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Chapter 1

Introduction

A map is a visual representation of a geographic region, depicting a number of elements
and features of the region. Elements may be geographic in nature—roads, rivers, build-
ings, et cetera—or indicate intangible information, related for example to social, eco-
nomic or political aspects of the region. Maps are a common and intuitive way to com-
municate or analyze information in its geographic context. A schematic map depicts
elements in an abstract, stylized and organized form. The purpose is to support the main
information that the map has to convey. This style of visualizing geographic information
typically requires a distortion of geographic reality: geographic accuracy of the map is
relinquished in favor of its clarity. The organization and simple shapes in a schematic
map reduce its visual complexity. This reduces the cognitive load of an observer: it is
then much easier to mentally process the information in the map. As a result, the main
information is immediately clear.

Schematic maps come in a variety of types and styles. A familiar type is a transit map
such as the London Underground map or the Dutch railways map (see Figure 1.1(a)). A
transit map is designed to convey connectivity information such that a traveler can easily
find his or her way from one station to another. Exact geographic routes of the tracks
are then mostly irrelevant as are other geographic elements such as roads and buildings.
To support travelers in planning their route, it is often useful to visualize some minimal
geographic context (like the country borders in the Dutch railways map). This helps the
user locate stations and may provide a visual clue of which network is displayed.

Another example of a schematic map is given in Figure 1.1(b). It is a distorted view
of the United Kingdom in which every constituency is represented by a simple hexagon.
This ensures that the (constant) size of a constituency in the map corresponds to a rep-
resentation of the seats in the British Parliament. As a result, it is much easier to assess
the depicted change in voting behavior. If this map would simply color geographically
accurate regions, then large regions would be more visually dominant than small regions.

The importance of maps. It is often said that 80% of all data has a geographic com-
ponent (though the veracity of this claim is difficult to establish [96]). Maps are a great
tool to make overwhelming amounts of data accessible. In general, maps assist analyz-
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(a) (b)

Figure 1.1 (a) The Dutch railways map [www.trein-kaart.nl, accessed
November 2013]. (b) A schematic map showing change in
voting behavior per constituency in the UK general election
of 2010 [www.viewsoftheworld.net/?p=736, accessed
April 2014].

(a) (b)

Figure 1.2 (a) Map showing safety norms for flood risk throughout the Nether-
lands [www.pbl.nl/nl/node/56494, accessed July 2014].
(b) Map showing estimated water shortage and pollution issues
in 2020 [http://ftrctlb.com/node/169, accessed May
2014].
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ing, communicating and discussing about information in a spatial setting. They are used
for example in navigation, spatial planning, risk assessment and disaster management.
Maps support rhetoric arguments as well as decision-making and opinion-building pro-
cesses. By presenting information in an accessible visual way, maps eliminate the need
for a person to crunch numbers. This takes advantage of the human natural capabilities of
processing visual information. A map illustrating flood risks (Figure 1.2(a)) or expected
water problems (Figure 1.2(b)) is much more striking, easier to interpret and more mem-
orable than a long list of place names and numbers. When geographic accuracy is not a
primary concern, schematic maps are desired to emphasize the essential information.

Maps that visualize information in a structural and organized way are not a modern
invention. Various old schematic maps can be found that do not focus on spatial accu-
racy, but rather on high-level structures and information. The Tabula Peutingeriana (Fig-
ure 1.3(a)) depicts the road network of the Roman Empire spanning from modern Spain
to India. This is a very elongated map with clear geographic distortion. The road network
itself also has a schematic appearance, using only few lines to connect the various cities.

Figure 1.3(b) shows an example of a mappa mundi, a medieval world map. These me-
dieval maps are not designed for navigation, but rather focus on the high-level structural
organization of the continents, typically centered on Jerusalem. This example places Asia
at the top, Europe in the bottom left, and Africa in the bottom right corner. The continents
are visualized as two quartercircles (Europe and Africa) and one semicircle (Asia). A
T-shape is used to represent the main bodies of water that separate the continents.

Making schematic maps. Cartographic schematization is the process involved in cre-
ating schematic maps from detailed information. Traditionally, this is done manually by
cartographers. It involves selecting and prioritizing the important information as well
as visualizing it in a suitable way. Hence, the design of a map is a laborious and time-

(a) (b)

Figure 1.3 Old schematic maps. (a) Part of the Tabula Peutingeriana, dated
around the fifth century. This part shows the southern part of mod-
ern Italy and Sicily. (b) A highly schematic world map in Etymolo-
giae as printed by Günther Zainer in 1492.
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consuming process. With the advent of computers and digitized data collection, new op-
portunities emerged to produce maps using computers. It in fact enables a highly flexible
scenario in which computers produce personalized maps on demand using the digitally
available information. Especially in time-critical situations (such as disaster manage-
ment), it is desirable to obtain a suitable up-to-date map with a simple click of a button.
But even in situations without strict time constraints, computers can assist in making
maps: they are typically far more efficient than humans in processing large amounts of
data. Moreover, in changing from paper maps to digital maps, new possibilities emerged
to interact with maps. Combining computer science and cartography, automated cartog-
raphy is a research field in which automated methods to produce maps are studied.

To compute a schematic map, we need methods that allow computers to perform car-
tographic schematization. That is, we need automated ways to transform detailed data
into a schematic representation. However, this leaves some loose ends. Users do not have
the expertise or time to find their own data sources nor may they be aware of the most
effective way to visualize the information. Instead, a user expresses the need for a map on
a certain topic. Based on a simple query, the system should deduce the map type, required
data, level of detail, et cetera. This derived information can then be used by the schema-
tization process to compute schematic representations. Finally, these representations are
assembled into a map and presented to the user in a suitable way.

In many cases, systems are not targeted at solving all possible map needs. Rather,
they aim to support users in specific areas, such as route maps, mapping geopolitical in-
formation or transit maps. The user need may then be more straightforward and data may
already be available. In such cases, the addition of automated schematization methods are
likely sufficient to compute schematic maps without human intervention.

In this thesis we investigate automated cartographic schematization, the key compo-
nent for computing schematic maps. That is, we want to find the answer to the following
question: how can a computer transform geographic data into a suitable schematic rep-
resentation? The answer depends on the characteristics of a good schematic map. We
identify four common properties.

(i) Schematic maps have a low visual complexity. Only the necessary information is
shown and this is represented using only a few geometric shapes.

(ii) Simple geometric shapes are used to convey the schematic nature of the map.
(iii) Geographic relations, such as adjacent countries and relative directions between

places, are maintained as well as possible.
(iv) Used geometric shapes resemble the actual geographic shapes that they represent.

The first two properties ensure that a map has a schematic “look and feel”. They relate
to a low cognitive load and a map that visually conveys its schematic nature. The third
and fourth criterion relate to the recognizability of a schematic map. The mental map
(or cognitive map) is the recollection of a person about geographic entities and relations
between these entities [168]. It is easier for a user to recognize a schematic map when it
has a strong correlation to the user’s mental map. A mental map is often distorted [167];
in fact, it has recently been conjectured that a mental map more resembles a schematic
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map [173]. However, changes in the relations between regions may greatly interfere with
this correspondence and thus should be avoided. Geographic relations alone may not be
sufficient to obtain a recognizable map. Hence, the fourth property makes this explicit
and states that a schematic map should not only correspond to a mental map but also to
geographic reality.

Some properties are in conflict: a trade-off must be made between how important
certain properties are. For example, reducing the number of geometric elements improves
upon the visual complexity (i) but reduces the resemblance (iv). Depending on the nature
of a specific schematic map, some properties are considered more important than others.

In this thesis we study algorithms to automatically compute a schematic map based
on geographic data. To design and evaluate algorithms, we need a way of formalizing the
properties mentioned above. Especially the fourth property (resemblance) poses interest-
ing challenges. To formalize this, we use similarity measures that quantify resemblance
between shapes. In Section 1.1 we analyze cartographic schematization more thoroughly
and briefly discuss the wider field of automated cartography. General concepts of similar-
ity measures and algorithms are discussed in Section 1.2 and Section 1.3 respectively.

1.1 Cartographic schematization
The abstract depiction in a schematic map emphasizes important structures over the finer
details that make up reality. The essential information is clarified by removing unneces-
sary details. Such details could otherwise cause clutter and distract from or even obscure
the main information. The information that is shown is visualized in a structured, stylistic
way to reduce the cognitive load. This assists the observer in seeing the primary informa-
tion that the schematic map intends to convey. Due to their structural stylized appearance,
schematic maps are also referred to as diagrams or diagrammatic maps. In fact, the dis-
tortion in schematic maps may be reason for some to consider schematic maps not as
actual “maps” [82]. Many definitions of the word “map” have been used throughout his-
tory [12]1. The International Cartographic Association’s current definition of a map [111]
includes all visual representations in which “spatial relations are of primary relevance”;
this is most certainly the case for schematic maps.

Because a schematic map has an organized and stylistic appearance, it is immediately
clear that the map in question is not a geographically accurate map. This makes schematic
maps very suitable to convey high-level structures and summarized, spatially inaccurate
or uncertain information. For example, schematic maps are suitable to convey the results
of analysis or simulation: e.g. Wolf and Flather [178] use schematized maps to illustrate
their results of modeling and analyzing the North Sea storm of 1953 (see Figure 1.4).

Suppose that inaccurate information is visualized in the context of an unschematized
map that is (or appears) geographically accurate. The displayed information—which is
less accurate than the detailed map—can then be unjustly interpreted as equally accurate.
This is referred to as an illusion of accuracy [118, 128, 179]. In general, an illusion of ac-
curacy may occur when various types of information are represented with different spatial

1See also www.maphist.nl/discpapers.html, accessed April 2014.
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Figure 1.4 Two examples of the schematic maps that illustrate results of mod-
eling and analysis by Wolf and Flather [178].

precision or accuracy in a single map. Schematic maps avoid this illusion by using very
simple and stylistic geometric shapes to visually convey that the map is not geographi-
cally accurate. An example of this illusion may occur with a metro map. Stations are
purposefully displaced to emphasize connections and to make room for placing the sta-
tion names. If the map appears too accurate—due to the addition of, e.g., detailed rivers,
shorelines or roads—, a traveler may decide to walk from one station to another, whereas
they are actually too far apart.

1.1.1 Characterization
We identified four common properties of schematic maps. To facilitate the design of algo-
rithms that produce good schematic maps, we require a formalization of these properties.
The formalization depends on the nature of the schematic map. For the purpose of this
thesis, we use a basic characterization of schematic maps. It is based on two characteris-
tics: the type of geographic object and the geometric style.

Type of object. For the first characteristic, the type of object, we distinguish between
networks and regions. Networks can, for example, consist of roads, railways or rivers. A
network is fully defined by its linear features; areas enclosed by these features carry no
inherent value. Transit maps are an example of maps that show schematic networks.

Regions, on the other hand, correspond to geographic elements that span an area. Re-
gions can effectively be described via their boundaries, but the semantics of these bound-
aries are different from networks. The geographic element is the area enclosed by the
boundaries; the boundary itself has no other meaning than separating two regions. Exam-
ples are administrative regions, such as countries, provinces and states. We refer to the
boundaries of such administrative regions as territorial outlines. These elements are used
in many types of schematic maps to provide geographic context, to indicate regions of
interest or to display certain properties of a region.

Geometric style. The second characteristic of a schematic map is its geometric style. Ex-
amples of these styles are given in Figure 1.5. Following the success of Beck’s map of the
London Underground [87], octilinear designs have been popular for transit maps all over
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(a) (b) (c) (d) (e)

Figure 1.5 Geometric styles illustrated on Drenthe, a province of the Nether-
lands (a). (b) C-oriented schematization, result of Chapter 7.
(c) Parallelism, using the method by Reimer and Meulemans [150].
(d) Unrestricted schematization, result of Chapter 7. (e) Curved
schematization, using the method by Van Goethem et al. [92].

the world [137]. In such designs, all lines are either horizontal, vertical or diagonal (45
degrees). More generally, a schematic map may restrict its lines to adhere to a certain dis-
crete set C of orientations; we refer to this as C-oriented schematization. Other frequently
used orientation sets are rectilinear (horizontal and vertical lines only) and hexilinear (an-
gles are multiples of 60 degrees). Research into the automated construction of C-oriented
schematic maps has mostly focused on networks (e.g. [47, 126, 133]).

Another geometric style is parallelism [150]. Lines should be drawn parallel to one
another whenever possible. This implies that a low number of orientations should be used,
but no prescribed orientations are enforced. Therefore, parallelism can be seen as a more
flexible variant of C-oriented maps.

Sometimes, no specific line orientations are enforced nor are relative orientations con-
sidered. This results in unrestricted schematization. This effectively equates schematiza-
tion to simplification (a reduction in detail) with a low target complexity. Results of such
approaches (e.g. [56, 78]) sometimes lack a “schematic look” that arises from applying a
stronger geometric style.

Smooth curves are frequently used to represent elements in manually drawn schematic
maps [149, 151]. This exploits the high expressive power of curves: often only a few
curves are needed to accurately represent a shape. Research into automated methods for
curved schematization has recently been initiated [79, 91, 92]. Curved schematization can
be refined depending on the type of curves (e.g. Bézier curves or circular arcs).

One geometric style is not necessarily better than another. Rather, it is a design de-
cision: the intent of the map may play a large role in selecting the best geometric style.
Moreover, some styles fit more naturally to a certain geographic object than others.

Other characteristics. Schematic maps may be characterized through a number of
other properties, resulting in a (possibly more fine-grained) classification of subtypes
in schematic maps. For example, Reimer [149] distinguishes eight types of schematic
maps, depending on origin and intent: (topological) schematic maps; chorematic dia-
grams; geodesign maps; geopolitical maps; propaganda maps; mass media maps and
map-like infographics; (drawings of) mental maps; and schematic maps in education. All
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Burma

Thailand

Cambodia

Vietnam

Laos

(a) (b)

Figure 1.6 (a) Part of a chorematic diagram depicting the economic influ-
ence of Thailand on its neighboring countries. From translation by
Reimer [149, Figure 13]; original map by Bruneau and Marcotte
[31]. (b) A schematic geodesign map depicting agglomerative and
influential regions in and around Germany. The region boundaries
are stylized: many lines are either horizontal, vertical, or 45-degree
diagonal. Modified to emphasize region boundaries from original
map in Raumordnungspolitischer Orientierungsrahmen 1993.

of these schematic maps have in common that minimalistic representations are used to
convey a message as clearly as possible without emphasizing on geographic accuracy.
We provide a brief description of the first three.

In Reimer’s classification a schematic map visualizes (typically linear) elements with
a focus on topological aspects. In these maps, geographic relations are distorted for
greater clarity. In the characterization we introduced above, this mostly refers to schematic
networks but also allows for an inclusion of schematic region boundaries. We provided an
example of such a map—which indeed combines a schematic network with a schematic
region boundary—in Figure 1.1(a).

A chorematic diagram summarizes the results of an analysis of processes (typically
geographic, social, economic or political) in their geographic context. Hence, schemati-
zation is often used in these diagrams to visually convey the summarizing nature of the
map. An example of a chorematic diagram is given in Figure 1.6(a).

Geodesign maps are similar to chorematic diagrams: many techniques employed for
geodesign maps correspond to those for chorematic diagrams. However, they differ in
their intent. Rather than displaying the results of analysis (“what is observed”), they
visualize strategic political scenarios and high-level spatial design and planning (“what is
desired”). Again, the nature of the information warrants the use of a schematic map style.
An example of a schematic geodesign map is given in Figure 1.6(b).
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1.1.2 C-oriented schematization of territorial outlines
In this thesis we focus on C-oriented schematization of territorial outlines. We need to
know what defines such a schematic map and how we can assess its quality, in order
to formulate algorithmic problems and design algorithms. Therefore, we formulate the
four beforementioned general properties as four criteria for C-oriented schematization of
territorial outlines.

(1) Schematic outlines should use few line segments.
(2) All line segments should be oriented according to C.
(3) The geographic relations between regions of the schematic outlines are equivalent to

those of the geographic regions (correct topology).
(4) Schematic outlines resemble the corresponding geographic outlines.

The combination of a low number of lines and the restricted line orientations results
in a schematic outline. Individually though, these restrictions are not always sufficient.
As illustrated in Figure 1.7(a), a map with many C-oriented lines is still visually complex
and does not appear schematized. Although the choice for C-oriented lines is a design
decision (see Section 1.1.1), it is a strong visual cue that the map is schematic in nature,
in contrast to using unrestricted geometry. Figure 1.7(b) illustrates this by showing an
outline consisting of only few line segments: despite its low visual complexity, it lacks a
stylistic restriction of geometry and has the risk of being misinterpreted as a simple but
accurate representation. The combination ensures a low visual complexity and avoids a
potential illusion of accuracy.

The third criterion requires us to maintain relations between geographic regions. This
is referred to as correct topology. Incorrect topology interferes with an observer’s mental
map, assuming that the mental map contains correct geographic relations. A simple ex-
ample of a topology violation is a change in which regions share borders, as illustrated in
Figure 1.8. As mentioned before, only maintaining topology is typically not sufficient for
a recognizable map. Hence, the fourth criterion states that there must be some degree of
resemblance between geographic reality and the schematic map.

(a) (b)

Figure 1.7 Restricted geometry or a low complexity alone may not suffice for
schematization. (a) Due to its high complexity, this C-oriented (oc-
tilinear) shape lacks a schematized appearance. (b) Due to its un-
restricted linear geometry, this shape may be mistaken for a low-
detail but accurate map.
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(a) (b) (c)

Figure 1.8 (a) Geographic outlines of four provinces in the Netherlands. (b) A
schematic map with equivalent topology. (c) A change in topology:
Overijssel (purple) and Groningen (green) should not be adjacent.

The first three criteria can be formalized comparatively easily (see Chapter 2). The
last criterion, however, is less straightforward. A similarity measure quantifies the resem-
blance between shapes. However, many different measures exist. To automate C-oriented
schematization for territorial outlines, we need to develop algorithms that take the above
criteria into account. These two aspects of automated schematization form the central
focus of this thesis: similarity measures and algorithms for cartographic schematization.
They are research topics in their own right; we briefly discuss the corresponding general
concepts in Section 1.2 and Section 1.3. However, we first discuss some aspects of the
field of automated cartography which encompasses automated schematization.

1.1.3 Automated cartography
Research in automated cartography studies automated methods for making maps. It en-
compasses all aspects related to map production, for a wide range of map types. In
addition to schematic maps, this includes other types of maps such as topographic and
thematic maps. A topographic map displays detailed geographic elements such as roads,
rivers and buildings. The intent of such a map is to be usable for a wide array of possibly
unknown tasks. In contrast, a thematic map is designed for a single purpose and focuses
on one theme, one specific type of information.

Geographic information systems [107] store and process geographic data. These sys-
tems emerged more or less simultaneously with automated cartography. Not surprisingly,
automated cartography is closely related to—and often considered a subfield of—the un-
derlying scientific field, geographic information science. The methods developed for
automated cartography may use these systems to retrieve detailed geographic data and
transform them into a map.

Automated cartography poses many interesting algorithmic challenges. One such
problem is the placement of textual labels in maps. This labeling problem can be formal-
ized in a variety of ways; not surprisingly, it has received significant attention in both au-
tomated cartography and algorithmic research (e.g. [49, 58, 65, 81, 108, 115, 174, 183]).
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Thematic maps often require specialized techniques and algorithms depending on the
type of thematic information (see e.g. the work of Verbeek [170] for several examples).
In addition to schematization, the problems of simplification and generalization are par-
ticularly relevant in the context of this thesis. Simplification refers to a reduction of detail.
Generalization is concerned with producing scale-appropriate representations for detailed
(e.g. topographic) maps.

Schematization, simplification and generalization. We introduced two concepts, sim-
plification and generalization, that are very similar to the concept of schematization. Be-
low, we briefly relate them to each other, highlight the differences and provide some more
details for generalization and simplification.

Simplification is a means to an end: the reduction of detail. By itself, simplification
does not produce a map as it lacks a design aspect. It can be used to achieve results with
very high or very low detail, depending on the parametrization. It is, however, an essential
part of both generalization and schematization.

Generalization and schematization are inherently different in their purpose and thus in
their quality criteria. Due to the nature of topographic maps, generalization seeks to max-
imize the amount of detail, but is constrained by legibility of the map. It never uses strong
stylization as this results in unwarranted distortion. For generalization, simplification is
often parameterized by some maximal error that is derived from the intended scale.

Schematization on the other hand aims to remove any unnecessary details, retaining
only those features that support the purpose of the map. In some ways it seeks to minimize
the complexity of the map, but is constrained to maintain a functional level of detail.
In contrast to generalization, schematic maps usually have some degree of distortion or
stylization to support the map’s intent. For schematization, simplification is typically
parameterized by some low maximal complexity; the resemblance with the original map
is optimized.

Generalization. An important problem in automated cartography is generalization. This
is the process of deriving scale-appropriate maps from detailed geographic data.2 It may
refer to the manual process as performed by cartographers or to the automated process;
in the context of this thesis, however, we shall use it to refer to the automated process. A
representation is scale-appropriate if it provides as much details as possible, without mak-
ing the details unreadable. Generalization involves a variety of different generalization
operators [147] which describe a spatial transformation on the data. The purpose of these
operators is to transform overly detailed geographic information into a scale-appropriate
representation from a given map scale. Simplification is one of the important generaliza-
tion operators. Figure 1.9 illustrates generalization by showing maps at different scales.
At the highest scale (a), many details such as building outlines and pedestrian paths are
shown. At a medium scale (b), small details such as exact building outlines have been
eliminated. At a small scale (c), most details of the city have been removed, showing only
major roads and an indication of land use.

2Most literature on map generalization is restricted to maps at a given scale. For the purpose of this thesis,
we consider generalization only in this context. However, a broader definition may be posed that includes the
construction of other maps.
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(a) (b) (c)

Figure 1.9 A topographic map at three different scales. Generalization makes
the map appropriate for the given scale. Images of OpenStreetMap
[www.openstreetmap.org, accessed April 2014].

Simplification. Reduction of detail is an important part of the schematization process
and the generalization process. This is referred to as simplification. Simplification forms
a central problem in automated cartography and has been studied extensively. The pur-
pose of simplification is to reduce the number of points used to represent a geographic
element, given as a sequence of points (vertices). Hence, the output of simplification is a
shorter sequence of vertices that represents the geographic element. Simplification should
maintain high similarity, though some precision is unavoidably lost in the process.

We distinguish two variants: vertex-restricted and nonvertex-restricted simplification
(see Figure 1.10). For the former, we require that the resulting sequence uses only ver-
tices that are also present in the original sequence. For the latter, the simplified sequence
may use “new” points which are not present in the original sequence. As it has more free-
dom in placing the vertices, nonvertex-restricted simplification is more powerful than the
vertex-restricted variant. However, it also poses more algorithmic challenges. The most
well-known methods for simplification are Visvalingham-Whyatt [172], Imai-Iri [109]
and Douglas-Peucker [69]; each of these is a vertex-restricted method. The simplifica-
tion that occurs during C-oriented schematization is—almost by necessity—nonvertex-
restricted: a C-oriented outline using the input vertices need not exist.

