231 research outputs found

    Similarity measures and algorithms for cartographic schematization

    Get PDF

    Methods and Measures for Analyzing Complex Street Networks and Urban Form

    Full text link
    Complex systems have been widely studied by social and natural scientists in terms of their dynamics and their structure. Scholars of cities and urban planning have incorporated complexity theories from qualitative and quantitative perspectives. From a structural standpoint, the urban form may be characterized by the morphological complexity of its circulation networks - particularly their density, resilience, centrality, and connectedness. This dissertation unpacks theories of nonlinearity and complex systems, then develops a framework for assessing the complexity of urban form and street networks. It introduces a new tool, OSMnx, to collect street network and other urban form data for anywhere in the world, then analyze and visualize them. Finally, it presents a large empirical study of 27,000 street networks, examining their metric and topological complexity relevant to urban design, transportation research, and the human experience of the built environment.Comment: PhD thesis (2017), City and Regional Planning, UC Berkele

    Key Concepts and Techniques in GIS

    Full text link

    An automated approach to enrich OpenStreetMap data on footways

    Full text link
    Urbanization and the rising global life expectancy are shaping the 21st century, and an increasing number of the older and disabled population is expected, emphasizing the need of developing age-friendly and accessible cities for all. The disabled population encounters barriers in accessing public services that able-bodied people do not, especially on footways. OpenStreetMap (OSM) data is applied in many routing applications for disabled people but does still lack a considerable amount of accessibility information, for example, only less than 2% of OSM footpaths in the city of Zurich contain inclination information. This thesis aims to enrich OSM footpaths in the city of Zurich automatically with inclination information derived from a Digital Elevation Model (DEM) and investigate the influence of inclination-enriched data on spatial accessibility. The spatial accessibility of three population groups (younger adults, older adults, and manual wheelchair users) to six main service providers (Healthcare Services, Daily Shopping, Public Services, Education, Leisure and Sports, Food and Drinks) was analysed using three different Floating Catchment Area (FCA) methods including 2SFCA, E2SFCA, and KD2SFCA. OSM footpaths were successfully enriched with inclination information using a high-resolution DEM. Results of the spatial accessibility analysis showed differences in the influence of accessibility enriched footpath data per population group, where manual wheelchair users were most affected in their spatial accessibility. Results from the 2SFCA method showed smallest areas that changed but a higher magnitude in change than the other two FCA methods, which yielded similar results. Furthermore, deprived areas concerning accessibility in the city of Zurich were found for all population groups and service providers in different areas of the city. The accessibility enriched footpath data can be used in spatial accessibility analysis, however, the data was not uploaded to OSM, as in other studies that applied an automated enrichment of OSM data. It can be concluded that mobility-impaired people such as manual wheelchair users are most affected by accessibility inhibiting barriers such as inclination. Furthermore, deprived areas concerning spatial accessibility are mainly found in areas where low accessibility and high demand and supply concur or when accessibility and supply are low. The results of this thesis confirmed the vulnerability of the mobility-impaired population in accessing public facilities, which strengthens the need for further research and development of an accessible city for all. Moreover, first insights in areas with lower spatial accessibility in the city of Zurich were made, which gives a basis for more in-depth research in this matter. The applied methods can be replicated if the necessary data is available

    Sampling-based coverage path planning for complex 3D structures

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (p. 173-186).Path planning is an essential capability for autonomous robots, and many applications impose challenging constraints alongside the standard requirement of obstacle avoidance. Coverage planning is one such task, in which a single robot must sweep its end effector over the entirety of a known workspace. For two-dimensional environments, optimal algorithms are documented and well-understood. For threedimensional structures, however, few of the available heuristics succeed over occluded regions and low-clearance areas. This thesis makes several contributions to sampling-based coverage path planning, for use on complex three-dimensional structures. First, we introduce a new algorithm for planning feasible coverage paths. It is more computationally efficient in problems of complex geometry than the well-known dual sampling method, especially when high-quality solutions are desired. Second, we present an improvement procedure that iteratively shortens and smooths a feasible coverage path; robot configurations are adjusted without violating any coverage constraints. Third, we propose a modular algorithm that allows the simple components of a structure to be covered using planar, back-and-forth sweep paths. An analysis of probabilistic completeness, the first of its kind applied to coverage planning, accompanies each of these algorithms, as well as ensemble computational results. The motivating application throughout this work has been autonomous, in-water ship hull inspection. Shafts, propellers, and control surfaces protrude from a ship hull and pose a challenging coverage problem at the stern. Deployment of a sonar-equipped underwater robot on six large vessels has led to robust operations that yield triangle mesh models of these structures; these models form the basis for planning inspections at close range. We give results from a coverage plan executed at the stern of a US Coast Guard Cutter, and results are also presented from an indoor experiment using a precision scanning laser and gantry positioning system.by Brendan J. Englot.Ph.D

