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Abstract

Cloud computing paradigms are seeing very strong traction today and are being pro-

pelled by advances in multi-core processor, storage, and high-bandwidth networking

technologies. Now as this growth unfolds, there is a growing need to distribute cloud

services over multiple data-center sites in order to improve speed, responsiveness, as

well as reliability. Overall, this trend is pushing the need for virtual network (VN)

embedding support at the underlying network layer. Moreover, as more and more

“mission-critical” end-user applications move to the cloud, associated VN survivabil-

ity concerns are also becoming a key requirement in order to guarantee user service

level agreements.

Overall, several different types of survivable VN embedding schemes have been

developed in recent years. Broadly, these schemes offer resiliency guarantees by pre-

provisioning backup resources at service setup time. However, most of these solutions

are only geared towards handling isolated single link or single node failures. As such,

these designs are largely ineffective against larger regional stressors that can result
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in multiple system failures. In particular, many cloud service providers are very

concerned about catastrophic disaster events such as earthquakes, floods, hurricanes,

cascading power outages, and even malicious weapons of mass destruction attacks.

Hence there is a pressing need to develop more robust cloud recovery schemes for

disaster recovery that leverage underlying distributed networking capabilities.

In light of the above, this dissertation proposes a range of solutions to address

cloud networking services recovery under multi-failure stressors. First, a novel failure

region-disjoint VN protection scheme is proposed to achieve improved efficiency for

pre-provisioned protection. Next, enhanced VN mapping schemes are studied with

probabilistic considerations to minimize risk for VN requests under stochastic failure

scenarios. Finally, novel post-fault VN restoration schemes are also developed to

provide viable last-gap recovery mechanisms using partial and full VN remapping

strategies. The performance of these various solutions is evaluated using discrete

event simulation and is also compared to existing strategies.
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Chapter 1

Introduction

This dissertation addresses the topic of survivability in cloud networking systems. To

properly introduce the work, this chapter first presents a brief overview of this space

and then highlights the key motivations for the research. The main contributions

are then presented along with an overview of the thesis chapters.

1.1 Background Overview

Cloud computing paradigms have gained rapid traction in recent years, driven by

advances in multi-core processor, storage, and high-bandwidth networking technolo-

gies. These provisions allow organizations to outsource their information technology

(IT) infrastructure and even software service needs to external cloud provider orga-

nizations. In turn these providers maintain extensive networked data-center facilities

and leverage advanced network and machine virtualization techniques to provide a

full range of customized service offerings. In particular, virtualization provides the

necessary abstraction such that dispersed underlying physical resources (raw compu-

tation, storage, network bandwidth) can be unified into a common pool for a client.
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Chapter 1. Introduction

Futhermore, virtualization also allows operators to deploy application services over

these virtualized resource pools and simplify manageability/security concerns. In

particular, virtual machine (VM) technology is now widely adopted in cloud com-

puting environment as users can specify customized software suites e.g., operating

systems, software applications, and pack them together into VMs.

Figure 1.1: Cloud service model

Overall, cloud-based services offer many saliencies. Foremost, they allow users to

forgo expensive data-center build-outs, yielding much lower capital and operational

expenditures. In addition, they provide users with dynamic access to vast amounts of

computational resources in a flexible pay-as-you-grow manner, i.e., service scalabil-

ity. Finally, cloud-based offerings allow organizations to distribute their content and
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Chapter 1. Introduction

operations across multiple dispersed sites via network/machine virtualization tech-

niques, thereby improving survivability and responsiveness, i.e., geo-diversity [BR01],

[AG01]. Leveraging these new capabilities many types of cloud service models have

emerged in recent years, including infrastructure as a service (IaaS), platform as a

service (PaaS), software as a service (SaaS) (see also Figure 1.1) [BR01]. Namely

IaaS represents the lowest layer of service abstraction and directly provisions hard-

ware resources for clients to support their applications. Meanwhile, PaaS offers a

higher level of abstraction by providing an integrated platform for clients develop

their customized applications on. Finally, SaaS offers full turnkey software applica-

tions that user can access remotely via usage-based pricing models [IF01]. Figure

1.2 shows some popular commercial cloud service offerings in use today.

Figure 1.2: Overview of cloud network architecture

3
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Now as new cloud offerings gain traction, there is a growing need to distribute

their operation across multiple data-center sites in order to improve speed and respon-

siveness, as well as reliability [BR01]. As a result, underling networking substrates

will play a critical role in provisioning high-speed interconnectivity between such

data-center locations. In particular, the concept of network virtualization [YZ01]

is very germane here as it allows operators to provision dedicated virtual networks

(VN) overlays and interconnect cloud users (or providers) over common physical

infrastructures [GS01]. In general, VN connectivity can be specified and varied ac-

cording to particular client needs. An example of a cloud-based VN overlay is shown

in Figure 1.1 for a sample 3 node ring topology embedded over a 7 node network

interconnecting 6 data-center sites.

Overall, the topic of VN request provisioning over physical networking infras-

tructures has been well-studied in recent years [AF01], i.e., also termed as the VN

embedding (VNE) problem. The main goal here is to embed VN requests onto phys-

ical network and data-center infrastructures to meet client needs. Namely, each

VN node requires a certain amount of data-center computing and storage resources,

whereas each VN link/edge requires a certain amount of bandwidth capacity to sup-

port communications between VN nodes. Hence operators must carefully provision

their underlying node and link resources to map VN nodes to physical substrate

data-center sites and VN links to underlying connections between sites. From an

operational viewpoint, the key objectives here include revenue maximization and/or

cost reduction and a full range of schemes have been developed using optimization

and graph-based heuristic methods, see surveys in [AF01], [AB01].

Carefully note that studies have also looked at virtual private network (VPN)

provisioning in IP (Layer 3), Ethernet (Layer 2), and even optical (Layer 1) networks,

see [ZZ02]. Although somewhat related to the VNE problem for cloud services, VPN

provisioning is slightly less complicated since VPN sites, i.e., connection end-points,

4



Chapter 1. Introduction

are fixed and pre-specified by clients. This obviates the need for VN node placement,

a key dimensionality reduction.

1.2 Motivations

As cloud services expand and start to support more mission-critical end-user appli-

cations, underlying VN reliability is becoming a major concern. This is particularly

important if users have established service level agreements (SLAs) that providers

must meet. However, many cloud recovery schemes are based upon localized intra-

site server and storage redundancies to support data and virtual server image backup

[CZ01]. Although these schemes give very fast recovery, they are ineffective against

large regional failure events, i.e., such as those arising from natural disasters, massive

power outages, or malicious weapons of mass destruction (WMD) attacks. Namely

these stressors can yield multiple system failures with high levels of spatial (geo-

graphic) and time correlation, quickly overwhelming localized recovery provisions

and even impacting whole data-center sites. Hence there is a pressing need to de-

velop more robust cloud recovery schemes for disaster conditions that leverage un-

derlying distributed networking capabilities. This issue has gained added impetus

owing to some recent high-profile cloud services outages, e.g., the Amazon Elastic

Compute Cloud (E2C) outage in April 2011 affected many user services for several

days [WP01].

Now from the perspective of network survivability, the topic of point-to-point

connection recovery between fixed end points has been very well-studied, see [SS01].

In particular, most related solutions have proposed pre-provisioned strategies to re-

serve dedicated/shared backup resources ahead of time, i.e., protection. However,

the broader VN survivability problem is much more involved owing to the higher

dimensionalities of the VNE problem. Namely, since a VN instance is comprised of

5
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multiple nodes and connections mappings, related recovery schemes have to consider

both connection recovery and (failed) connection end-point re-mapping.

Overall, VN survivability is a relatively new area, and one that has seen limited

attention to date. Akin to connection recovery schemes, most VN survivability so-

lutions have also outlined pre-provisioned protection strategies. For example, some

researchers have looked at single link failure recovery in [HY01], [XZ01], [YC01],

[MR01] and [TG01]. Similarly, [HY02], [HY03] and [CQ01] have also studied im-

proved VN mappings to handle single node failure recovery. However, these solu-

tions are largely ineffective against regional failures causing widespread correlated

node/link outages. Indeed, the only known work on VN recovery under more chal-

lenging regional failures is presented in [HY04] and [GS02]. Again, these algorithms

propose guaranteed protection schemes, but pre-compute separate backup VNs for

each potential failure event. Clearly, this leads to excessive resource consumption,

and hence the authors have also proposed resource sharing between backup VN map-

pings. Although these efforts represent some important initial contributions, they

are generally resource-intensive and yield higher costs. Moreover, they do not ac-

count for the probabilistic nature of regional disasters/stressors. In such cases, full

recovery guarantees are not very feasible due to the excessive number of potential

node/link failure combinations that have to be accounted for.

In light of the above, this thesis work is motivated by the growing need to develop

improved network survivability solutions to support cloud services against large-scale

catastrophic failures. Indeed such disaster scenarios are a key concern (inhibitor) for

many organizations looking to migrate their core operations into the cloud. Carefully

note that this thesis will only focus on inter-site (data-center) networking recovery

solutions. Although, many intra-site recovery schemes are also being used with data-

centers themselves, these solutions are designed for specialized internal data-center

topologies and again, offer little resiliency against large-scale disaster type events,

6
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see [MA01] for details.

1.3 Problem Statement

This dissertation is motivated by the growing need to develop robust disaster recovery

solutions for cloud-computing paradigms. Specifically, new VN survivability schemes

are required to provide improved protection recovery without imposing excessive

resource usage overheads. In addition, new solutions are also needed to handle the

probabilistic nature of disaster events. Finally, post-fault restoration schemes also

need to be investigated as they provide a very viable last-gap alternative in case of

pre-provisioned protection failure.

To address these concerns, this dissertation develops novel solutions for survivable

VN mapping under large regional failure scenarios. The overall focus is to develop

efficient VN survivable mapping schemes which can handle multiple cloud systems

failures with improved resource efficiency and reliability. The performance of these

proposed schemes is further evaluated and analyzed using both optimization and

network simulation techniques.

1.4 Proposed Work

This dissertation addresses a range of open issues in the area of cloud networking

survivability. In particular, the key contributions here include the following:

1) Novel pre-provision VN protection mapping schemes to guarantee multi-failure

recovery against disjoint regional node/link failures, 2) novel probabilistic VN risk

minimization mapping schemes to minimize failure risk while also taking into account

resource efficiency concerns, 3) efficient post-fault VN restoration schemes to re-

7
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compute affected VN mapping after multi-failure stresses

Overall, the rest of this dissertation is organized as follows. Chapter 2 presents a

detailed survey of the latest key work in VNE design and survivability. Next, Chapter

3 details a novel VN protection scheme to recover from multi-failure stressor events.

Extending upon this, Chapter 4 treats disasters as stochastic (random) events and

presents a novel solution to lower VN failure risks. Chapter 5 then looks at the

design of post-fault restoration schemes to restore failed VN mappings. Finally,

detailed conclusions and directions for future work are presented in Chapter 6.

8



Chapter 2

Background and Related Work

The provisioning of cloud networking services is an area of growing interest today.

Along these lines, this chapter presents a review of some of the latest work in this

field, focusing on regular VN embedding as well as survivable VN embedding schemes.

Open research challenges are then outlined to motivate the thesis research.

2.1 VN Embedding Design (Non-Survivable)

Various studies have looked at mapping user VN requests over physical substrate

networks, i.e., VNE problem. Here, both the VN requests and the substrate networks

are denoted by graphs, with each VN node usually requiring a certain amount of

nodal resources and each VN edge requiring a certain amount of bandwidth capacity.

An example of VN embedding is shown in Figure 2.1, where two 3-node VN requests

are mapped onto a 10-node substrate network (and the respective numbers next to

the nodes/links represent their associated capacities). Here the sample VN link from

node a to c is routed as a network connection between substrate nodes 1-3-6-4-5. Now

earlier work in [NC01] has shown the VNE problem to be NP-hard. Hence, most

9



Chapter 2. Background and Related Work

studies have proposed optimization and heuristics-based strategies to try to minimize

substrate network resource usages or maximize carrier revenues, see [YZ01], [MY01],

[NC01], [JL01], [XC01], [HY05]. Some of these schemes are now reviewed and a high

level summary is also presented in Figure 2.2.

Figure 2.1: A VN embedding example

2.1.1 Optimization-Based Solutions

Linear programming (LP) [RA01] techniques have been widely used to find optimal

solutions for a broad range of networking problems. However, the inherent charac-

teristics of the VNE problem mandate integral constraints for many of the variables

10
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in an LP formulation. As a result, the VN mapping problem is usually formulated

as a more specialized integer linear programming (ILP) [ZZ01] problem which only

permits integer variables and precludes path splitting for VN link connections. Alter-

natively, some studies have also proposed mixed integer linear programming (MILP)

[NC01] formulations to relax the path-splitting constraint, i.e., both integer and real

variables. Consider some further details here.

Figure 2.2: A summary of VNE provisioning and survivability schemes

A well-known MILP approach for VNE is presented in [NC01]. In order to handle

the VN node mapping problem, here each VN node is treated as a “meta-node” and

connected to all substrate nodes via special virtual infinite-capacity “meta-links”.

Additional constraints are also added to restrict each meta-node to only use one of

its adjacent meta-links, i.e., since a VN node can only be mapped to one unique

substrate node. Hence these auxiliary meta-nodes and links essentially connect the

VN topology with the substrate network and allow the VNE problem to be formu-

lated over a single network (instead of two separate ones). However, the resultant

11
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MILP formulation is quite complex and difficult to solve. As a result, the authors

also propose several relaxation techniques [NC01]. In particular, the deterministic

rounding based virtual network embedding (D-ViNE) algorithm relaxes the integral

constraints for the meta-node mapping variables, thereby reducing the formulation

to a multi-commodity flow (MCF) problem [RA01], i.e., solvable in polynomial time.

By computing the product of each relaxed meta-node mapping variable and the

amount of flows on that meta-link, the VN node mapping can then determined as

the one with the maximum product value. Finally, once the VN node mappings have

been computed, VN link mappings are derived by solving another MCF problem.

A slightly-modified randomized rounding based virtual network embedding (R-ViNE)

relaxation scheme is also proposed in [NC01]. The only difference here is that instead

of selecting the maximum product value (as per D-ViNE), this scheme normalizes

each product value to the [0,1] range before selecting the mapping solution. Both

relaxation schemes are evaluated for a sample 50-node network, and overall results

shows that R-ViNE slightly outperforms D-ViNE in terms of acceptance ratios and

average revenues, but yields slightly higher average costs.

An alternate ILP-based VNE solution is also proposed in [ZZ01]. This scheme

does not utilize the concept of meta-nodes and meta-links, and instead uses a bi-

nary variable to determine the mapping between a VN node and a substrate node.

Therefore, this (ILP) formulation greatly reduces the number of variables needed

as compared to the MILP solution in [NC01]. However, the ILP formulation is not

solved, and instead the authors propose a meta-heuristic solution (detailed next in

Section 2.1.2).

12
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2.1.2 Meta-Heuristic Solutions

In general, finding optimal solutions for large combinatorial problems is quite difficult

(computationally intractable). As a result, researchers have also applied various

meta-heuristic schemes to find “near-optimal” solutions by attempting to improve

a candidate solution toward the optimal solution. Now within the context of VNE

design, some key strategies include simulated annealing [SK01], genetic algorithms

[JH01], ant colony optimization [TS01], particle swarm optimization [JK01], and

tabu search techniques [FG01]. Some of these solutions are now surveyed.

The work in [ZZ01] solves the VNE problem by using particle swarm optimization.

Namely, a potential VN node mapping solution is represented using a position vector

of a particle, and a velocity vector for this particle is also defined to adjust the VN

node mapping. A number of such particles (potential mappings) are then initialized

by selecting starting positions, and these positions are then adjusted in an iterative

manner. A fitness value is also introduced to gauge each position, i.e., VN mapping

choice. Namely, VN link mappings are computed for each position using shortest-

path algorithms. Here, if a VN link mapping fails, then the position of the particle

is re-initialized; otherwise the fitness value is set to the total bandwidth used for

mapping VN links, and the best position is selected as the one with the minimum

fitness value. Furthermore, three factors are used to adjust the direction of particles,

i.e., best position reached by particle, best position reached amongst all particles, and

current inertial trend of particle. Finally, after a pre-defined maximum number of

iterations, the best position reached across all the particles is selected as the optimal

VNE solution. This particle swarm method is compared to the D-ViNE solution

[NC01] via simulation, and results shows that it achieves higher average revenues

and acceptance ratios.