(a) (b) (c)

Figure 1.10 (a) Original shape with 32 points. (b) Vertex-restricted simplifica-
tion with 6 vertices, computed using the Visvalingam-Whyatt algo-
rithm [172]. (c) Nonvertex-restricted simplification with 6 vertices,
computed using the algorithm of Chapter 7.
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1.2 Similarity measures
To assess the quality of a schematic map, we need a way to quantify the resemblance
of shapes. In fact, measuring resemblance between shapes is a fundamental problem
that arises in many applications such as handwriting recognition and trajectory analysis.
Regardless of the application, there is one central question: what does it mean for two
shapes to be similar? The answer, however, depends on the intended application, that is,
the kind of shapes that are being compared.

A similarity measure is a mathematical way to formally quantify resemblance. A
large variety of such measures exists; each has different properties, advantages and disad-
vantages. Here we briefly discuss two examples of similarity measures and some general
concepts; a detailed comparison in the context of C-oriented schematization is given in
Chapter 3.

A prominent measure in the mathematical literature is the Hausdorff distance [104].
Informally, this measure is defined as follows. Suppose we find for every point on one
shape the closest point on the other and vice versa. If we measure the distance between
each point and its nearest other point, the Hausdorff distance is the maximum measured
distance (see Figure 1.11(a)). The higher the Hausdorff distance, the lower the similarity.
In the context of curves (such as territorial outlines), this measure is often unsatisfactory
as it fails to take the continuity of shapes into account; this is illustrated in Figure 1.11(b).

The Fréchet distance [83] is conceptually similar to the Hausdorff distance, but it is
more suitable for curves and other continuous shapes such as surfaces. It pairs each point
on one curve with a nearby point on the other to obtain a “matching”. The Fréchet distance
is the maximal distance between the pairs in the best matching. However, it also requires
that this matching respects the order of the points along the curve: suppose that a point on
one curve—let’s call this point p—is matched to a point q on the other curve. All points
before p on the first shape must be matched to points before q on the other and vice versa.
By imposing this “order constraint”, the Fréchet distance accounts for the continuity of the
curve: it treats them as actual curves rather than as an arbitrary set of points. In particular,
this requires the first and last points along the curves to be matched. The Fréchet distance
in the example of Figure 1.11(c) is much greater than the Hausdorff distance. Despite the

(a) (b) (c)

Figure 1.11 (a) Hausdorff distance between two sets of points, red and blue,
corresponds to the longest green dotted line. (b) The Hausdorff
distance between these curves is low. (c) The Fréchet distance en-
forces continuity in how the points are matched.
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added conceptual complexity of continuity, the Fréchet distance can be computed with
efficient algorithms [10]. The Fréchet distance knows many variants and has received
significant attention in algorithmic research (see Section 2.4 and Chapter 4).

For cartographic schematization, similarity is reduced when shapes (e.g. countries)
are displaced or rotated or have a significantly different size. Therefore, a similarity mea-
sure for schematization should take such changes into account. In other words, when
shapes undergo such transformations, the measured similarity should be lower. This is
the case for both the Hausdorff distance and the Fréchet distance. However, in other
applications, some transformations may not affect the similarity (for that specific appli-
cation). For example, with handwriting recognition, neither the exact position nor the
size may be important to the letters that are written. A similarity measure that does not
change under certain transformations is called invariant under that transformation. Com-
mon invariances include translation invariance (displacement), scale invariance (size) and
rotation invariance. With rotation invariance, the two curves in Figure 1.11(b) are consid-
ered equal: rotating one by 90 degrees results in two identical curves. For schematization,
similarity measures should not be invariant under any transformation.

1.3 Algorithms
In this thesis we focus on the algorithmic aspects of similarity measures and automated
schematization. Algorithms research is part of computer science and focuses on mathe-
matically provable techniques to solve problems. Typically, this involves the following
steps. First, the high-level, typically informal problem is modeled using mathematical
formalism. This model allows us to prove certain properties of the problem. In algo-
rithms research, the focus often lies with proving correctness and time bounds. A proof
of correctness provides a guarantee that the algorithm indeed computes what it should
compute. A proof of time bounds relates to the execution time of an algorithm. We may
prove a maximum number of steps that an algorithm needs to compute the correct answer
(an upper bound), or a minimal number of steps that any correct algorithm has to perform
(a lower bound). This is typically done in asymptotic terms depending on the complexity
of the input (e.g. number of points). This allows the analysis to abstract from the influ-
ences of computer architecture and implementation details on the exact number of steps.
Instead, this highlights the most important factors that dominate the execution time for
large instances. Ideally, the lower and upper bound match: this means that the algorithm
is asymptotically as fast as possible. A similar analysis is used to bound the memory use
of an algorithm: the number of bits in the computer’s memory required to perform the
algorithm. Especially if the input consists of a large number of elements, such memory
bounds are important: a machine has only limited memory available; memory allocation
and access are often time-consuming operations.

Computational geometry. Computational geometry [23] is the subfield of algorithmic
research that deals with problems best stated in a geometric form. That is, the problems
are formulated using geometric elements, such as points, lines, curves and surfaces. Ge-
ographic features of maps are typically described by such geometric elements: problems
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that arise in automated cartography are inherently geometric. Hence, it is not surprising
that there is a large interchange of research between computational geometry and au-
tomated cartography. This is also obvious from the numerous methods that stem from
computational geometry that address problems found in automated cartography. Espe-
cially label placement [49, 115, 174] and simplification [1, 25, 27, 95, 109] have received
significant attention. In terms of schematic maps, the focus lies with network schemati-
zation for transit maps [47, 126, 133]. Similarity measures for geometric shapes, such as
the Fréchet distance, are naturally part of computational geometry. Therefore, techniques
developed in computational geometry are essential to address the problem of C-oriented
schematization of territorial outlines.

Optimization algorithms. Many algorithmic problems are optimization problems: they
ask to minimize or maximize some property of the output, given a certain set of con-
straints. For example, the simplification problem (Section 1.1.3) can be stated as follows:
“minimize the Fréchet distance to the input (the optimization criterion) given that the sim-
plified curve uses at most a fixed number of points (a constraint)”. A high-level problem
often admits more than one formulation as an optimization problem. For example, sim-
plification can be formulated conversely as “minimize the number of points, ensuring that
the simplified curve has at most a given Fréchet distance to the input”. When developing
an algorithm for an optimization problem, we would like to prove that it indeed computes
an optimal result (proof of correctness). That is, we wish to prove that no other solution,
that adheres to the constraints, has a better value for the optimization criterion.

In addition, we would like our algorithm to be efficient: the upper bound on the num-
ber of steps is a polynomial function—preferably of low degree—in the input complexity.
However, there exists a large collection of problems for which it is generally believed that
no efficient algorithms exist (though this remains unproven). These problems are referred
to as NP-hard problems [86]. If an efficient algorithm cannot be found for a problem,
the cause may be that it is such an NP-hard problem. Proving that a problem is indeed
NP-hard then gives theoretic evidence that an efficient algorithm is unlikely to exist.

If algorithms cannot efficiently compute an optimal solution, we may turn to approx-
imation algorithms [169]. Such algorithms efficiently compute a solution which is not
necessarily an optimal solution. For an approximation algorithm, we prove that this com-
puted solution is near the optimal solution (e.g. at most a factor 2 worse). If such guaran-
tees cannot be given, we refer to the algorithm as a heuristic algorithm.

Another way of dealing with NP-hard problems is to aim for optimal solutions, but use
techniques to reduce the execution time in practice. One such technique is Integer Linear
Programming [53]. An integer linear program (ILP) consists of an optimization criterion
and a set of constraints, all formulated as linear functions on integer variables. Because
solving an ILP optimally is an NP-hard problem [86], no guarantees on efficiency can be
given. However, many problems can be formulated as an ILP; efficient implementations
for solving such problems have therefore received significant attention. These methods
work well in practice and find an optimal solution or close-to-optimal solution for reason-
ably complex problem sizes. By transforming a given problem into an ILP, it is possible
to leverage these implementations to solve the problem optimally.
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1.4 Contributions
In this thesis we investigate automated C-oriented schematization for territorial outlines.
That is, we wish to develop algorithms that transform detailed geographic outlines into
abstract but recognizable representations. Consequently, this thesis consists of three parts.
In the first part we study similarity measures to quantify recognizability for schematic out-
lines. The second part deals with algorithms to compute a C-oriented schematic outline
from a given geographic outline. In the last part we widen the scope of our schematiza-
tion algorithms and investigate their use for cartographic generalization and other styles
of schematization. Before these three parts, in Chapter 2, we introduce some general
concepts, notations and terminology that are used throughout this thesis. After the three
parts, in Chapter 10, we identify and discuss some general open questions for automated
cartographic schematization.

In addition to the contributions contained in this thesis, the author published some
other results related to computing the Fréchet distance [38] and schematization in other
geometric styles [66, 67, 68, 91, 92].

1.4.1 Part I—Similarity measures

Review. In Chapter 3 we review and discuss similarity measures in the context of C-
oriented schematization of territorial outlines. We give examples to show that many mea-
sures, when optimized, may have undesirable behavior. Based on this review, we choose
to further investigate the Fréchet distance.

This chapter is partially based on joint work with Kevin Buchin, André van Renssen
and Bettina Speckmann. Part of this work appeared in the proceedings of the 7th Interna-
tional Conference on Geographic Information Science [127].

Computation. In Chapter 4 we present a new algorithm to compute the Fréchet distance.
Before the methods presented in this chapter, the algorithm by Alt and Godau [10] was
the asymptotically fastest algorithm for nearly 20 years. Other algorithms have been
developed to speed up computation under various assumptions. We provide the first
asymptotic improvement that does not pose additional constraints on the input curves.
Given two curves described by n vertices, our algorithm computes the Fréchet distance
in O(n2

√
log n(log log n)3/2) time. We also show that there is a discrepancy between

different computational models.
This chapter is based on joint work with Kevin Buchin, Maike Buchin and Wolfgang

Mulzer. This work appeared in the proceedings of the 25th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms [35].

Matchings. In Chapter 5 we seek to describe the similarity between curves, rather than
distilling the similarity to a single number. To this end, we further refine the Fréchet
distance. The Fréchet distance is defined by a matching between the points along both
curves that minimizes the maximum distance between two matched points. Although the
Fréchet distance itself yields only a number, the matchings used in its definition are a
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description of the similarity between the curves. We consider Fréchet matchings: match-
ings that result in the Fréchet distance. For two curves, there are typically many Fréchet
matchings. However, some describe the similarity more accurately or more intuitively
than others. We define locally correct Fréchet matchings to distinguish intuitive from un-
intuitive matchings. We prove that a locally correct Fréchet matching exists between any
two curves and show how to compute one in O(n3 log n) time. For the discrete variant,
we provide an algorithm that runs in O(n2) time.

This chapter is based on joint work with Kevin Buchin, Maike Buchin and Bettina
Speckmann. This work appeared in the proceedings of the 20th European Symposium on
Algorithms [36].

1.4.2 Part II—Schematization algorithms

Global optimization. In Chapter 6 we formulate schematization as a so-called map-
matching problem. Map matching concerns the task of finding a path or cycle in a given
graph—embedded in the Euclidean plane, R2—that resembles a given curve. Typically,
this is used to find a driven route in a road network, based on a sequence of possibly
inaccurate GPS locations that together form the curve; map matching then finds the path
that most likely represents to the driven route corresponding to the GPS locations (e.g.
the path with the lowest Fréchet distance). This idea can also be used to compute a
C-oriented schematization of a territorial outline. First, we define a graph with edges
adhering to a set C of orientations (the “road network”). The geographic outline represents
the curve: the vertices describing the outline are interpreted as a “GPS sequence”. A
cycle in the graph with low Fréchet distance to the curve then corresponds to a C-oriented
schematization. Efficient algorithms exist to solve the map-matching problem with the
Fréchet distance [9]. However, these compute a path that may visit vertices and edges
of the graph more than once: the resulting schematization may be topologically invalid.
Hence, we investigate the problem with a simplicity constraint, that is, vertices of the
graph may occur at most once along the cycle. We prove that this problem is NP-hard: an
efficient algorithm is unlikely to exist. This proof in fact extends to show that it is even
NP-hard to compute a path or cycle that approximates the Fréchet distance of the optimal
solution. Finally, we show that the problem admits an ILP formulation (that is, it can be
solved via an Integer Linear Program). The interval graph involved in developing this
formulation is also used to define a brute-force algorithm that can solve small instances in
practice. We discuss some experimental results and compare the performance of the ILP
and the brute-force algorithm.

Local operations. In Chapter 7 we investigate the effectiveness of a heuristic schema-
tization algorithm. This algorithm consists of two steps. In the first step, the outline is
converted into a similar outline that uses line segments that adhere to a given orientation
set C. In the second step, the outline is simplified by iteratively performing local oper-
ations without introducing new orientations. Throughout these steps, we ensure that the
topology remains valid and that the area of the outline is preserved. The algorithm can
also simplify an outline by omitting the first step. We prove that, regardless of C, this
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algorithm can reduce the complexity of any simple polygon until it is convex. We provide
experimental results to show that this algorithm produces results that capture the most
salient features for a variety of outlines and orientation sets.

This chapter is based on joint work with Kevin Buchin, André van Renssen and Bet-
tina Speckmann. Part of this work appeared in the proceedings of the 7th International
Conference on Geographic Information Science [127] and the proceedings of the 19th
ACM SIGSPATIAL International Symposium on Advances in Geographic Information
Systems [42].

1.4.3 Part III—Widening the scope

Generalization. In Chapter 8 we widen the scope of the schematization algorithm pre-
sented in Chapter 7. To this end, we apply this algorithm to generalize buildings and
urban areas. We present several extensions such that the algorithm can be used for wall
squaring as well as simplification and aggregation of buildings. We present experiments
that indicate that the algorithm works well and is comparatively fast in this application.

This chapter is based on joint work with Kevin Buchin and Bettina Speckmann. This
work appeared in the proceedings of the 19th ACM SIGSPATIAL International Sympo-
sium on Advances in Geographic Information Systems [42].

Other geometric styles. In Chapter 9 we consider the use of the map-matching tech-
niques presented in Chapter 6 for different geometric styles. Using straightforward ad-
ditions to these techniques, we argue that it can also be used for parallelism and curved
schematization. Furthermore, we introduce a new geometric style: isothetic schemati-
zation. In an isothetic schematization, all used line segments must coincide with a line
that passes through one of a small number of points. These extended techniques provide
interesting schematic outlines and illustrate the flexibility of the map-matching approach.



Chapter 2

Preliminaries

In this chapter we introduce and formalize the terminology and notation that is used
throughout this thesis. Though many of the concepts can also be applied to higher-
dimensional space, we assume that all geometric objects reside in the two-dimensional
Euclidean plane (R2). Every point p = (x, y) in this plane is uniquely defined by two co-
ordinates, x and y. The Euclidean distance between two points, p = (x, y) and q = (a, b),
is denoted by ‖p− q‖ =

√
(x− a)2 + (y − b)2.

2.1 Polygonal curves and polygons

Polygonal curves. A polygonal curve P is defined by a sequence 〈p0, ..., pn−1〉 of ver-
tices (points in R2). Its consecutive vertices are connected by line segments; these line
segments are referred to as edges. We distinguish two types of polygonal curves, depend-
ing on whether they are cyclic (closed) or not (open). That is, an open polygonal curve
has a distinct startpoint and endpoint: vertices p0 and pn−1 in the sequence. In a closed
polygonal curve, p0 and pn−1 are also connected by an edge; the sequence is cyclic and

(a) (b) (c)

p1

p2

p3

p4

p0

p1

p2

p3

p4

p5

p6
p7

p0

Figure 2.1 (a) A simple open curve of complexity 4. (b) A simple closed curve
of complexity 8. (c) Example of a nonsimple open curve: the red
edges intersect.
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(a) (b) (c)

p1

p2

p3

p4

p5
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p7

p0 p7
p0

Figure 2.2 (a) A polygon (gray area) and its boundary given by black lines. Its
interior angles are indicated in red; it has two reflex vertices, p3 and
p7. (b) A positive exterior angle at convex vertex p0. (c) A negative
exterior angle at reflex vertex p7.

can be shifted to turn any vertex into “p0”. Figure 2.1(a–b) illustrates these terms. For a
closed polygonal curve, we treat the vertices circularly, that is, pi = pi mod n. Through-
out this thesis, we shall refer to polygonal curves simply as curves. Unless indicated
otherwise, curves refer to open curves.

The complexity of a curve is determined by its number of edges. Thus, an open curve
of complexity n has n + 1 vertices; a closed curve of complexity n has n vertices. For
a curve of complexity n, its edges are given by the line segments connecting pi and pi+1

for i ∈ {0, . . . , n − 1}. We call a polygonal curve simple if no edges intersect, except at
common endpoints. Figure 2.1 illustrates two simple and one nonsimple curve.

Polygons. A polygon P represents the area that is enclosed by a closed curve. In other
words, the boundary of a polygon, denoted by ∂P , is a closed curve. A polygon is simple
if its boundary is simple; unless indicated otherwise, we implicitly assume that polygons
are simple. The complexity of a polygon is the number of edges that are used to describe
its boundary. A polygon of complexity n is described by n vertices.

A polygon has two types of vertices: a vertex is called convex if the angle inside
the polygon boundary between its two incident edges is at most π, and it is called reflex
otherwise. The exterior angle of a vertex is defined as the angle between one edge and
the extension of the other. The angle is negative if and only if the vertex is reflex. These
concepts are illustrated in Figure 2.2. The sum of all exterior angles of a simple polygon
is always equal to 2π.

2.2 Graphs and planar subdivisions

Graphs. A graph G = (V,E) is defined by its vertices V and edges E. The vertices are
elements that are connected with other vertices via the edges. Thus, an edge is defined as
a pair of vertices and E is a subset of V × V . An edge (u, v) is incident to its endpoints
u and v. For a vertex v, we refer to the edges that end at v as the incident edges. The
number of incident edges is referred to as the degree of a vertex. Vertices of degree 3 or
higher are referred to as junctions. The complexity of a graph is its number of edges.
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(a) (b) (c)

Figure 2.3 (a) A plane graph. Vertices are given as dots, the solid dots repre-
sent junctions. Edges are indicated with black line segments. It has
three bounded faces (green); the unbounded face is given in gray.
(b) The disjoint borders in the graph, each indicated with a different
color or style. (c) A border and its two incident faces.

A path in a graph is a sequence of vertices 〈v0, . . . , vk〉 such that (vi, vi+1) ∈ E for
all i ∈ {0, . . . , k − 1}. A path is called simple if each vertex occurs at most once in the
sequence. A cycle is a path that starts and ends at the same vertex (i.e., v0 = vk). A cycle
is simple if each vertex occurs at most once except for the common endpoint v0 = vk
which occurs exactly twice. Like the vertices of a polygon, we treat the vertices of a cycle
circularly: vertex vi is used as a shorthand for vi mod k.

We call a graph embedded if each vertex v is a point in R2 and each edge (u, v)
is the line segment between vertices u and v. A plane graph is an embedded graph in
which no two vertices coincide on the same point and no two edges intersect (except
at a common endpoint). We call a region of a plane graph enclosed by edges a face.
Most faces are bounded, having finite area. However, each plane graph has exactly one
unbounded face with infinite area. A border is a maximal path in a plane graph such that
all vertices (except possibly the first and last) have degree 2. A graph is partitioned into
a set of disjoint borders. A border has exactly two incident faces, one on each side; in
some cases, this may actually be the same face. Two faces are said to have a border in
common if they are both incident on the border. We call a pair of faces adjacent if they
have one or more borders in common. A plane graph and the corresponding terminology
are illustrated in Figure 2.3.

Subdivisions. We use the term (planar) subdivision to refer to a plane graph. In particular,
we use it to refer to objects that represent regional elements such as territorial outlines.
The bounded faces in a subdivision thus correspond to territories. For territorial outlines,
we may usually assume that vertices of degree 0 or 1 do not occur. Moreover, each border
typically has two distinct incident faces. However, these are not general restrictions for a
subdivision.
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2.3 Formalizing automated C-oriented schematization
In this section we formalize the automated C-oriented schematization problem for territo-
rial outlines. The input, geographically detailed territorial outlines, are given as a subdi-
vision. The required output, the schematization, must also be a subdivision that adheres
to the following four criteria (see Chapter 1.1.2).

(1) Schematic outlines should use few line segments.
(2) All line segments should be oriented according to C.
(3) The geographic relations between regions of the schematic outlines are equivalent to

those of the geographic regions (correct topology).
(4) Schematic outlines resemble the corresponding geographic outlines.

To formalize the problem, we need to define these criteria precisely. The first criterion is
defined rather easily: we use the complexity of the resulting subdivision. The second and
third criterion can be defined straightforwardly, though are slightly more involved. We
therefore discuss them in the upcoming sections. A satisfying formalization of the last
criterion is more complicated; we postpone a detailed discussion of this to Chapter 3.

2.3.1 Orientations
The orientation of a line segment is its counterclockwise angle in [0, π) with respect to
the horizontal axis. Given a discrete set C of orientations, a line segment is C-oriented if
its orientation is contained in C. A subdivision is C-oriented if all edges are C-oriented.
For a nontrivial C-oriented subdivision, C must contain at least two distinct orientations.

An orientation set C is described by a set of angles. For example, C = {0, π4 , π2 }
describes a set with a horizontal, vertical, and one diagonal orientation (from bottomleft
to topright). A regular orientation set contains orientations that are evenly spaced. Such
a set is characterized by some initial angle β and the number of orientations c. The set of
orientations is then {β+ i · πc | 0 6 i < c}. Typically, β is either zero (the first orientation
is horizontal) or π

2 (the first orientation is vertical). We refer to such sets as horizontal

(a) (b) (c) (d) (e)

Figure 2.4 Four common regular orientation sets and one irregular set: (a)
rectilinear, C2; (b) octilinear, C4; (c) hexilinear, C3; (d) hexilinear,
C3(π2 ); (e) irregular, C = { 2π

20 ,
9π
20 ,

18π
20 }.
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and vertical respectively. These sets are different only for odd values of c. We use Cc(β)
to denote a regular set with c orientations and initial angle β. If β is 0, we abbreviate
this to Cc. Common orientation sets include rectilinear (C2), hexilinear (C3 or C3(π2 )), and
octilinear (C4) orientations. Figure 2.4 illustrates some orientation sets.

2.3.2 Topology for subdivisions

A subdivision, which is computed as a result of schematization, must have the same topol-
ogy as the input subdivision to avoid large interferences with a user’s mental map. Intu-
itively, this means that the adjacencies between the faces of the schematic subdivision are
identical to those in the input. The borders that separate the faces may change in detail or
shape, but no structural changes in the adjacencies occur. We formalize this as follows.

