for ex-
ample, is generated by using the first 10 jobs and three machines within
the larger instance. A total of 27 small-scale instances are formed with n ∈
{10, 15, 20, 25, 30, 35, 40, 45, 50} jobs and m ∈ {3, 6, 9} machines. A compu-
tational time limit of 7200 CPU seconds has been imposed on the total run
time of each algorithm. The results are given in Table 1, where the first three
columns show the instance number as the identifier, number n of jobs and
number m of machines. Then, for each of the three methods compared, we
provide the value of the best integer solution (BI) identified within the time
limit, the final optimality gap (GAP), in percent, the overall solution time
(ST), in seconds, and the total number of iterations (NI) for ABD and BD.

As can be seen from Table 1, BD was able to solve 23 out of 27 instances
to optimality, while CPLEX and ABD are able to solve all of the instances
to optimality within the given time limit. In terms of the time to solve to
optimality, CPLEX is the fastest in all instances except for instances 16, 22
and 23, for which ABD shows a better performance. BD is quicker than the
other two for instances 4, 7 and 10. These results suggest that a standard
implementation of Benders decomposition without any enhancements is highly
ineffective and does not seem to provide encouraging results for the MNPFSP.

4.2 Effectiveness of the cut generation strategies

The second stage of the experiments numerically evaluates the cut generation
strategies, and the effect of the number of additional cuts σ added at each
iteration of the algorithm. We denote by σ′ = σ + 1 the total number of cuts
added at each iteration, where the ‘+1’ indicates the original optimality cut
from the solution of the master problem, and test σ′ ∈ {2, 5, 10, 25, 50} in the
experiments, resulting in a total of 15 combinations applied to the 27 instances
described above. A computational time limit of 7200 CPU seconds has also
been imposed.

The results of the experiments are reported in Tables 2 and 3 for the elite
and the highly elite strategies, respectively, denoted by the notation Eσ′ and
HEσ′ which also indicates the number of additional optimality cuts introduced.
We do not report the results associated with the random strategy, as it has
consistently produced very poor quality solutions in all cases.

The findings indicate that the elite strategy has found the optimum solu-
tions for all instances with all settings of σ′, with the exception of instances
24 and 27 for E2, instances 18, 24, 26 and 27 for E5, and instances 18, 23
and 26 for E10. The highly elite strategy, on the other hand, has found all the
optimum solutions for all values of σ′, as can be seen from Table 3. Further-
more, the variant HE2 solves 19 (out of 27) instances to optimality quicker
than the other two cut generation strategies. Comparing HE2 with the results
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of CPLEX and ABD reported in Table 1, we observe that it yields the best
performance on 11 out of the 27 instances, and is able to solve instances to
optimality for which BD has failed to do so within the time limit.

4.3 Results on larger-scale instances

The third and last phase of the computational study compares the algorithms
on medium and large-scale instances. The former set includes a further 30
instances, generated in the same manner as the small-size instances by choosing
n to range from 50 to 500 in increments of 50, and m as either 5, 10 and 15
from within the main instance I 3 500 50 1.

Having established the superiority of HE2 over other variants of the Ben-
ders decomposition algorithm in the previous section, we now employ two
further enhancements to this algorithm. The first is the addition of combina-
torial cuts (27) within the algorithm, shown by HE2, and the second is a fur-
ther strengthening of the optimality cuts using the Pareto-optimal cut genera-
tion scheme described by Magnanti and Wong (1981), indicated by HE2+PO.
These two variants have also been tested by deactivating the combinatorial
cuts, indicated using the same names but with the suffix ‘-CC’. It should be
noted with the addition of cardinality cuts, the optimality gaps are no longer
valid, reason for which we do not report them here. The tests comparing the
four variants have been conducted on a limited set of instances with n chosen
as either 50, 100 or 150, and m equal to 5, 10 or 15. The results are reported
in Table 4.

The results in Table 4 show that the variants of the algorithm, namely
HE2 and HE2+PO that use combinatorial cuts, always result in a superior
performance over the cases where they are not used. However, a performance
comparison between HE2 and HE2+PO is not conclusive and seems to be
instance-dependent. In particular, whilst HE2 is faster for instances 28, 29, 31,
34 and 35, instances 30 and 32 are solved significantly faster with HE2+PO.