Meanwhile [GS01] uses genetic algorithms to solve the VNE problem. Namely, a
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“chromosome” is defined as a binary sequence with total length equal to the number

of substrate network nodes. Elements in this sequence with a value of unity are then

used to denote the corresponding substrate nodes that are assigned to VN nodes,

i.e., VN mappings. The scheme then initializes a given number of chromosomes

and computes a VN link mapping for each by solving a mixed integer programming

(MIP) problem. In particular, the objective here is to maximize the link revenue,

and the objective value for each chromosome is recorded. Subsequently, two child

chromosomes are generated for each existing chromosome, and VN link mappings

are computed for each in the same manner as above. Hence by iteratively generating

child chromosomes, the scheme selects the one with the maximum link revenue as the

optimal VNE solution. The authors compare their algorithm with a baseline VNE

scheme similar to the one in [MY01], and results show higher revenues and lower

transmission delays for VN links.

Finally, an ant colony optimization technique for VNE is also presented in [IF02].

In particular, this algorithm starts by dividing the VN topology into smaller com-

ponents, i.e., star topologies. A set of artificial ants are then introduced to map all

components (star topologies) in parallel, and here each ant repeats the mapping N

times over, i.e., N iterations. In addition, the iterations for all ants are synchronized,

i.e., each iteration is processed at the same time in parallel. Now in order to map

each component, i.e., a VN node with adjacent VN links, a candidate substrate node

list is built by selecting the substrate nodes close to adjacently-mapped VN nodes. A

substrate node is then selected from this list by computing a probability value that

is related to the available node/link resources at the node as well as the minimum

bandwidth used to map this VN node in previous iterations. The latter provision

tries to achieve more globalized selection. Finally, the mapping with the minimum

bandwidth consumption level is selected as the optimal solution. The proposed solu-

tion is simulated and compared to the schemes in [YZ01] [MY01], and results show

lower rejection rates and higher revenues/lower costs.
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2.1.3 Graph-Based Heuristic Solutions

A number of heuristic schemes have also been developed to address VNE scalabil-

ity concerns. These strategies use graph-based algorithms and are well-suited to

adaptation in realistic scenarios, i.e., “on-demand” provisioning. Now in general,

graph-based VNE heuristics can be classified into two key categories, i.e., separate

node/link mapping (two-stage) and joint node/link mapping (single-stage). These

types are now detailed further.

Two-stage VN mapping algorithms first map a subset of the VN nodes using

various strategies and then compute their interconnecting VN links. For example,

[YZ01] selects a cluster center by considering the “stress” levels of a node and its

adjacent links. Here stress is measured as the number of VN nodes (links) that have

been mapped onto the particular substrate node (link). The remaining VN nodes are

then selected according to their node stress levels and distances to already-assigned

nodes (where distance is defined as the shortest-distance path with link weights set

proportional to link stress). Namely, an unassigned VN node is mapped in accordance

with its node degree. Meanwhile the two-stage scheme in [MY01] first selects a set

of candidate substrate nodes and then maps each VN node to an available substrate

node with the maximum resource levels in this set. Next, these two-stage schemes

proceed to route network connections for the requested VN links, with most using

shortest-path [YZ01] or k -shortest path [MY01] algorithms. However, MCF routing

schemes have also been used to route VN link connections in cases where path-

splitting is supported at the substrate network [MY01]. Overall, simulation results

show that incorporating node/link stress values gives much better load balancing,

i.e., reducing the number of congested substrate nodes/links. Furthermore, [MY01]

also shows that path-splitting increases average revenues and reduces average costs,

i.e., versus no path-splitting.
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Conversely, single-stage mapping schemes jointly map VN nodes and all their

adjacent VN links, i.e., if and only if the adjacent VN nodes at the other end of the VN

link have already been mapped [JL01], [XC01]. In general, these schemes can improve

resource efficiency and also lower blocking. Along these lines, [JL01] presents a

single-stage mapping algorithm based upon sub-graph isomorphism detection (using

a backtracking search). Namely, this algorithm jointly maps a VN node along with

its adjacent VN links, and if the mapping is infeasible, the scheme backtracks and

re-maps the last VN node to another substrate node. Meanwhile, [HY05] presents

another scheme that maps VN nodes in descending order of node degree. Namely,

a candidate substrate node is selected for each VN node by considering its nodal

resources as well as the communications cost from its location to the locations for

adjacently-allocated VN nodes. After a VN node has been mapped, its adjacent VN

link connections are then routed using a shortest-path algorithm, i.e., before the next

VN node is mapped. In both [JL01] and [XC01], the authors compare their proposed

schemes with the two-stage scheme in [MY01], and overall findings show significant

advantages with single-stage mapping, i.e., in terms of VNE metrics such as revenue,

cost and acceptance rates. Furthermore, simulations in [HY05] also show improved

(lower) cost values than the scheme in [JL01].

2.2 Survivable VN Embedding Design

As more and more organizations migrate to the cloud, the reliability of underlying

VN mappings is becoming a major concern. Namely, the failure of network substrate

nodes or links can easily disrupt numerous VN mappings, particularly across higher-

bandwidth substrates. In turn, these disruptions can lead to key breaches in client

SLAs, incurring further economic penalties and revenue losses for operators. Hence,

many providers are very interested in survivable VNE schemes to handle different
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failure scenarios at the network substrate layer. Along these lines, various solutions

have been proposed for a range of failure scenarios, see also Figure 2.2. Consider the

details.

2.2.1 Single Link Failure Protection Schemes

The authors in [MR01] propose a hybrid policy heuristic to handle single link fail-

ures for VN mappings. Basically, this scheme pre-partitions the bandwidth in each

substrate link into two parts, i.e., one for working VN links and the other for (po-

tential) post-fault restoration support. Now the scheme starts by pre-computing a

set of detour routes for each physical substrate link using any adaptable path se-

lection algorithm, e.g., k -shortest path. Next, VN node mapping is done for each

arriving VN request by using the existing heuristics in [YZ01], [NC01]. After all the

requested VN nodes have been mapped, the VN links are computed by solving a

MCF problem, i.e., path splitting is allowed. Now if/when a single link fails, all of

its traversing flows are re-directed onto the set of pre-computed detours. However,

recovery guarantees still cannot be provided here for all interrupted flows, i.e., due

to limited reserved capacity on detour routes. Instead, the goal is to try to mini-

mize the amount of failed (unrecovered) bandwidth. Overall, this proposed scheme

is compared to two baseline methods, i.e., one which re-computes a new mapping for

an affected VN mapping and another which pre-reserves backup bandwidth for each

VN link. The results here show that the proposed solution gives higher acceptance

ratios and operating profit for carriers.

The authors in [YC01] also propose a survivable VNE scheme for single link

failures called the pardalis algorithm. This solution uses a VN mapping algorithm

similar to that in [YZ01] to first compute a working VN mapping. Namely, an

available resource value, γ(ns), is first defined for substrate node ns as the residual
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node resource level multiplied by the sum of residual bandwidth of all adjacent

substrate links. A direct resource constraint, γ(nv), is also defined for a VN node nv

as the requested node resource level multiplied by the sum of requested bandwidths

of all adjacent VN links. The scheme then maps VN nodes with larger γ(nv) values

to substrate nodes with larger γ(ns) values. VN links are then routed using shortest

path algorithms. Now in order to provide resiliency, backup protection paths are also

computed for the VN links, i.e., with further resource sharing between protection

routes with link-disjoint primary (working) routes. Specifically, backup connections

are routed by pruning working connection VN links and using dynamic weights to

efficiently share/re-use allocated backup capacity. The pardalis algorithm is then

compared to several baseline variants, i.e., those not incorporating γ(ns) and γ(nv)

in the VN mapping, those not implementing resource sharing along protection paths,

etc. Overall results show lower costs and protection bandwidth overheads with the

proposed scheme.

[XZ01] also presents another scheme for single-link failure recovery using backup

VN links. Namely, the scheme first prunes the substrate physical topology to build a

reduced logical topology containing a subset of the original physical nodes and paths

between these subset nodes, i.e., logical link can consist of physical path computed

using any shortest-path algorithm. Here, this logical topology is created using quality

of service (QoS) constraints, i.e., such as link delays. Next, an ILP formulation is

proposed to map the VN nodes (links) onto this logical topology, with each VN

link having a pair of disjoint working and backup paths. However, this approach

has several shortcomings. First, since logical links are computed using a heuristic

algorithm, the solution of the ILP is not optimal in any sense. Second, the scheme

does not take into account link and node resource constraints in the VN mappings.

Finally, the ILP formulation tries to minimize the total number of nodes used for

backup paths. However, this is not a really major concern as these nodes are only

acting as intermediaries along a path and do not require nodal resources. Now
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owing to the complexity of the ILP model, the authors also propose a resilient VN

mapping heuristic based upon the same assumptions in [XZ02]. In particular, this

scheme iteratively maps each VN node (onto the logical topology) and finds two

link-disjoint paths for its adjacent VN links. Although this heuristic is more efficient

than the ILP, it still has its limitations as in [XZ01], i.e., pre-computed logical links

limit potential solutions, lack of bandwidth and nodal resource constraints, etc.

Meanwhile the authors in [TG01] also propose a resilient VNE scheme for sin-

gle link failures. This framework supports path splitting for VN links and pursues

resilience at the substrate link level. Namely, a set of bypass paths are defined for

each substrate link, and all affected flows on the failed link are redirected along these

bypass paths. Note that these path sets (between two substrate nodes) are pre-

computed using a k -shortest-path algorithm and then used to map the VN links and

protect the substrate links. Using this framework, two VNE recovery schemes are

defined here, i.e., shared on-demand (SOD BK) and shared pre-allocation (SPA BK).

Namely, SOD BK re-uses any existing VN node mapping algorithm to first map the

VN nodes. An LP formulation is then proposed to route the VN links, i.e., with pro-

tection being achieved by the pre-computed bypass paths for each substrate links.

Now owing to the single link failure assumption, resource sharing can also be done

between protection flows on bypass paths. Overall, SOD BK allocates backup link

resources after a VN request arrives. Conversely, SPA BK pre-allocates backup link

resources at the initial stage before any VN request arrives. Namely, an LP formu-

lation is first used to divide the bandwidth on each substrate link into two parts,

i.e., one for working VN link mappings and the other for protection mappings. The

goal here is to maximize the total bandwidth allocation for working mappings, and

link resource sharing is also applied (due to the single link failure assumption). De-

tailed simulations show that both the SOD BK and SPA BK schemes achieve higher

acceptance ratios (lower blocking) and revenues than schemes without link resource

sharing, i.e., since fewer backup resources are used.
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The work in [XY01] also proposes a survivable mapping scheme for user appli-

cation specific and agile private (ASAP) topologies. Namely, an ASAP topology is

formed by a set of tasks and communications between tasks, and is similar to a VN

request. Also, the failure model assumes a single substrate node failure along with

a (concurrent) substrate link failure. Overall, two survivable schemes are proposed

here, i.e., cluster and path protection (CPP) and virtual network protection (VNP).

The former computes a backup ASAP network mapping for the primary mapping,

and in both mappings, two disjoint paths are computed for each tasks communica-

tion link (VN link). The purpose of this backup mapping is to recover from node

failures and improve link resilience. Link bandwidth sharing is also done between

the protection paths. Meanwhile, the VNP scheme computes three topology-disjoint

mappings for an ASAP network request since two failures (node and link) may occur

in the substrate. Detailed simulation results show that the CPP scheme incurs less

cost than the VNP scheme if node resources are more expensive than link bandwidth

resources.

The authors in [HY01] and [HY06] also propose a novel survivable VNE solution

for single link failures, termed as the migratory protection-based virtual infrastructure

mapping algorithm (MP-SVIMA) scheme. This strategy is different from traditional

link protection algorithms which utilize a pair of link-disjoint paths. Instead, backup

nodes are pre-reserved and migration is only done for one end-point of the affected

VN link, i.e., in order to protect from substrate link failures. Hence in addition to

node resources for backup nodes, backup paths are also needed from the (new) backup

nodes of the neighboring VN nodes, termed here as migratory backup path groups.

The scheme also allows bandwidth sharing between the original working path and its

corresponding migratory backup path group, i.e., called intra-share. In addition, link

bandwidth and node resources can also be shared between migratory backup path

groups, i.e., called inter-share. Now in order to implement MP-SVIMA, a traditional

link-disjoint protection strategy is defined, termed as the protection-based survivable
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virtual infrastructure mapping algorithm (P-SVIMA). This algorithm re-uses the P-

SVIMA scheme to first compute a basic link-disjoint survivable VN mapping. Next,

for each VN link, MP-SVIMA computes the cost of using migratory protection to

protect the link. If this cost is less than that for basic link-disjoint protection,

then the migratory protection mapping is adopted for this VN link. Otherwise, the

original link-disjoint protection solution is kept. Overall, simulations show that the

MP-SVIMA scheme uses fewer backup resources, lowers costs, and also improves

blocking ratios as compared to the P-SVIMA scheme.

Finally, [BG01] presents another survivable VNE scheme. Akin to the work in

[HY01], this approach also supports VN node migration to overcome single link fail-

ures. However, after a link failure happens, all VN nodes are allowed to switch their

locations, i.e., instead of just one VN node as in [HY01]. In addition, the scheme

also restricts added backup nodes and only allows redundant additional bandwidth

resources in the substrate network. The goal here is to minimize the total backup

bandwidth used. Now this scheme can work with (re-use) any existing VNE algo-

rithm to compute an initial working VN mapping. Next, for each substrate link

failure, the scheme computes a backup mapping using the minimum amount of addi-

tional resources. This is done by removing the failed substrate link and then iterating

over all VN nodes to see if their mappings can be improved. Namely, the new VN

mappings are computed by keeping the VN node fixed or switching it with all other

VN nodes. From these VN mappings, the one with the minimum additional cost

is selected. Finally, after all iterations are complete, the resulting VN mapping is

selected as the protection mapping for this substrate link failure. Overall, simula-

tion results show that the proposed scheme achieves lower redundant link costs and

blocking ratios versus traditional link-disjoint pair protection schemes. However, the

tradeoff here is increased VN node migration costs.
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2.2.2 Single Node Failure Protection Schemes

Node-level failures are also a key concern in cloud environments, i.e., switching nodes,

data-center sites. As a result, [HY02] and [HY03] propose a survivable VNE schemes

for such scenarios. However, the network model here is slightly different and assumes

that a substrate node is divided into two parts, i.e., a facility node and a switching

node. Namely, a facility node represents data-center resources (such as computation

and storage) and is directly connected to the switching node which links to the

substrate network. Therefore, VN nodes can only be mapped to facility nodes. The

work also assumes that failures only affect facility nodes and not underlying switching

nodes or links (somewhat restrictive). In addition, only a subset of the VN nodes

are deemed as critical and need to be protected. Based upon these assumptions, two

VNE recovery solutions are proposed, i.e., 1-redundant and K-redundant schemes. In

both cases, a redundant VN graph is created first. Now the former scheme uses one

redundant VN node to protect all critical VN nodes. Conversely, the latter scheme

uses K redundant VN nodes to protect the critical VN nodes, i.e., where K is equal to

the number of critical VN nodes. Furthermore, in both cases (additional) redundant

VN links are also needed to connect the redundant VN nodes to all the neighboring

VN nodes of the protected VN node. Hence, after this redundant VN graph is

built, it is mapped onto the substrate network. Now in order to efficiently utilize

resources, two sharing strategies are also applied here, i.e., cross share and backup

share. The former approach also allows backup paths (connecting to a redundant VN

node) to share resources with the original working paths they protect. Meanwhile,

the latter approach allows sharing between backup paths that protect different VN

nodes, i.e., since only one facility node can fail at a given time. In addition, the K

redundant VN nodes (in the K -redundant solution) can be mapped to the same set

of substrate nodes, i.e., such that only k (1 ≤ k ≤ K) substrate nodes are used for

backup support. Now in order to solve this survivable shared VN mapping problem,
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a MILP formulation is presented. However, as this problem is intractable, the D-

ViNE algorithm from [NC01] is instead used to compute the working mapping first.