First, consider a face f in a subdivision S. The boundaries that delineate the region of
f consist of one or more cycles of borders in S. A cycle that encloses f is referred to as an
outer cycle. Conversely, if f encloses the cycle, it is an inner cycle. If face f is bounded,
it has exactly one outer cycle and zero or more inner cycles. If face f is unbounded, it has
no outer cycle and one or more inner cycles. Figure 2.5(a) shows a face f with an inner
and outer cycle.

An inner or outer cycle of face f consists of one or more borders in S; each of these
has a second incident face which is adjacent to f . The sequence that describes these
adjacent faces in counterclockwise order is referred to as the adjacency order of that cycle.
In the case of a vertex of degree 1, the border is considered to occur twice (consecutively)
along the cycle. Figure 2.5(b) illustrates an adjacency order. Note that a face may be
adjacent to itself. In case of subdivisions that represent territorial outlines, this usually
does not occur: if a face is adjacent to itself, then the border in the subdivision does not
correspond to a boundary that separates the territory from another.

Consider two subdivisions S and S′. We assume that a bijective function F maps
the faces of S to the faces of S′. This function describes the correspondence between
the faces. In other words, we may consider the faces to have a unique label in S; this
label occurs exactly once in S′. Subdivisions S and S′ are topologically equivalent if the
following conditions are met.

(a) (b)

f
ghu

f
g

gf
u

Figure 2.5 (a) A subdivision with 3 bounded faces and one unbounded face.
Face f has one inner cycle as it encloses face h. (b) The adjacency
order of the outer cycle of f is 〈g, f, f, g, u〉.
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• The unbounded faces correspond according to F . If face f is the unbounded face
of S, then F(f) is the unbounded face of S′.
• For each bounded face, the adjacency order of the outer cycle correspond according

to F . Let 〈a0, . . . , ak−1〉 denote the adjacency order of the outer cycle of a face
f . Let 〈a′0, . . . , a′k′−1〉 denote the adjacency order of the outer cycle of F(f). It
holds that k = k′ and F(ai) = a′i+d mod k for all i ∈ {1, . . . , k − 1} and some
d ∈ {0, . . . , k − 1}.
• For all (bounded and unbounded) faces, each inner cycle has a corresponding inner

cycle such that the adjacency orders correspond according toF . Let 〈a0, . . . , ak−1〉
denote the adjacency order of an inner cycle of a face f . There is an inner cy-
cle of F(f) with adjacency order 〈a′0, . . . , a′k′−1〉 such that k = k′ and F(ai) =
a′i+d mod k for all i ∈ {1, . . . , k − 1} and some d ∈ {0, . . . , k − 1}.

The third condition requires that some inner cycle in face F(f) exists to match an inner
cycle of face f . Due to the unique labels of faces, this in fact requires an exact one-to-one
correspondence. Figure 2.6 illustrates three subdivisions, two of which have equivalent
topology. As illustrated in (c), subdivisions that display symmetries in their adjacencies
can sometimes be structurally “relabeled” while maintaining topology. The topology is
indeed the same in terms of adjacencies. To address this issue, other constraints can
be considered, such as directional constraints [41] or orthogonal-order constraints [88].
Also, measuring similarity may avoid these problems.

A schematization algorithm is topologically safe if it guarantees that the input and
output subdivision are topologically equivalent. As topological equivalence is transitive,
it is sufficient to ensure that each iteration in an iterative algorithm maintains the correct
topology. For this topological equivalence, we require two subdivisions which are plane
graphs: intersections may therefore not be introduced. Moreover, it implies that there is a
one-to-one correspondence between the borders as well: no borders can be fully removed.

(a) (b) (c)

Figure 2.6 Three subdivisions; corresponding faces according to F indicated
with equal colors. (a) A subdivision with 4 bounded faces. (b) A
subdivision with topology different from (a) as the red and green
face occur in different order along the outer cycle of the blue and
purple face. (c) A subdivision that is topologically equivalent to
(a), all adjacency orders match.
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2.4 The Fréchet distance
The Fréchet distance is a similarity measure to compute the resemblance between two
polygonal curves. Due to our findings in Chapter 3, this distance and its computation
play an important role in later chapters. Therefore, we provide its definition and several
variants here and briefly discuss basic concepts of computation.

2.4.1 Definition
Let P and Q be two polygonal curves, defined by vertices 〈p0, . . . , pm〉 and 〈q0, . . . , qn〉.
We interpret P as a continuous function P : [0,m]→ R2 such that P (i+λ) = (1−λ)pi+
λpi+1 for i ∈ {0, . . . ,m − 1} and λ ∈ [0, 1]. In particular, this means that P (i) = pi for
i ∈ {0, . . . ,m}. Similarly, we interpret Q as a continuous function Q : [0, n] → R2.
An orientation-preserving homeomorphism between P and Q is a continuous function
ψ : [0,m]→ [0, n] with a continuous inverse, such that ψ(0) = 0 and ψ(m) = n. Such a
homeomorphism matches each point of P to a unique point on Q and vice versa. Let Ψ
be the set of all orientation-preserving homeomorphisms between P and Q. The Fréchet
distance between P and Q is defined as

dF(P,Q) ≡ inf
ψ∈Ψ

max
x∈[0,m]

‖P (x)−Q(ψ(x))‖,

where ‖ · ‖ denotes the Euclidean distance. A low Fréchet distance indicates a high
similarity between the two curves.

A reparametrization of curve P is a continuous nondecreasing function σ : [0, 1] →
[0,m], such that σ(0) = 0 and σ(1) = m. Similarly, a reparametrization ofQ is a function
θ : [0, 1] → [0, n]. A matching µ = (σ, θ) between P and Q is a pair of reparametriza-
tions; this describes an orientation-preserving homeomorphism between P and Q or a
limit thereof. Using M to denote the set of all matchings, we can define the Fréchet
distance also as

dF(P,Q) ≡ min
(σ,θ)∈M

max
x∈[0,1]

‖P (σ(x))−Q(θ(x))‖.

We call a matching µ that results in the Fréchet distance a Fréchet matching. An
example is given in Figure 2.7(a). Note that this matching is often not unique: typically,
many matchings have the same maximal distance. In Chapter 5 we investigate ways of
distinguishing between different Fréchet matchings.

Variants. The definition above is stated for open polygonal curves in R2; the defi-
nition can be straightforwardly generalized for closed curves [10, 121], nonpolygonal
curves [152] and curves embedded in higher dimensional space [10, 38]. Also, the defi-
nition can be extended for surfaces [37, 40, 60, 90].

There are two frequently used variants of the Fréchet distance: the weak Fréchet dis-
tance [10] and the discrete Fréchet distance [3, 75]. The weak Fréchet distance is char-
acterized by no longer requiring a one-to-one matching. In this context, a reparametriza-
tion is any continuous (not necessarily nondecreasing) function σ : [0, 1] → [0,m] with
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(a) (b)

Figure 2.7 (a) A Fréchet matching for two curves. Green lines represent a
sample of the continuous matching. (b) A discrete Fréchet match-
ing matches only the vertices.

σ(0) = 0 and σ(1) = m. The discrete Fréchet distance changes which points are
matched: the continuous Fréchet distance matches all points along the two curves, whereas
the discrete Fréchet distance matches only the vertices. Note that a discrete matching is
not a one-to-one matching, one vertex may correspond to multiple consecutive vertices
on the other curve. This is illustrated in Figure 2.7(b). There are also a number of vari-
ants that modify the matching in other ways, such as speed limits [32, 120] and partial
matchings [10, 39, 70, 121]. These variants are briefly discussed in Chapter 5.

The Fréchet distance uses the Euclidean distance between two points. Other distance
measures have also been used, such as polyhedral distance functions [38] or geodesic and
link distances [74].

2.4.2 Computation

Algorithmic study of the Fréchet distance was initiated by Alt and Godau [10]. Their
techniques have been widely used in the many strands of research involving the Fréchet
distance that followed. The results presented in Chapter 4 and Chapter 5 also use these
techniques. Therefore, we summarize their results here.

Decision and search. Alt and Godau [10] solved the computation of the Fréchet distance
between two polygonal curves, P and Q, in two steps. First, they developed an algorithm
to decide whether dF(P,Q) 6 ε for some given value of ε > 0. Then, they showed how
to use this algorithm to compute the Fréchet distance by efficiently searching through
possible values of ε. Many of the later algorithms, including the algorithm presented in
Chapter 4, adhere to this “decision-and-search” paradigm. The only algorithm—to ex-
actly compute the Fréchet distance—that breaks from this tradition is given by Buchin et
al. [38].

Decision. In order to decide whether dF(P,Q) 6 ε holds, Alt and Godau [10] intro-
duced the free-space diagram. We denote the free-space diagram of curves P and Q
by FSD(P,Q). This diagram represents the joint parameter space of P and Q (inter-
preted as functions): the domain of FSD(P,Q) is [0,m] × [0, n]. Every point (s, t)
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(a) (b)

Figure 2.8 (a) Two curves with a Fréchet matching. (b) The corresponding
free-space diagram. The reachable space is green; the unreachable
free space is white; the green line represents a Fréchet matching.

in the diagram corresponds to two points: P (s) and Q(t). A point (s, t) in the free-
space diagram is called free if ‖P (s) − Q(t)‖ 6 ε. The union of all free points is
referred to as the free space; we denote the free space by free(P,Q) = {(s, t) | (s, t) ∈
[0,m]× [0, n] ∧ ‖P (s)−Q(t)‖ 6 ε}, using ε implicitly.

A homeomorphism between P and Q corresponds to a strictly bimonotone path from
(0, 0) to (m,n) in the joint parameter space. A matching, possibly being the limit of a
homeomorphism, thus corresponds to a (not necessarily strict) bimonotone path. Thus,
dF(P,Q) 6 ε if and only if there is a bimonotone path through the free space. General-
izing this notion, a point (s, t) is reachable if there is a bimonotone path from (0, 0) to
(s, t) in the free space. Evidently, the corresponding reachable space is a subset of the
free space. We denote this space by reach(P,Q). To decide whether the Fréchet distance
is at most ε, we must therefore decide whether (m,n) ∈ reach(P,Q). An example of a
free-space diagram and its corresponding free and reachable space is given in Figure 2.8.

The vertices of P andQ partition the free-space diagram into square cells, each repre-
senting a pair of edges. There are thusm columns and n rows of cells in the diagram. The
cell in column i and row j represents the subdomain [i, i+ 1]× [j, j + 1] of FSD(P,Q),
for i ∈ {0, . . . ,m − 1} and j ∈ {0, . . . , n − 1}; we denote this cell by C(i, j). Alt and
Godau [10] showed that within one cell the free space is a convex region. Hence, it is
sufficient to consider only the cell boundaries; each boundary corresponds to a vertex of
one curve and an edge of the other.

For a cell C(i, j), we denote its left boundary by Li,j and its bottom boundary by
Bi,j . The right side of a cell is the left side of the cell in the next column. Thus, the
right side is denoted by Li+1,j . Similarly, the top side is denoted by Li,j+1. We define
a door of a vertical side Li,j as the points of that side that are in the free space, i.e., as
Li,j ∩ free(P,Q). We denote the door of a side Li,j by LF

i,j . The door is open if the
intersection is nonempty; it is closed otherwise. A reach-door LR

i,j is the subset of the
door that is reachable: LR

i,j = LF
i,j ∩ reach(P,Q). Again, a reach-door is open if there

are indeed reachable points on the corresponding side and closed otherwise. Similarly,
we define the door BF

i,j and reach-door BR
i,j of a horizontal boundary Bi,j .
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To compute LR
i+1,j , it suffices to know LR

i,j and BR
i,j . To this end, we require only

three cases, as illustrated in Figure 2.9.

(a) If BR
i,j is open, then all points in LF

i+1,j are reachable: thus LR
i+1,j = LF

i+1,j .
(b) If BR

i,j is closed but LR
i,j is open, then any point on LF

i+1,j that is above the lower
endpoint of LR

i,j is reachable. Note that, if this lower endpoint is above the upper
endpoint of LF

i+1,j or LF
i+1,j is closed, then LR

i+1,j is closed.
(c) If both doors are closed, then Li+1,j cannot be reached and thus is closed as well.

Similarly, we can compute BR
i,j+1 from LR

i,j and BR
i,j This leads to an O(mn)-time dy-

namic program to propagate the reachability information from cell to cell.

Search. To compute the Fréchet distance, we find the smallest value of ε such that (m,n)
is in the reachable space of the free-space diagram. Alt and Godau [10] argued that the
Fréchet distance is one of a set of critical values. Conceptually, as ε is increased from
zero, the free space expands. At certain critical events, a structural change of the free
space occurs. Alt and Godau distinguish three of such events, defining the critical values
(refer to Figure 2.10 for illustrations of these events).

(A) Point (0, 0) or (m,n) becomes part of the free space; the associated critical values
are ‖P (0)−Q(0)‖ and ‖P (m)−Q(n)‖ respectively.

(B) A door opens a cell boundary, creating a passage between two cells; the associated
critical value is the minimal distance between the vertex and edge corresponding to
the boundary.

(C) A reach-door opens (from case (b) in the computation), creating a new passage from
one cell boundary to another within the same row or column. This corresponds to
two vertices of one curve and an edge of the other. The associated critical value is
the distance from one of the vertices to the intersection of the edge and the bisector
of the vertices (if this intersection exists).

There are two critical events of type A,m(n+1)+n(m+1) events of type B, and nm(m−
1)/2 +mn(n− 1)/2 = mn(m+ n)/2− 1 events of type C. By using parametric search
on the critical values arising from type-C events, the Fréchet distance can be computed in
O(mn logmn) time [10].
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LR
i,j LR

i+1,j

BR
i,j

(a) (b) (c)

LR
i+1,jLR

i,j LR
i+1,j

Figure 2.9 The three cases for computing LR
i+1,j . (a) If BR

i,j is open, the com-
plete right door is reachable. (b) If LR

i,j is open but BR
i,j is closed,

the lower endpoint of LR
i,j determines the lowest reachable point on

LR
i+1,j . (c) Otherwise, neither LR

i,j nor BR
i,j is open; the right door

is not reachable either.

(B) (C)(A)

pi
pi

pj

e e

pi pjpi

ee

Figure 2.10 Three critical events for computing the Fréchet distance in which a
structural change of the free space occurs. At the top, the situation
of the curves is illustrated; at the bottom, the situation in the free-
space diagram. (A) Distance between the endpoints. (B) Minimal
distance between vertex pi and edge e: a passage between two cells.
(C) Distance between vertex pi and the intersection of edge e and
the bisector pi and pj . The bisector is indicated with a black line.
This event corresponds to a passage within a row.
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Chapter 3

A Review of Similarity Measures

To judge the quality of a schematic outline, we wish to compare it to its geographic outline
and quantify their resemblance. In other words, we wish to find a similarity measure that
is suitable for C-oriented schematization. A number of similarity measures exists, each
with different properties. In this chapter we review various similarity measures based on
their suitability for schematization. These similarity measures quantify the dissimilarity:
the higher the computed measure the less similar the outlines. Hence, we refer to these
as distance measures: a low distance implies a high similarity. We would like to model
schematization as an optimization problem in which the similarity is optimized under a
set of constraints. The resulting outline should then be the best schematization.

In this chapter we refer to the geographic and schematic outline simply as the input and
solution respectively. To evaluate similarity measures that can be used as an optimization
criterion for schematization, we assume the following four constraints:

(i) both the input and the solution are simple polygons;
(ii) the complexity of the solution is bounded by a constant;

(iii) the solution is a rectilinear polygon (C2);
(iv) the area of the solution is equivalent to the area of the input.

Under these constraints we consider whether the optimal solution according to a distance
measure always corresponds to the intuitively best schematization. We show that there is
a polygon with higher distance (for each considered distance measure) that captures the
shape of the input significantly better. Hence, while it is desirable that the solution has a
low distance to the input, minimizing the distance does not ensure the best shape.

Note that the third constraint, rectilinearity, is seemingly one of the strictest C-oriented
constraints. However, we note that our arguments and examples in this chapter generalize
to other orientation sets. That is, similar arguments can be made for other choices for
C. The fourth constraint does not arise from the schematization criteria. This constraint
is used to develop a schematization algorithm in Chapter 7. Hence, our rationale here
applies to this situation, where the input and solution must have equivalent area. Again,
the arguments and examples do not rely on this constraint.
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3.1 Fréchet distance
The Fréchet distance is defined in Section 2.4. We observe that it is determined by a
maximum; it is thus rather sensitive to outliers. Consider the example in Figure 3.1. The
input is an 8-sided polygon that we wish to schematize with a rectangle. The solution with
the smallest Fréchet distance tries to approximate the narrow strip, while “ignoring” most
of the polygon. As a result, the rectangle with optimal distance has a much higher width
than height. However, the majority of the input polygon shows a rectangle that has much
lower width than height. Note that the strip can be arbitrarily narrow without significantly
changing the result with minimal Fréchet distance.

8

4.7886 9

1

4

4

9

(a) (b) (c)

Figure 3.1 An 8-sided polygon (a) and two 4-sided schematizations: with min-
imal Fréchet distance (b), and with better shape (c).

As mentioned in Chapter 2, variants of the Fréchet distance exist including the weak
and discrete Fréchet distance. However, these variants remain sensitive to outliers. To al-
leviate this problem, average and integral Fréchet distances have been considered [44]: all
distances are taken into account rather than only the maximal distance. Buchin [44] de-
scribes and compares multiple intuitive definitions of the average Fréchet distance. How-
ever, all variants have disadvantages [44]. Normalization is one of the problems that
arises. There are two main candidates: the length of one of the polygons or the length of
the matching. However, as argued by Buchin [44], both yield unintuitive results. Below,
we briefly explain the issues that she identified and relate them to schematization.

Consider two curves P and Q. A normalization that uses the length of P may “skip”
certain parts of Q by matching the part to a single point of P (technically speaking, an
infinitesimally small interval). This decreases the “weight” of the part; as a result, the av-
erage or integral Fréchet distance essentially does not account for this part. For schemati-
zation, this is undesirable as, for example, a large peninsula may be not accounted for by
the similarity measure. This is illustrated in Figure 3.2(b).

The length of the matching—the length of the path in the free-space diagram—is
problematic as it penalizes long matchings for the integral Fréchet distance. For example,
in a schematization of Norway, the shoreline may be much shorter than the geographic
shoreline due to the fjords (see Figure 3.3). However, the border with Sweden may stay
roughly the same length and may be relatively closer to the geographic border. Hence, a
good matching in this scenario may be comparatively long. For the average variant, this
normalization may result in unintuitive matchings. By artificially increasing the length
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Figure 3.2 (a) An intuitive matching between P and Q. (b) Normalization
according to P allows us to neglect certain parts (orange). (c) Nor-
malization according to the matching allows us to decrease the in-
fluence of parts (orange).

(a) (b)

Figure 3.3 (a) The shoreline of Norway is significantly longer than its borders
with adjacent countries. (b) A schematic outline with 50 edges for
Norway, computed using the techniques of Chapter 7. The shore-
line has been shortened much more than the country borders.

of a matching where the polygons are close, we increase the “weight” of those parts.
This results in underestimating the influence of large distances elsewhere, such as at a
peninsula; this is illustrated in Figure 3.2(c).

In the above we assumed that the Fréchet distance considers only the boundary of a
polygon. It is also possible to consider homeomorphisms defined over the interior of the
polygon. As Buchin et al. [40] show, the difference between the boundary and interior
variant may be arbitrarily large. However, the outlier sensitivity remains.
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3.2 Symmetric difference
The symmetric difference between two polygons P and Q is defined as the total area that
is covered by one polygon but not by the other: it is exactly the area in which they differ
from each other. Interpreting P and Q as the set of all points enclosed by the polygon,
the symmetric difference is defined as

|P ∪Q| − |P ∩Q|.

Unlike the Fréchet distance, the symmetric difference does not consider the continuity
of the curves. That is, parts that are covered by both may belong to different conceptual
parts of the polygons. Consider the example in Figure 3.4. The input is a 12-sided polygon
which we would like to schematize with an 8-sided rectilinear polygon. The schemati-
zation with minimal symmetric difference loses the vertical axis of symmetry and has a
“C-shape” instead of a “U-shape”.

5

5

6

4 6 4 6 4

20

20 15

15 15

15

(a) (b) (c)

Figure 3.4 A polygon (a) and two 8-sided schematizations: with minimal sym-
metric difference (b), and with better shape (c).

3.3 Hausdorff distance
The Hausdorff distance measures the distance between two compact subsets, P and Q, of
a metric space. It finds for each element in P the closest element inQ, and vice versa, and
then takes the maximum of the resulting pairwise distances. Assuming that the Euclidean
metric space, the Hausdorff distance is expressed in the following formula:

max

{
sup
p∈P

inf
q∈Q
‖p− q‖ , sup

q∈Q
inf
p∈P
‖p− q‖

}
.

The Hausdorff distance interprets a polygon as the set of points that lie in its interior
and on its boundary. Similar to the symmetric difference, this interpretation disregards
the continuous nature of the polygons. Thus, we expect similar problems to arise with the
Hausdorff distance. This is indeed the case, as illustrated in Figure 3.5. The input is the
same polygon as we used for the symmetric difference; the resulting schematizations are
also similar. Again, we see that the axis of symmetry is lost and that the schematization
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Figure 3.5 A polygon (a) and two 8-sided schematizations: with minimal
Hausdorff distance (b), and with better shape (c).

with minimal Hausdorff distance has a “C-shape”. We observe that the maximal distances
in this example are obtained at the boundary of the polygons, rather than at an interior
point. Thus, restricting the set of points that are used in the Hausdorff distance to only the
boundary points results in the same issues.

3.4 Turning angle distance
The turning angle distance is defined by Arkin et al. [14]. It is based on a turning function,
defined as follows. Let P be a curve, interpreted as a function on the domain [0, 1] (rather
than [0, n]). Its turning function ΘP (x) is defined for x ∈ [0, 1], expressing the angle
of the tangent at P (x) with respect to some reference angle. The turning angle distance
between two curves P and Q is expressed as(∫ 1

0

|ΘP (x)−ΘQ(x)|p dx
) 1

p

,

for some p > 0. The use of p = 2 is suggested by Arkin et al. [14].
For polygons P and Q, the distance is the minimum over all possible ways to “cut”

their boundaries into open curves and all rotations of Q. This distance is designed to
invariant under translation, rotation and scaling. This already indicates that the distance
measure is likely unsuitable for schematization: rotation and translation affect similar-
ity for the schematization of territorial outlines. Scale invariance may be acceptable in
combination with area preservation.

Even if we were able to eliminate the invariance, another problem arises. Arkin et
al. [14] indicate that the measure is sensitive to nonuniform noise. In their application
(nearly) uniform noise is a reasonable assumption. For schematization, however, this is
not the case. For example, consider again Norway and its fjords (Figure 3.3). Its shoreline
is significantly longer than its borders with adjacent countries. Though this is not noise,
it indicates that territorial outlines are nonuniform: the characteristics may vary along
the boundary. Figure 3.6 shows an example of how nonuniform “noise” influences the
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≈ 0.808≈ 0.722
(a) (b) (c)

Figure 3.6 A polygon (a) and two 4-sided schematizations: with minimal turn-
ing angle distance (b), and with better shape (c). The turning func-
tions are given in the bottom row.

optimal schematization with respect to the turning angle distance. The more “battlements”
we add to the shape, the worse this effect becomes; the schematization with minimal
turning angle distance tends towards a square.