To further compare HE2 and HE2+PO along with the CPLEX solver and
the ABD, we provide further results on instances with up to 500 jobs in Table 5.
These results are indicative of the superior performance of the two variants
of the algorithm over CPLEX and ABD, in terms of both the computational
solution time and solution quality. In particular, with the exception of one
instance, one of the two variants always yield the best performance. More
remarkably, whilst neither CPLEX nor ABD were able to identify a feasible
solution for instances (n = 150, m = 10), (n = 300, m = 5), (n = 350,
m = 10), (n = 500, m = 5) and (n = 500, m = 5) within the allowed time
limit, at least one of HE2 or HE2+PO solved these instances to optimality.

4.4 Comparison with a state-of-the-art heuristic

The last set of experiments reported in this section are conducted to compare
the algorithms we propose in this paper with a state-of-the-art heuristic de-
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scribed for the problem, namely the iterated greedy algorithm (IGA) of Pan
and Ruiz (2014), in terms of the value of the solutions identified. These tests
use the same set of instances shown in Table 5. In their study, Pan and Ruiz
(2014) run the IGA under a time limit of n × (m/2) × ρ milliseconds, where
ρ ∈ {10, 20, 30, 60, 90}. In our experiments, we run the IGA five times, using
the largest value for ρ = 90 in setting the time limit for each of the five runs.
The results are shown in Table 6, where the column titled BI corresponds to
the best value found for the corresponding instance, and the column titled
Method indicates which of the four algorithms of Table 5 were able to identify
the best value. Columns five to seven report the minimum, maximum and the
average solution values for each instance, respectively, across the five runs of
the IGA, and the standard deviation. For reasons of fairness, we also run the
IGA once for each instance, under the same time limit of 7200 seconds used
for the exact algorithms, and report the value of the best solution identified
in the last column of the table.

As the results in Table 6 indicate, the exact algorithms proposed in this
paper, in particular HE2 and HE2+PO, are highly competitive with the IGA
for instances with n ≤ 250, and are able to identify the same solution values in
most cases. However, the exact algorithms often yield better quality solutions
for larger instances in comparison, irrespective of whether the IGA is run under
a 7200 second time limit or shorter. In particular, for instances with (n = 350,
m = 15), (n = 400, m = 10), (n = 400, m = 15), (n = 450, m = 10), (n = 450,
m = 15), (n = 500, m = 10) and (n = 500, m = 15), the exact algorithms
yield better quality solutions under the same time limit.

5 Conclusions and future research

This paper presented an enhancement to the traditional Benders decomposi-
tion by generating cuts using a local search algorithm for the mixed no-idle
permutation flowshop scheduling problem. The latter algorithm was used as an
‘oracle’ to generate high-quality solutions, which in turn were used to construct
additional cuts used within the iterative algorithm. Our findings indicate that
such a strategy can substantially improve the performance of the algorithm,
even with only a single additional cut added at each iteration, and that the
quality of the solution used to generate the additional cut is of paramount im-
portance. In particular, it is only high-quality solutions that help to improve
the convergence and that randomly generated solutions worsen the efficiency
of the algorithm. Our algorithm also makes use of combinatorial cuts that
eliminate feasible solutions from the search space, which leads to the solution
of instances of up to 500 jobs and five machines that otherwise are not solved
with a commercial solver. The results encourage the use of such a strategy
on other types of problems, assuming that an ‘oracle’ is available to generate
high-quality solutions in short computational times.
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Table 2 Computational results of the elite strategy

no.
σ′ = 2 σ′ = 5 σ′ = 10 σ′ = 25 σ′ = 50
ST NI ST NI ST NI ST NI ST NI

1 0.28 6 0.46 11 0.67 3 0.56 3 0.26 3
2 1.75 20 1.76 12 2.96 11 1.14 6 0.91 6
3 132.94 97 120.41 68 152.09 65 98.99 61 96.17 61
4 0.12 3 0.38 3 0.8 3 0.28 2 0.37 2
5 182.4 123 61.2 57 34.42 33 36.66 35 8.77 18
6 815.26 115 624.12 85 517.62 63 484.12 54 452.19 45
7 0.16 3 0.08 2 1.19 2 0.1 2 0.18 2
8 0.54 6 0.62 5 1.7 4 0.54 2 0.49 2
9 1.21 12 3.01 15 2.33 6 0.67 2 0.65 2