A simplified MILP is then solved to get the final backup solution. Overall results

confirm that resource sharing greatly lowers the cost of providing VN survivability. In

addition, the K -redundant solution is also much more efficient than the 1-redundant

solution when substrate link costs are higher than substrate node costs.

Meanwhile [CQ01] presents another survivable VN scheme for single facility node

failures. Akin to [HY02], this approach also uses one redundant VN node to build

a redundant VN graph, called an enhanced VN (EVN). However, unlike the 1-

redundant solution [HY02], it also allows the unaffected VN nodes to be remapped

in the EVN topology, i.e., called failure-dependent EVN (FD-EVN). In particular,

for a VN request with N VN nodes, the scheme defines a N + 1 “nodes edit grid”

to first construct the EVN. Namely this grid is a fully-connected graph between

these N + 1 nodes. Now for each potential node failure in the edit grid [DJ01], the

scheme re-maps the VN topology to the residual part of the edit grid to avoid any

failure overlaps. Sharing is then done to combine all the allocated resources for each

of the above-computed VN topologies, thereby yielding an EVN that can recover

from any arbitrary node failure. However, since the optimization solution is very

intractable, the authors also propose a heuristic scheme using graph transforma-

tion/decomposition and bipartite graph matching [HK01]. In particular, a mapping

cost matrix is computed for each node failure in the edit grid, i.e., where each matrix

element, sij, represents the cost of migrating VN node i (and of its all adjacent VN

links) to an edit grid node j. An optimal solution is then selected using this map-

ping cost matrix. Now since the main focus here is to construct an EVN, the authors

simply re-use existing VN mapping algorithms to map the EVN onto the substrate

network. Simulation results show that the proposed FD-EVN scheme achieves lower

resource consumption and higher acceptance ratios (lower blocking) than several

other schemes. However, the tradeoff here is in terms of increased numbers of node
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migrations after failure events, i.e., increased operational complexity.

2.2.3 Multi-Failure Protection Schemes

Multi-failure recovery is also a major concern given the devastating impacts of large-

scale stressors such as natural disasters, malicious attacks, cascading power outages,

etc. However, only a handful of schemes have looked at such scenarios in the VNE

context. For example, [WY01] proposes a solution for protecting critical VN nodes

under multiple nodes failures. First of all, this work assumes that each node has

a failure probability, and that all nodes fail in an independent manner. Under this

assumption, the predefined reliability guarantee level, r, of a VN (with n critical

nodes) can be achieved by providing k backup VN nodes. Since the relationship

between k and r is non-linear, backup node pooling is also used to improve resource

efficiency, i.e., multiple VN requests can share backup VN nodes. Now backup VN

links are also needed for multi-failure recovery. Therefore, the scheme divides the

backup VN links into two types, i.e., those connecting backup nodes to all neighbors

of protected nodes, and those interconnecting backup nodes. However, as these

backup links will not be used at the same time, link resource sharing can be done here.

Finally, a MILP formulation is also proposed to map this resilient VN topology onto

a substrate network with the objective of minimizing resource usage. Simulations

are then done to compare the performance of the scheme with a modified version

without backup node pooling and backup link resource sharing. Overall results show

that node/link sharing can greatly lower both blocking ratios and resource usages.

However this work assumes that a substrate link and its end nodes will not fail, an

unrealistic assumption.

The more challenging case of multiple substrate node/link failures is also stud-

ied in [HY04], i.e., for large-scale regional stressors/disaster events. In particular,
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multiple backup VN mappings are computed for each potential failure region (which

in turn is defined as a sub-graph of vulnerable nodes/links). However, since it is

assumed that only a single regional stressor can occur at a given time, resource

sharing is also done between all backup VN mappings (and their working VN map-

ping). A MILP formulation is then proposed to minimize resource usages across

all VN mappings. However, owing to excessive computational complexity here, this

optimization is not solved and instead a heuristic separate optimization with uncon-

strained mapping (SOUM) scheme is proposed. This scheme basically allows full

resource sharing between the backup and primary VN mappings. Another variant,

termed as the incremental optimization with constrained mapping (IOCM) scheme,

is also proposed. Here, a working mapping is first computed, and then additional

backup node/bandwidth resources are incrementally added to handle each failure

region, i.e., backup resources are only added for nodes affected by a given failure.

Simulations show that the SOUM scheme gives better blocking reduction but also

yields higher costs and increased number of post-fault VN node migrations. Mean-

while, the work in [GS02] actually solves the MILP formulation in [HY04] by using

Lagrangian relaxation and decomposition-based techniques. In both methods, the

original MILP formulation is decomposed into R sub-problems to simplify the com-

putational complexity, where R is the number of failure regions. Overall finding

indicate that both the Lagrangian relaxation and decomposition-based schemes can

achieve the same mapping costs as the full MILP, but with much faster (scalable)

run times.

2.3 Open Challenges

Overall, VN survivability is an important focus area that has seen notable focus

in recent years. However many further problems and challenges remain and need
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to be explored. Foremost, the design of efficient multi-failure VN recovery schemes

is a key concern, as only a few initial solutions have been proposed here. In par-

ticular, these existing schemes are rather resource-intensive and provision backup

VNs to handle all possible stressor cases. Furthermore, these strategies tend to pur-

sue an “all-or-nothing” protection approach by provisioning full recovery. Indeed,

much better efficiencies can be achieved by incorporating the probabilistic nature

of large-scale stressor events. However, there are no known studies on probabilistic

VN recovery. Finally, post-fault restoration offers a very viable “last-gap” recovery

solution in case pre-provisioned VN protection fails. However, this approach has

not been studied within the context of VN recovery. Along these lines, post-fault

restoration schemes can be developed to perform VN node and link remapping after

large stressor events, and these solutions can draw from a wide range of existing

heuristic strategies. Overall, these open problems form the main motivations for this

dissertation research.
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Multi-Failure VN Protection

This chapter studies pre-provisioned protection for multi-failure VN recovery. Now as

surveyed in Section 2.2.3, only a handful of related schemes have been proposed here.

For example, some solutions provision backup VN nodes (along with their necessary

backup VN links) to protect against multiple substrate node failures [WY01]. How-

ever these algorithms do not handle substrate link failures nor do they incorporate

the geographical patterns of multi-failure stressors, i.e., instead assuming arbitrary

concurrent node failures. Alternatively, more recent efforts have looked at VNE

provisioning for geographically-correlated failures [HY04],[GS02]. However, these

schemes provision backup resources for each potential failure region and therefore

yield very high costs/blocking.

In light of the above, this chapter presents a novel VN survivability scheme for

handling multiple region-based failures with improved resource efficiency. Overall,

the work leverages a similar philosophy to that used in earlier studies on shared risk

link group (SRLG) protection for regular point-to-point (P2P) connections [EO01].

Namely, working and protection VN mappings are computed for each request so

as to ensure that they are failure region-disjoint, i.e., to guarantee recovery from a
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single regional failure event. To achieve this, a MILP formulation is first proposed by

extending the VN model in [NC01] with new constraints to prevent primary/backup

mappings from traversing the same failure regions. However, owing to high MILP

complexity, two heuristic schemes are also proposed here. Namely, the failure region

group based mapping (FRGBM) scheme divides the failure regions into two fixed

groups and only allows a working mapping to use resources in one of these groups.

Meanwhile, the dynamic failure region disjoint mapping (DFRDM) scheme computes

VN mappings without performing prior separation of failure regions. Since both of

these solutions only provision two VN mappings, they can achieve lower resource

utilization and (blocking) versus other survivable VN strategies. Complete details

are now presented.

3.1 Network Model and Description

Before detailing the MILP formulation and related heuristic strategies, the overall

network model for VN mapping is presented along with the requisite notation.

3.1.1 Substrate Network

The substrate network is modeled as an undirected graph Gs = (Vs, Es), where

Vs = {v1s , v2s , ..., v
|Vs|
s } is the set of substrate nodes and Es = {(vis, vjs)|vis, vjs ∈ Vs} is

the set of substrate links. Here each substrate link es ∈ Es has a fixed bandwidth

capacity and each substrate node vs ∈ Vs has a fixed amount of computing and

storage resources. Now in order to simplify the discussions, the available bandwidth

of a physical substrate link es ∈ Es is given by B(es) and its unit bandwidth cost by

C(es). Similarly, the node resource capacity for a substrate node vs ∈ Vs is also given

by R(vs) and its unit cost by C(vs). Additionally, substrate link es is also denoted
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as (vs, v
′
s), where vs and v′s are the two link node end-points. Overall, Figure 3.1a

shows a sample 10-node substrate network hosting a 3-node VN request, where the

numbers next to the links (nodes) represent the available bandwidth (node) resources

levels.

Figure 3.1: (a) substrate network, (b) sample VN request

3.1.2 VN Request

A VN request is given by an undirected graph Gv = (Vv, Ev), where Vv is the set

of VN nodes and Ev is the set of VN links. Here each VN node vv ∈ Vv requires a

certain amount of nodal resources, denoted as r(vv), and each VN link ev ∈ Ev also

requires a given bandwidth, denoted as b(ev). Similar to a substrate link, a VN link

ev is also denoted by (vv, v
′
v). Furthermore, a VN node-to-substrate node mapping is

denoted as < vv, vs >, i.e., VN node vv mapped to substrate node vs. Again, Figure

3.1b shows a sample VN request with associated nodal resource and link bandwidth
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requirements.

3.1.3 Regional Failure Model

Regional failures are usually characterized by highly-correlated node and link out-

ages, i.e., centered about a specific geographic region and ocurring at or close to a

particular instance in time. Along these line, the proposed failure model incorporates

a finite number of failure regions (stressors) in a set U . Furthermore each potential

stressor, u ∈ U , is defined by a sub-graph Gu = (Vu, Eu), where Vu ⊆ Vs is the set

of substrate nodes affected by the event and Eu ⊆ Es is the set of substrate links

affected by the event.

Now it is generally safe to assume that all events in U are independent and

mutually-exclusive, i.e., only one can occur at a given time [HL01]. Given these

assumptions, it can also be assumed that all events are non-overlapping in terms of

substrate nodes, i.e., vs /∈ Vuj ,∀vs ∈ Vui , ∀i 6= j. Note that this is not an overly-

restrictive requirement per say, as any overlaping substrate nodes between two/more

failure regions can be separated out and placed in a new failure region. An example

of this notation is shown in Figure 3.2 for a 24-node network with 5 failure regions,

i.e., U = {u1, u2, ..., u5} and Gu1(Vu1 , Eu1), where Vu1 = {v2s , v3s , v4s} and Ev1 =

{(v1s , v2s), (v2s , v
3
s), (v2s , v

4
s), (v2s , v

6
s), (v3s , v

4
s), (v3s , v

6
s), (v4s , v

7
s)}.

3.1.4 Performance Evaluation Metrics

Some of the key metrics used to study VN performance are now presented. Foremost,

operators provisioning VN services will generally want to achieve a high level of

resource efficiency over their underlying substrate networks. In addition, associated

revenue generation (cost reduction) concerns will also be very important here [GS01],
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Figure 3.2: 24-node substrate network with 5 failure regions, |U |=5

[XC01]. As a result the revenue associated with provisioning a VN request is defined

using the formulation in [XC01] as:

REV (Gv) =
∑
ev∈Ev

b(ev) ∗ I(ev) + ρ
∑
vv∈Vv

r(vv) ∗ I(vv) (Eq. 3-1)

where ρ is the fraction of nodal resource revenue, I(ev) is the revenue per unit of

bandwidth, and I(vv) is the revenue per unit of nodal resource. Furthermore the cost

of accepting a VN is also given by [XC01]:

COST (Gv) =
∑
es∈Es

FGv
es ∗ C(es) + π

∑
vs∈Vs

NGv
vs ∗ C(vs) (Eq. 3-2)

where π is the fraction of nodal resource cost, FGv
es is the total amount of bandwidth

allocated on substrate link es for mapping the VN, and NGv
vs is the total amount of

nodal resources allocated on the substrate node vs for mapping the VN (and C(es)

and C(vs) are introduced in Section 3.1.1).
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Carefully note that this cost formulation is different from the one defined for non-

survivable VN mappings in [XC01], i.e., since the link bandwidth (node) resource

costs for a substrate link (node) in Eq. 3-2 are not directly related to a VN link

(node). Specifically, survivable VN mappings also require backup link bandwidth

(node) resources and usually implement resource sharing. Hence the total amount

of link bandwidth (node) resources allocated on the substrate links (nodes) can only

be determined after the survivable mapping has been computed.

Now from an operator’s perspective, it is very desirable to increase long-term

revenue. Along these lines, this value is defined here as:∑
iREV (Gi

v)

T
, ∀Gi

v ∈ A (Eq. 3-3)

where Gi
v is the i-th VN request, A is the set of all accepted VN requests, and T is

the total running time. Similarly, the long-term average cost is defined as:∑
iCOST (Gi

v)

T
,∀Gi

v ∈ A (Eq. 3-4)

However, to precisely describe the operator profit, the net revenue is computed as

follows: ∑
i(REV (Gi

v)− COST (Gi
v))

T
,∀Gi

v ∈ A (Eq. 3-5)

Note that other metrics can also be considered here. For example, VN request block-

ing rates can provide a key measure of lost revenue, and hence many operators will

want to minimize these values to improve their performance. Additionally, protec-

tion switching overheads after failures (to backup VN nodes and links) can also be

considered in order to gauge the level of user service disruptions.

3.2 MILP Formulation

A detailed optimization formulation for survivable VN mapping is now presented

based upon the above notation. This approach pursues a single-objective function
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to minimize overall resource usage for a VN request.

3.2.1 Augmented Substrate Graph Model

In order to formulate the survivable VN mapping problem, an augmented substrate

graph Ga(Va, Ea) is first constructed, akin to [NC01],[HY04]. Namely, a meta-node,

vm, is first created for each VN node, vv, and then connected to all underlying

substrate nodes, vs, via meta-edges, em, with infinite bandwidth. Hence this aug-

mented substrate graph is a combination of the original substrate graph and the

meta-nodes/meta-edges, i.e., Va = Vs∪Vm, Ea = Es∪Em, where Em = {(vm, vs)|vm ∈

Vm, vs ∈ Vs} is the set of meta-links. It is also assumed that regional failures do not

affect any of the meta-nodes since they are auxiliary nodes representing VN node

mappings. However meta-edges can fail if their underlying connecting substrate

nodes fail. An example of an augmented graph is shown in Figure 3.3 for a 5-node

substrate network with 2 VN nodes.

Figure 3.3: Example of an augmented graph with meta-nodes/meta-edges
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3.2.2 Failure Region Disjoint MILP Formulation

The failure region-disjoint survivable VN mapping is formulated as a mixed integer

multi-commodity flow problem. Namely, each VN link ev is treated as a commodity

with source and destination nodes s ∈ Vm and t ∈ Vm, i.e., flows start and end

at distinct meta-nodes. By further restricting the meta-edges, each meta-node can

be forced to choose a single meta-edge to connect to the substrate network. This

effectively selects a substrate node for each meta-node corresponding to its mapping.

At the same time, VN links (connections) must also be mapped on to substrate

network links. Now since the goal is to generate failure region-disjoint working and

protection mappings, added restrictions are placed to ensure that only one mapping

is assigned to a failure region u ∈ U . Specifically, this is done by using the index

variable z ∈ Z = {1, 2} to denote the mapping, i.e., z = 1 for working and z = 2 for

protection. As per the formulation, the following variables are defined.

Variables:

• f q,z
mn: Flow variable denoting the total amount of flow from node m to node n

on the substrate edge (m,n) ∈ Ea for the VN link q ∈ Ev of mapping z ∈ Z.

• αz
mn: Binary variable which is 1 if the flow in any of the VN links in mapping

z uses the substrate edge (m,n), i.e.,
∑

q∈Ev
(f q,z

mn + f q,z
nm) > 0; otherwise it is 0.

• εzu: Binary variable which is 1 if the mapping z can be mapped in failure region

u ∈ U ; otherwise it is 0.

• be: Variable denoting the maximal amount of flow on the substrate link e ∈ Es.

• rn: Variable denoting the maximal amount of node resource allocated from the

substrate node n ∈ Vs.
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Using the above definitions, the following objective function and constraint equa-

tions are defined.