3.5 Cyclic dynamic time warp distance
The cyclic dynamic time warp distance [124] is the dynamic time warp distance [22],
adapted for polygons. Let P = 〈p0, . . . , pm−1〉 and Q = 〈q0, . . . , qn−1〉 be two polygons
with m and n vertices respectively. A cyclic alignment between P and Q is a sequence
〈(i0, j0), . . . , (ik−1, jk−1)〉 such that, for 0 6 l < k, the following conditions hold:

• 0 6 il+1 − il 6 1;
• 0 6 jl+1 − jl 6 1;
• (il, jl) 6= (il+1, jl+1).

For ease of notation, we assume that (ik, jk) represents (i0, j0). Let Φ be the set of all
cyclic alignments. The cyclic dynamic time warp distance is defined as

min
φ∈Φ

∑
(i,j)∈φ

d(pi, qj),

where d(pi, qj) is some distance function between the vertices pi and qj . Essentially, this
is a discrete summed Fréchet distance in which the Euclidean distance has been replaced
by an arbitrary function.

Marzal and Palazón [124] suggest to use curvature for the distance function. This
causes the measure to be invariant under translation, rotation and scaling. As with the
turning angle distance, this is undesirable for schematization purposes. Using for example
the Euclidean distance also results in undesirable behavior, as is shown in Figure 3.7. The
problem is caused by the discrete steps from vertex to vertex and the uneven sampling
between polygon and its approximation. This is similar to the issues with integral Fréchet
distance and to the problem of “nonuniform noise” for the turning angle distance.
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≈ 60.72 ≈ 100.23

(a) (b) (c)

Figure 3.7 A polygon (a) and two 4-sided approximations: with minimal
cyclic dynamic time warp distance (b), and with better shape (c).

To overcome the drawbacks of a discrete measure, a continuous version of the dy-
namic time warping distance has been considered [129]. However, it uses a different
measure between points on the curve, such that the distance between curves is invariant
under translation. Again, we consider this to be undesirable for schematization. Using
the Euclidean distance instead results in an integral Fréchet distance.

3.6 Conclusions
In this chapter we considered a number of common similarity measures and their appro-
priateness for quantifying resemblance for the purpose of cartographic schematization.
However, each of these measures exhibits some undesirable behavior: optimizing for the
similarity measure may result in unintuitive results. We consider the outlier sensitivity
of the Fréchet distance to be the least severe. Hence, we further investigate this similar-
ity measure in the upcoming chapters. In Chapter 4 we consider the computation of the
Fréchet distance and give the first asymptotic improvement for two general curves since
the result of Alt and Godau [10] in 1995. In Chapter 5 we introduce a stricter notion of a
Fréchet matching in order to reduce the effects of outliers on the quality of the matching.





Chapter 4

Computing the Fréchet distance

To judge the quality of a schematization, we opted to further investigate the Fréchet dis-
tance. A first step in this investigation is the computation of the Fréchet distance for two
given polygonal curves. In 1995, Alt and Godau [10] published an O(n2 log n) algorithm
to compute the Fréchet distance for two curves of complexity n. Previous to the work pre-
sented in this chapter, this algorithm has not been improved, despite the large amount of
research that followed. The quadratic execution time for the decision problem remained
the best known bound for general curves. If we cannot improve on a quadratic bound
for a geometric problem despite many efforts, a possible cause may be the underlying
3SUM-hardness [85]. This situation led Helmut Alt to make the following conjecture [7].

Conjecture 4.1. [ALT’S CONJECTURE] Let P , Q be two polygonal curves in the plane.
It is 3SUM-hard to decide whether the Fréchet distance between P and Q is at most 1.

Here, “1” can be considered as an arbitrary constant, which can be changed to any other
bound by scaling the curves. Until recently, the only known lower bound was Ω(n log n)
in the algebraic-computation-tree model [34]. Assuming the Strong Exponential Time
Hypothesis, Bringmann [30] shows that no O(n2−δ) algorithm exists for any δ > 0.

Recently, Agarwal et al. [2, 3] showed how to achieve a subquadratic-time algorithm
for the discrete Fréchet distance. They asked whether their result can be generalized to the
case of the original (continuous) Fréchet distance. In this chapter we address this question
and provide an algorithm to compute the Fréchet distance in O(n2

√
log n(log log n)3/2)

expected time between two curves of complexity n. This is the first algorithm with an ex-
ecution time of o(n2 log n), constituting the first asymptotic improvement for the general
case since the original paper by Alt and Godau [10]. To achieve this result, we give the
first subquadratic algorithm for the decision problem of the Fréchet distance. As in most
algorithms for computing the Fréchet distance, the optimization problem is solved by per-
forming an appropriate search over the critical values to solve the optimization problem.
However, note that this requires a new search algorithm, as previously known methods
have an execution time of O((n2 + T (n)) log n) where T (n) represents the computation
time for the decision problem.
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We emphasize that these algorithms run on a real RAM/pointer machine and do not re-
quire any bit-manipulation tricks. Therefore, our results are more in the line of Chan’s re-
cent subcubic-time algorithms for all-pairs-shortest paths [50, 51] or recent subquadratic-
time algorithms for MIN-PLUS-CONVOLUTION [29] than the subquadratic-time algo-
rithms for 3SUM [19]. If we relax the model to allow constant-time table-lookups, the
execution time can be improved to be almost quadratic, up to O(log log n) factors.

Finally, we briefly consider Alt’s conjecture. We show that nonuniformly, the Fréchet
distance can be computed in subquadratic time. More precisely, we prove that the decision
problem can be solved by an algebraic decision tree [16] of depth O(n2−α), for some
fixed α > 0. It was conjectured that no such decision tree exists for 3SUM [138] and an
Ω(n2) lower bound is known in a restricted linear decision tree model [6, 76]. Under this
conjecture, our result would have implied that Alt’s conjecture is false. However, recently
it has been proven that 3SUM admits an algebraic decision tree of depth O(n3/2

√
log n)

[93]. Hence, our results have no implications on Alt’s conjecture.
However, the O(n2−δ) lower bound proven by Bringmann [30] proves that the de-

cision tree cannot be (uniformly) implemented, unless the Strong Exponential Time Hy-
pothesis fails. This provides strong evidence for a discrepancy between the decision-
tree model and the uniform complexity of the Fréchet problem. This puts it into the
illustrious company of such notorious problems as SORTING X + Y [84], MIN-PLUS-
CONVOLUTION [29], or finding the Delaunay triangulation for a point set that has been
sorted in two orthogonal directions [43]. We find that this aspect of the Fréchet distance
is highly intriguing and deserves further study.

Related work. The Fréchet distance was originally introduced by Alt and Godau [10,
89] into the algorithmic literature. They showed that this distance can be computed in
O(mn logmn) time for two polygonal curves, described by m and n points. Since Alt
and Godau’s seminal paper, there has been a wealth of research in various directions,
such as extensions to higher dimensions [8, 37, 40, 44, 60, 90], approximation algo-
rithms [11, 15, 71], the geodesic and the homotopic Fréchet distance [48, 61, 74, 97], and
much more [5, 24, 39, 70, 110, 120, 121]. A fully polynomial-time approximation scheme
is known for arbitrary polygonal curves, with an execution time of O(n2 log(1/ε)) [38].
All subquadratic-time (exact or approximation) algorithms make further assumptions on
the curves. The Fréchet distance and its variants, such as dynamic time-warping [22, 124],
have found various applications, with recent work particularly focusing on geographic
applications such as map matching [28, 176] (see also Chapter 6), moving-object analy-
sis [32, 33, 94] and simplification [1, 4, 68].

4.1 Preliminaries and overview
Throughout this chapter we assume that P and Q are open polygonal curves with m and
n edges respectively. Their vertices are denoted by p0, p1, . . . , pm and q0, q1, . . . , qn. For
the analysis, we assume thatm 6 n; because dF(P,Q) = dF(Q,P ), this assumption does
not violate its generality. First, we briefly recap the most significant concepts for deciding
whether dF(P,Q) 6 ε (see Section 2.4.2 for more details).
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The free-space diagram, FSD(P,Q), can be used to determine whether the Fréchet
distance is at most a given constant ε. This diagram represents the joint parameter space
and is partitioned into m columns and n rows, and thus m ·n cells in total. The free space
consists of the points in the diagram that represent pairs of points on the curves that are
within distance ε of one another. The reachable space, reach(P,Q), is the subset of the
free space that can be reached via a bimonotone path through the free space from (0, 0).
To decide dF(P,Q) 6 ε, we must decide whether (m,n) ∈ reach(P,Q). For this, it is
sufficient to consider only the boundaries of the cells. The free space of a cell boundary
is referred to as a door; its reachable subset is a reach-door. A door is said to be closed if
the interval is empty, and open otherwise. The reach-doors can be found in O(mn) time
through a simple traversal of the cells [10]. In the next sections we show how to obtain
the crucial information—whether (m,n) ∈ reach(P,Q)—in o(mn) instead.

4.1.1 Basic approach and intuition
In our algorithm for the decision problem, we essentially want to compute reach(P,Q).
But instead of propagating the reachability information cell by cell, we always group τ
by τ cells (with 1 � τ � n) into an elementary box of cells. When processing a box,
we can assume that we know which parts of the left and the bottom boundary of the box
are reachable. That is, we know the reach-doors on the bottom and left boundary, and we
need to compute the reach-doors on the top and right boundary of the elementary box.

These reach-doors are determined by the combinatorial structure of the elementary
box. More specifically, if we know for every row and column the order of the door
endpoints (including the reach-doors on the left and bottom boundary), we know which
door endpoints determine the reach-doors on the top and right boundary. We call the
sequence of these orders, the (full) signature of the box.

The total number of possible signatures is bounded by an expression in terms of τ .
Hence, if we pick τ sufficiently small compared to n, we can pre-compute for all possible
signatures the reach-doors on the top and right boundary. We describe a data structure to
query these quickly (Section 4.2). Since the reach-doors on the bottom and left boundary
are required to make the signature, we initially have only partial signatures. In Sec-
tion 4.3, we describe how to compute these efficiently. The partial signatures are then
used to preprocess the data structure such that we can quickly find the full signature once
we know the reach-doors of an elementary box. With this preprocessed data structure,
dF(P,Q) 6 ε can be decided efficiently by traversing the free-space diagram elementary
box by elementary box, as explained in Section 4.4.

4.1.2 Computational models
In this chapter we develop algorithms that depend on the model of computation. Below,
we briefly discuss these computational models.

Real RAM. The standard machine model in computational geometry is the real RAM.
Here, data is represented as an infinite sequence of storage cells. These cells can be
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of two different types: they can store real numbers or integers. The model supports
standard operations on these numbers in constant time, including addition, multiplication,
and elementary functions like square-root, sine or cosine. Furthermore, the integers can
be used as indices to memory locations. Integers can be converted to real numbers in
constant time, but we need to be careful about the reverse direction. The floor function
can be used to truncate a real number to an integer, but if we were allowed to use it
arbitrarily, the real RAM could solve PSPACE-complete problems in polynomial time.
Therefore, we usually have only a restricted floor function at our disposal.

Word RAM. The word RAM is essentially a real RAM without support for real numbers.
However, on a real RAM, the integers are usually treated as atomic, whereas the word
RAM allows for powerful bit-manipulation tricks. More precisely, the word RAM repre-
sents the data as a sequence of w-bit words, where w = Ω(logn). Data can be accessed
arbitrarily, and standard operations, such as Boolean operations (and, xor, shl, . . .),
addition, or multiplication take constant time. There are many variants of the word RAM,
depending on precisely which instructions are supported in constant time. AC0 is the
class of all functions f : {0, 1}∗ → {0, 1}∗ that can be computed by a family of circuits
(Cn)n∈N with the following properties:

(i) each Cn has n inputs;
(ii) there exist constants a, b, such that Cn has at most anb gates, for n ∈ N;

(iii) there is a constant d such that for all n the length of the longest path from an input
to an output in Cn is at most d (i.e., the circuit family has bounded depth);

(iv) each gate has an arbitrary number of incoming edges (i.e., the fan-in is unbounded).

The general consensus seems to be that any function in AC0 is acceptable. However, it
is always preferable to rely on a set of operations as small and simple as possible. Note
that multiplication is not in AC0, but nevertheless is usually included in the word RAM
instruction set.

Pointer machine. The pointer machine model disallows the use of constant time table
lookup, and is therefore a restriction of the (real) RAM model. The data structure is
modeled as a directed graph G with bounded out-degree. Each node in G represents
a record, with a bounded number of pointers to other records and a bounded number of
(real or integer) data items. The algorithm can access data only by following pointers from
the inputs (and a bounded number of global entry records); random access is not possible.
The data can be manipulated through the usual real RAM operations, but without support
for the floor function, for reasons mentioned above.

Algebraic computation tree. Algebraic computation trees (ACTs) [16] are the computa-
tional analogue of binary decision trees; like these, they are mainly used for proving lower
bounds. Let x1, . . . , xn ∈ R be the inputs. An ACT is a binary tree with two kinds of
nodes: computation and branch nodes. A computation node v has one child and is labeled
with an expression of the type yv = yu ⊕ yw, where ⊕ ∈ {+,−, ∗, /,√·} is an operator
and yu, yw is either an input variable x1, . . . , xn or corresponds to a computation node
that is an ancestor of v. A branch node has degree 2 and is labeled by yu = 0 or yu > 0,
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where again yu is either an input or a variable for an ancestor. An ACT Tn accepts inputs
of size n; each such input x1, . . . , xn, defines a path in Tn where children of a branch
nodes are determined according to the represented condition. This path in Tn constitutes
a computation that represents the answer in the encountered variables yv . A family of
algebraic computation trees (Tn)n∈N solves a computational problem, if for each n ∈ N,
the ACT Tn represents a correct computation for inputs of size n.

Algebraic decision trees are defined as follows. We allow only branch nodes; each
branch node is labeled with a predicate of the form p(x1, . . . , xn) = 0 or p(x1, . . . , xn) >
0. The leaves are labeled yes or no. Fix some r ∈ {1, . . . , n}. If p is restricted to be of
the form p(x1, . . . , xn) =

∑n
i=1 aixi − b, with at most r coefficients ai 6= 0, we call the

decision tree r-linear. Erickson [76] showed that any 3-linear decision tree for 3SUM has
depth Ω(n2). However, this bound does not say anything about more general predicates
(e.g. if p may include quadratic terms). This severely limits its applicability to geometric
problems. For example, there is no r-linear decision tree for the Fréchet problem, no
matter the choice of r: with r-linear decision trees, we cannot even decide whether two
given points p and q have Euclidean distance at most 1. Using general predicates, 3SUM
admits an algebraic decision tree of depth O(n3/2

√
log n) [93].

4.2 Building a lookup table

4.2.1 Preprocessing an elementary box

Before it considers the input, our algorithm builds a lookup table to speed up the compu-
tation of small parts of the free-space diagram.

Let τ ∈ N be a parameter. The elementary box is a partition of [0, τ ]2 into τ columns
and rows, thus τ2 cells. For (i, j) ∈ {0, . . . , τ−1}2, we denote the cell [i, i+1]×[j, j+1]
with D(i, j). As with cells in the free-space diagram, we denote the left side of the
boundary ∂D(i, j) by Li,j and the bottom side by Bi,j . Note that Li,j coincides with the
right side of ∂D(i− 1, j) and Bi,j with the top of ∂D(i, j − 1). Thus, we write Lτ,j for
the right side of ∂D(τ − 1, j) and Bi,τ for the top side of ∂D(i, τ − 1). The door on a
vertical side Li,j , the intersection of the boundary with the free space, is denoted by LF

i,j ;
the reach-door, the intersection with reach(P,Q), is denoted by LR

i,j . We use analogous
notation for the horizontal sides Bi,j . Figure 4.1 shows the elementary box. For now, the
elementary box is a combinatorial concept. In Section 4.3 and Section 4.4, we overlay
these boxes on the free-space diagram to obtain “concrete” elementary boxes.

The door-order σr
j for a row j is a permutation of {s0, t0, . . . , sτ , tτ}, thus having

2τ + 2 elements. For i ∈ {1, . . . , τ}, the element si represents the lower endpoint of
LF
i,j , and ti represents the upper endpoint. If the door is closed, si comes after ti in

σr
j . The elements s0 and t0 are an exception: they describe LR

0,j , the reach-door on the
leftmost boundary in the row. The door-order σr

j represents the combinatorial order of
these endpoints, as projected onto a vertical line, i.e., they are sorted into their vertical
order. Some door-orders may encode the same combinatorial structure. In particular
when door i is closed, the exact position of si and ti in a door-order is irrelevant, up to ti
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Figure 4.1 The elementary box. The cell D(2, 1) is shown white. Its four
sides—L2,1, L3,1, B2,1, B2,2—are indicated.
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Figure 4.2 The door-order of a row (the vertical order of the points) encodes
the combinatorial structure of the doors. The door-order for the
row in the figure is 〈s1, s3, s4, t5, t3, t0, s2, t4, s0, s5, t1, t2〉. Note
that s0 and t0 represent the reach-door, which is empty in this case.
These are omitted in the partial door-order.

l(i− 1, j)
l(i, j)

l(i− 1, j)
l(i, j)

b(i− 1, j)

l(i, j)

(a) (b) (c)

Figure 4.3 The three cases for the recursive definition of l(i, j). (a) If the
lower boundary is reachable, the complete right door is reachable.
(b) If the lower boundary is not reachable but the left is, the lower
boundary is the maximum of l(i− 1, j) and the lower boundary of
the right door. (c) Otherwise, neither the lower nor the left bound-
ary is reachable; the right door is not reachable either.
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being before si. For a closed door i (i > 0), we assign si to the upper endpoint of l(i, j)
and ti to the lower endpoint. The values of s0 and t0 are defined by the reach-door and
their relative order is thus a result of the computation. We break ties between si and ti′ by
placing si before ti′ , and any other ties are resolved by index. A door-order σc

i is defined
analogously for a column i. We write x <c

i y if x comes before y in σc
i , and x <r

j y if x
comes before y in σr

j . A partial door-order is a door-order in which s0 and t0 are omitted
(i.e., the reach-door is still unknown). A door-order is illustrated in Figure 4.2.

We define the (full) signature of the elementary box as the aggregation of the door-
orders of its rows and columns. Therefore, a signature Σ = (σc

1, . . . , σ
c
τ , σ

r
1, . . . , σ

r
τ )

consists of 2τ door-orders: one door-order σc
i for each column i and one door-order σr

j

for each row j of the elementary box. Similarly, a partial signature is the aggregation
of partial door-orders. For a given signature, we define the combinatorial reachability
structure of the elementary box as follows. For each column i and for each row j, the
combinatorial reachability structure indicates which door endpoints in the respective col-
umn or row define the reach-door BR

i,τ or LR
τ,j .

Lemma 4.2. Let Σ be a signature for the elementary box. Then we can determine the
combinatorial reachability structure of Σ in total time O(τ2).

Proof. We use dynamic programming, very similar to the algorithm by Alt and Go-
dau [10]. For each vertical edge Li,j we define a variable l(i, j), and for each horizontal
edge Bi,j we define a variable b(i, j). The l(i, j) are pairs of the form (su, tv), repre-
senting the reach-door LR

i,j . If this reach-door is closed, then tv <r
j su holds. If the

reach-door is open, then it is bounded by the lower endpoint of the (free-space) door LF
u,j

and by the upper endpoint of LF
v,j . In the second case, v is always equal to i. Once again,

s0 and t0 are special and represent the reach-door LR
0,j instead of the door LF

0,j . The vari-
ables b(i, j) are defined analogously. Now we can compute l(i, j) and b(i, j) recursively
as follows. First, for j ∈ {0, . . . , τ − 1}, we set l(0, j) to the reach-door (s0, t0) for the
row j as given by Σ. Analogously, we set the values b(i, 0) for i ∈ {0, . . . , τ − 1}.

Next, we describe how to find l(i, j) given l(i − 1, j) and b(i − 1, j), based on three
cases; this is also illustrated in Figure 4.3. Note that this is analogous to the regular
computation of reachability (see Section 2.4.2).

(1) Suppose b(i− 1, j) is open. This means that Bi−1,j is reachable and thus reach-door
LR
i,j is limited only by the free-space door LF

i,j . Hence, we can set l(i, j) := (si, ti).
(2) If b(i−1, j) is closed and l(i−1, j) is open, we may be able to reach Li,j via Li−1,j .

Let su be the lower endpoint of l(i − 1, j). We need to pass l(i, j) above su and si
and below ti. Therefore, we set l(i, j) := (max(su, si), ti), where the maximum is
taken according to the order <r

j .
(3) If both b(i− 1, j) and l(i− 1, j) are closed, it is impossible to reach Li,j . Hence, we

must set l(i, j) to be closed as well; we set l(i, j) := l(i− 1, j).

The recursion for the variable b(i, j) is defined similarly. We can implement the recursion
in O(τ2) time for any given signature, for example, by traversing the elementary box
column by column, while processing each column from bottom to top.
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There are at most ((2τ + 2)!)2τ = τO(τ2) distinct signatures for the elementary box.
We choose τ = λ

√
log n/ log log n for a sufficiently small constant λ > 0, so that this

number becomes o(n). The constant λ is used to compensate for the constant hidden
by the O-notation in the number of signatures, τO(τ2). Thus, during the preprocessing
stage we have time to enumerate all possible signatures and determine the corresponding
combinatorial reachability structure inside the elementary box. This information is then
stored in an appropriate data structure, as described in the next section.

4.2.2 Building the data structure
Before we describe our data structure, we first explain how the door-orders are repre-
sented. This depends on the computational model. By our choice of τ , there are o(n)
distinct door-orders. On the word RAM, we represent each door-order and partial door-
order by an integer between 1 and (2τ)!. This fits into a word of log n bits. On the pointer
machine, we create a record for each door-order and partial door-order; we represent an
order by a pointer to the corresponding record.

The data structure has two stages, as schematically depicted in Figure 4.4. In the first
stage (Figure 4.4(a–b)), we compute the partial signature from the partial door-orders.
For this stage we assume that we know the partial door-order for each row and for each
column of the elementary box. In the next section we describe how to determine the partial
door-orders efficiently to fulfill this assumption. In the second stage (Figure 4.4(c–d)), we
have obtained the reach-doors for the left and bottom sides of the elementary box, and we
determine the full signature. The details of our method depend on the computational
model. One way uses table lookup and requires the word RAM; the other way works on
the pointer machine, but is a bit more involved.

Word RAM. We organize the lookup table as a large tree T . In the first stage, each level
of T corresponds to a row or column of the elementary box. Thus, there are 2τ levels.