    Cartographic modelling for automated map generation

    Get PDF

    Survivable Cloud Networking Services

    Get PDF
    Cloud computing paradigms are seeing very strong traction today and are being propelled by advances in multi-core processor, storage, and high-bandwidth networking technologies. Now as this growth unfolds, there is a growing need to distribute cloud services over multiple data-center sites in order to improve speed, responsiveness, as well as reliability. Overall, this trend is pushing the need for virtual network (VN) embedding support at the underlying network layer. Moreover, as more and more mission-critical end-user applications move to the cloud, associated VN survivability concerns are also becoming a key requirement in order to guarantee user service level agreements. Overall, several different types of survivable VN embedding schemes have been developed in recent years. Broadly, these schemes offer resiliency guarantees by pre-provisioning backup resources at service setup time. However, most of these solutions are only geared towards handling isolated single link or single node failures. As such, these designs are largely ineffective against larger regional stressors that can result in multiple system failures. In particular, many cloud service providers are very concerned about catastrophic disaster events such as earthquakes, floods, hurricanes, cascading power outages, and even malicious weapons of mass destruction attacks. Hence there is a pressing need to develop more robust cloud recovery schemes for disaster recovery that leverage underlying distributed networking capabilities. In light of the above, this dissertation proposes a range of solutions to address cloud networking services recovery under multi-failure stressors. First, a novel failure region-disjoint VN protection scheme is proposed to achieve improved efficiency for pre-provisioned protection. Next, enhanced VN mapping schemes are studied with probabilistic considerations to minimize risk for VN requests under stochastic failure scenarios. Finally, novel post-fault VN restoration schemes are also developed to provide viable last-gap recovery mechanisms using partial and full VN remapping strategies. The performance of these various solutions is evaluated using discrete event simulation and is also compared to existing strategies

    Efficient Algorithms for Coastal Geographic Problems

    Get PDF
    The increasing performance of computers has made it possible to solve algorithmically problems for which manual and possibly inaccurate methods have been previously used. Nevertheless, one must still pay attention to the performance of an algorithm if huge datasets are used or if the problem iscomputationally difficult. Two geographic problems are studied in the articles included in this thesis. In the first problem the goal is to determine distances from points, called study points, to shorelines in predefined directions. Together with other in-formation, mainly related to wind, these distances can be used to estimate wave exposure at different areas. In the second problem the input consists of a set of sites where water quality observations have been made and of the results of the measurements at the different sites. The goal is to select a subset of the observational sites in such a manner that water quality is still measured in a sufficient accuracy when monitoring at the other sites is stopped to reduce economic cost. Most of the thesis concentrates on the first problem, known as the fetch length problem. The main challenge is that the two-dimensional map is represented as a set of polygons with millions of vertices in total and the distances may also be computed for millions of study points in several directions. Efficient algorithms are developed for the problem, one of them approximate and the others exact except for rounding errors. The solutions also differ in that three of them are targeted for serial operation or for a small number of CPU cores whereas one, together with its further developments, is suitable also for parallel machines such as GPUs.Tietokoneiden suorituskyvyn kasvaminen on tehnyt mahdolliseksi ratkaista algoritmisesti ongelmia, joita on aiemmin tarkasteltu paljon ihmistyötä vaativilla, mahdollisesti epätarkoilla, menetelmillä. Algoritmien suorituskykyyn on kuitenkin toisinaan edelleen kiinnitettävä huomiota lähtömateriaalin suuren määrän tai ongelman laskennallisen vaikeuden takia. Väitöskirjaansisältyvissäartikkeleissatarkastellaankahtamaantieteellistä ongelmaa. Ensimmäisessä näistä on määritettävä etäisyyksiä merellä olevista pisteistä lähimpään rantaviivaan ennalta määrätyissä suunnissa. Etäisyyksiä ja tuulen voimakkuutta koskevien tietojen avulla on mahdollista arvioida esimerkiksi aallokon voimakkuutta. Toisessa ongelmista annettuna on joukko tarkkailuasemia ja niiltä aiemmin kerättyä tietoa erilaisista vedenlaatua kuvaavista parametreista kuten sameudesta ja ravinteiden määristä. Tehtävänä on valita asemajoukosta sellainen osa joukko, että vedenlaatua voidaan edelleen tarkkailla riittävällä tarkkuudella, kun mittausten tekeminen muilla havaintopaikoilla lopetetaan kustannusten säästämiseksi. Väitöskirja keskittyy pääosin ensimmäisen ongelman, suunnattujen etäisyyksien, ratkaisemiseen. Haasteena on se, että tarkasteltava kaksiulotteinen kartta kuvaa rantaviivan tyypillisesti miljoonista kärkipisteistä koostuvana joukkonapolygonejajaetäisyyksiäonlaskettavamiljoonilletarkastelupisteille kymmenissä eri suunnissa. Ongelmalle kehitetään tehokkaita ratkaisutapoja, joista yksi on likimääräinen, muut pyöristysvirheitä lukuun ottamatta tarkkoja. Ratkaisut eroavat toisistaan myös siinä, että kolme menetelmistä on suunniteltu ajettavaksi sarjamuotoisesti tai pienellä määrällä suoritinytimiä, kun taas yksi menetelmistä ja siihen tehdyt parannukset soveltuvat myös voimakkaasti rinnakkaisille laitteille kuten GPU:lle. Vedenlaatuongelmassa annetulla asemajoukolla on suuri määrä mahdollisia osajoukkoja. Lisäksi tehtävässä käytetään aikaa vaativia operaatioita kuten lineaarista regressiota, mikä entisestään rajoittaa sitä, kuinka monta osajoukkoa voidaan tutkia. Ratkaisussa käytetäänkin heuristiikkoja, jotkaeivät välttämättä tuota optimaalista lopputulosta.Siirretty Doriast

    Simulation Modeling

    Get PDF
    The book presents some recent specialized works of a theoretical and practical nature in the field of simulation modeling, which is being addressed to a large number of specialists, mathematicians, doctors, engineers, economists, professors, and students. The book comprises 11 chapters that promote modern mathematical algorithms and simulation modeling techniques, in practical applications, in the following thematic areas: mathematics, biomedicine, systems of systems, materials science and engineering, energy systems, and economics. This project presents scientific papers and applications that emphasize the capabilities of simulation modeling methods, helping readers to understand the phenomena that take place in the real world, the conditions of their development, and their effects, at a high scientific and technical level. The authors have published work examples and case studies that resulted from their researches in the field. The readers get new solutions and answers to questions related to the emerging applications of simulation modeling and their advantages
    corecore