Objective:

min
∑
e∈Es

be ∗ C(e) +
∑
n∈Vs

rn ∗ C(n) (Eq. 3-6)

Constraints: ∑
z∈Z

εzu ≤ 1,∀u ∈ U (Eq. 3-7)

αz
mn ≤ εzu,∀(m,n) ∈ Eu,∀z ∈ Z, ∀u ∈ U (Eq. 3-8)∑

n∈Va

αz
mn ≤ A ∗ εzu,∀m ∈ Vu, ∀z ∈ Z, ∀u ∈ U (Eq. 3-9)

∑
q∈Ev

(f q,z
mn + f q,z

nm) ≤ B(m,n) ∗ αz
mn,∀(m,n) ∈ Ea,∀z ∈ Z (Eq. 3-10)

r(m) ∗ αz
mn ≤ R(n),∀m ∈ Vm,∀n ∈ Vs, ∀z ∈ Z (Eq. 3-11)∑

n∈Va

f q,z
mn −

∑
n∈Va

f q,z
nm = 0,∀q ∈ Ev,∀m ∈ Va\{sq, tq}, ∀z ∈ Z (Eq. 3-12)

∑
n∈Va

f q,z
sqn −

∑
n∈Va

f q,z
nsq = b(q), ∀q ∈ Ev,∀z ∈ Z (Eq. 3-13)

∑
n∈Va

f q,z
tqn −

∑
n∈Va

f q,z
ntq = −b(q),∀q ∈ Ev,∀z ∈ Z (Eq. 3-14)

∑
n∈Vs

αz
mn = 1, ∀m ∈ Vm, ∀z ∈ Z (Eq. 3-15)

∑
m∈Vm

αz
mn ≤ 1,∀n ∈ Vs,∀z ∈ Z (Eq. 3-16)

αz
mn = αz

mn,∀m,n ∈ Va,∀z ∈ Z (Eq. 3-17)∑
q∈Ev

(f q,z
mn + f q,z

nm) ≤ be,∀e ≡ (m,n) ∈ Es,∀z ∈ Z (Eq. 3-18)

∑
m∈Vm

αz
mn ∗ r(m) ≤ rn,∀n ∈ Vs,∀z ∈ Z (Eq. 3-19)

f q,z
mn ≥ 0,∀m,n ∈ Va, ∀q ∈ Ev,∀z ∈ Z (Eq. 3-20)
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αz
mn ∈ {0, 1},∀m,n ∈ Va,∀z ∈ Z (Eq. 3-21)

εzu ∈ {0, 1},∀z ∈ Z, ∀u ∈ U (Eq. 3-22)

Overall, the objective function in Eq. 3-6 tries to minimize the cost of mapping

a VN request (summed over all VN node and link mapping costs). Eq. 3-7 also

constrains each failure region to be covered by at most one mapping. Meanwhile

Eq. 3-8 pertains to link failures and ensures that if a link (m,n) is located in a

failure region u, then αz
mn can only be set to 1 if this mapping z can be mapped

to failure region u. Similarly, Eq. 3-9 deals with node failures, an A represents a

large constant (set to greater than the maximal node degree in Ga). This constraint

basically ensures that if a node m is located in a failure region u, then its adjacent

links can only carry flows if the whole mapping z can be placed in failure region u.

Next, Eq. 3-10 and Eq. 3-11 bound link capacity and nodal resources, respectively,

i.e., since summing f q,z
mn and f q,z

nm ensures that the total flow in both directions of an

undirected link (m,n) is less than the available bandwidth. Meanwhile, Eq. 3-12,

Eq. 3-13, and Eq. 3-14 implement flow conservation. Furthermore, Eq. 3-15 ensures

that only one substrate node is selected for a meta-node, whereas Eq. 3-16 ensures

that a substrate node can only be allocated to at most one meta-node. Next, Eq.

3-17 ensures that αz
mn is the same in both link directions. Also, Eq. 3-18 and Eq.

3-19 restrict the maximum resource allocations for each substrate link/node in each

mapping z ∈ Z. Finally, Eq. 3-20, Eq. 3-21 and Eq. 3-22 denote the necessary non-

negative and binary constraints on f q,z
mn, αz

mn, εzu. Overall, this MILP model poses

very high complexity. For example, mapping a 5-node/10-link VN request over a

20-node/40-link substrate network with 5 failure regions yields 6,230 variables.
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3.3 Failure Region Disjoint Survivable VN Map-

ping

Owing to the high computational complexity of the above MILP formulation, some

efficient heuristic-based algorithms are now proposed. In general, recovery schemes

for single link/node failures are not very effective in multi-failure scenarios. Hence

in order to achieve survivability under multiple faults, an alternate approach can

be used to compute multiple VN mappings, with each avoiding a different failure

region [HY04]. Furthermore, resource sharing can also be implemented between these

mappings to help lower resource usages. This is shown more clearly in Figure 3.4,

where VN request G1
v is assigned a working mapping {< a,A >,< b,B >,< c, C >}

and a protection mapping {< a′, C >,< b′, D >,< c′, F >}. Now since substrate

node C is allocated to VN node c in the working mapping and to VN node a in

the protection mapping, node resource sharing can be done here. In addition, since

the link (C,D) is used to route VN link connections for both mappings, bandwidth

sharing can also be done here. Another sharing case is also seen for request G2
v where

a VN node/link is mapped to the same substrate node/path in both the working

mapping and protection mappings.

However, computing multiple backup mappings for each potential failure region

u ∈ U is clearly very resource intensive. As a result, a more resource-efficient surviv-

able VN mapping solution is introduced here to compute two separate “failure-region

disjoint” VN mappings for each incoming request, i.e., working and protection VN

mappings. Now since the survivable VN mapping algorithm here is decomposed into

two non-survivable mappings, any existing (regular) VN mapping scheme can be

applied. Hence for the purposes of this study, the non-survivable virtual infrastruc-

ture mapping (NSVIM) algorithm from [HY04],[GS02] is adopted as the base VN

mapping solution. Namely, this scheme uses a single-stage mapping to embed a VN
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Figure 3.4: (a) substrate w. 2 failure regions, (b) 2 VN requests

node and its attached VN links and has been shown to outperform the well-studied

R-ViNE algorithm in [NC01]. The NSVIM algorithm is also detailed further in the

Appendix, and the region disjoint solution is now presented.

3.3.1 Failure Region Group Based Mapping (FRGBM)

The overall failure region group based mapping (FRGBM) scheme is shown in Figure

3.5. The algorithm starts by first separating the failure regions, U , into two static

disjoint sub-groups, G1 and G2. The goal here is to cluster topologically-closer

regions together and simplify subsequent backup VN mapping procedures. These

sub-groups are then used to compute two failure region-disjoint VN mappings, Z1

and Z2, and resource sharing is also applied to reduce overall usages. Further details

on each of these key steps are now presented.
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Figure 3.5: Overview of failure region group based mapping (FRGBM) scheme

The risk region grouping algorithm (Figure 3.5) uses a simple heuristic strategy

based upon average distances. Namely, a distance matrix, D, is first computed to

obtain the average distances between each failure region, i.e., D = {dij} where dij is

the distance between regions ui and uj. This step is shown in Figure 3.6, where each

dij value is computed by looping over nodes in regions ui and uj. After this matrix

has been computed, the next step separates the failure regions into two groups, G1

and G2, as shown in Figure 3.7. Initially, the two failure regions with the largest

distance are determined and used to seed the G1 and G2 groups, respectively. The

distances of all other “non-grouped” failure regions to G1 and G2 are then computed

by averaging distances to existing grouped failure regions in the respective groups.

These regions are then placed in the group with the shorter average distance. An

example of this grouping algorithm is shown in Figure 3.8 for a 10-node network

with 3 failure regions. In particular, the maximum dij value here is 3.5, i.e., distance

between region 1 and 3. Hence these regions are used to seed the initial groupings,

i.e., u1 ∈ G1 and u3 ∈ G2. Carefully note that the failure region grouping algorithm

can itself be defined as an ILP optimization problem as well. However, this is not
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1: for i=0 to |U |
2: for j=0 to |U |
3: dist = 0
4: for each vis ∈ ui
5: disti = 0
6: for each vjs ∈ uj
7: distij=shortest path length from vis to vjs
8: disti=disti+distij
9: disti=disti / (number of nodes in uj)

10: dist=dist+disti
11: dij=dist / (number of nodes in ui)

Figure 3.6: Algorithm for computing average distance matrix, D

considered further for simplicity’s sake.

Overall, the proposed FRGBM scheme uses the above failure region groupings to

1: G1 = ∅, G2 = ∅
2: Find maximum dij in D
3: Add ui into G1 and uj into G2

4: for i=0 to |U |
5: if ui 6∈ G1 and ui 6∈ G2

6: dist1=0, dist2=0, num1=0, num2=0
7: for each uj ∈ G1

8: dist1=dist1+dij
9: num1++

10: dist1=dist1 / num1
11: for each uj ∈ G2

12: dist2=dist2+dij
13: num2++
14: dist2=dist2 / num2
15: if dist1<dist2
16: add ui to G1

17: else
18: add ui to G2

Figure 3.7: Failure region grouping algorithm
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Figure 3.8: An example of computing failure region groups

compute two separate working/protection VN mappings, Figure 3.5. This algorithm

is detailed in Figure 3.9 and starts out by pruning all failure regions inG1. A variation

of the NSVIM algorithm, termed as connectivity-aware NSVIM (C-NSVIM), is then

run to find a working VN mapping, Z1. The G1 regions are then restored and those

in G2 are pruned and the C-NSVIM algorithm re-run to compute the protection VN

mapping, Z2. Now the key difference between the NSVIM and modified C-NSVIM

algorithm is an added constraint for computing the candidate substrate node list for

each VN node, L. Namely, the maximum connectivity of a candidate node is also

checked, in addition to its node resources and adjacent link bandwidth constraints,

i.e., to avoid mapping VN nodes to areas isolated by pruned failure regions. For

example, consider the network in Figure 3.2 again. Here if failure regions u1 and

u2 belong to the same group (G1 or G2) and are pruned during computation, then

substrate nodes v0s and v1s will no longer be feasible for mapping VN requests with

three or more nodes, i.e., since v0s and v1s will be isolated after pruning. Hence if the

maximum connectivity number, τ , of a substrate node is less than the number of

VN nodes in the request, this node is not considered as a valid mapping candidate.

Note that the connectivity of each substrate node after pruning G1 or G2 is fixed

since these two sets are pre-computed at startup. Complete details on the NSVIM
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and C-NSVIM schemes are also presented in the Appendix.

Finally, the FRGBM scheme also implements node and link bandwidth resource

sharing between the working and protection VN mappings. This is possible since

only one failure event is assumed to occur at a given time, a realistic assumption as

catastrophic events are relatively rare. Now in order to implement this feature, an

added data structure is introduced to record the substrate node and link resource

allocations for each mapping, i.e., Zi in Step 6, Figure 3.9. Resource sharing is then

done by selecting the maximum resource usage in the respective substrate node (link)

amongst the two mappings, i.e., Step 9, Figure 3.9.

Now consider the overall computational complexity of the FRGBM scheme. Fore-

most, the grouping algorithm in Figure 3.7 has a complexity of O(|U |2), i.e., as it

loops over all failure regions. Similarly, the distance matrix computation algorithm

in Figure 3.6 also has a computation complexity of O(|Vs|2|Es|log|Vs|). Finally the

VN mapping procedure uses a modified C-NSVIM algorithm with a complexity of

O(|Ev|(2 + |Vs|)|Vs||Es|log|Vs|). Now since the failure region grouping is static, the

related algorithm only needs to be run once before start up. Therefore the run-time

complexity of the FRGBM scheme is bounded by O(|Ev|(2 + |Vs|)|Vs||Es|log|Vs|).

3.3.2 Dynamic Failure Region Disjoint Mapping (DFRDM)

As noted above, the FRGBM scheme uses fixed failure region groupings that are de-

termined at startup. However since network substrate (node and link) loads can vary

dynamically, these fixed groupings can also lead to increased resource inefficiency.

Therefore, in order to address this concern, a modified dynamic failure region disjoint

mapping (DFRDM) scheme is proposed here, as shown in Figure 3.10.

The main idea behind the dynamic approach is to first compute a working VN

mapping and then prune all the failure regions used by this mapping. Subsequently,
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1: Define temporary substrate graph Gt(Vt, Et) with Vt and Et

2: for i=1 to 2
3: Copy current node/link resource from Gs to Gt

4: Prune each failure region uj ∈ Gi in Gt

5: Run C-NSVIM on Gt for mapping Zi, if failed return FAIL
6: Record substrate node/link resource allocation for Zi

7: Restore each failure region uj ∈ Gi in Gt

8: Assign node/link resource sharing between Z1 and Z2 according
to records generated in Step 6 and compute final resource usage

9: Reserve node/link resource in Gs according to final resource
usage computed in Step 9

10: Return SUCCESS

Figure 3.9: Failure region group based mapping (FRGBM) algorithm

the protection mapping is computed. However, since the working VN mapping may

span a large number of failure regions, this approach may restrict the available pool

of resources for the protection mapping. As a result, additional penalty costs are

introduced to prevent the working VN mapping from spanning too many failure

regions. Specifically, the NSVIM algorithm is still re-used here, but an additional

1: Define temporary substrate graph Gt(Vt, Et) with Vt and Et

2: Copy current node/link resource from Gs to Gt

3: Run NSVIM with penalty cost on Gt, if failed return FAIL
4: Record substrate node/link resource allocation for Z1

5: Copy current node/link resource from Gs to Gt

6: Prune failure regions accessed by Z1 in Gt

7: Run C-NSVIM on Gt for mapping Z2, if failed return FAIL
8: Record substrate node/link resource allocation for Z2

9: Restore failure regions accessed by Z1 in Gt

10: Assign node/link resource sharing between Z1 and Z2 according
to records generated in Steps 4 and 8, compute final usage

11: Reserve node/link resource in Gs according to final resource
usage computed in Step 10

12: Return SUCCESS

Figure 3.10: Dynamic failure region disjoint mapping (DFRDM) algorithm
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penalty cost, P (vs), is added if a candidate node vs is located in a new/different

failure region from the regions already covered by the mapping. Another penalty

cost, P (es), is also added if the path mapping for this VN node (to a mapped adjacent

VN node) traverses any new failure regions. Note that an added data structure is

also needed here to record all the failure regions accessed by a VN request, i.e., Step

3, Figure 3.10.

Once the working VN mapping has been computed, the protection mapping is

determined by running the C-NSVIM algorithm, but without penalties. Akin to the

FRGBM scheme, node connectivity is also used here to avoid isolating candidate

nodes with low connectivity. Namely, a static connectivity status is computed for

each substrate node for all possible failure region pruning scenarios in the initial

stage. In particular, let the number 1 (0) denote a pruned (non-pruned) failure re-

gion. Using this representation, a failure region pruning scenario can be expressed

as a |U |-dimensional vector binary < au1 , au2 , ..., au|U| > with the total number of

potential scenarios given by 2|U |. Now for each scenario, the number of substrate

nodes that can be reached after pruning the corresponding failure regions, i.e., max-

imum connectivity number τ , can be computed for every substrate node by using a

breadth-first search. Hence by searching the pre-computed connectivity status val-

ues, substrate nodes with τ values smaller than the number of VN nodes in a VN

request will not be considered as candidates. Carefully note that connectivity infor-

mation is only computed once at initialization and hence this will not affect run-time

complexity, i.e., akin to the FRGBM scheme. Hence the DFRDM scheme also has the

same overall complexity as the FRGBM scheme, i.e., O(|Ev|(2 + |Vs|)|Vs||Es|log|Vs|).
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3.3.3 Load Balancing

Overall, both the FRGBM and DFRDM algorithms compute substrate link and node

costs according to pure “mapping cost” (MC) values. However, since these values

are usually static (operator-specified), they cannot account for real-time node and

link bandwidth resource loads at the substrate level. In turn this may yield increased

congestion at specific nodes or links. Hence a simple load balancing (LB) strategy is

proposed here to alleviate such concerns. Namely, substrate link costs (weights) are

defined as inversely-proportional to the load as follows:

C(es) =
Bc

B(es) + σ
(Eq. 3-23)

where Bc is the full capacity of a substrate link and σ is a small value (to avoid

division errors). Similarly, node resources costs can also be defined as:

C(vs) =
Rc

R(vs) + σ
(Eq. 3-24)

where Rc is the full resource capacity of a substrate node.