(b) partial signature

(d) full signature

root

(a) partial door-orders

(c) reach-doors

combinatorial reachability

Figure 4.4 Overview of the data structure. (a–b) Using partial door-orders, we
find the partial signature of an elementary box. (c–d) Using the
reach-doors on the bottom and left boundary of a box, we find the
full signature and the combinatorial reachability.
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Each node has (2τ)! children, representing the possible partial door-orders for the next
row or column. Since we represent door-orders by positive integers, each node of T may
store an array for its children; we can choose the appropriate child for a given partial
door-order in constant time. Thus, determining the partial signature for an elementary
box requires O(τ) steps on a word RAM.

For the second stage, we again use a tree structure. Now the tree hasO(τ) layers, each
withO(log τ) levels. Again, each layer corresponds to a row or column of the elementary
box. The levels inside each layer then implement a balanced binary search tree that allows
us to locate the endpoints of the reach-door within the partial signature. Since there are
2τ endpoints, this requires O(log τ) levels. Thus, it takes O(τ log τ) time to find the full
signature of a given elementary box.

Pointer model. Unlike in the word RAM model, we are not allowed to store a lookup
table on every level of the tree T , and there is no way to quickly find the appropriate child
for a given door-order. Instead, we must rely on batch processing to achieve a reasonable
execution time.

Thus, suppose that during the first stage we want to find the partial signatures for a set
B of elementary boxes; for each box in B we know the partial door-order for each row
and each column. Recall that we represent the door-order by a pointer to the correspond-
ing record. With each such record, we store a queue of elementary boxes that is empty
initially.

We now simultaneously propagate the boxes in B through T , proceeding level by
level. In the first level, all of B is assigned to the root of T . Then, we go through the
nodes of one level of T , from left to right. Let v be the current node of T . We consider
each elementary box b assigned to v. We determine the next partial door-order for b, and
we append b to the queue for this partial door-order. This queue is addressed through the
corresponding record, so all elementary boxes with the same next partial door-order end
up in the same queue. Next, we go through the nodes of the next level, again from left
to right. Let v′ be the current node. The node v′ corresponds to a next partial door-order
σ that extends the known signature of its parents. We consider the queue stored at the
record for σ. By construction, the elementary boxes that should be assigned to v′ appear
consecutively at the beginning of this queue. We remove these boxes from the queue and
assign them to v′. After this, all the queues are empty, and we can continue by propagating
the boxes to the next level. During this procedure, we traverse each node of T a constant
number of times, and in each level of the T we consider all boxes in B. Since T has o(n)
nodes, the total running time is O(n+ |B|τ).

For the second stage, the data structure works just as in the word RAM case, because
no table lookup is necessary. Again, we need O(τ log τ) steps to process one box.

After the second stage we obtain the combinatorial reachability structure of the box in
constant time, since we precomputed this information for each box. Thus, we have shown
the following lemma, independently of the computational model.

Lemma 4.3. For τ = λ
√

log n/ log log n with a sufficiently small constant λ > 0, we
can construct in o(n) time a data structure of size o(n) such that
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• given a set B of elementary boxes where the partial door-orders are known, we can
find the partial signature of each box in total time O(n+ |B|τ);
• given the partial signature and the reach-doors on the bottom and left boundary of

an elementary box, we can find the full signature in O(τ log τ) time;
• given the full signature of an elementary box, we can find the combinatorial reach-

ability structure of the box in constant time.

4.3 Preprocessing a given input

Next, we perform a second preprocessing phase that considers the input curves P and
Q. Our final goal is to compute the intersection of reach(P,Q) with the cell boundaries,
taking advantage of the data structure from Section 4.2. For this, we aggregate the cells of
FSD(P,Q) into (concrete) elementary boxes consisting of τ × τ cells. There are mn/τ2

such boxes. We may avoid rounding issues by either duplicating vertices or handling a
small part of FSD(P,Q) without lookup tables.

The goal is to determine the signature for each elementary box S. At this point this
is not quite possible yet, since the signature depends on the intersection of reach(P,Q)
with the lower and left boundary of S. Nonetheless, we can find the partial signature, in
which the positions of s0, t0 (the reach-door) in the partial door-orders σr

i, σ
c
j are still to

be determined.
As illustrated in Figure 4.5, we aggregate each column of elementary boxes into a ver-

tical strip, that is, τ consecutive columns of cells in FSD(P,Q). Likewise, we aggregate
each row of elementary boxes into a horizontal strip. Thus, there are m/τ vertical and
n/τ horizontal strips. Let A be a vertical strip, corresponding to a subcurve P ′ of P with
τ edges. The following lemma implies that we can build a data structure for A such that,
given any edge of Q, we can efficiently find its partial door-order within the elementary
box in A.

P

Q

Q

P

τ τ τ

τ

τ

τ

Figure 4.5 The free-space diagram is subdivided into mn/τ2 elementary
boxes of size τ × τ . A strip is a column of elementary boxes:
it corresponds to a subcurve of P with τ edges.



4.3. Preprocessing a given input 51

P ′

s

`s

A

`s

Bε

Figure 4.6 By using the arrangement A defined by circles with radius ε cen-
tered at vertices of P ′, we can determine the partial door-order of
each segment s on Q. This is done by locating the dual point of
`s in the dual arrangement B. The dual arrangement also contains
pseudolines to determine when `s leaves a circle of A.

Lemma 4.4. There exists a constant c such that the following holds: given a subcurve P ′

with τ edges, we can compute in O(τ c) time a data structure that requires O(τ c) space
and that allows us to determine the partial door-order of any edge of Q in time O(log τ).

Proof. Consider the arrangementA of circles with radius ε whose centers are the vertices
of P ′ (see Figure 4.6). The partial door-order of a line segment s is determined by the
intersections of s with the arcs of A and, for a circle not intersecting s, by whether s lies
inside or outside of the circle. Let `s be the line spanned by line segment s. Suppose we
wiggle `s. The order of intersections of `s and the arcs ofA changes only when `s moves
over a vertex of A or if `s leaves or enters a circle.

We use the standard duality transform that maps a line ` : y = ax + b to the point
`∗ : (a,−b), and vice versa. Consider a circle C in A with center (cx, cy). Elementary
geometry shows that the set of all lines that are tangent to C from above dualizes to
the curve t∗a(C) : y = cxx − cy − ε

√
1 + x2. Similarly, the lines that are tangent to

C from below dualize to the curve t∗b(C) : y = cxx − cy + ε
√

1 + x2. Define C∗ :=
{t∗a(C), t∗b(C) | C ∈ A}. Since any pair of distinct circles C1, C2 has at most four
common tangents, one for each choice of above or below C1 and above or below C2, it
follows that any two curves in C∗ intersect at most once.

Let V be the set of vertices in A, and let V ∗ be the lines dual to the points in V (note
that |V | = O(τ2)). Since for any vertex v ∈ V and any circle C ∈ A there are at most
two tangents through v on C, each line in V ∗ intersects each curve in C∗ at most once.
Thus, the arrangement B of the curves in V ∗ ∪C∗ is an arrangement of pseudolines with
complexityO(τ4). Furthermore, it can be constructed in the same expected time, together
with a point location structure that finds the containing cell in B of any given point in time
O(log τ) [159, Chapter 6.6.1].

Now consider a line segment s and the supporting line `s. As observed in the first
paragraph, the combinatorial structure of the intersection between `s andA is completely
determined by the cell of B that contains the dual point `∗s . Thus, for every cell f(s) ∈ B,
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we construct a list Lf(s) that represents the combinatorial structure of `s ∩ A. There are
O(τ4) such lists, each having size O(τ). We can compute Lf(s) by traversing the zone of
`s in A. Circles intersect at most twice and also a line intersects any circle at most twice;
hence, the zone has complexity O(τ2α(τ)), where α(·) denotes the inverse Ackermann
function [159, Theorem 5.11]. Since O(τ2α(τ)) ⊂ O(τ2), we can compute all lists in
O(τ6) time.

Given the list Lf(s), the partial door-order of s is determined by the position of the
endpoints of s in Lf(s). There are O(τ2) possible ways for this, and we build a table
Tf(s) that represents them. For each entry in Tf(s), we store a representative for the
corresponding partial door-order. As described in the previous section, the representative
is a positive integer in the word RAM model and a pointer to the appropriate record on a
pointer machine.

The total size of the data structure isO(τ6) and it can be constructed in the same time.
A query works as follows: given s, we can compute `∗s in constant time. Then we use the
point location structure of B to find f(s) in O(log τ) time. Using binary search on Tf(s)

(or an appropriate tree structure in the case of a pointer machine), we can then determine
the position of the endpoints of s in the list Lf(s) inO(log τ) time. This bound holds both
on the word RAM and on the pointer machine.

Lemma 4.5. Given the data structure of Lemma 4.3, the partial signature of each elemen-
tary box can be determined in O(nτ c−1 +mn(log τ)/τ) time for some constant c.

Proof. For each of the m/τ vertical strips, we build the data structure from Lemma 4.4.
We query this data structure to determine the partial door-order of each of the n rows in
the corresponding elementary boxes. Thus, in total, this takes O(mτ (τ c + n log τ)) =
O(mτ c−1 + mn log τ/τ) time. We repeat the procedure with the horizontal strips; this
step runs in O(nτ c−1 +mn log τ/τ).

We now know, for each elementary box in FSD(P,Q), the partial door-order for each
row and each column. We use the data structure of Lemma 4.3 to combine them. As there
are mn/τ2 boxes, the number of steps is O(n+mn/τ) = O(mn/τ). Hence, the partial
signature for each elementary box is computed in O(nτ c−1 +mn(log τ)/τ).

4.4 Solving the decision problem

With the data structures and preprocessing steps from the previous sections, we have all
elements in place to determine whether dF(P,Q) 6 ε. We know for each elementary box
its partial signature. In addition, we have a data structure to derive its full signature (and
with it, the combinatorial reachability structure) when its reach-doors are known. What
remains to be shown is that we can efficiently process the free-space diagram to determine
whether (m,n) ∈ reach(P,Q). This is captured in the following lemma.

Lemma 4.6. If the partial signature for each elementary box is known, we can determine
whether (m,n) ∈ reach(P,Q) in time O(mn(log τ)/τ).
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Proof. We go through all of the elementary boxes of FSD(P,Q), processing them one
row at a time, going from left to right in each row. Initially, we know the full signature
for box S in the lower left corner of FSD(P,Q). We use the signature to determine the
intersections of reach(P,Q) with the upper and right boundary of S. There is a subtlety
here: the signature gives us only the combinatorial reachability structure. Hence, we
need to map the resulting si, tj back to the corresponding vertices on the curves. On the
word RAM, this can be done easily through constant-time table lookups. On the pointer
machine, we use representative records for the si, ti elements and use O(τ) time before
processing the box to store a pointer from each representative record to the appropriate
vertices on P and Q.

We proceed similarly for the other boxes. By the choice of the processing order of
the elementary boxes, we always know the incoming reach-doors on the bottom and left
boundary when processing a box. Given the incoming reach-doors, we determine the full
signature and find the structure of the outgoing reach-doors in total timeO(τ log τ), using
Lemma 4.3. Again, we need O(τ) additional time on the pointer machine to establish
the mapping from the abstract si, ti elements to the concrete vertices of P and Q. In
total, we spend O(τ log τ) time per box and there are mn/τ2 boxes. Thus, it takes time
O(mn(log τ)/τ) to process all boxes, as claimed.

As a result, we obtain the following theorem for a pointer machine (and by extension,
for the real RAM model). For the word RAM model, we obtain a slightly faster algorithm
(see Section 4.5).

Theorem 4.7. On a pointer machine, the decision version of the Fréchet problem can be
solved in O(mn(log log n)3/2/

√
log n) time on a pointer machine, assuming m 6 n and

m = Ω(log3 n).

Proof. Set τ = λ
√

log n/ log log n for a sufficiently small constant λ > 0. By ap-
plying Lemmas 4.3, 4.5, and 4.6 in sequence, we derive that the decision problem can
be solved in O(nτ c−1 + mn(log τ)/τ). The second term dominates the first if m is
sufficiently large, that is, if m = Ω(τ c/ log τ). Filling in our choice for τ results in
m = Ω(logc/2 n/((log log n)c/2(log log n− log log log n))). Discarding the divisor, this
can be simplified to m = Ω(logc/2 n). From the proof of Lemma 4.4, we know that
c = 6, thus resulting in the posed restriction on m.

4.5 Improved bound on word RAM
We now explain how the execution time of our algorithm can be improved if our com-
putational model allows for constant time table-lookup. We use the same τ as above (up
to a constant factor). However, we change a number of things. “Signatures” are repre-
sented differently and the data structure to obtain combinatorial reachability structures
is changed accordingly. Furthermore, we aggregate elementary boxes into clusters and
determine “partial door-orders” for multiple boxes at the same time. Finally, we traverse
the free-space diagram based on the clusters to decide dF(P,Q) 6 ε.
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R
R′

τ

τ

τ

τττ

Figure 4.7 A cluster consists of τ × τ elementary boxes, thus of τ2× τ2 cells.
A row R and its corresponding R′ for the central elementary box
are indicated in orange.

Clusters and extended signatures. We introduce a second level of aggregation in the
free-space diagram (see Figure 4.7): a cluster is a collection of τ × τ elementary boxes,
that is, τ2 × τ2 cells in FSD(P,Q). Let R be a row of cells in FSD(P,Q) of a certain
cluster. As before, the row R corresponds to an edge e on Q and a subcurve P ′ of P with
τ2 edges. We associate with R an ordered set Z = 〈e0, z

′
0, z1, z

′
1, z2, z

′
2, . . . , zk, z

′
k, e1〉

with 2k + 3 elements. Here, k is the number of intersections of e with the circles with
radius ε centered at the τ vertices of P ′ (all but the very first). Hence, k is bounded by 2τ
and |Z| is bounded by 4τ + 3. The order of Z indicates the order of these intersections
with e directed along Q. Elements e0 and e1 represent the endpoints of e and take a
special role. In particular, these are used to represent closed doors and to snap open doors
to edge e. The elements z′i are placeholders for the positions of the endpoints of the reach-
doors: z′0 represents a possible reach-door endpoint between e0 and z1, the element z′1 is
an endpoint between z1 and z2, etc.

Consider a row R′ of an elementary box inside a row R of a cluster; let e denote the
edge ofQ that corresponds toR′. The door-index ofR′ is an ordered set 〈s0, t0, . . . , sτ , tτ 〉
of size 2τ + 2. Similar to a door-order, elements s0 and t0 represent the reach-door at the
leftmost boundary ofR′; the elements si and ti (1 6 i 6 τ ) represent the door at the right
boundary of the ith cell in R′. However, instead of rearranging the set to indicate relative
positions, the elements si and ti simply refer to an element in Z. If the door is open, they
refer to the intersections with e (possibly snapped to e0 or e1). If the door is closed, si is
set to e1 and ti is set to e0. The elements s0 and t0 are special: they represent the reach-
door and refer to one of the elements z′i. A partial door-index is a door-index without s0

and t0. The advantage of a door-index over a door-order is that the reach-door is always
at the start. Hence, completing a partial door-index to a full door-index can be done in
constant time. Since a door-index has size 2τ + 2, the number of possible door-indices
for R′ is τO(τ).
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We define the door-indices for the columns analogously. We concatenate the door-
indices for the rows and the columns to obtain the indexed signature for an elementary
box. Similarly, we define the partial indexed signature. The total number of possible
indexed signatures remains τO(τ2).

For each possible partial indexed signature Σ we build a lookup table TΣ as follows:
the input is a word with 4τ fields of O(log τ) bits each. Each field stores the positions in
Z of the endpoints of the ingoing reach-doors for the elementary box: 2τ fields for the
left side, 2τ fields for the lower side. The output consists of a word that represents the
indices for the elements in Z that represent the outgoing reach-doors for the upper and
right boundary of the box. Thus, the input of TΣ is a word of O(τ log τ) bits, and TΣ has
size τO(τ). Hence, for all partial indexed signatures combined, the size is τO(τ2) = o(n)
by our choice of τ .

Preprocessing a given input. During the preprocessing of the given input, we use super-
strips consisting of τ strips. That is, a superstrip is a column of clusters and consists of τ2

columns of the free-space diagram. Lemma 4.4 still holds, albeit with a larger constant
c (originally, c = 6). Essentially, τ has become τ2 in this analysis; hence, the construc-
tion time and space of the data structure become O((τ2)6) = O(τ12). The query time
remains logarithmic in τ as O(log τ2) = O(log τ). The data structure gets as input a
query edge e, and it returns in O(log τ) time a word that contains τ fields. Each field
represents the partial door-index for e in the corresponding elementary box and thus con-
sists of O(τ log τ) bits. Hence, the word size is O(τ2 log τ) = O(log n) by our choice
of τ . Thus, the total time for preprocessing the input, building a data structure for each
of the O(m/τ2) superstrips and for processing all n rows is O(m/τ2 (τ c + n log τ)) =
O(mτ c−2 +mn(log τ)/τ2). We repeat this procedure for the horizontal superstrips, tak-
ing O(nτ c−2 +mn(log τ)/τ2) time.

We now have parts of the partial indexed signature for each elementary box packed
into different words. To obtain the partial indexed signature, we need to rearrange the
information such that the partial door-indices of the rows in one elementary box are in a
single word. This corresponds to computing a transposition of a matrix, as is illustrated
in Figure 4.8. For this, we need the following lemma, which was proven—in slightly
different form—by Thorup [165, Lemma 9].

(a) (b) (c)

Figure 4.8 (a) A field represents the partial door-index of a row in an elemen-
tary box. (b) The fields are grouped into words per row in a cluster.
(c) Transposition yields the desired organization, where a word rep-
resents the partial door-indices of rows in an elementary box.
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Lemma 4.8. Let X be a sequence of τ words that contain τ fields each, so that X can be
interpreted as a τ × τ matrix. Then we can compute in time O(τ log τ) on a word RAM
a sequence Y of τ words with τ fields each that represents the transposition of X .

Proof. The algorithm is recursive and solves the following more general problem. Let X
be a sequence of a words that represents a sequence M of b different a×a matrices, such
that the jth word in X contains the fields of the jth row of each matrix in M from left to
right. Compute a sequence of words Y that represents the sequence M ′ of the transposed
matrices in M .

The recursion works as follows. If a = 1, there is nothing to be done. Otherwise, we
split X into the sequence X1 of the first a/2 words and the sequence X2 of the remaining
words. X1 and X2 now represent a sequence of 2b matrices, each of size (a/2)× (a/2),
which we transpose recursively. After the recursion, we put the (a/2) × (a/2) subma-
trices back together in the obvious way. To finish, we need to transpose the off-diagonal
submatrices. This can be done simultaneously for all matrices in time O(a), by using
appropriate bit-operations (or table lookup).

Hence, the execution time obeys a recursion of the form T (a) = 2T (a/2) + O(a),
giving T (a) = O(a log a), as desired.

By applying the lemma to the words that represent τ consecutive rows in a superstrip,
we obtain the partial door-indices of the rows for each elementary box. This takes total
timeO((m/τ2)·(n/τ)·τ log τ) = O(mn(log τ)/τ2) for the vertical superstrips and, sim-
ilarly, O(mn(log τ)/τ2) for the horizontal superstrips. By using an appropriate lookup
table to combine the partial door-indices of the rows and columns, we obtain the partial
indexed signature for each elementary box in total time O(nτ c−2 +mn(log τ)/τ2).

The actual computation. We traverse the free-space diagram cluster by cluster (recall
that a cluster consists of τ × τ elementary boxes). The clusters are processed column by
column from left to right, and inside each column from bottom to top. Before process-
ing a cluster, we walk along the left and lower boundary of the cluster to determine the
incoming reach-doors. This is done by performing a binary search for each box on the
boundary, and determining the appropriate elements z′i that correspond to the incoming
reach-doors. Using this information, we assemble the appropriate words that represent
the incoming information for each elementary box. Since there are mn/τ4 clusters, this
step requires time O((mn/τ4)τ2 log τ) = O(mn(log τ)/τ2). We then process the el-
ementary boxes inside the cluster, in a similar fashion. Now, however, we can process
each elementary box in constant time through a single table lookup, so the total time is
O(mn/τ2). Hence, including the preprocessing time, the total execution time of our al-
gorithm is O(nτ c−2 + mn(log τ)/τ2). By our choice of τ = λ

√
log n/ log log n for a

sufficiently small λ > 0, we obtain the following theorem.

Theorem 4.9. On a word RAM machine, the decision version of the Fréchet problem can
be solved in O(mn(log log n)2/ log n) time, assuming m 6 n and m = Ω(log6 n).

Note that we again require m to be sufficiently large, such that the τ c−2 term is dom-
inated by m(log τ)/τ2. As c increased from 6 to 12, this bound has increased slightly.
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4.6 Solving the optimization problem
The optimization version of the Fréchet problem, i.e., computing the Fréchet distance,
can be done in O(mn log n) time using parametric search with the quadratic-time algo-
rithm for solving the decision version as a subroutine [10]. We showed that the decision
problem can be solved in subquadratic time. However, this does not directly yield a faster
algorithm for the optimization problem: if the execution time of the decision problem
is T (m,n), parametric search gives an O((T (m,n) + mn) log n) time algorithm [10].
There is an alternative randomized algorithm by Har-Peled and Raichel [98]. Their algo-
rithm also requires O((T (m,n) + mn) log n) time, but below we adapt it to obtain the
following lemma.

Lemma 4.10. The Fréchet distance of two curves with m and n vertices (assuming m 6
n) can be computed by a randomized algorithm in O(n2 + mn2α(n) + T (m,n) log n)
expected time, where T (m,n) is the time for the decision problem.

Recall that the possible values of the Fréchet distance are limited to a set of critical
values (see Section 2.4.2 or [10]).

(A) Point (0, 0) or (m,n) becomes part of the free space; the associated critical values
are ‖P (0)−Q(0)‖ and ‖P (m)−Q(n)‖ respectively.

(B) A new passage is created on a cell boundary; the associated critical value is the
minimal distance between the vertex and edge corresponding to the boundary.

(C) A new passage is created from one cell boundary to another within the same row or
column. This corresponds to two vertices of one curve and an edge of the other. The
associated critical value is the distance from one of the vertices to the intersection of
the edge and the bisector of the vertices.

We extend the type-A events to include all vertex-vertex pairs, not just the endpoints
of the two curves. If we also include type-C events (vertex-vertex-edge tuples) with no
intersection, we can sample a critical value uniformly at random in constant time. We refer
to these events and values as extended critical events and extended critical values. The
algorithm now works as follows (see Har-Peled and Raichel [98], or the arXiv version [99]
for more details): first, we sample a set S ofK = 4mn extended critical values uniformly
at random. Next, we find a, b ∈ S such that the Fréchet distance lies between a and
b and such that [a, b] contains no other value from S. In the original algorithm this is
done by sorting S and performing a binary search using the decision version. Using
linear-time median-finding instead, this step can be done in O(K+T (m,n) logK) time.
Alternatively, the execution time of this step could be reduced by picking a smaller K.
However, this does not improve the final bound, since it is dominated by a O(mn2α(n))
component. The interval [a, b] with high probability contains only a small number of the
remaining extended critical values. For K = 4n2 (i.e., m = n) the probability that [a, b]
has more than 2cn lnn extended critical values is at most 1/nc [99, Lemma 6.2]. Using
the same ideas, we prove this result in its more general form.
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Lemma 4.11. Let S be a set of 4mn randomly sampled extended critical values for two
curves of m and n edges. Let a, b ∈ S such that the Fréchet distance lies between a and
b and such that [a, b] contains no other value from S. Assuming m 6 n, the probability
that [a, b] contains more than 2cn lnn extended critical values is at most 1/nc.