10 0.65 6 0.35 3 0.87 3 0.37 2 0.29 2
11 1.08 7 0.81 4 1.09 2 0.9 2 0.84 2
12 74.43 65 24.24 38 10.59 17 2.87 6 2.75 6
13 0.74 7 0.37 3 1.14 3 0.75 2 0.67 2
14 7.17 11 0.51 3 1.41 3 1.42 3 1.22 2
15 476.86 116 442.93 132 46.19 28 8.64 9 8.26 8
16 1.49 10 1.59 7 1.33 3 0.84 2 0.72 2
17 430.9 86 870.89 31 310.29 9 7.95 9 2.28 3
18 3342.12 227 7200 8 7200 5 3.64 4 2.83 3
19 2.12 13 1.59 6 0.91 3 1.29 3 1.47 2
20 2549.29 12 235.16 59 782.15 7 2.7 3 1.99 2
21 450.32 232 362.45 172 278.31 100 251.76 64 212.76 38
22 1.55 8 0.45 3 1.68 3 1.11 2 1.04 2
23 158.22 92 3240.12 63 7200 5 178.76 4 1.65 2
24 7200 7 7200 202 3225.52 91 94.47 16 11.41 5
25 3.61 15 1.52 5 2.37 4 1.01 2 1.02 2
26 2513.16 22 7200 4 7200 3 5.96 4 2.32 2
27 7200 7 7200 5 1488.01 74 126.91 18 3.45 2
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Table 3 Computational results of the highly elite strategy

no.
σ′ = 2 σ′ = 5 σ′ = 10 σ′ = 25 σ′ = 50
ST NI ST NI ST NI ST NI ST NI

1 0.29 7 0.93 6 0.32 2 0.96 2 1.34 2
2 3.05 35 4.24 22 2.11 10 2.63 6 1.51 2
3 197.89 135 171.32 85 100.09 44 56.61 23 33.2 15
4 0.06 2 0.13 2 0.22 2 0.74 2 1.24 2
5 92.6 121 181.41 61 20.7 29 18.76 14 23.66 11
6 216.13 120 245.23 90 317.12 75 314.96 66 410 44
7 0.15 2 0.15 2 0.32 2 0.87 2 1.97 2
8 0.09 2 0.33 2 0.49 2 1.08 2 2.45 2
9 0.14 2 0.25 2 0.49 2 1.19 2 2.55 2

10 0.11 2 0.22 2 0.42 2 0.99 2 1.89 2
11 0.55 5 0.31 2 0.52 2 1.36 2 2.32 2
12 1.14 11 11.22 31 2.18 6 5.03 6 8.15 5
13 0.15 2 0.46 2 0.43 2 1.17 2 2.11 2
14 0.15 2 0.33 2 0.65 2 1.31 2 2.31 2
15 1.65 11 1.8 7 12.5 18 2.48 3 2.85 2
16 0.11 2 0.3 2 0.58 2 0.87 2 1.81 2
17 0.71 4 1.51 6 7.7 12 3.67 4 2.61 2
18 2.48 13 1.38 5 5.71 10 1.05 2 5 3
19 0.32 2 0.37 2 0.64 2 1.36 2 2.49 2
20 0.14 2 0.64 2 0.86 2 1.55 2 2.63 2
21 130.25 109 162.56 86 178.12 63 250.56 51 312.76 38
22 0.23 2 0.4 2 0.66 2 1.28 2 2.33 2
23 0.21 2 0.83 2 0.79 2 2.08 2 2.86 2
24 15.59 32 27.32 24 9.29 10 5.95 4 160.62 13
25 0.21 2 0.44 2 0.86 2 1.46 2 2.47 2
26 0.2 2 0.66 2 1.08 2 1.8 2 3.44 2
27 0.3 2 0.64 2 1.07 2 2.55 2 3.52 2
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