3.4 Performance Evaluation

The performance of the proposed survivable VN mapping schemes is now tested

using customized OPNETModelerTM models. Namely, two substrate topologies are

tested here, including the smaller 10-node network with 3 failure regions in Figure

3.1a (with modified nodal resource/link capacities) and the larger 24-node network

with 5 failure regions in Figure 3.2. Here, all substrate nodes have 100 units of

resource capacity and all substrate links have 10,000 units of bandwidth. Meanwhile

the VN requests are varied between 3-5 nodes and 4-7 nodes each for the 10- and

24-node topologies, respectively. Average VN topology node degrees are also set

to 2.3 and 2.6 for these two networks. Meanwhile, requested VN node capacities
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are uniformly distributed between 1-10 units, and requested VN link capacities are

uniformly distributed between 50-1,000 units. All requests follow random exponential

holding and inter-arrival times, with means µ and λ, respectively. In particular, a

value of µ = 600 time units is chosen here, and λ is adjusted according to load.

Meanwhile, the load is measured using a modified Erlang metric by accounting for

the VN request size, i.e., by taking the product of average number of VN links and

µ/λ . Finally, the CPLEX 12.4 tool is incorporated with OPNETModelerTM in

order to solve the MILP formulation, i.e., per incoming VN request.

For comparison purposes, the SOUM and IOCM survivability schemes in [HY04]

are also tested here. Furthermore, all schemes are gauged using both the MC and LB

cost assignment strategies. Now tests for the 10-node topology are done using 10,000

random VN requests, whereas tests for the 24-node network are done using 100,000

random requests (heuristic schemes only). By contrast, the MILP optimization is

only tested for the 10-node network owing to excessive computational complexity.

Failure events are also randomly triggered after an average of 1,000 incoming VN

requests, i.e., a failure region is selected in random uniform manner and all of its

nodes and links are failed.

3.4.1 Blocking Rates

The overall request blocking rates are shown in Figure 3.11 for the various schemes.

First of all, the findings for the 10-node topology in Figure 3.11a show that the

MILP optimization scheme gives the lowest blocking of all. In fact, this solution

also yields the best results for nearly all of the other metrics evaluated. In general,

these behaviors are expected since the MILP is an optimal strategy, and hence the

remaining discussions only focus on the heuristic strategies.

Now for the smaller 10-node network, results indicate very little separation be-
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tween the MC-based heuristic schemes, i.e., with IOCM-MC and FRGBM-MC giv-

ing slightly lower blocking than the others. However, for the larger 24-node network,

Figure 3.11b, the proposed FRGBM and DFRDM schemes give much lower blocking

than their IOCM and SOUM-based counterparts, e.g., about 94% lower blocking

with FRGBM-MC versus SOUM-MC at low-medium loads. These gains are due to

the fact that the 24-node topology has much more substrate nodes and links, and this

allows the failure region-disjoint schemes to utilize network resources in a more effi-

cent manner. This contrasts with the SOUM and IOCM schemes which exhaustively

provision protection for all possible failure regions. In addition, the FRGBM-MC

scheme actually gives lower blocking than the dynamic DFRDM-MC except at heavy

loads. The reason here is that the fixed cost computation strategies do not use any

real-time substrate load information (and hence cannot efficiently generate two dis-

joint failure regions). Finally, the results show that the LB-based heuristics yield the

lowest blocking of all heuristics. These findings confirm that distributing VN loads

across network substrate nodes/links can generally improve blocking performance.

Furthermore, the DFRDM-LB scheme also gives lower blocking than FRGBM-LB,

especially for the 24-node topology, i.e., as it performs dynamic mapping to disjoint

failure regions (and can further leverage real-time substrate load information).

3.4.2 Long Term Revenue

The long term revenues are also plotted in Figure 3.12 and show that the FRGBM

and DFRDM schemes achieve much higher values than the competing SOUM and

IOCM solutions, i.e., for both the MC and LB variants. For example the FRGBM-

MC scheme gives almost 44% more revenue than SOUM-MC in the 24-node topology

at higher loads, see Figure 3.12b. In addition, the LB-based variants also provide a

significant increase in revenues as compared to the fixed weight MC-based schemes.

Carefully note that revenue discrepancies also decrease with load since request block-
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ing rates are lower.

3.4.3 Long Term Cost

Long term costs are further plotted in Figure 3.13 for both networks. In comparison

with the SOUM and IOCM strategies, here the FRGBM and DFRDM heuristic

schemes show slightly higher costs with the MC weighting approachs. Also, all LB-

based heuristics yield higher costs than their MC counterparts. This is expected as

these former schemes accept more VN requests (lower blocking), which in turn leads

to additional resource consumption and increased costs. In light of this, long term

cost may not a proper metric for evaluating VN mappings, i.e., as lower costs can

possibly result from lower acceptance ratios. Hence the average cost per VN is also

evaluated, as detailed next.

3.4.4 Average Cost

The average costs per VN are plotted in Figure 3.14. These results show that both

the FRGBM and DFRDM schemes can achieve lower average cost than SOUM and

IOCM (except with MC-based heuristics in the 10-node topology). Average costs

also decline under heavier loads. This reduction is due to the fact that VN requests

with larger numbers of VN nodes/links are more likely to be accepted under lighter

loads. Hence these types of requests will consume more resources, leading to higher

average per VN cost. To show this more clearly, the average revenue per VN is

plotted in Figure 3.15, and the results indicate that revenue is high when traffic

is light and low when traffic is heavy. Now since the revenue for each VN is only

related to the VN topology, this shows that larger VN requests are accepted more

easily when traffic is low. Finally, these findings also indicate that the FRGBM and

DFRDM schemes can support larger VN sizes than the SOUM and IOCM schemes.
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3.4.5 Net Revenue

The net revenues from Eq. 3-5 are also plotted in Figure 3.16 and clearly show that

the proposed FRGBM and DFRDM schemes generate significantly-higher revenues

than SOUM and IOCM (for both the MC- and LB-based variants). These results also

validate the gains of using a failure region-disjoint mapping approach. In addition,

the LB-based heuristics tend to give higher net revenues as well (versus their MC-

based counterparts). The only exception here is the SOUM-LB scheme, which gives

rather low revenues. The main reason here is that LB-based strategies yield longer

path routes for the mapped VN link connections. Compounding this increase is the

fact the SOUM scheme exhaustively computes multiple protection mappings for all

failure regions (and combines them via sharing). As noted earlier, net revenues also

decrease with traffic load, i.e., akin to Figure 3.12.

3.4.6 VN Failures and Node Migrations

The number of failed VN requests is also plotted in Figure 3.17 to measure over-

all robustness. These results show that the proposed FRGBM scheme is the most

resilient of all, as it groups failure regions and prevents the working mapping from

spanning across too many regions. For example, the FRGBM-MC scheme gives at

least 55% fewer VN requests failures versus the SOUM and IOCM schemes in the

24-node network, Figure 3.17b. In addition, the total number of post-fault VN node

migrations are also plotted in Figure 3.18 in order to gauge operational complex-

ity. Again, the FRGBM (and IOCM) schemes give the lowest number of migrations

since they experience the lowest number of VN failures. For example, the FRGBM-

LB scheme gives 44% fewer migrations than the DFRDM-LB scheme at high loads

in the 24-node topology, see Figure 3.18b.
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(a)

(b)

Figure 3.11: Blocking rate: a) 10-node topology, b) 24-node topology
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(a)

(b)

Figure 3.12: Long term revenue: a) 10-node topology, b) 24-node topology
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(a)

(b)

Figure 3.13: Long term cost: a) 10-node topology, b) 24-node topology
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(a)

(b)

Figure 3.14: Cost per VN: a) 10-node topology, b) 24-node topology
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(a)

(b)

Figure 3.15: Revenue per VN: a) 10-node topology, b) 24-node topology
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(a)

(b)

Figure 3.16: Net revenue: a) 10-node topology, b) 24-node topology
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(a)

(b)

Figure 3.17: Failed number of VN: a) 10-node topology, b) 24-node topology

56



Chapter 3. Multi-Failure VN Protection

(a)

(b)

Figure 3.18: Num. of migrated VN nodes: a) 10-node topology, b) 24-node topology
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Chapter 4

VN Provisioning for Probabilistic

Failures

In general, pre-provisioned VN protection schemes consume higher amounts of re-

sources since backup node and link capacities must be reserved in advance. This may

lead to higher resource inefficiency and reduced operator revenues, especially when

the relative frequency of failure events is low, i.e., particularly true for catastrophic

stressors. Moreover, many mid-tier cloud users may prefer more economically-priced

service offerings with reduced levels of stringency, i.e., able to tolerate infrequent

service outages. Hence for these service types, provisioning full service protection

may not be a very feasible/economic option. Instead, it may be much more benefi-

cial to provision basic working mode services with increased awareness (resiliency) to

rare catastrophic events. However, this approach necessitates a probabilistic treat-

ment of failure events, a topic which has not been studied within the context of VN

provisioning, i.e., VN risk minimization. Consider some further details here.

Overall, the key objective in VN risk minimization is to perform VN node/link

mappings so as to minimize the risk of VN failure under a set of pre-defined stres-
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sors. Now since a VN topology is comprised of both VN nodes and VN links, the risk

associated with its mapping will be related to the underlying failure probabilities of

the substrate nodes and links that it uses. Additionally, VN links will be susceptible

to both substrate link and node failures. Along these lines, this chapter introduces

probabilistic substrate node/link failure information into the VN mapping process.

Using this information, two “risk-aware” VN mapping heuristic schemes are pre-

sented. Namely, the first heuristic strictly focuses on minimizing the risk of a working

VN mapping. However, since pure risk minimization objectives have been known to

yield very high resource inefficiency in regular connection routing scenarios [OD01],

a second solution is also proposed to jointly incorporate both risk minimization and

traffic engineering (TE) efficiency concerns. Carefully note that optimization-based

schemes are not considered here since the problem is non-linear and difficult to solve

due to high complexity. The heuristics solutions are now presented.

4.1 Network Model and Description

The overall notation and network model for VN risk minimization is similar to that

introduced in Section 3.1. In addition, many of the performance evaluation metrics

defined for VN protection are also applicable here. However, in order to properly

describe the characteristics of stressors, further failure probability information needs

to be introduced. Consider the details here.

Akin to the stressor model in Section 3.1, a finite number of failure regions are

enumerated in a set U . Now owing to the probabilistic nature of these events, each

stressor u ∈ U has an occurrence probability given by wu ∈ [0, 1], which in turn

yields a failure region probability vector for all events, i.e., ~w = [wu1 , wu2 , ..., wu|U |].

Furthermore, it is also assumed that large-scale stressor events are sufficiently rare

so as to be mutually-exclusive, i.e., only one can occur at a given time (
∑

u∈U wu =
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1). Next, a conditional risk vector is also defined for each substrate node and link

in the failure stressor graph Gu(Vu, Eu), i.e., ~pvs = [pu
1

vs , p
u2

vs , ..., p
u|U|
vs ] and ~pes =

[pu
1

es , p
u2

es , ..., p
u|U|
es ]. Namely, pu

i

vs (pu
i

es) is the conditional node (link) failure probability

if stressor ui occurs. Here it is also assumed that each conditional (node, link) failure

probability is independent.

Next, some new metric definitions are introduced to handle more specialized VN

risk minimization needs. Namely, the penalty associated with service disruption for

a given VN request, Gv, is defined as:

PE(Gv) =
∑
ev∈Ev

b(ev) ∗ PE(ev) + ψ
∑
vv∈Vv

r(vv) ∗ PE(vv) (Eq. 4-1)

where PE(ev) is the unit link penalty, PE(vv) is the unit node penalty, and ψ is

the fraction of node penalty. Using the above, the net revenue in Eq. 3-5 is also

re-defined as:

∑
i(REV (Gi

v)− COST (Gi
v))−

∑
j PE(Gj

v)

T
,∀Gi

v ∈ A,∀Gj
v ∈ F (Eq. 4-2)

where REV (Gv) and COST (Gv) are defined in Eq. 3-1 and Eq. 3-2, respectively,

Gi
v is the i-th VN request, A is the set of all accepted VN requests, Gj

v is the j-th

VN request, F is the set of all failed VN requests, and T is the total run time. Here

net revenue is basically adjusted by the service disruption penalty in Eq. 4-1.

4.2 VN Risk Minimization

Based upon the revised notation above, two novel “risk-aware” VN mapping schemes

are now proposed. Overall, these algorithms use heuristic methodologies to try to

map VN requests and minimize their vulnerability to multi-failure stressors.
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4.2.1 VN Embedding with Risk Minimization Only

Probabilistic VN embedding is first considered purely from a risk minimization per-

spective, i.e., risk minimization mapping (RMM) scheme. Namely, the objective of

this scheme is to minimize the failure probability of a VN mapping given a pre-

defined set of failure regions, U . Hence this algorithm starts by first defining a risk

value for each substrate node (link) as the dot product of its node risk vector ~pvs

(link risk vector ~pes) and failure region probability vector ~w, i.e., ξvs = ~pvs · ~w for a

substrate node and ξes = ~pes · ~w for a substrate link. Subsequently, modified node

and link risk values are defined as follows:

rvs = log
1

1− ξvs
(Eq. 4-3)

evs = log
1

1− ξes
(Eq. 4-4)

In particular, these values are chosen as they can be applied in an additive manner

to compute the total failure risk of an end-to-end path (see Appendix B for detailed

proof on equivalency between using rvs and evs in place of ξvs and ξes for shortest-

path computation). These values are then assigned as appropriate weights in the

substrate graph and used in the subsequent shortest-path computation steps. In

particular, the risk for a VN node is defined as the failure risk, rvs , of the underlying

substrate node to which it is mapped. Meanwhile, the risk for a VN link is defined

as the sum of failure risks, rvs and res , of all the substrate nodes and links along its

connection route.

Now carefully note that traditional shortest-path algorithms, e.g., such as Dijk-

stra’s, also do not handle node weights. However, node weights can still be incor-

porated by transferring the original graph to a directed graph and then adding the

node weight (risk probability) to the ingress links. Subsequently, shortest-path algo-

rithms can be run on this modified graph. An example of this transfer is illustrated
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in Figure 4.1, in which the original weight of link AB is 0.6, the weight of node A

is 0.3, and the weight of node B is 0.1. Hence in the modified directed graph, the

weight of link AB is now set to 0.6+0.1 = 0.7 and that for link BA to 0.6+0.3 = 0.9.

Figure 4.1: (a) A sample graph w. node weight (b) Transferred directed graph

The overall RMM scheme follows a joint VN mapping strategy and is shown in

Figure 4.2. Namely, the algorithm basically sorts all VN nodes in descending order

of node degree and then loops through to map each one, i.e., call to FSN RMM

routine, Figure 4.2. Now if a VN node is successfully mapped here, then all of its

emanating VN links are also mapped (but only those whose other VN node end-

points have already been mapped, see Steps 6-8 in Figure 4.2). After each iteration,

the respective risk values for all assigned/traversed substrate nodes/links are also set

to zero, i.e., since re-using them will not introduce any further risk. Now consider

the details for the node mapping procedure.

The “risk-aware” node mapping scheme is now detailed, i.e., see Figure 4.3 for

pseudocode of FSM RMM subroutine. This algorithm first builds a candidate sub-
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strate node list, L, for each VN node, vv, based upon three criteria, see Steps 2-9 in

Figure 4.3. Foremost the available node resources at a candidate node vs ∈ Vs should

not be less than the requested amount in vv. Next, the maximum available band-

width along all adjacent substrate links of vs must not be less than the maximum

bandwidth requested by adjacent VN links of vv. Finally, the total available band-

width of an adjacent substrate link of vs should not be less than the total amount of

bandwidth required along all adjacent VN links of vv. Overall, these three criteria

ensure a feasible mapping for VN node vv.