Proof. The number of extended critical values of type A is (m+ 1)(n+ 1); of type B is
m(n+1)+(m+1)n; of type C ismn(m+n)/2−1. Hence, assuming sufficiently large n,
the total number of extended critical values isN = 3mn+2m+2n+mmn/2+mnn/2 6
3mn + 2m + 2n + mnn 6 2mnn. Let d∗ denote the (extended) critical value that
determines the Fréchet distance. LetU− denote the largest cn lnn extended critical values
that are smaller than or equal to d∗; similarly, U+ denotes the smallest cn lnn extended
critical values that are larger than or equal to d∗. The derivation below proves that the
probability that S contains no value from U− is at most 1/nc.(

1− |U
−|
N

)|S|
6

(
1− cn lnn

2mnn

)4mn

=

(
1 +
−2c lnn

4mn

)4mn

6 e−2c lnn =
1

n2c

The same holds for U+. Hence, the probability that S contains a value of both U− and
U+ is at least (1 − (1/n2c))2 = 1 − 2/n2c + 1/n4c > 1 − 2/n2c. If S contains a value
from both U− and U+, then the number of extended critical values in [a, b] is bound by
their combined size, that is, by 2cn lnn. Thus, the probability that [a, b] contains more
critical values is at most 2/n2c. This bound is slightly stronger than the one given by
Har-Peled and Raichel [98]; using n2c > 2nc, we obtain the desired result.

Let K ′ denote the number of extended critical values in the interval [a, b]. The re-
mainder of the algorithm determines the critical values in the interval [a, b] and performs
another binary search. As the critical values are included in the extended critical values,
this number of critical values is also bounded by K ′. Excluding the time to determine the
critical values, this therefore takes O(K ′ + T (m,n) logK ′) time with median-finding.
Thus, the crucial part is to determine the critical values.

In O(mn) time we can check for all possible type-A and type-B events whether the
corresponding critical value lies in [a, b]. It remains to determine the critical values cor-
responding to type-C events. These critical values are found by a standard sweepline
algorithm. To this end, take an edge e of P and the vertices of Q. The sweep starts with
circles of radius a around the vertices of Q, and it increases the radii until they reach b.
During this sweep, the algorithm maintains the order in which the circle arcs intersect e. A
critical value of a type-C event corresponds to the event that two different circles intersect
e in the same point. Besides these events the sweepline algorithm requires the following
events: (a) a circle intersects one of the vertices of e; (b) a circle intersects e for the first
time. These correspond exactly to extended type-A or type-B critical values involving e
or a vertex of e. Hence, if we perform a sweep for each edge of P (and similarly for Q),
the total number of events is O(K ′). The overall execution time of all sweeps ignoring
the time for initialization is O(K ′ log n).

It remains to show that we can quickly find the initial order in which the circles in-
tersect e. First, compute the arrangement A of circles with radius a around the vertices
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of Q. This takes O(n2) time [54]. To find the intersection order, traverse in A the zone
of the line ` spanned by e. The time for the traversal is bounded by the complexity of
the zone. Since the circles pairwise intersect at most twice and ` intersects each circle
only twice, the complexity of the zone is O(n2α(n)) [159, Theorem 5.11]. As we need to
constructA only once and m 6 n, this adds a total of O(n2 +mn2α(n)) to the execution
time. Hence, the overall time is O(T (m,n) log(n) + n2 + mn2α(n) + K ′ log n). The
case K ′ > 8n lnn has probability less than 1/n4, and we always have K ′ = O(mn2).
Thus, the last term adds o(1) to the expected running time. Given K ′ 6 8n lnn, the last
term is O(n log2 n) and is subsumed by the O(n2) term. Lemma 4.10 follows.

Theorem 4.12 now results from Lemma 4.10, Theorem 4.7, and Theorem 4.9.

Theorem 4.12. The Fréchet distance of two open polygonal curves with m and n edges
(m 6 n) can be computed by a randomized algorithm inO(n2+mn

√
log n(log log n)3/2)

time on a pointer machine (assumingm = Ω(log3 n)) and in timeO(n2+mn(log log n)2)
on a word RAM (assuming m = Ω(log6 n)).

We observe that this algorithm is faster than Alt and Godau’s O(mn log n)-time algo-
rithm if m = ω(n/ log n), that is, if m is near-linear in n.

4.7 Decision trees
Our results also have implications for the decision-tree complexity of the Fréchet problem.
Since in that model we account only for comparisons between the input elements, the
preprocessing comes for “free”. As a result, the size of the elementary boxes can be
increased. For this section, we assume that the two curves have equal complexity (i.e.,
m = n). This is the most interesting case from a theoretic point of view in light of Alt’s
conjecture.

Before we consider the continuous Fréchet problem, we first note that the techniques
of Agarwal et al. [3] can be used to obtain a similar result for the discrete Fréchet problem:
suppose we have two sequences P = 〈p1, p2, . . . , pn〉 and Q = 〈q1, q2, . . . , qn〉. For δ >
0, we define a directed graph Gδ with vertex set P ×Q. In Gδ , there is an edge between
two vertices (pi, qj), (pi, qj+1) if and only if both d(pi, qj) 6 δ and d(pi, qj+1) 6 δ.
The condition is similar for an edge between vertices (pi, qj) and (pi+1, qj), and vertices
(pi, qj) and (pi+1, qj+1). There are no further edges in Gδ . Now the problem is to
find the smallest δ for which Gδ has a path from (p1, q1) to (pn, qn). For the discrete
Fréchet problem we obtain the following bound, where we use Õ(·) to indicate O(·) up
to polylogarithmic factors.

Theorem 4.13. There is an algebraic computation tree for the discrete Fréchet problem
of depth Õ(n4/3).

Proof. We first discuss the decision problem, where we are given curves P ,Q and a value
δ, and we need to decide whether we can reach (pn, qn) from (p1, q1). For the discrete
case, the analogue of the reachable free space is just an n× n boolean matrix M . In this
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matrix, the bit in the ith column and the jth row indicates whether the pair (pi, qj) can be
reached from (p1, q1) in Gδ .

As shown by Katz and Sharir [112], we can compute a representation of the set of
points (pi, qj) with ||pi − qj || 6 δ in Õ(n4/3). This information suffices to complete
M without further comparisons. As shown by Agarwal et al. [3], one can then solve the
optimization problem at the cost of another O(log n)-factor, which is absorbed into the
Õ-notation.

Given our results above, we prove an analogous statement for the continuous Fréchet
distance. This is formalized in the following lemma.

Theorem 4.14. There exists an algebraic decision tree for the Fréchet problem (decision
version) of depth O(n2−α), for a fixed constant α > 0.

Proof. We reconsider the steps of our algorithm. The only phases that actually involve
the input are the second preprocessing phase and the traversal of the elementary boxes.
The reason of our choice for τ was to keep the time for the first preprocessing phase
polynomial. This is no longer a problem. By Lemma 4.5 and Lemma 4.6, the remaining
cost is bounded by O(nτ c−1 + n2(log τ)/τ), where c is the constant from Lemma 4.4.
Choosing τ = n1/c, we get a decision tree of depth O(n · n c−1

c + n2 log n/n1/c). This is
O(n2−(1/c) log n) = O(n2−α) for, say, α = 1/2c.

We now briefly consider Alt’s conjecture. It was conjectured that no decision tree
with depth O(n2−α) exists for 3SUM [138]. Assuming linear time reductions, this con-
jecture in combination with our result would imply that Alt’s conjecture is false. How-
ever, recently it has been proven that 3SUM admits an algebraic decision tree of depth
O(n3/2

√
log n) [93]. Thus, Alt’s conjecture remains an open problem.

4.8 Conclusion
In this chapter we have improved upon the long-standing quadratic upper bound for the
decision version of the Fréchet problem. We have given anO(mn(log log n)3/2/

√
log n)-

time algorithm to decide dF(P,Q) 6 ε for two curves of complexitym and nwithm 6 n.
We have shown how this decision algorithm can be used to compute the Fréchet distance
in O(n2 + mn

√
log n(log log n)3/2) time. If we allow constant-time table-lookup, we

obtain an execution time of O(n2 + mn(log log n)2), in close reach of O(n2) for m =
n. Finally, we proved that the decision problem has an algebraic decision tree of depth
O(n2−α), for some α > 0 and where n is the number of vertices of the curves.

This leaves us with intriguing open research questions. Since 3SUM is known to have
a decision tree with subquadratic depth [93], our bound has no implications on Alt’s con-
jecture. It thus remains an open problem whether the decision problem is 3SUM-hard.
Assuming the Strong Exponential Time Hypothesis, no subquadratic-time algorithm ex-
ists [30]. This indicates a discrepancy between the decision tree and the uniform com-
plexity. Can we establish a connection between the Fréchet distance and other problems
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that exhibit this discrepancy, such as MIN-PLUS-CONVOLUTION? On the other hand,
this lower bound for the uniform complexity also shows that our algorithm is tight, up
to subpolynomial factors. However, for the optimization, it remains an open problem
whether we can devise a quadratic-time algorithm. Can we develop such an algorithm on
the word RAM, that is, with constant-time table-lookup?

Finally, we identify two limitations of our current methods. The first limitation is that
the curves must reside in the two-dimensional plane. This two-dimensionality is essential
in order to apply dual transformations (e.g. for the proof of Lemma 4.4). This is in
contrast to the method by Agarwal et al. [3] which generalizes to higher dimensions. Can
we extend our results to also work with higher-dimensional polygonal curves?

The second limitation is that for both the decision and optimization algorithm, m
must be sufficiently large in order for the bound to improve upon the known results. Our
decision algorithms assume that m is at least polylogarithmic in n. Can we remove this
requirement by finding other means of computing the door-orders of rows? Furthermore,
to compute the Fréchet distance, we need an arrangement of circles on the vertices of Q,
leading to an O(n2) term in the execution time. This means that the algorithm is faster
than Alt and Godau’s algorithm [10] only if m = ω(n/ log n). Is it possible to improve
upon the O(mn log n) bound for any combination of values for m and n?





Chapter 5

Locally Correct Fréchet
Matchings

The Fréchet distance results in a single number that indicates the similarity between
curves. However, a “description” of the similarity is often required, rather than only a
quantification. Such a description should precisely describe which parts of the curves
correspond to another. In this chapter we investigate Fréchet matchings—a matching that
results in the Fréchet distance—for the purpose of describing similarity. A Fréchet match-
ing exactly describes a point-to-point correspondence between the curves and is thus in-
herently a description of similarity. There are applications that directly use a matching,
for example, to map a GPS track to a street network [176] or to morph between the
curves [74]. In such situations a “good” matching is important. Furthermore, we believe
that many applications of the (discrete) Fréchet distance, such as protein alignment [181]
and detecting patterns in movement data [33], would profit from good Fréchet match-
ings. For simplification and schematization, a large distance may be unavoidable in some
places along a given outline. However, that does not imply we need to accept unnecessar-
ily large distances in other places. Therefore, a good matching may allow us to assess the
resemblance more accurately.

There are often many different Fréchet matchings for two curves. Not all of these
matchings capture the similarity between the curves well (see Figure 5.1). This is caused
by the Fréchet distance being defined to minimize the maximal distance: Fréchet match-
ings are relatively unrestricted in places where the curves are locally much closer than the
Fréchet distance. To alleviate this drawback, integral or average Fréchet distances have
been considered. However, these approaches introduce other problems or undesirable be-
havior [44] (see also Section 3.1). Therefore, we desire another way to distinguish the
quality of Fréchet matchings, based on how well they describe the similarity.

We restrict the set of Fréchet matchings to “natural” matchings by introducing locally
correct Fréchet matchings: matchings that for any two matched subcurves are again a
Fréchet matching on these subcurves. This is a strictly stronger concept: any locally
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P

Q

P

Q
(a) (b)

Figure 5.1 Two Fréchet matchings for curves P andQ. Matching (a) describes
the similarity more accurately than matching (b).

correct Fréchet matching is a Fréchet matching, but not vice versa. In Section 5.2 we
prove that there exists such a locally correct Fréchet matching for any two polygonal
curves. Based on this proof we describe in Section 5.3 an O((m + n)mn logmn)-time
algorithm to compute such a matching, where m and n denote the complexity of the two
polygonal curves. We consider the discrete Fréchet distance in Section 5.4. Under this
metric we give an algorithm that computes a locally correct matching in O(mn) time and
O(min{m,n}) space.

Related work. The Fréchet distance has received significant attention in a range of vari-
ants and applications. In the previous chapter we already listed a number of results related
to computing or using the Fréchet distance. Here we focus on approaches that change or
restrict the allowed matchings.

Efrat et al. [74] introduced Fréchet-like metrics, the geodesic width and link width, to
restrict to matchings suitable for curve morphing. Their method is suitable only for non-
intersecting curves. Moreover, geodesic width and link width do not resolve the problem
illustrated in Figure 5.1: both matchings also have minimal geodesic width and minimal
link width. Maheshwari et al. [120] studied a restriction called “speed limits”, which may
exclude all Fréchet matchings and may cause undesirable effects near “outliers” (see Fig-
ure 5.2). Buchin et al. [32] describe a framework for restricting Fréchet matchings, which
they illustrate by restricting slope and path length. Note that the former corresponds to
speed limits. We briefly discuss such constraints at the end of Section 5.3.

P

Q

P

Q
(a) (b)

Figure 5.2 Two Fréchet matchings. (a) A locally correct matching. (b) Impos-
ing speed limits may yield a matching that is not locally correct.
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Another approach lies in only partially matching the two curves. This allows for a
number of interpretations. Alt and Godau [10] consider matching one curve to a subcurve
of another; their O(mn log n)-time decision algorithm was later improved to O(mn) by
Maheshwari et al. [121]. However, this proves too restricted if outliers occur on both
curves or are spread over multiple locations. Therefore, Buchin et al. [39] instead max-
imize the length of the matched subcurves, constrained by a maximal Fréchet distance.
This allows for fully ignoring parts of the curves. Driemel and Har-Peled [70] allow
shortcuts between vertices, but a shortcut is replaced by a single line segment. This line
segment must then still be matched to the other curve. Buchin et al. [45] showed that this
problem is NP-hard if any shortcut (i.e., between points along the edges of the curves) is
allowed and provide a 3-approximation algorithm.

5.1 Definition

Consider two open polygonal curves P = 〈p0, . . . , pm〉 and Q = 〈q0, . . . , qn〉 with m
and n edges respectively. Recall that the Fréchet distance dF(P,Q) is defined as

min
(σ,θ)∈M

max
x∈[0,1]

‖P (σ(x))−Q(θ(x))‖,

where M contains all matchings (homeomorphisms and limits thereof) between P and
Q. A matching µ describes two reparametrizations, σ and θ, for P and Q respectively.
We denote by Pσ(t) the actual location according to reparametrization σ, that is, Pσ(t) =
P (σ(t)). By Pσ[a, b] we denote the subcurve of P in between Pσ(a) and Pσ(b). Simi-
larly, we denote the reparametrized curve Q by Qθ.

We use dµ(x) to represent the Euclidean distance between the two matched points,
that is, dµ(x) = ‖Pσ(x) − Qθ(x)‖. The maximum distance over a range is denoted by
dµ[a, b] = maxa6t6b dµ(t). Note that these notations use P and Q implicitly. Thus, we
may write the definition of the Fréchet distance as

dF(P,Q) = min
µ∈M

dµ[0, 1].

A Fréchet matching is a matching µ that realizes the Fréchet distance, that is, dµ[0, 1] =
dF(P,Q) holds.

As illustrated in Figure 5.1, not all Fréchet matchings describe the similarity equally
well. To distinguish between matchings, we introduce locally correct Fréchet matchings,
for which the matching between any two matched subcurves is a Fréchet matching. This
is formalized as follows.

Definition 5.1. [LOCAL CORRECTNESS] Given two polygonal curves P and Q, a match-
ing µ = (σ, θ) is locally correct if for all a, b with 0 6 a 6 b 6 1

dµ[a, b] = dF(Pσ[a, b], Qθ[a, b]).
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Observe that the above condition must also hold for a = 0 and b = 1: dµ[0, 1] =
dF(Pσ[0, 1], Qθ[0, 1]) = dF(P,Q). That is, the maximal distance according to a locally
correct Fréchet matching is indeed the Fréchet distance. Thus, a locally correct Fréchet
matching must be a Fréchet matching as well. However, not every Fréchet matching is lo-
cally correct; indeed, Figure 5.1(a) illustrates a locally correct Fréchet matching whereas
Figure 5.1(b) does not. The question arises whether a locally correct matching always
exists and if so, how to compute it. We address these questions in the upcoming sections.

5.2 Existence
In this section we resolve the first question, whether a locally correct Fréchet matching
exists. That is, we prove the following theorem.

Theorem 5.2. For any two open polygonal curves P and Q, there exists a locally correct
Fréchet matching.

We prove Theorem 5.2 by induction on the number of edges in the curves. First, we
present the lemmas for the two base cases: one of the two curves is a point and both
curves are line segments. In the following, m and n again denote the number of edges of
P and Q, respectively.

Lemma 5.3. For two polygonal curves P and Q with m = 0, a locally correct matching
is µ = (σ, θ), where σ(t) = 0 and θ(t) = t · n for 0 6 t 6 1.

Proof. Since m = 0, P is just a single point, p0. The Fréchet distance between a
point and a curve is the maximal distance between the point and any point on the curve:
dF(p0, Qθ[a, b]) = dµ[a, b]. This implies that the matching µ is locally correct.

Lemma 5.4. For two polygonal curves P and Q with m = n = 1, a locally correct
matching is µ = (σ, θ), where σ(t) = θ(t) = t for 0 6 t 6 1.

Proof. As both curves consist of a single edge, the free-space diagram of P and Q is a
single cell and thus the free space is a convex area for any value of ε [10]. Since µ = (σ, θ)
is linear, we know that dµ[a, b] = max {dµ(a), dµ(b)}: if there would be a t with a < t <
b such that dµ(t) > max {dµ(a), dµ(b)}, then the free space at ε = max {dµ(a), dµ(b)}
would not be convex. Since dµ[a, b] = max {dµ(a), dµ(b)} 6 dF(Pσ[a, b], Qθ[a, b]) 6
dµ[a, b], we conclude that µ is locally correct.

For induction, we split the two curves based on critical events (see Figure 5.3). To
properly use the induction hypothesis, we require that one of the subcurves has strictly less
edges than the full curve; the other may not increase its number of edges. The only events
that would cause such a problem are the type-A events and the type-B events on the left or
bottom boundary of cell C(0, 0) or on the right or top boundary of cell C(m− 1, n− 1).
As it turns out, we can simply ignore these events. Roughly speaking, type-A events
do not give any choice as they correspond to the endpoints of the two curves—we must
match these points. In addition, the ignored type-B events are subsumed by the type-A
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Figure 5.3 (a) Curves with the free-space diagram for ε = dF(P,Q) and the
corresponding realizing event. (b) The event splits each curve into
two subcurves. The hatched areas of the free-space diagram are
eliminated by the split.

(a) (b)

Q Q

P P

P

Q
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Figure 5.4 (a) Splitting on a type-A event does not yield a reduction in
complexity of the subproblems. (b) By “ignoring” C(0, 0) and
C(m − 1, n − 1) (marked in purple), we find an event that does
properly split the problem into smaller subproblems.
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events. Thus, we call a free-space diagram feasible at value ε, if a bimonotone path exists
in the free space from some point on the top or right boundary of C(0, 0) to some point
on the bottom or left boundary of cell C(m− 1, n− 1). This is illustrated in Figure 5.4.

To provide some intuition as to why these events are not essential, we argue as follows.
Suppose that ε is the lowest value at which the free-space diagram is feasible: thus a path
exists between cell C(0, 0) and C(m − 1, n − 1). By going straight from (0, 0) to the
start of the path and from the end of the path to (m,n), we obtain a bimonotone path that
describes a matching. Due to the convexity of the free space in a cell, we know that either
the maximal distance is given by ε, the point (0, 0) (the start of the two curves) or (m,n)
(the end of both curves). As the last are forced in any matching, we can thus conclude
that the obtained matching is indeed a Fréchet matching. This justifies that we may indeed
ignore the indicated events. As we prove below, this allows us to in fact obtain a locally
correct Fréchet matching.

A realizing event is a critical event at the minimal value ε such that the corresponding
free-space diagram is feasible. We call events concurrent if they occur at the same value
of ε. Let E denote the set of concurrent realizing events for two curves. A realizing set
Er is a subset of E such that the free space admits a bimonotone path from cell C(0, 0)
to C(m − 1, n − 1) without using an event in E\Er. Note that a realizing set cannot be
empty. When E contains more than one realizing event, some may be “insignificant”:
they are never required to actually make a path in the free-space diagram. A realizing
set is minimal if it does not contain a strict subset that is a realizing set. Such a minimal
realizing set contains only “significant” events.

Lemma 5.5. For two polygonal curves P and Q with m > 1 and n > 1, there exists a
minimal realizing set.

Proof. Let E denote the nonempty set of all concurrent events at the minimal critical
value: E is a realizing set. By definition, the empty set cannot be a realizing set. Hence,
E contains a minimal realizing set.

The following lemma directly implies that a locally correct Fréchet matching always
exists. Informally, it states that curves have a locally correct matching that is “closer”
(except in cell C(0, 0) or C(m − 1, n − 1)) than the distance of their realizing set. Fur-
thermore, this matching is linear inside every cell. The lemma is proven using induction:
a minimal realizing set is used to split the curves into pieces; combining the locally correct
matchings of the pieces results in a single, locally correct matching.

Lemma 5.6. If the free-space diagram of two polygonal curves P and Q is feasible at
value ε, then there exists a locally correct Fréchet matching µ = (σ, θ) such that dµ(t) 6 ε
for all t with σ(t) > 1 or θ(t) > 1, and σ(t) 6 m− 1 or θ(t) 6 n− 1. Furthermore, µ is
linear in every cell.