Once the list L has been built, the VN node mapping algorithm loops through all

candidate substrate nodes and selects one based upon three different cases. In the

first case, if vv is the first VN node in the request then the cost values for all nodes

vs ∈ L, cvs , are set equal to their risk values, rvs , see Step 12 in Figure 4.3. The

substrate node mappings for vv is then done by randomly selecting a vs ∈ L with

selection probabilities set inversely-proportional to cvs , i.e., see Step 22 in Figure 4.3.

This approach favors substrate nodes with lower failure probabilites. Meanwhile,

for the case where vv is not the first node but also has no mapped neighboring VN

nodes, the cost value for a candidate node vs ∈ L, cvs , is instead set to a weighted

sum of the risk value, rvs , and total static hop count from vs to all other substrate

nodes v′s assigned to already-mapped VN nodes in the request. The goal here is to

map vv close to other mapped (non-neighboring) nodes, even if none of its VN links

will be mapped in the current iteration. Carefully note that a weighting fraction,

θ, is also used to adjust the balance between risk and hop counts, see Steps 14-15

in Figure 4.3 (typically set to 1). Based upon the above, the substrate node, vs,

with the minimum cvs value is chosen as the mapping for vv, i.e., Step 24 in Figure

4.3. Finally, for the case where vv already has mapped neighbor VN node(s), the cost

value for a node vs ∈ L, cvs , is assigned as a weighted sum of risk value, rvs , and total

path cost from vs to all other nodes v′s corresponding to mapped neighboring VN

nodes of vv. Again, θ′ is another fixed fraction used to adjust the balance between
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1: Initial risk value for each substrate node and link, rvs = ~pvs · ~w,
res = ~pes · ~w

2: Sort VN nodes in descending order of node degree
3: for each vv ∈ Vv
4: vs=Call subroutine FSN RMM(vv), if success reserve node re-

source;otherwise return FAIL
5: rvs = 0
6: for each adjacent VN link (vv, v

′
v)

7: if v′v is mapped
8: Compute minimum-cost path P(vv ,v′v) by using risk values as

link weights, if success reserve bandwidth resource; otherwise
return FAIL

9: rvs = 0,∀vs ∈ P(vv ,v′v), res = 0, ∀es ∈ P(vv ,v′v)

Figure 4.2: Risk minimization mapping (RMM) algorithm

risk and path cost, see Steps 17-20 in Figure 4.3 (typically set to 1). Based upon the

above, the substrate node vs with the minimum cvs value is selected to map vv, see

Step 24 in Figure 4.3.

Overall, the complexity of the above scheme can be derived by analysing the

individual components of the RMM algorithm in Figure 4.2. Namely, the sorting

procedure (Step 2 Figure 4.2) has O(|Vv||log|Vv|) complexity. Meanwhile, the com-

plexity of iterating and mapping each VN node is determined by the FSM RMM

subroutine. Now the complexity of this particular subroutine is dominated by the

candidate substrate node selection steps, i.e., Steps 10-20, Figure 4.3. Hence this

yields a complexity of O(|Vs||Es|log|Vs|) for the FSM RMM subroutine and a total

algorithm complexity of O(|Ev||Vs||Es|log|Vs|) for the RMM scheme.

4.2.2 VN Embedding with Joint RM and TE

Overall, the RMM embedding scheme primarily tries to reduce the failure probabil-

ity of a computed VN mapping. As such this approach ignores the revenue and cost
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1: Input VN node vv
2: for each vs ∈ Vs
3: if vs is not assigned
4: bmax=maximum bandwidth among adjacent VN links of vv
5: Bmax=maximum bandwidth among adjacent substrate links of vs
6: btotal=total bandwidth of adjacent VN links of vv
7: Btotal=total bandwidth of adjacent substrate links of vs
8: if R(vs) ≥ r(vv) and Bmax ≥ bmax and Btotal ≥ btotal
9: Add vs into candidate substrate node list L
10: for each vs ∈ L
11: if vv is the first VN node
12: cvs = rvs
13: else if vv has no mapped neighbor VN nodes
14: hc=total hop count from vs to v′s for all v′s are mapped
15: cvs = θ ∗ rvs + hc
16: else
17: mc = 0
18: for each mapped neighbor VN nodes v′v
19: Compute minimum-cost path P(vv ,v′v) using risk values as link weights,

if success the path cost is added to mc; otherwise mc =∞
20: cvs = θ′ ∗ rvs +mc
21: if vv is the first VN node
22: Randomly select a vs ∈ L with probability inversely proportional to cvs
23: else
24: Select the vs ∈ L with the minimum cvs if cvs 6=∞; otherwise return FAIL

Figure 4.3: Subroutine FSN RMM algorithm

aspects for embedding design, and this can lead to increased resource inefficiency

and lower revenues for cloud service providers. Hence in order to address this short-

coming, a novel scheme is proposed to take into account both risk minimization and

TE resource efficiency concerns, termed as the joint risk minimization and traffic

engineering mapping (JRTM) scheme.

The proposed JRTM scheme is detailed in Figure 4.4. First, a special data set S

is used to record all of the “used” substrate nodes and links for an incoming request.

Namely, vs ∈ S if and only if vs is assigned to a VN node or it is an intermediate
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node of a VN link. Similarly, es ∈ S if and only if es is assigned to a VN link. Now

akin to the RMM scheme, this algorithm also starts out by sorting each VN node

in descending order of node degree. It then loops through all of the VN nodes and

iteratively tries to map each to a substrate node, i.e., call to FSN JRTM routine

(Figure 4.5). Now pending a successful mapping here, the VN link connections are

also routed (for adjacently-mapped VN nodes only). In particular, connection routes

are computed by first resolving the k -shortest paths between the respective substrate

nodes. A risk value, rP, is then computed for each of these k paths, P, as follows:

rP =

|U |∑
i=1

wui(1−
∏

vs∈P,vs /∈S

(1− pui

vs)
∏

es∈P,es /∈S

(1− pui

es)) (Eq. 4-5)

rvs =

 ~pvs · ~w if vs /∈ S

0 if vs ∈ S
(Eq. 4-6)

Specifically, this risk value is the failure probability of path P under all potentail

stressors. Note that, if a substrated node (link) is marked as “used” in S, i.e.,

vs ∈ S (es ∈ S), then its failure probability is set to zero and it is precluded from

the computation. Again, the reason here is that re-using already-assigned nodes

(links) in the same VN will not introduce additional risk. Finally the path with the

minimum risk value is selected for mapping the VN link. Now after a VN node has

been mapped, the substrate node that it is mapped to is also marked as “used” in

S, see Step 5 in Figure 4.4. Similarly, after a VN link has been mapped, all the

substrate nodes and links along its path route are also marked as “used” in S, see

Steps 12-13 in Figure 4.4.

Next, the joint risk and TE-based VN node mapping scheme is detailed in Figure

4.5, i.e., pseudocode for FSN JRTM subroutine. Akin to the FSN RMM algorithm

in Figure 4.3, this algorithm also starts by building a candidate substrate node list,

L, for VN node vv based upon the same three criteria. Next, all candidate substrate
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nodes in list L are evaluated to select one for mapping based upon three possible

cases. In the first case, if vv is the first VN node in the VN request, its cost value c1vs

is set to C(vs)r(vv) for each vs ∈ L. At the same time another cost value, c2vs , is also

defined as the risk value of vs, i.e., rvs , as computed in Eq. 4-6. A further subset list

L′ is then built by randomly selecting d |L|
k′
e substrate nodes from L with selection

probabilities set as inversely-proportional to the node c1vs values. The final node

mapping is then chosen from this reduced list by choosing a node vs from L′ with

the selection probabilities set as inversely-proportional to the c2vs values, see Steps

26-27 in Figure 4.5. Overall, this “two-stage” selection process first tries to evenly-

distribute the (first) VN node over the substrate network and then incorporates

failure risks to minimize its placement risk, i.e., jointly lowering mapping costs and

reducing risk at the same time.

Next consider the case where VN node vv is not the first node, but also has no

mapped neighboring VN nodes. Here the cost for a substrate node vs, c
1
vs , is set to a

weighted sum of C(vs)r(vv) and total static hop counts from vs to all other substrate

nodes v′s assigned to already-mapped VN nodes in the VN request. The reason here is

as same as in FSN RMM subroutine (as discussed in Section 4.2.1). In addition, c2vs is

also set to rvs as computed using Eq. 4-6. Based upon the above, the algorithm sorts

the substrate nodes in L by ascending c1vs values and also generates a further subset

list L′ by selecting the first d |L|
k′
e substrate nodes from L. From this reduced list,

the substrate node vs with the minimum c2vs value is then selected as the mapping

for vv, see Steps 29-31 in Figure 4.5. Again, this two-stage selection incorporates

both risk minimization and TE efficiency concerns. Finally, for the case where vv

already has some mapped neighbor VN node(s), the cost values c1vs are computed

as a weighted sum of C(vs)r(vv) and total path cost from vs to all other nodes v′s

corresponding to mapped neighboring VN nodes of vv. Meanwhile, the c2vs values are

set to the weighted sum of rvs and the total risk value of the paths computed by Eq.

4-5. Finally, the subsequent process for selecting the final candidate substrate node
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1: Initial track “used” substrate node and link set S = ∅
2: Sort VN nodes in descending order of node degree
3: for each vv ∈ Vv
4: vs=Call subroutine FSN JRTM(vv), if success reserve node re-

source;otherwise return FAIL
5: Add vs to S
6: for each adjacent VN link (vv, v

′
v)

7: if v′v is mapped
8: Compute k-shortest path for (vv, v

′
v) by using link cost values

as link weights, if no path computed successfully return FAIL
9: for each path P of k paths

10: Compute risk value rP for P by Eq. 4-5
11: Select P with minimum rP, reserve bandwidth resource
12: Add vs,∀vs ∈ P to S
13: Add es,∀es ∈ P to S

Figure 4.4: Joint risk minimization and TE mapping (JRTM) algorithm

is the same as that for the second case, i.e., node vv without any mapped neighbor.

The overall complexity of the JRTM scheme can also be analysed in a similar

manner to that for the RMM scheme in Section 4.2.1. Namely, the complexity of

FSN JRTM subroutine is bounded by O(|Vs||Es|log|Vs|). Hence the total complexity

of JRTM scheme is O(|Ev|(|Vs|+ k)|Es|log|Vs|).
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1: Input VN node vv
2: for each vs ∈ Vs
3: if vs is not assigned
4: bmax=maximum bandwidth among adjacent VN links of vv
5: Bmax=maximum bandwidth among adjacent substrate links of vs
6: btotal=total bandwidth of adjacent VN links of vv
7: Btotal=total bandwidth of adjacent substrate links of vs
8: if R(vs) ≥ r(vv) and Bmax ≥ bmax and Btotal ≥ btotal
9: Add vs into candidate substrate node list L
10: for each vs ∈ L
11: if vv is the first VN node
12: c1vs = C(vs)r(vv)
13: c2vs = rvs , computed by Eq. 4-6
14: else if vv has no mapped neighbor VN nodes
15: hc=total hop count from vs to v′s for all v′s are mapped
16: c1vs = θ ∗ C(vs)r(vv) + hc
17: c2vs = rvs , computed by Eq. 4-6
18: else
19: mc = 0, rc = 0
20: for each mapped neighbor VN nodes v′v
21: Compute minimum-cost path P for (vv, v

′
v) by using link cost as link

weights, if success the path cost is added to mc; otherwise mc =∞
22: Compute risk value rP for P by Eq. 4-5 and added it to rc
23: c1vs = θ′ ∗ C(vs)r(vv) +mc
24: c2vs = θ′ ∗ rvs + rc, rvs is computed by Eq. 4-6
25: if vv is the first VN node
26: Build L′ as randomly select d |L|

k′
e substrate nodes from L with probability

inversely proportional to c1vs
27: Randomly select vs ∈ L′ with probability inversely proportional to c2vs
28: else
29: If c1vs = ∞,∀vs ∈ L, return FAIL; otherwise, sort L in ascending order

according to c1vs
30: Select the first d |L|

k′
e substrate nodes in L to build L′

31: Select the vs ∈ L′ with the minimum c2vs

Figure 4.5: Subroutine FSN JRTM algorithm
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4.3 Performance Evaluation

The “risk-aware” VN mapping schemes are now tested using OPNETModelerTM

for the same 24-node network with 5 pre-defined failure regions. This network is

re-drawn in Figure 4.6 to indicate the failure probability for each stressor, i.e., ~w.

In addition, some sample risk vectors are also illustrated in this diagram. Again, all

substrate nodes have 100 units of capacity and all substrate links have 10,000 units of

bandwidth. Client user VN requests are also varied between 4-7 nodes, and average

VN node degrees are set to 2.6, i.e., computed as the ratio of VN links to VN nodes.

Also, the average requested VN node capacity is uniformly distributed between 1-10

units, and the average requested VN link capacity is uniformly distributed between

50-1,000 units. As per Chapter 3, all requests have exponential holding and inter-

arrival times, with means µ and λ, respectively. Namely, a value of µ = 600 time

units is used and λ is varied per load.

Furthermore, all tests are done with 100,000 randomly-generated VN requests,

and multi-failure stressor events are randomly triggered after about 1,000 requests.

Specifically, when a multi-failure event occurs, a random stressor is chosen from the

set U according to the pre-defined occurrence probabilities, ~w = [0.2, 0.1, 0.1, 0.2,

0.4]. Next, each substrate node and link (in the failure region of this stressor) is failed

independently as per its pre-defined probability values. For comparison purposes,

the regular “non-risk” NSVIM mapping scheme is also tested in the simulations (see

Appendix A.1). Detailed results and findings are now presented.

4.3.1 Blocking Rates

Initial tests are done to measure VN request blocking rates for the various schemes

as shown in Figure 4.7. Overall, these findings show that the base NSVIM scheme

yields the lowest blocking, whereas the RMM scheme gives the highest blocking.
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Figure 4.6: 24-node substrate network with probabilistic stressors

This is expected since the NSVIM scheme is a pure “TE-only” solution which tries

to minimize VN resource usage. By constrast, the RMM scheme does not incorporate

TE concerns and chooses longer and more circuitous connection routes for the VN

links. Furthermore, the joint JRTM heuristic also achieves a very good tradeoff

between the above two alternatives. For example this scheme closely tracks the

NSVIM scheme at medium-high loads (with 1.2 times higher blocking) and notably

outperforms the RMM scheme at all loads (by almost an order of magnitude lower

blocking).
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Figure 4.7: Blocking rate

4.3.2 Net Revenue

The net revenues for the various heuristics are also plotted in Figure 4.8. These

results indicate that the NSVIM scheme yields the highest net revenue, whereas,

again the RMM scheme gives the lowest results. As expected, the JRTM solution

comes in between these two, achieving about 24% lower net revenue than the NSVIM

scheme at high loads, but 22% higher revenue than the RMM scheme. Overall, this

improved performance with NSVIM and JRTM schemes is due to the fact they are

more efficient in terms of resource utilization.

72



Chapter 4. VN Provisioning for Probabilistic Failures

Figure 4.8: Net revenue

4.3.3 Number of Failed VN

Next, the number of failed VN requests is plotted in Figure 4.9, i.e., VN requests

experiencing at least one or more VN node and/or link failure. These findings show

that NSVIM scheme gives the worst reliability of all, i.e., averaging 53% (46%) more

failures than the RMM (JRTM) scheme at high loads. More importantly, the JRTM

scheme is extremely effective and closely tracks the performance of the pure risk-

based RMM solution to within 8% of failed VN requests.

4.3.4 Failure Rate

Finally, the failure rates of the various schemes are also analyzed here. In particular,

the failure rate is defined as the ratio of total affected VN requests to all accepted
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Figure 4.9: Number of failed VN

VN requests. The corresponding results are plotted in Figure 4.10 and show that the

NSVIM scheme yields the highest failure rate, i.e., as it ignores risk minimization

concerns. By contrast, both the RMM and JRTM schemes achieve nearly the same

level of performance, i.e., 48% lower than NSVIM at low loads. This clearly shows the

benefit of incorporating risk minimization information into the VN mapping process.