Proof. We prove this by induction on m + n. The base cases (m = 0, n = 0, and
m = n = 1) follow from Lemma 5.3 and Lemma 5.4. The matchings prescribed by these
lemmas are indeed linear.
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For induction, we assume that m > 1, n > 1, and m + n > 2. By Lemma 5.5, a
minimal realizing set Er exists for P and Q, say at value εr. The set contains realizing
events e1, . . . , ek (k > 1), numbered in lexicographic order. By definition, εr 6 ε holds.
Suppose that Er splits curve P into P1, . . . , Pk+1 and curve Q into Q1, . . . , Qk+1, where
Pi has mi edges and Qi has ni edges. By definition of a realizing event, none of the
events in Er occur on the right or top boundary of cell C(m − 1, n − 1). Hence, for any
i ∈ {1, . . . , k + 1}, it holds that mi 6 m, ni 6 n, and mi < m or ni < n. Since a path
exists in the free-space diagram at εr through all events in Er, the induction hypothesis
implies that, for any i ∈ {1, . . . , k + 1}, a locally correct matching µi = (σi, θi) exists
for Pi and Qi such that µi is linear in every cell and dµi(t) 6 εr for all t with σi(t) > 1
or θi(t) > 1, and σi(t) 6 mi− 1 or θi(t) 6 ni− 1. Combining these matchings with the
events in Er yields a matching µ = (σ, θ) for (P,Q). As we argue below, this matching
is locally correct and satisfies the additional properties.

The matching of an event corresponds to a single point (type B) or a horizontal or
vertical line (type C) in the free-space diagram. By induction, µi is linear in every cell.
Since all events occur on cell boundaries, the cells of the matchings and events are disjoint.
Therefore, the matching µ is also linear inside every cell.

For i < k + 1, dµi
is at most εr at the point where µi enters cell (mi, ni) in the

free-space diagram of Pi and Qi. We also know that dµi
equals εr at the top right corner

of cell (mi, ni). Since µi is linear inside the cell, dµi
(t) 6 εr also holds for t with

σi(t) > mi− 1 and θi(t) > ni− 1. Analogously, for i > 0, dµi(t) is at most εr for t with
σi(t) < 1 and θi(t) < 1. Hence, dµ(t) 6 εr 6 ε holds for t with σ(t) > 1 or θ(t) > 1,
and σ(t) 6 m− 1 or θ(t) 6 n− 1.

To show that µ is locally correct, suppose for contradiction that values a, b exist such
that dF(Pσ[a, b], Qθ[a, b]) < dµ[a, b]. If a, b are in between two consecutive events, we
know that the submatching corresponds to one of the matchings µi. Since these are locally
correct, dF(Pσ[a, b], Qθ[a, b]) = dµ[a, b] must hold.

Hence, suppose that a and b are separated by at least one event of Er. There are
two possibilities: either dµ[a, b] = εr or dµ[a, b] > εr. Since dµ[a, b] includes a realizing
event, dµ[a, b] < εr cannot hold. First, assume dµ[a, b] = εr holds. If dF(Pσ[a, b], Qθ[a, b])
is less than εr, then a matching exists that does not use the events between a and b and has a
lower maximum. Hence, the free space admits a bimonotone path from point (σ(a), θ(a))
to point (σ(b), θ(b)) at a lower value than εr. This implies that all events between a and b
can be omitted, contradicting that Er is a minimal realizing set.

Now, assume dµ[a, b] > εr. Let t′ denote the highest t for which σ(t) 6 1 and
θ(t) 6 1 holds, that is, the point at which the matching leaves cell C(0, 0). Similarly, let
t′′ denote the lowest t for which σ(t) > m− 1 and θ(t) > n− 1 holds. Since dµ(t) 6 εr
holds for any t with t′ 6 t 6 t′′, dµ(t) > εr can hold only for t < t′ or t > t′′. Suppose
that dµ(a) > εr holds. Then a < t′ holds and µ is linear between a and t′. Therefore,
dµ(a) > dµ(t) holds for any t with a < t < t′. Analogously, if dµ(b) > εr holds, then
dµ(b) > dµ(t) holds for any t with t′′ < t < b. Hence, dµ[a, b] = max {dµ(a), dµ(b)}
must hold. This maximum is a lower bound on the Fréchet distance, contradicting the
assumption that dµ[a, b] is larger than the Fréchet distance. Matching µ is therefore locally
correct.
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5.3 Computation
The existence proof directly results in a recursive algorithm, which is given in Algo-
rithm 5.1. Figure 5.5 and all other illustrated locally correct matchings in this chapter
have been computed with this algorithm. In this section we prove the following theorem.

Theorem 5.7. Algorithm 5.1 computes a locally correct Fréchet matching of two open
polygonal curves P and Q with m and n edges in O((m+ n)mn logmn) time.

The crucial step here is to find the event er efficiently (Line 6). This is done in three
steps. First, we compute the lowest value of ε for which the free-space diagram is feasible.
Second, we compute a realizing set E. Finally, we find a significant event in E, that is, an
event in some minimal realizing set. Below, we provide the details for each of these three
steps.

Recall the following definitions and notations from Section 2.4.2. For i ∈ {0, . . . ,m}
and j ∈ {0, . . . , n}, LF

i,j denotes the door (i.e., the interval of free space) on Li,j , the

Algorithm 5.1 COMPUTELCFM(P,Q)

Require: P and Q are open polygonal curves with m and n edges
Ensure: A locally correct Fréchet matching for P and Q

1: if m = 0 or n = 0 then
2: return (σ, θ) where σ(t) = t ·m, θ(t) = t · n
3: else if m = n = 1 then
4: return (σ, θ) where σ(t) = θ(t) = t
5: else
6: Find event er of a minimal realizing set
7: Split P into P1 and P2 according to er
8: Split Q into Q1 and Q2 according to er
9: µ1 → COMPUTELCFM(P1, Q1)

10: µ2 → COMPUTELCFM(P2, Q2)
11: return concatenation of µ1, er, and µ2

PQ

Q

P

Figure 5.5 Locally correct matching produced by Algorithm 5.1. Free-space
diagram for ε = dF(P,Q).
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left boundary of cell C(i, j); LR
i,j denotes the reach-door, that is, the intersection LF

i,j ∩
reach(P,Q) between the door and the reachable space. Analogously, BF

i,j and BR
i,j are

defined for the bottom boundary.

Computing the Fréchet distance. First, we compute the lowest value of ε for which the
free-space diagram is feasible. That is, we compute the minimal value of ε such that the
free space admits a bimonotone path from cell C(0, 0) to cell C(m − 1, n − 1). This
corresponds to computing a “modified” Fréchet distance, one in which we ignore the
type-A events. With only minor modifications to the decision algorithm, we may apply
the algorithm by Alt and Godau [10]. LR

0,0 and BR
0,0 are treated as nonempty intervals

including (0, 0), the origin of the free-space diagram. Essentially, this ensures that any
free space on the top and right side of cell C(0, 0) is reachable. LF

m,n and BF
m,n are

treated as nonempty intervals including (m,n), the destination of the free-space diagram.
This ensures that (m,n) is reachable if any point on the bottom or left side of cell C(m−
1, n−1) is reachable. These changes have no effect on the execution time of the algorithm.
Thus, it runs in O(mn logmn) time.

Computing a realizing set. In the second step, we compute some (possibly nonminimal)
realizing set E. Recall that this is a subset of E (all concurrent realizing events) such that
the free space admits a bimonotone path from cell C(0, 0) to cell C(m−1, n−1) without
using events in E\E. We present a simple O(mn)-time algorithm to find a realizing set
for a given value of ε. This algorithm is again a modified version of the decision algorithm
by Alt and Godau [10]: it keeps track of any realizing events that are encountered. We
observe that the occurrence of a singleton reach-door—a reach-door that consists of only
a single point—corresponds directly to a realizing event. Although not all realizing events
have to give rise to a singleton reach-door, a realizing set can be defined using only events
that cause a singleton reach-door. This is formalized in the following lemma.

Lemma 5.8. If LR
i,j or BR

i,j is a singleton, then a realizing event ends at Li,j or Bi,j
respectively. The set of all events that cause a singleton reach-door is a realizing set.

Proof. The reach-door LR
i,j is determined by the maximum value in the free space of the

boundary, LF
i,j , and the minimum in some door LF

i′,j with i′ 6 i. If LR
i,j is a singleton,

then this minimum and maximum coincide and thus this corresponds to an event of type
B (i′ = i) or type C (i′ < i). The argument for a reach-door BR

i,j is analogous. What
remains is to argue that the corresponding events form a realizing set.

Let π be some bimonotone path in the free space between the first and last cell. Path
π passes through a number of realizing events. We are done if all these events end at a
boundary for which the reach-door is a singleton. So, assume that e is the last event along
π that ends on Li,j for which LR

i,j is not a singleton. Note that LR
i,j cannot be empty as

π passes through it. Event e must be of type C, as a type-B event implies that LF
i,j is a

singleton and thus LR
i,j would be as well. Hence, we let Li′,j denote the boundary where

event e starts and i′ < i. Since realizing event e defines a passage from Li′,j to Li,j , the
startpoint of e corresponds to the lowest point in LF

i′,j ; the endpoint of e is the maximal
point in LF

i,j and thus of LR
i,j . Therefore, any other reachable point on Li,j implies that
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there is some boundary Bi∗,j such that i′ 6 i∗ < i and BR
i,j is nonempty. Hence, there

is a bimonotone path π′ in the free space up through Bi∗,j to Li,j . In particular, π′ does
not pass through e. Hence, the concatenation of π′ with the subpath of π starting at Li,j
is a bimonotone path in the free space between the first and last cell. Any event along π′

that does not end at a boundary with a singleton reach-door must end at some boundary
Lx,y or Bx,y with x < i and y < j. Therefore, repeating the replacement above must
terminate as there are only a finite number of boundaries. This proves that there is some
bimonotone path between the first and last cell that passes only through events that end
on a boundary with a singleton reach-door. Thus, these events form a realizing set.

From the above, we learn how to compute a realizing set: we simply record occur-
rences of singleton reach-doors. However, this gives us only the boundary on which the
event ends; we also need to know the boundary on which the event starts. Assume a sin-
gleton reach-door is found on boundary Li,j . Let h < i be the largest value such thatBR

h,j

is nonempty: all bottom boundaries between h and i are not reachable. Then the singleton
is caused by the lower endpoint of LF

g∗,j maximized over all g∗ with h < g∗ 6 i. This
means that the event that causes the singleton starts at Lg∗,j and ends at Li,j . We refer
to g∗ as the event index. For each row we maintain this event index. After computing
LR
i,j but before checking for a singleton, the event index is updated to j if either BR

i−1,j

is nonempty or the lower endpoint of LF
g∗,j is less than or equal to the lower endpoint

of LF
i,j . If this is not the case, g∗ maintains its value. Observe that we may replace the

check for a singleton interval by computing the value of the critical event between Li,j
and Lg∗,j and comparing it to ε. This is slightly more numerically stable. Columns and
horizontal boundaries are dealt with analogously. Maintaining the event indices incurs no
asymptotic overhead on the basic decision algorithm. Hence, this modified algorithm that
finds a realizing set also runs in O(mn) time.

Finding a significant event. In this last step, we find a significant event er in the realizing
set E, that is, er must be contained in a minimal realizing set. We assume that the events
in E end at different cell boundaries. If events end at the same boundary, then these
occur in the same row (or column) and it suffices to consider only the event that starts at
the rightmost column (or highest row). The algorithm described above computes exactly
those events.

To find a significant event in E, we proceed as follows. Fix the order of events in
E. Let ek denote the kth event and let Ek = {e1, . . . , ek} denote the first k events of E.
We use a binary search on E to find the r such that Er contains a realizing set, but Er−1

does not. This implies that event er is contained in a minimal realizing set. Note that
r is unique due to monotonicity. What remains is to describe an algorithm that checks
whether Ek is a realizing set.

To determine whether some Ek is a realizing set, we check whether the free-space
diagram is feasible even without “using” the events of E\Ek. Again, we modify the
decision algorithm by Alt and Godau [10]. We associate the index of each event in E
with the boundaries at which the event ends in the free-space diagram. When LR

i,j is
computed, we check whether LR

i,j is a singleton and an index k′ is associated with Li,j .
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If this is not the case, then no realizing event ends at Li,j or it is not required to reach it.
If the reach-door is a singleton and k′ exists, event ek′ is required to reach Li,j (as argued
in the previous paragraph). We then check whether this event may be used by comparing
k and k′. If k′ 6 k, no action is taken; otherwise, the event may not be used and LR

i,j

is replaced with an empty interval. In this modified algorithm, cell C(m − 1, n − 1) is
reachable (that is, LR

m−1,n−1 or BR
m−1,n−1 is nonempty) if and only if Ek is a realizing

set. The additional check takes only constant time per cell boundary. Thus, we decide in
O(mn) time whether Ek is a realizing set.

To obtain an algorithm that is numerically more stable, we again maintain the event
index g∗ for each row and column. Assume that Li,j has some associated event e that
starts on Lg,j . Event e is necessary to obtain LR

i,j if and only if g = g∗. Therefore, we
can replace checking whether LR

i,j is a singleton with an equality check of two integers.

Analysis. As detailed above, computing er (Algorithm 5.1, Line 6) consists of three
steps. The first and second step—computing the Fréchet distance and a realizing set—take
O(mn logmn) time combined. The third step performs a binary search on the realizing
set and thus depends on its size. As argued, it contains at most O(mn) events. However,
concurrent events can be considered degenerate. To analyze this step more accurately,
we therefore use K to denote the maximum number of elements in the realizing set. The
third step then takes O(mn logK) time. Splitting the curves P and Q according to er and
concatenating the matchings can be done in O(m + n) time and is thus subsumed under
the previous steps. Each recursion step splits the problem into two smaller problems, and
the recursion ends when mn 6 1. This results in an additional factor O(m + n). Thus,
the total execution time is O((m+ n)mn logmn).

Substituting other methods. We used Alt and Godau’s method [10] to compute the
Fréchet distance. However, it can be substituted by any other algorithm, provided that
the modification can be made to “ignore” the first and last cell. In general, this leads
to an algorithm that runs in O(n(T (m,n) + mn logK)) time, where T (m,n) indicates
the computation time of the (modified) algorithm used to compute the Fréchet distance.
Whereas earlier the degeneracy was subsumed under the computation of the Fréchet dis-
tance, it is now a relevant factor if T (m,n) = o(mn logmn).

As an example, we may substitute the algorithm described in Chapter 4). Similar to
Alt and Godau’s algorithm, this algorithm can easily be adapted by treating four doors
in the free-space diagram as open. For very degenerate curves—K = Ω(m + n)—this
substitution does not lead to an improved execution time. However, there is a pitfall here:
the improved algorithm is faster only if m = Ω(n/ log n), assuming m 6 n. Therefore,
we proceed as follows. If m > βn/ log n or n > βm/ logm for some constant β > 0,
we use the algorithm of Chapter 4; otherwise, we simply use the modified version of Alt
and Godau’s algorithm.

Vertex sampling. Ideally, the computed Fréchet matching depends only on the shape of
the given curves. However, locally correct Fréchet matchings are not unique and adding
extra vertices may alter the result, even if these do not modify the shape. This is illus-
trated in Figure 5.6. In this figure, the columns of the free-space diagrams are stretched
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P ′
Q

P ′′
Q

Q

P ′ P ′′

Q

P
Q

Q

P

Figure 5.6 Different sampling may result in different matchings. In the free-
space diagrams, columns are stretched to represent edge length.

to correspond to edge length. This makes the diagram invariant under sampling of P ,
thus emphasizing the difference in matching. Increasing the sampling further and further
seems to result in a matching that decreases the matched distance as much as possible
within a cell. However, since cells are rectangles, there is a slight preference for taking
longer diagonal paths.

Further restrictions. Two curves may still have many locally correct Fréchet matchings:
the algorithm computes just one of these. For most applications, we expect that it is
desirable to restrict to locally correct matchings. However, it is often desirable to find
the “best” Fréchet matching, though what defines “best” likely depends on the intended
application. For example, the curves in Figure 5.7 admit two matchings, both of which
may be considered better: this depends on what the curves represent and on the purpose
of the matching. Corresponding to these two examples, we mention two possible criteria
to further restrict locally correct Fréchet matchings.

The first criterion is the “length” of the matching, measured by its path length in
the free-space diagram [32]. Note that slope constraints [32] or speed limits [120] indi-
rectly restrict the length of a matching. As we showed in the introduction, a strict slope
constraint may in some cases lead to unintuitive matchings (see Figure 5.2). Using the
shortest locally correct Fréchet matching may provide another option for applications in
which length or slope constraints are desirable. An alternative to the shortest locally cor-
rect Fréchet matching would be to consider the computation of a locally correct matching
that adheres to length or slope constraints.

P

Q

P

Q
(a) (b)

Figure 5.7 Two locally correct Fréchet matchings. (a) Matching that decreases
distances as quickly as possible. (b) Shortest matching.
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The second criterion again considers the matched distances. Local correctness en-
forces that local maxima in matched distances are avoided whenever possible, by con-
sidering subcurves that are induced by the matching. We may strengthen this idea by
requiring that large distances are decreased as fast as possible, while maintaining local
correctness. These “locally optimal” Fréchet matchings would require a steepest-descent
method to find a matching. An important question is how to parameterize the descent.
Using the L2 norm for the descent results in nonlinear matchings with possible algebraic
issues. Recently, Rote [153] has shown that using L∞ yields a linear “locally optimal”
matching (called lexicographic Fréchet matching in [153]). Assuming nondegenerate
curves (K = 1), these are computable in O(N3 logN) time where N is the combined
complexity of the two curves [153].

5.4 Locally correct discrete Fréchet matchings
Here we study the discrete variant of Fréchet matchings. In this variant only the vertices
of curves are matched. The discrete Fréchet distance can be computed in O(mn) time via
dynamic programming [75]. Here, we extend this simple algorithm to show that a locally
correct discrete Fréchet matching can also be computed in O(mn) time.

Grids. Since we are interested only in matching vertices of the curves, the free-space
diagram turns into a grid. Suppose we have two curves P and Q with m and n edges
respectively. These convert into a grid G of nonnegative values with m+ 1 columns and
n+ 1 rows. Every column corresponds to a vertex of P , every row to a vertex of Q. Any
node of the gridG[i, j] corresponds to the pair of vertices (pi, qj). Its value is the distance
between the vertices: G[i, j] = ‖pi − qj‖. Analogous to free-space diagrams, we assume
that G[0, 0] is the bottomleft node and G[m,n] the topright node.

Matchings. A bimonotone path π is a sequence of grid nodes π(1), . . . , π(k) such that,
for all i ∈ {2, . . . , k}, node π(i) is the above, right, or above/right diagonal neighbor
of π(i − 1). In the remainder of this section a path refers to a bimonotone path unless
indicated otherwise. A bimonotone discrete matching of the curves corresponds to a path
π such that π(1) = G[0, 0] and π(k) = G[m,n]. We call a path π locally correct if for all
1 6 t1 6 t2 6 k, maxt16t6t2 π(t) = minπ′ max16t6k′ π

′(t), where π′ ranges over all
paths starting at π′(1) = π(t1) and ending at π′(k′) = π(t2).

Algorithm. To compute a locally correct discrete Fréchet matching, the algorithm needs
to compute a locally correct path from G[0, 0] to G[m,n] in a grid G of nonnegative val-
ues. To this end, the algorithm incrementally constructs a tree T on the grid. Tree T
is rooted at G[0, 0] and each path in T is locally correct. This is summarized in Algo-
rithm 5.2. We define a growth node as a node of T that has a neighbor in the grid that is
not yet part of T : a new branch may sprout from such a node. The growth nodes form a
sequence of horizontally or vertically neighboring nodes. A living node is a node of T that
is not a growth node but is an ancestor of a growth node. A dead node is a node of T that
is neither a living nor a growth node, that is, it has no descendant that is a growth node.
Every pair of nodes in this tree has a nearest common ancestor (NCA). When we add a
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Algorithm 5.2 COMPUTEDISCRETELCFM(P,Q)

Require: P and Q are curves with m and n edges
Ensure: A locally correct discrete Fréchet matching for P and Q

1: Construct grid G for P and Q
2: Let T be a tree consisting only of the root G[0, 0]
3: for i← 1 to m do
4: Add G[i, 0] to T
5: for j ← 1 to n do
6: Add G[0, j] to T
7: for i← 1 to m do
8: for j ← 1 to n do
9: ADDTOTREE(T,G, i, j)

10: return path in T between G[0, 0] and G[m,n]

(a) (b) (c)

Figure 5.8 (a) Face (gray) of tree T with its unique sink (solid dot). An or-
ange line represents a dead path. (b) Two adjacent faces with some
shortcuts indicated. (c) A tree with three faces. Solid dots indi-
cate growth nodes with a growth node as parent. These nodes are
incident to at most one face and have their shortcut indicated.

new node to T , we have to decide on a growth node to be its parent such that paths to the
new node are locally correct. To this end, we compare the maximum values encountered
after the NCAs of the growth nodes. We provide more details on this procedure later in
this section. A face of T is the area enclosed by the segment between two horizontally
or vertically neighboring growth nodes (without one being the parent of another) and the
paths to their NCA. The unique sink of a face is the node of the grid that is in the lowest
column and row of all nodes on the face. Figure 5.8(a–b) shows some examples.

Shortcuts. To avoid repeatedly walking along the tree to compute maxima, we maintain
up to two shortcuts from every node in the tree. The segment between the node and its
parent is incident to up to two faces of the tree. The node maintains shortcuts to the sink of
these faces, associating the maximum value encountered on the path between the node and
the sink (excluding the value of the sink). Figure 5.8(b) illustrates some shortcuts. With
these shortcuts, the maximum up to the NCA of two (potentially diagonally) neighboring
growth nodes is computed in constant time.
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Algorithm 5.3 ADDTOTREE(T,G, i, j)

Require: G is a grid of nonnegative values; any path in tree T is locally correct
Ensure: node G[i, j] is added to T and any path in T is locally correct

1: parent(G[i, j])← candidate parent with lowest maximum value to NCA
2: if G[i− 1, j − 1] is dead then
3: Remove the dead path ending at G[i− 1, j − 1] and extend shortcuts
4: Make shortcuts for G[i− 1, j], G[i, j − 1], and G[i, j] where necessary

Note that a node g of the tree that has a growth node as parent is incident to at most
one face (see Figure 5.8(c)). We need the “other” shortcut only when the parent of g has
a living parent. Therefore, the value of this shortcut can be obtained in constant time by
using the shortcut of the parent. When the parent of g is no longer a growth node, then g
obtains its own shortcut.

Extending the tree. Algorithm 5.3 summarizes the steps required to extend the tree T
with a new node. NodeG[i, j] has three candidate parents,G[i−1, j],G[i−1, j−1], and
G[i, j−1]. Each pair of these candidates has an NCA. For the actual parent of G[i, j], we
select the candidate c such that for any other candidate c′, the maximum value from c to
their NCA is at most the maximum value from c′ to their NCA—both excluding the NCA
itself. We must be consistent when breaking ties between candidate parents. To this end,
we use the preference order of G[i − 1, j] � G[i − 1, j − 1] � G[i, j − 1]. Since paths
in the tree cannot cross, this order is consistent between two paths at different stages of
the algorithm. Note that a preference order that prefers G[i − 1, j − 1] over both other
candidates or vice versa results in an incorrect algorithm.