Also note that the RMM scheme gives slightly higher failure rates than the JRTM

scheme at low loads, i.e., by about 16%. This increase is due to the fact that the

latter scheme gives lower blocking rates than the RMM solution. Hence when the

total number of VN failures is similar, the larger numbers of accepted VN requests

imply lower relative failure rates for the JRTM scheme. This difference is also shown

more clearly in Figure 4.11, which plots the ratio of total affected VN requests to

the total number of active VN requests during a failure event. Here the RMM

scheme gives up to 18% higher ratios than the JRTM scheme. These results show
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that jointly considering risk minimization and TE concerns achieves better failure

avoidance than only focusing on risk, i.e., as the former approach gives much lower

blocking and similar numbers of VN failures.

Figure 4.10: VN failure rate

75



Chapter 4. VN Provisioning for Probabilistic Failures

Figure 4.11: Failed VN ratio under stressors
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Chapter 5

Post-Fault VN Restoration

In general, pre-provisioned protection schemes entail higher resource consumption

since backup resources must be reserved in advance. By contrast, restoration-based

strategies only provision working resources and use post-fault recovery strategies to

restore entities after failures. Although these schemes yield longer delays, they can

provide much better resource efficiency. Furthermore, restoration-based strategies

are also more dynamic and therefore very attractive in multi-failure settings, i.e., as

it is very difficult to pre-provision protection resources for all node and link failure

combinations.

Now the only known work on post-fault VN restoration is presented in [MR01].

Namely, here the authors pre-partition link bandwidth into two groups, i.e., one for

working VN mappings and the other for backup post-failure VN mappings. How-

ever, since resources are reserved in advance, this scheme still yields relatively high

resource consumption, akin to pre-computed protection. Moreover, it only considers

single link failure events and is unable to handle wider regional stressors. In general,

these larger-scale failure events will impact many more active VN requests, as mul-

tiple substrate nodes/links may go down. Hence in order to restore these affected
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requests, two approaches can be considered. Namely, either the whole affected VN

can be migrated to working nodes/links or only its failed portion can be re-mapped.

However, due to limited substrate network resources after a failure, it may not be

possible to fully recover all failed requests. Regardless, it may still be beneficial to

restore part of an affected VN in order to provide a degraded/partial level of service.

This approach may also alleviate carrier concerns about service interruptions during

post-fault VN migration.

Along these lines, this chapter motivates more efficient post-fault restoration

strategies for survivable VN mapping under regional multi-failure events. In particu-

lar, three solutions are presented here, with the first remapping each affected VN to

a new location and the latter two only restoring the failed VN nodes/links. Consider

the details.

5.1 Network Model and Description

The overall notation and network model for VN restoration is similar to that in-

troduced in Section 3.1. Furthermore, many of the performance evaluation metrics

defined for VN protection are also applicable here. However, some further defini-

tions are also needed to address more specialized post-fault VN restoration needs.

For example, the penalty associated with service disruption is defined as:

PE(Gv) =
∑

ef∈Ef

b(ef ) ∗ P(ef ) + ψ
∑
vf∈Vf

r(vf ) ∗ P(vf ) (Eq. 5-1)

where Vf ⊆ Vv is the set of failed VN nodes, Ef ⊆ Ev is the set of failed VN links,

P(ef ) is the unit link penalty, P(vf ) is the unit node penalty, and ψ is the fraction

of node penalty. Using the above, the net revenue is also re-defined as:∑
i(REV (Gi

v)− COST (Gi
v))−

∑
j PE(Gj

v)

T
,∀Gi

v ∈ A,∀Gj
v ∈ F (Eq. 5-2)
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where REV (Gv) and COST (Gv) are defined in Eq. 3-1 and Eq. 3-2, respectively,

Gi
v is the i-th VN request, A is the set of all accepted VN requests, Gj

v is the j-

th VN request, F is the set of all failed VN requests, and T is the total run time.

Furthermore, a VN “completeness ratio” is also defined as:

ω ∗ (1− |Vf |
|Vv|

) + (1− ω) ∗ (1− |Ef |
|Ev|

) (Eq. 5-3)

where ω (1 − ω) is the fraction of node (link) completeness. Specifically, this ratio

measures the proportion of a VN mapping that cannot be recovered. Finally, the

overhead cost for restoring a failed VN request is also defined as:

χ ∗ |Vr|+ |Er| (Eq. 5-4)

where Vr is the set of VN nodes that change their locations (mappings) in the sub-

strate network after restoration, and Er is the set of VN links that alter their sub-

strate connection paths after restoration. Similarly, χ is the fraction of node restora-

tion overhead.

5.2 VN Post-fault Restoration

Some new post-fault VN restoration schemes are now proposed. Overall, these algo-

rithms use a greedy approach and either migrate the entire (affected) VN to a new

location or only restore its failed VN nodes and links. Consider the details.

5.2.1 Full Migration Restoration (FMR)

The full migration restoration (FMR) scheme re-computes a new VN mapping for

each affected VN request and is detailed in Figure 5.1. If this computation is success-

ful, the entire VN request is migrated to the new node/link locations. Otherwise the
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1: Build VN set F by grouping all affected VN requests
2: Sort VN requests in F in ascending order of the number

of affected VN nodes/links
3: for each Gv ∈ F
4: Mprev=record current node/link mapping of Gv

5: Release resources for Gv

6: Mnew=compute VN mapping for Gv

7: if SUCCESS
8: Reserve resource according to Mnew

9: else
10: Reserve resource according to Mprev

Figure 5.1: Full migration restoration (FMR) algorithm

VN request retains its original mapping, with the intact non-failed portions providing

a reduced level of user service. Now the overall algorithm starts by first identifying

and grouping all failed VN requests into a set F . These requests are then sorted

according to their number of affected VN nodes/links in ascending order. The goal

here is to restore VN requests with fewer numbers of affected VN nodes/links first.

Next, a new mapping is computed for each request in F using any regular VN map-

ping algorithm. Based upon the result of this re-computation, the VN request is

either migrated to its new mapping or left in place. Note that if the VN request

is migrated then even working (non-failed) nodes/links must be migrated, and this

may lead to increased overheads, costs, and service interruptions.

5.2.2 Partial Migration Restoration (PMR)

In general the FMR algorithm will yield higher overheads for operators. As a result,

a more efficient partial migration restoration (PMR) scheme is also proposed, see

Figure 5.2. Namely, this algorithm only restores affected VN nodes/links and does

not re-map the intact parts of an affected VN request. Again, this scheme starts

by grouping the affected VNs into a set F . Next for each affected VN request, the
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scheme identifies the subset of affected VN nodes, Vf , and VN links, Ef . A candidate

substrate node list, L, is then built for each VN node, vv ∈ Vf , (see Step 5, Figure

5.2). Now several criteria are used for selecting these nodes. Foremost, a candidate

substrate node cannot be allocated to any other VN node in the same VN request.

Also, the available node resources, R(vs), at a candidate node vs must be greater than

or equal to the requested amount, r(vv). Finally, the maximum available bandwidth

on all adjacent substrate links of the candidate node, vs, must not be less than

bmax(vv), i.e., where bmax(vv) is the maximum bandwidth requirement between vv

and the set of all VN nodes that are adjacent to vv in Vf .

Using the above, each VN node in Vf is sorted according to the number of can-

didate substrate nodes in ascending order. The goal here is to first restore VN

nodes with fewer candidate nodes, i.e., less mapping choices. Next, each VN node

is mapped to one substrate node in its candidate node list, L, based upon two cri-

teria (i.e., Steps 7-10, Figure 5.2). First, the substrate node cannot be allocated to

another VN node in the same VN request. Second, the chosen VN node must be the

one yielding the maximum product value of the sum of available bandwidth on all

adjacent substrate links multiplied by the value of available residual node resource,

i.e., Step 9, Figure 5.2. If no such substrate node can be found for a VN node, then

this VN node cannot be restored and the algorithm simply jumps to the next affected

VN node in the request, i.e., partial restoration support. Finally, after all VN nodes

mapping have been attempted, the affected VN links are recomputed if both of their

end-point VN nodes are intact and/or successfully restored (i.e., Steps 11-12, Figure

5.2). Similarly, if VN link computation fails, then the VN link is deemed as failed

and the algorithm moves to restore the next affected VN link.
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1: Build VN set F by grouping all affected VN requests
2: Sort VN requests in F in ascending order of the number of

affected VN nodes/links
3: for each Gv ∈ F
4: Find affected VN nodes set Vf ⊆ Vv and VN links set Ef ⊆ Ev

5: for each vv ∈ Vf
6: Build candidate substrate node list L for vv
7: Sort Vf according |L| of each vv ∈ Vf in ascending order
8: for each vv ∈ Vf
9: for each vs ∈ L
10: Remove it from L if it is already allocated to other VN

nodes
11: for each vs ∈ L
12: σvs = R(vs) ∗

∑
v′s

B(vs, v
′
s), where v′s ∈ adj(vs)

13: Map vv to the vs that has maximum σvs
14: for each ev ≡ (vv, v

′
v) ∈ Ef , i.e., vv and v′v are unaf-

fected/restored
15: Compute path for ev and reserve bandwidth if path com-

putation successes

Figure 5.2: Partial migration restoration (PMR) algorithm

5.2.3 Joint-Partial Migration Restoration (J-PMR)

Since the PMR scheme separately restores VN nodes and VN links, it may yield lower

resource efficiency. Hence, a joint-partial migration restoration (J-PMR) scheme is

also proposed. Namely, here the adjacent links for a restored VN node are imme-

diately re-mapped before treating the next VN node akin to similar strategies for

regular (non-survivable) VN mapping, see Section 2.1. Now the detailed J-PMR

algorithm is shown in Figure 5.3 and starts by grouping and sorting all affected VN

requests, i.e., akin to the FMR scheme. Next for each affected VN request, the algo-

rithm identifies its failed VN nodes/links and first tries to restore only those affected

VN links whose two end-point VN nodes are not affected, i.e., only intermediate hops

are failed (see Steps 5-6, Figure 5.3). Subsequently, all of the affected VN nodes are
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sorted according to their node degree in descending order, and a candidate substrate

node list, L, is generated for each, i.e., similar to the PMR scheme. Furthermore,

for each substrate node vs ∈ L, a path cost Pc is also computed for the best route

between each pair of nodes (vs, v
′
s), i.e., where v′s is allocated to a VN node that is

adjacent to vv. Now if any path route computation fails, then the associated path

cost Pc is set to infinity. From this computation, the candidate node vs with the min-

imum total path cost, τvs , is selected for mapping the affected node, vv. However, if

all the τvs values are equal to infinity for all candidate nodes, then the associated VN

node vv is considered as unrestorable, and the algorithm simply moves to the next

affected VN node, i.e., partial restoration support as well. Finally, if vv is re-mapped,

then each VN link adjacent to vv is also rerouted (see Steps 17-18, Figure 5.3).

5.3 Performance Evaluation

The post-fault VN restoration schemes are also tested in OPNETModelerTM us-

ing the earlier-defined 24-node network with 5 failure regions, shown in Figure 3.2

(Section 3.1). Again, all substrate nodes have 100 units of capacity and all sub-

strate links have 10,000 units of bandwidth. VN requests are also varied between

4-7 nodes and average VN node degrees are set to 2.6, i.e., computed as the ratio

of VN links to VN nodes. Also, the average requested VN node capacity is uni-

formly distributed between 1-10 units, and the average requested VN link capacity

is uniformly distributed between 50-1,000 units. All requests have exponential hold-

ing and inter-arrival times, with means µ and λ, respectively. Namely, a value of

µ = 600 time units is used and λ is varied per load. Furthermore, all tests are done

with 100,000 randomly-generated VN requests, and multi-failure stressor events are

randomly triggered after about 1,000 requests.

Two base VN mapping schemes are also selected here for regular VN mapping
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1: Build VN set F by grouping all affected VN requests
2: Sort VN requests in F in ascending order of the number of af-

fected VN nodes/links
3: for each Gv ∈ F
4: Find affected VN nodes set Vf ⊆ Vv and VN links set Ef ⊆ Ev

5: Find subset Ep ⊆ Ef such that ∀(vv, v′v) ∈ Ep: vv, v
′
v are not

affected
6: Compute path for ev ∈ Ep, and reserve bandwidth if path

computation is successful
7: Sort Vf according to VN node degree in descending order
8: for each vv ∈ Vf
9: Build candidate substrate node list L for vv
10: for each vs ∈ L
11: τvs = 0
12: for each v′v ∈ adj(vv)
13: if v′v is unaffected or restored
14: Pc=path cost from vs to v′s, and v′s is allocated to v′v
15: τvs = τvs + Pc

16: Map vv to the vs that has minimum τvs and τvs 6= +∞
17: for each v′v ∈ adj(vv) where v′v is unaffected or restored
18: Compute path for (vv, v

′
v) and reserve bandwidth if path

computation successes

Figure 5.3: Joint-partial migration restoration (J-PMR) algorithm

purposes, i.e., NSVIM in [HY04] and the baseline VN embedding (BVNE) scheme

in [MY01]. Now since these algorithms will likely yield varying levels of perfor-

mance, the restoration strategies are appropriately grouped according to their base

VN mapping algorithm, i.e., NSVIM or BVNE. Finally, to gauge post-fault restora-

tion against pre-computed protection, the FRGBM scheme from Section 3.3 is also

tested here. This solution has been found to be more efficient than other existing

VN protection schemes and also uses the NSVIM solution as its base VN mapping

(although it can also be coupled with other mapping schemes such as BVNE).
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5.3.1 Blocking Rates

Initial tests are done to measure VN request blocking rates, see Figure 5.4. Overall,

the findings show that all restoration schemes yield nearly identical behaviors for

the same baseline VN mapping strategy. Restoration also outperforms protection

(FRGBM scheme) by a very wide margin, e.g., 57% (48%) lower blocking at low-

medium loads if NSVIM (BVNE) is used as regular VN mapping. Clearly, this is

due to the fact that the pre-provisioned FRGBM scheme consumes higher levels of

resources.

5.3.2 Net Revenue

The net revenues are also plotted in Figure 5.5 and again show superior performance

with the post-fault restoration schemes. For example, these strategies give almost

2.2 (4.3) times more revenue than FRGBM at higher loads if NSVIM (BVNE) is

used for the regular VN mapping. Overall, these findings confirm that post-fault

restoration can yield substantially higher efficiency than pre-provisioned protection.

Furthermore, all three post-fault restoration schemes give nearly the same revenue

levels for the same baseline VN mapping strategy. This behavior is due to the fact

that the frequency (and duration) of failure events is relatively small as compared

to the overall duration of VN requests. Hence, several additional metrics are also

evaluated to provide a more detailed look at post-fault recovery performance.

5.3.3 VN Completeness Ratio

Average VN completeness ratios are plotted in Figure 5.6. These results show that

the FMR scheme gives slightly higher recovery than J-PMR, i.e., about 4% more

when using the NSVIM base VN mapping scheme. In general, this improvement is
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due to the fact that the FMR scheme migrates the entire VN and hence has more

flexibility in finding new working substrate locations. Additionally, the results also

indicate that the J-PMR scheme gives higher completeness ratios than the PMR

scheme, i.e., up to 13% (15%) more than PMR when using the NSVIM (BVNE)

base VN mapping scheme. This is expected since joint VN node/link mapping is

generally more resource efficient, leading to more successful recovery attempts.

To further study restoration performance, the ratio of fully-restored VNs is also

plotted in Figure 5.7. Here fully-restored implies that all affected VN nodes and

links are recovered. Overall, these result show that the FMR scheme gives the

highest restoration ratios, i.e., ranging from 0.65 to 0.8, due to full re-mapping.

Meanwhile the J-PMR scheme also achieves much higher restoration ratios than the

PMR scheme, i.e., up to 2.2 (1.0) times more than PMR at low loads when using

the NSVIM (BVNE) base VN mapping scheme. Clearly, the J-PMR algorithm also

benefits from joint node/link re-mapping procedures.

5.3.4 Restoration Overhead

Finally, average VN restoration overheads are plotted in Figure 5.8. Here the partial

re-mapping PMR and J-PMR schemes yield much lower overheads as compared to the

full-remapping FMR solution, i.e., up to 79% (89%) lower overheads than FMR for

J-PMR (PMR) when using the NSVIM base VN mapping scheme. This is expected

since both the J-PMR and PMR schemes only implement partial recovery of affected

VN nodes and links.
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(a)

(b)

Figure 5.4: Blocking rate: a) NSVIM b) BVNE
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(a)

(b)

Figure 5.5: Net revenue: a) NSVIM b) BVNE
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(a)

(b)

Figure 5.6: VN completeness ratio: a) NSVIM b) BVNE
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(a)

(b)

Figure 5.7: Fully-restored VN ratio: a) NSVIM b) BVNE
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(a)

(b)

Figure 5.8: Restoration overhead: a) NSVIM b) BVNE
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Chapter 6

Conclusions and Future Work

This dissertation presents a detailed study of survivability for cloud networking ser-

vices. The work starts by presenting a background overview of some related work

in Chapter 2. Subsequently, survivable VN embedding under multi-failure stressors

is modeled as a MILP problem and two novel failure region-disjoint VN mapping

heuristics are also proposed in Chapter 3. The more specialized case of VN embed-

ding under probabilistic correlated failures is then treated in Chapter 4, and two

heuristic schemes are proposed for minimizing the failure risk of a provisioned re-

quest. Finally, some alternate post-fault VN restoration strategies are developed

to provide full and partial recovery from regional failure events in Chapter 5. The

overall conclusions from these efforts are now presented along with some directions

for future research.

6.1 Conclusions

This dissertation initially looks at survivable VN design for pre-defined static failure

regions, i.e., stressors. Namely, a MILP formulation is outlined to pursue an optimal
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strategy that minimizes the total cost of substrate resource usage. However, due

to the complexity of this model, two further heuristic strategies are also proposed.

In particular, the FRGBM scheme pre-partitions failure regions into two groups

by placing geographically-closer failure regions into the same group. Regular VN

mapping schemes are then applied to map VN requests onto the substrate so as

to avoid each failure region group. Meanwhile, the DFRDM scheme dynamically

computes the first VN mapping and then prunes its traversed failure regions before

computing the second VN mapping. In addition, load balancing is also used to evenly

distribute traffic loads across the substrate. Overall, some of the key contributions

and findings from this study are as follows:

• The MILP solution is only solvable for relatively small network sizes, i.e., 10-12

nodes. However, this approach significantly outperforms all heuristic methods,

particularly in terms of blocking rates and net revenues.

• The proposed FRGBM and DFRDM heuristics give very competitive results

when compared with the only other known multi-failure protection schemes,

i.e., the SOUM and IOCM strategies in [HY04]. In particular, these schemes

yield significantly lower blocking rates and higher net revenues.

• Load balancing can significantly improve the performance of survivable VN

mapping. This approach can be coupled with any existing VN mapping heuris-

tic and almost always gives lower blocking and higher net revenues versus non-

load balancing strategies (using fixed costs/weights).

• The DFRDM scheme gives slightly better performance than the FRGBM solu-

tion when load balancing is used, i.e., since this scheme dynamically computes

two failure region-disjoint VN mappings.

In general, provisioning full protection for VN requests may lead to excessive

resource usage, especially if catastrophic failure events are relatively rare. Hence
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an alternate approach can look at modeling stressors as probabilistic events with

specific substrate node/link failure probabilities and then leveraging this information

to improve the resiliency of VN mappings. Along these lines, Chapter 4 presents two

heuristic schemes to reduce the failure risk of VN requests. In particular, the RMM

scheme only focuses on risk minimization, whereas the JRTM scheme jointly takes

into account both risk minimization and TE efficiency concerns. Overall, simulation

results indicate the following findings:

• The RMM scheme gives higher blocking rates than the base “non-risk” NSVIM

embedding scheme. This is due to the fact that the former solution largely

ignores resource efficiency concerns and chooses overly-lengthy routes for VN

link connections. However, the JRTM scheme achieves a good tradeoff between

these two alternatives, with blocking rates closer to the NSVIM scheme.

• Both the RMM and JRTM schemes yield much lower numbers of failed VN

requests as compared to the “non-risk” NSVIM scheme. This is expected as

the NSVIM scheme does not incorporate any probabilistic failure information

into the VN mapping process. Moreover, the JRTM scheme closely tracks the

RMM scheme in this metric as well, i.e., within 10%.

• The JRTM scheme gives the lowest VN failure rate among all the schemes,

even below that of the pure risk-based RMM scheme. This improvement is

due to the fact that this scheme has lower blocking rates for roughly equivalent

numbers of VN failures, i.e., lower relative failure rates. Overall, these results

confirm that jointly incorporating risk minimization and TE efficiency concerns

can yield improvements over pure risk minimization strategies.

Finally, Chapter 5 looks at post-fault VN restoration for multi-failure stressors.

Although these strategies cannot guarantee successful recovery in all cases, they

are still very attractive for multi-failure scenarios. Along these lines, three different
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restoration schemes are proposed here. Namely, the FMR scheme tries to fully recover

all affected VN requests whereas the PMR and J-PMR schemes are more flexible and

only pursue (partial) recovery of failed VN nodes and links. Overall, results show

some key findings with regards to post-fault restoration:

• Post-fault VN restoration schemes provide significant improvement over pre-

provisioned protection (FRGBM scheme). Namely, blocking rates are much

lower and net revenues are also higher. This is expected as these solutions

preclude any backup resource reservation.

• The FMR scheme achieves higher average VN completeness ratios than both

the PMR and J-PMR strategies as it re-maps the whole affected VN request

to new locations in the substrate. In general, this provides more recovery

flexibility.

• The PMR and J-PMR schemes give lower restoration overheads than the FMR

approach, i.e., measured in terms of VN node migrations. The reason here is

that these strategies only recover the failed portion of a VN request and restore

it in a best effort manner. The remaining unaffected parts (mappings) of a VN

request are not altered.

• The J-PMR scheme outperforms the simpler PMR solution in terms of VN

completeness ratios. This is expected since joint mapping of VN nodes and

links is generally more resource efficient than separate two-stage mapping.

6.2 Future Work

This dissertation studies some important problems in the area of survivable cloud

networking services. Overall, the findings and conclusions from this effort open up
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promising new avenues for future research, some of which are now highlighted. First

of all, one can consider further improvements to the heuristic strategies to try to

close the performance gap with the MILP solution (Chapter 3). A key objective

here can be to minimize backup resource usages. Some other possible strategies can

also include relaxation techniques to solve the MILP for larger networks, improved

resource sharing, and incremental backup provisioning.

Furthermore, as cloud services continue to expand, multi-domain VN provision-

ing and survivability concerns will also arise. Overall, this is an open problem area

which needs further attention. Clearly, related designs will have to develop dis-

tributed/decentralized VN provisioning schemes, as it will not be possible to have

complete “global” network visibility, i.e., due to carrier privacy and scalability con-

cerns. Hence related efforts can study VN provisioning using abstract hierarchical

routing state information.

Finally, the proposed VN survivability schemes can also be tested in real-world

network testbed settings. The key goal here can be to identify any practical imple-

mentation bottlenecks and also validate performance in realistic environments. Of

particular interest here would be to ascertain the best match between VN recovery

methodologies and higher-layer cloud service types, e.g., IaaS, PaaS, SaaS, etc.
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Appendix A

VN Mapping Heuristics

As noted in Chapter 3, the proposed FRGBM and DFRDM schemes can leverage

any existing VN mapping heuristic. As a result, the recent NSVIM scheme is chosen

and adopted here for the purposes of this thesis study, i.e., as it has been shown to

outperform some other well-known solutions such as R-ViNE [NC01]. This algorithm

is now detailed along with a further variation to perform substrate connectivity

checks.

A.1 Non-Survivable Virtual Infrastructure Map-

ping

The non-survivable virtual infrastructure mapping (NSVIM) scheme [HY04], [GS02]

basically maps a VN request over a substrate network without regard to failures. This

algorithm uses a single-stage approach to jointly map each VN node to a substrate

node along with a subset of its attached VN links (substrate connection paths). This

overall scheme is summarized in Figure A.1 and tries to minimize the total mapping
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1: Set MVN = ∅, ASN = ∅, UMVN = Vv, UASN = Vs
2: Sort VN nodes in UMVN according to their node degree
3: Choose vv with highest degree
4: Find candidate substrate node list L in UASN accord-

ing to node resource and bandwidth restrictions. If
L == ∅, return FAIL

5: Assign vv to vs in L with min. cost computed by Eq.
A1-1

6: Reserve r(vv) node resource on substrate node vs
7: For every VN link between vv and v′v ∈ M -adj(vv),

compute minimum-cost path P, where each link in P
has available bandwidth greater than or equal to the
requested b((vv, v

′
v)). If no such path is found, return

FAIL, else reserve bandwidth along P
8: Move vv from UMVN to MVN and vs from UASN to

ASN
9: If UMVN = ∅, return SUCCESS. Otherwise, go to

Step 2

Figure A.1: Non-survivable virtual infrastructure mapping (NSVIM) algorithm

cost. Consider the details here (using the same notation as in Section 3.1).

The NSVIM algorithm works by using two sets to track the mapped and un-

mapped VN nodes, i.e., MVN and UMVN, respectively. Two additional sets are also

defined to track the allocated and unallocated substrate nodes, i.e., ASN and UASN,

respectively. The scheme starts by initializing both MVN and ASN to empty and

setting UMVN = Vv and UASN = Vs. Now in order to map a VN node from the

unmapped set, i.e., vv ∈ UMVN, a candidate substrate node list, L, is first built by

selecting substrate nodes vs from UASN based upon two criteria. First, the available

nodal resources, R(vs), at a candidate node vs must be greater than or equal to the

requested resources at the VN node, r(vv). Next, to ensure a feasible mapping, the

maximum available bandwidth on all adjacent substrate links of vs must not be less

than bmax(vv), i.e., where bmax(vv) is the maximum bandwidth requirement between
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vv and the set of all VN nodes that are adjacent to vv in Gv. The latter set is denoted

here as adj(vv), see Step 4, Figure A.1. Hence after L is constructed, the substrate

node with minimum cost is selected as follows:

C(< vv, vs >) = C(vs) + AC(vs) + UAC(vs) (Eq. A1-1)

where C(vs) is the cost of nodal resources used in substrate node vs and AC(vs) is

the communication cost from vs to a subset of substrate nodes in ASN, i.e., which are

allocated for VN nodes belonging to the set M -adj(vv) = adj(vv) ∩MVN . Detailed

computations of the various terms in Eq. A1-1 are now presented as well.

First of all, the nodal resource cost for a VN node vs, C(vs), is set to C(vs)r(vv)

for a mapping < vv, vs >. Meanwhile, to compute AC(vs), the set of substrate nodes

allocated to M -adj(vv) is defined in the set SCMA. Minimum-cost paths are then

computed for each node pair (vs, v
′
s ∈ SCMA) by using a shortest-path algorithm

with link weights set to link costs, i.e., C(es) = C(es)b(ev). The shortest path

cost is then assigned as the sum of all link weights along the path. Hence, a total

of |M -adj(vv)| paths are computed and AC(vs) is determined as the total sum of

costs over all |M -adj(vv)| minimum-cost paths. Finally, UAC(vs) is defined as the

estimated communication cost from vs to a subset of the substrate nodes in UASN,

which may be allocated to VN nodes in the set UM -adj(vv) = adj(vv) ∩ UMVN .

In particular, this value is computed as follows. First, for every VN link (vv, v
′
v ∈

UM -adj(vv)), a related minimum-cost path is computed from vs to as many nodes

v′s ∈ UASN as possible. The average cost over these paths is then used as the

estimated cost to map the VN link (vv, v
′
v). If no such path can be found, the cost

is set to infinity and vs is not deemed a feasible mapping. Using this, the UAC(vs)

term is computed as the sum of the average costs for all VN links between vv and

v′v ∈ UM -adj(vv). Overall this term provides a “lookahead” capability and prevents

premature mappings to low cost substrate nodes or links, i.e., since NSVIM is a

greedy scheme and prior mapping choices may result in higher overall cost.
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A.2 Connectivity-Aware NSVIM

The connectivity-aware NSVIM (C-NSVIM) is a slightly-modified variant of above

NSVIM scheme. Overall, the key difference here is an added constraint for computing

the node list, L, i.e., see Step 4, Figure A.1. Specifically, the maximum connectivity

of a candidate node is also checked in addition to existing checks for node resources

and adjacent link bandwidth constraints. This provision essentially tries to avoid

mapping VN nodes to areas isolated by pruned failure regions. Hence if the maximum

connectivity of a substrate node is less than the number of VN nodes in the VN

request, this substrate node will not be considered as a valid candidate node to map

this VN node vv.
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Risk Values for RMM Scheme

As per the failure model assumptions in Section 4.1, the risk of a substrate node

(link) is related to the dot product of its risk vector ~pvs (~pes) and the failure region

probability vector ~w. Hence appropriate risk values are defined for nodes and links

as ξvs = ~pvs · ~w and ξes = ~pes · ~w. However, carefully note that the total risk of an

end-to-end path is not linear with respect to the above risk values on its traversed

nodes and links. As a result, regular shortest-path algorithms cannot be used to

compute a minimum risk path by simply assigning node and link weights as ξvs and

ξes , respectively. To address this concern, modified risk-based node and link weights

need to be defined. A requisite solution is now presented along with a proof to show

that these modified weights also minimize the path risk.

First, consider a survival rate definition for a substrate node and link, i.e., ξ̄vs

and ξ̄es , respectively. Namely, these values represent the probability that the given

node or link is not affected by a stressor event, i.e., ξ̄vs =
∑|U |

i=1wui(1− pui

vs) for node

vs and ξ̄es =
∑|U |

i=1wui(1 − pu
i

es) for link es. Now using these definitions, it can be

formally shown that ξ̄vs = 1− ξvs as follows:
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Proof.

ξ̄vs =

|U |∑
i=1

wui(1− pui

vs)

=

|U |∑
i=1

wui −
|U |∑
i=1

wuipu
i

vs

= 1−
|U |∑
i=1

wuipu
i

vs

= 1− ~pvs · ~w

= 1− ξvs

Similarly, it can be shown that ξ̄es = 1− ξes . Now using the above notation, the

failure risk for a path P can be re-written as 1 −
∏

vs∈P ξ̄vs
∏

es∈P ξ̄es . Hence, the

objective for risk minimization along a path connecting two substrate nodes, s and

d, is given as:

min
P∈SP

1−
∏
vs∈P

ξ̄vs
∏
es∈P

ξ̄es (Eq. B-1)

where SP is the set of paths that connects substrate node s and d.

Now further consider modified node and link risk values, i.e., rvs and res , as

defined in Eq. 4-3 and Eq. 4-4, re-presented here as:

rvs = log
1

1− ξvs
(Eq. B-2)

evs = log
1

1− ξes
(Eq. B-3)

Based upon the above definitions, it can be shown that the objective function in Eq.

B-1 can be re-written as follows.
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min
P∈SP

∑
vs∈P

rvs +
∑
es∈P

res (Eq. B-4)

This is formally proved next.

Proof.

min 1−
∏
vs∈P

ξ̄vs
∏
es∈P

ξ̄es ⇐⇒ max
∏
vs∈P

ξ̄vs
∏
es∈P

ξ̄es

⇐⇒ max
∑
vs∈P

logξ̄vs +
∑
es∈P

logξ̄es

⇐⇒ min−
∑
vs∈P

logξ̄vs −
∑
es∈P

logξ̄es

⇐⇒ min
∑
vs∈P

logξ̄(vs − 1) +
∑
es∈P

logξ̄(es − 1)

⇐⇒ min
∑
vs∈P

log
1

ξ̄vs
+

∑
es∈P

log
1

ξ̄es

⇐⇒ min
∑
vs∈P

log
1

1− ξvs
+

∑
es∈P

log
1

1− ξes

⇐⇒ min
∑
vs∈P

rvs +
∑
es∈P

res

Hence based upon Eq. B-4, the risk of path P can be represented as the sum of the

modified risk values of each substrate node and link along this path. Hence, regular

shortest-path algorithms can be used to compute the minimum risk path for VN

links. Carefully note that since ξvs ∈ [0, 1], the range of rvs and res is also [0,+∞].

Finally, it also can be shown that a substrate node with the minimum modified risk

value, rvs , is equivalent to having the minimum original risk value ξvs , as follows.
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Proof.

min rvs ⇐⇒ min log
1

1− ξvs
⇐⇒ min

1

1− ξvs
⇐⇒ max 1− ξvs

⇐⇒ min ξvs

Hence, this modified risk value, rvs , can also be used to minimize the risk for VN

node mapping.
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