When a dead path is removed from the tree, adjacent faces merge and a sink may
change. Hence, shortcuts have to be extended to point towards the new sink. By using
a charging scheme in the analysis, we show that the execution time remains O(mn).
Figure 5.9 illustrates the incoming shortcuts at a sink and the effect of removing a dead
path on the incoming shortcuts. Note that the algorithm does not need to remove dead
paths that end in the highest row or rightmost column.

Finally,G[i−1, j],G[i, j−1], andG[i, j] receive shortcuts where necessary. G[i−1, j]
orG[i, j−1] needs a shortcut only if its parent isG[i−1, j−1]. G[i, j] needs two shortcuts
if G[i− 1, j − 1] is its parent, only one shortcut otherwise.

(a) (b) (c) (d)

Figure 5.9 (a) Each sink has up to four sets of shortcuts. (b–d) Removing a
dead path (orange) extends at most one set of shortcuts.
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Correctness. To prove correctness of Algorithm 5.2, we require a stronger version of
local correctness. A path π is strongly locally correct if for all paths π′ with the same
endpoints max1<t6k π(t) 6 max1<t′6k′ π

′(t′) holds. Note that the first node is excluded
from the maximum. Since max1<t6k π(t) 6 max1<t′6k′ π

′(t′) and π(1) = π′(1) im-
ply max16t6k π(t) 6 max16t′6k′ π

′(t′), a strongly locally correct path is also locally
correct. Lemma 5.9 below implies the correctness of Algorithm 5.2.

Lemma 5.9. Algorithm 5.2 maintains the following invariant: any path in T is strongly
locally correct.

Proof. To prove this lemma, we strengthen the invariant.
Invariant. We are given a tree T such that every path in T is strongly locally correct.

In constructing T , any ties were broken using the preference order.
Initialization. Tree T is initialized such that it contains two types of paths: either

between grid nodes in the first column or in the first row. In both cases there is only
one path in the grid between the endpoints of the path. Therefore, this path must be
strongly locally correct. Since every node has only one candidate parent, T adheres to the
preference order.

Maintenance. The algorithm extends T to T ′ by including node g = G[i, j]. This
is done by connecting g to one of its candidate parents (G[i − 1, j], G[i − 1, j − 1], or
G[i, j − 1]), the one that has the lowest maximum value along its path to the NCA. We
must now prove that any path in T ′ is strongly locally correct. The invariant implies that
only paths that end at g could falsify this statement. We prove this via contradiction.

Assuming T ′ is not strongly locally correct, there must be an invalidating path that
ends at g. This path must use one of the candidate parents of g as its before-last node.
We distinguish three cases on how this path is situated compared to T ′. The last case,
however, needs two subcases to deal with candidate parents that have the same maximum
value on the path to their NCA. Hence, we have four cases; these cases are illustrated in
Figure 5.10. First, we introduce some common notation.

The invalidating path must diverge from the path in T to g. For each case, we consider
the path πi starting at the node before the first node that is different and end at a candidate
parent of g in the invalidating path. Note that πi need not be disjoint of the paths in T ′.
Slightly abusing notation, we also use a path π′ to denote its maximum value excluding
the first node: max1<t6k′ π

′(t). We use p to denote the parent of g in T ′, that is, the
candidate parent with the lowest maximum value to the NCA.

Case (a). Path πi ends at p. Path π is the path in T ′ between the first and last vertex of
πi. Since (πi, g) is the invalidating path, we know that max{πi, g} < max{π, g} holds.
This implies that πi < π holds. In particular, this means that π, a path in T , is not strongly
locally correct: a contradiction.

Case (b). Path πi does not end at p and πi(1) is not a descendant of the NCA of
p and the last node of πi. Path π1 is the path in T from πi(1) to this NCA. Paths π2

and π3 are paths in T that start at this NCA and end at p and the last node of πi re-
spectively. Since the endpoint of π2 was chosen as parent over the endpoint of π3, we
know that π2 6 π3 holds. Furthermore, since (πi, g) is the invalidating path, we know
that max{πi, g} < max{π1, π2, g} holds. These two inequalities imply max{πi, g} <
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(a) (b) (c–i)
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Figure 5.10 Four cases of the invalidating path (in orange) for the proof of
Lemma 5.9.

max{π1, π3, g} holds. This in turn implies that πi < max{π1, π3} must hold. Since
(π1, π3) is a path in T and the inequality implies that it is not strongly locally correct, we
again have a contradiction.

Case (c). Path πi does not end at p and the first node of πi is a descendant of the NCA
of p and the last node of πi. Let π1 be the path from this NCA to πi(1). Path π2 starts at
πi(1) and ends at p. Path π3 starts at π1(1) and ends at the last node of πi. In this case,
we must explicitly consider the possibility of two paths having equal values. Hence, we
distinguish two subcases.

Case (c–i). In the first subcase, we assume that the endpoint of π2 was chosen as
parent since its maximum value is strictly lower: max{π1, π2} < π3 holds. Since (πi, g)
is the invalidating path, we know that max{πi, g} < max{π2, g} holds. Since π2 6
max{π1, π2} always holds, we obtain that max{πi, g} < max{π3, g} must hold. This
in turn implies that πi < π3 holds. Similarly, since π1 6 max{π1, π2}, we know that
π1 < π3 must hold. Combining these last two inequalities yields max{π1, πi} < π3.
Since π3 is a path in T and the inequality implies that it is not strongly locally correct,
we again have a contradiction. (Note that with max{π1, π2} 6 π3, we can at best derive
max{π1, πi} 6 π3 which is not strong enough to contradict the invariant on T .)

Case (c–ii). In the second subcase, we assume that the endpoint of π2 was chosen as
parent based on the preference order: the maximum values are equal, thus max{π1, π2} =
π3 holds. If πi does not intersect π3 before their common last node, we must conclude that
πi > π3: otherwise, the preference order would be violated at this common last node. In
particular, this implies that πi cannot be an invalidating path. If πi does intersect π3 before
their common last node, we proceed as follows. We partition πi into πia and πib: the split
is based on the first node that πi and π3 have in common. At the same node, we also
partion π3 into π3a and π3b. We now obtain two more cases, π3a < max{π1, πia} and
π3a > max{π1, πia}. In the former case, we obtain that max{π3a, πib} < max{π1, π2}
holds and thus (π3a, πib, g) is also an invalidating path. Since this path starts at the NCA
of π2 and π3, this is already covered by case (b). In the latter case, we have that either path
π3a—which is in T—is not strongly locally correct (contradicting the invariant) or there
is equality between the two paths (π1, πia) and π3a. In case of equality, we observe that
(π1, πia) and π3a arrive at their endpoint in the same order as π2 and π3 arrive at g. Thus
T does not adhere to the preference order to break ties. This contradicts the invariant.
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In all cases, we find that the assumption of an invalidating path contradicts the invari-
ant. Therefore, we conclude that Algorithm 5.2 maintains the required invariant: all paths
in T are strongly locally correct.

Execution time. Most steps in the algorithm can be done easily in O(1) time; the only
exception is the removal of a dead path (Algorithm 5.3, Line 3). When a dead path πd

is removed, we may need to extend a list of incoming shortcuts at πd(1), the node that
remains in T . Let k denote the number of nodes in πd. The first node of this path, πd(1),
remains a living node; thus there are k − 1 dead nodes along the path. The lemma below
relates the number of extended shortcuts to the size of πd. The main observation is that
the path requiring extensions starts at πd(1) and ends at either G[i − 1, j] or G[i, j − 1],
since G[i, j] has not yet received any shortcuts.

Lemma 5.10. A dead path πd with k nodes results in at most 2k − 1 extensions.

Proof. Since πd is a path with k nodes, it spans at most k columns and k rows. When a
dead path is removed, its endpoint is G[i − 1, j − 1]. Let πe denote the path of T that
requires extensions. Both paths start at the same node: πd(1) = πe(1). The endpoint of
πe is either G[i − 1, j] or G[i, j − 1], since G[i, j] has not yet received shortcuts when
the dead path is removed. If the endpoint of πe is not the parent of G[i, j], then it has
at most one child; it is a growth node and thus any of its descendants are also growth
nodes. Hence, these descendants have a parent that is a growth node and thus do not have
shortcuts that need to be extended. Figure 5.11 illustrates these situations. Hence, we
know that πe spans either k+ 1 columns and k rows or vice versa; the maximum number
of nodes in πe is 2k, since it must be bimonotone. Since πe(1) does not have a shortcut to
itself, there are at most 2k − 1 incoming shortcuts from πe at πd(1).

(a) (b)

πe

πd

πe

πd

Figure 5.11 (a) Dead path πd and path πe that requires extensions. (b) Endpoint
of πe has one child. None of its descendants has a shortcut to πe(1).

Hence, we can charge every extension to one of the k − 1 dead nodes (all but πd(1)).
Since these nodes are removed from T , a node gets at most 3 charges. Due to the existing
shortcuts, each extension can be done in constant time. Therefore, the total execution time
of the algorithm is O(mn).



5.5. Conclusion 81

The dynamic program to compute the discrete Fréchet distance can be processed on a
per-row or per-column basis, thus requiring onlyO(min{m,n}) additional memory. This
can also be done in our algorithm to compute a locally correct discrete Fréchet matching.
However, we maintain tree T to store the locally correct paths. Naively speaking, this tree
spans the entire grid, thus requiring O(mn) space. By appropriately choosing per-row or
per-column processing, T has at most O(min{m,n}) growth nodes: any leaves that do
not have an unprocessed neighbor are part of a dead branch and are thus removed from T .
Any living node with exactly one child is never used, as it cannot be the sink of a face, nor
is it ever the root of a dead branch. Therefore, such nodes can easily be removed without
additional overhead: this yields a compressed tree T in which all living nodes (that are
not growth nodes) have at least two children. Thus we conclude that the compressed tree
contains at most O(min{m,n}) nodes.

We summarize the findings of this section in the following theorem.

Theorem 5.11. Algorithm 5.2 computes a locally correct discrete Fréchet matching of
two polygonal curves P and Q with m and n edges in O(mn) time and O(min{m,n})
additional space.

5.5 Conclusion
We set out to find “good” matchings between two curves. To this end, we introduced the
local correctness criterion for Fréchet matchings. We have proven that at least one locally
correct Fréchet matching exists for any two polygonal curves. This proof resulted in an
O((m+ n)mn logmn) recursive algorithm for two curves of complexity m and n. Fur-
thermore, we considered computing a locally correct matching using the discrete Fréchet
distance. By maintaining a tree with shortcuts to encode locally correct partial matchings,
we have shown how to compute such a matching in O(mn) time and O(min{m,n})
space.

Future work. Computing a locally correct discrete Fréchet matching takes O(mn) time,
just like the basic dynamic program to compute only the discrete Fréchet distance. Re-
cently, Agarwal et al. [3] have shown how to compute the discrete Fréchet distance in
O(mn log log n/ log n) time. This raises the question whether a similar improvement can
be made to compute a locally correct discrete Fréchet matching.

The time required to compute a locally correct (continuous) Fréchet matching is a
linear factor higher than the time to compute the Fréchet distance with Alt and Go-
dau’s algorithm [10]. An interesting question is whether this gap in computation can
be reduced. Our algorithm for discrete matchings constructs a tree of locally correct
paths in a single sweep of the parameter space. This suggests that going away from the
“decision-and-search” paradigm for the continuous case may yield improvements here.
Recently, Buchin et al. [38] have given such an algorithm to compute the Fréchet distance
in O(mn log2mn) time. However, proceeding in the exact same way as for the discrete
case is not sufficient: much of the information in the algorithm of Buchin et al. is main-
tained implicitly, to be constructed and retrieved only when it is actually needed. More-
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over, along a single boundary of a cell, the locally correct Fréchet matchings may vary:
the tree encoding the various matchings might become too big to maintain efficiently.

Finally, it would be interesting to further investigate criteria of restricting matchings.
On the one hand, this includes further restrictions to locally correct Fréchet matchings,
such as length and descent constraints (as discussed in Section 5.3). On the other hand,
this also includes the benefit of local correctness for other matching-based similarity mea-
sures, such as the geodesic width [74].
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Schematization Algorithms





Chapter 6

Schematization via Map
Matching

In this chapter we investigate algorithmic properties of computing a C-oriented schemati-
zation S with low complexity and low Fréchet distance for a given simple polygon P . As
with simplification, we may distinguish two variants: the first asks to minimize the com-
plexity of S constrained by a maximal Fréchet distance between S and ∂P , the boundary
of P ; the second asks to minimize the Fréchet distance constrained by a maximal com-
plexity. In this chapter we attempt to solve this problem via map matching. Map matching
asks to find a path (or cycle) in a given embedded graph that minimizes the Fréchet dis-
tance to a given open (or closed) polygonal curve. Because we are interested in comput-
ing a C-oriented schematization, we assume that the graph is a plane graph that uses only
edges oriented according to C. We then solve the map-matching problem by computing
a simple cycle in the graph that resembles ∂P . By construction, this cycle represents a
C-oriented schematization of the input polygon. Figure 6.1 illustrates this idea.

(a) (b) (c) (d)

Figure 6.1 Schematization via map matching. (a) An input polygon. (b) Its
boundary overlaid on a C-oriented (rectilinear) graph G. (c) Com-
pute a simple cycle in G that resembles the input. (d) This cycle is
a C-oriented schematization of the input.
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While algorithms for map matching exist [9, 176], these methods cannot guarantee a
simple path or cycle. One of the main applications of map matching is finding a driven
route based on a road network and a sequence of GPS positions [28, 131, 176]. Driven
routes may have selfintersections, for example, at bridges or cloverleafs. For schematiza-
tion, however, this would result in a map that is not topologically valid. Hence, we seek
a map-matching algorithm that considers only simple paths or cycles. We refer to this
problem as simple map matching.

Unfortunately, this problem turns out to be NP-complete, as we prove in Section 6.1.
In Section 6.2, we discuss the implications of this proof on approximability and fixed-
parameter tractability and on using variants of the Fréchet distance. In Section 6.3, we
explore options of solving map-matching instances. We provide an ILP formulation in an
attempt to leverage efficient solvers. However, the resulting ILPs do not solve in reason-
able time. The techniques used to develop the ILP formulation lead to a straightforward
and comparatively efficient brute-force algorithm. We illustrate and discuss some results
of this method.

Related work. A large number of papers are concerned with map-matching problems,
e.g. [9, 28, 98, 101, 131, 176]; for an extensive overview, we refer to the review by
Quddus et al. [141]. Map matching to find driven routes may include timestamps of the
GPS measurements and may differentiate between road types. For schematization, we
use the purely geometric formulation given above, without a time dimension or differ-
entiation. We focus on establishing the computational complexity of variants under the
Fréchet distance. Alt et al. [9] describe an algorithm that decides whether a path exists
in O(mn log n) time, where m and n are the number of vertices of the polygonal curve
and the plane graph respectively. Though “U-turns” can be avoided, no general simplicity
guarantees are possible. Similarly, the decision problem for the weak Fréchet distance
can be solved in O(mn) time [28]. Wylie [180] proves that simple map matching us-
ing the discrete Fréchet distance is NP-hard. The same result also follows directly from
our proofs. Studying a slightly different problem, Sherette and Wenk [160] show that it
is NP-hard to determine the existence of a simple curve on a 2D surface with holes or
in 3D. However, their proof does not extend to the case where the input curve is simple
as well. Previous to the results presented in this chapter, the complexity of simple map
matching under the Fréchet distance was unknown. For an overview of related work on
schematization and simplification, we refer to Chapter 7.

6.1 Simple map matching is NP-complete

First, we consider the simple map-matching problem, without considering the number of
bends (either as a constraint or as an optimization criterion). We prove that this problem
is NP-complete, as formalized in the following theorem.

Theorem 6.1. Let G be a plane graph and let P be a simple closed polygonal curve. It is
NP-complete to decide whether G contains a simple cycle C with dF(P,C) 6 1.
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The problem is in NP since the Fréchet distance can be computed in polynomial time
[10] and it is straightforward to check simplicity. In this section we prove that the problem
is also NP-hard. We implicitly assume that the mentioned graphs are plane graphs.

Planar 3SAT. We give a reduction from planar 3SAT. For any planar 3SAT formula F , we
show how to construct graph G and simple closed curve P such that G contains a simple
cycle C with dF(P,C) 6 1 if and only if F is satisfiable. Lichtenstein [117] showed that
planar 3SAT is NP-hard. Knuth and Raghunathan [113] proved that it remains NP-hard,
even if a specific rectilinear embedding is given (see Figure 6.2(a)). In this embedding all
variables and clauses are represented as disjoint rectangles; the variables lie on a single
horizontal line; and all links relating variables to clauses are strictly vertical. However,
this is not exactly the embedding that we use to construct graph G and closed curve P .
Our reduction requires that the clauses have a small fixed dimensions and hence cannot
be stretched horizontally. We observe that a single bend for the two “outer” edges of a
clause is sufficient to ensure this (see Figure 6.2(b)).

x1 x2 x3 x4

x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x4

x2 ∨ x3 ∨ x4

x1 x2 x3 x4

x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x4

x2 ∨ x3 ∨ x4

(a) (b)

Figure 6.2 (a) Rectilinear embedding of a 3SAT formula [113]. (b) The same
embedding with bends and fixed dimensions for clauses.

As is common in reductions from planar 3SAT, we define a number of gadgets. We
define variable gadgets, clause gadgets, and propagation gadgets which represent the
variables, clauses, and edges of F respectively. Based on these, we construct a simple
map-matching instance—a graph and a simple closed curve—which represents F . That
is, the constructed instance admits a simple cycle if and only if F is satisfiable. The
result of this construction is illustrated in Figure 6.3. The reduction is split into two parts.
In Section 6.1.1 we present the reduction based on a specification of the gadgets. In
Section 6.1.2 we provide the details for each gadget.

6.1.1 Proof with gadget specifications

Each gadget specifies part of the graph and part of the simple closed curve. We call these
parts the local graph and local curve of a gadget. The gadgets interact via vertices and
edges shared by their local graphs. There is no interaction based on the local curve: it is
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x1 ∨ x2 ∨ x3

x2 ∨ x3 ∨ x4

x1 ∨ x2 ∨ x4

x1 x2 x3 x4

s

s′

t

t′

Figure 6.3 Overview of the construction for the formula in Figure 6.2. Each
gray block represents a gadget. The red lines connect the various
gadgets to obtain a simple closed curve. The green bars indicate
places where gadgets interact.

used only to force choices in using edges of the local graph to find a simple cycle with a
Fréchet distance of at most 1.

For now, we abstract from the details of the local graph and curve. We first give
only specifications for the gadgets: we describe their desired behavior. Based on this
specification, we complete the reduction. In Section 6.1.2, we give a construction for
each gadget that adheres to its specification.

If a cycle exists in the complete graph, some simple path in the local graph must have
a Fréchet distance of at most 1 to the local curve. Using a certain path in the local graph
“claims” its vertices and edges: the shared vertices and edges can no longer be used by
another gadget as this would result in a nonsimple cycle. This results in pressure on the
other gadget to use a different path. A gadget has a number of pressure ports. These
ports correspond to a sequence of edges (and their vertices) in the local graph that may be
shared with another gadget. A port may receive pressure, indicating that the shared edges
and vertices may not be used in the gadget. Similarly, it may give pressure, indicating that
the shared edges and vertices may not be used by other gadgets. All interaction between
gadgets goes via these ports.

The local curves must be joined carefully, ensuring that the complete curve is a simple
curve. Each gadget has two curve gates that correspond to the endpoints of the local curve.
Later, we show how to connect these gates such that the complete curve is indeed simple.
The complete graph is the union of all local graphs and some additional edges used to
connect the gates.
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In the following paragraphs, we give the specifications for the three gadgets. Each
specification consists of the following items:

• its behavior in terms of its ports;
• a rectilinear bounding polygon that contains the local graph and local curve;
• the placement of its two gates and its ports.

Regardless of the gadget, we require that all coordinates are an integer multiple of a half.
We give specifications for clauses and edges that are placed above the variables in the
embedded formula. Gadgets for clauses and edges below are defined analogously, by a
rotation over 180 degrees.

For each gadget we also give a visual representation on an integer grid. The bounding
polygon is given with a black outline; the ports are represented with thick green lines; the
gates are represented with red dots.

Propagation gadget. Each edge of the embedded formula is represented by a propagation
gadget. The propagation gadget is shaped like a “thick edge”. If the edge has a bend, then
the gadget also has a bend. A visual specification of the gadget is given in Figure 6.4.

The propagation gadget has two ports representing the endpoints of the edge. The
gadget does not admit a path if both ports receive pressure. If one port receives pressure,
the other gives pressure: as the name suggests, the gadget propagates pressure.

The gadget has a bounding polygon that represents the edge with thickness 4. If there
is no bend, the bounding polygon is a (vertical) rectangle of width 4 and height h. If there
is a bend, the bounding polygon has two dimensions: widthw and height h. The bounding
polygon is the union of two rectangles: a vertical rectangle of width 4 and height h and a
horizontal rectangle of width w and height 4. For a right bend, these rectangles coincide
at the lefttop corner; for a left bend, they coincide at the righttop corner. We constrain
propagation gadgets to have height h at least 7. If it contains a bend, the width w is at
least 6. In other words, in our construction of the gadget (Section 6.1.2), we may assume
that smaller dimensions are not required.

The gates are located at distance 2 above the bottom side of the vertical rectangle. The
ports are at the endpoints of the thick edge, the sides with fixed width 4. That is, one of

h

w

h

4

4

4

w

h

4

4

Figure 6.4 Specification of a propagation gadget with and without a bend. The
bounding polygon is given in black; the red dots represent gates; the
green segments indicate ports.
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the ports is located on the bottom side of the vertical rectangle. If there is no bend, the
other port is on the topside of the vertical rectangle. If there is a right or left bend, the
other port is on the right or left side of the horizontal rectangle respectively. All ports have
width 2 and are centered on their respective sides of the bounding polygon. On the sides
that contain a port, the local graph has no edges or vertices except for those representing
the port. Also, the local curve does not overlap these sides. This ensures that interaction
between gadgets occurs only via ports and that the local curves do not intersect.

Clause gadget. The clause gadget has a fixed specification. A visual specification of this
gadget is given in Figure 6.5.

A clause gadget has three ports. It admits a path if and only if it does not receive
pressure on one of its ports. That is, any path—through the local graph between the gates
with a Fréchet distance of at most 1 to the local curve—causes pressure on at least one of
its ports; and for each port there is a path that causes pressure only on that port. The lack
of external pressure on a port corresponds to the state of the corresponding variable being
such that the clause is satisfied. If none of the variables has a state such that the literal is
true (i.e., the clause is false), then all ports receive pressure and the clause gadget does
not admit a path.

The bounding polygon has fixed dimensions. It is the union of a vertical rectangle
with width 3 and height 9 and a horizontal rectangle of height 3 and width 5. These
rectangles coincide on their righttop corner.

The gates are located at the top side of the horizontal rectangle and are at distance
1 and 3 from its left endpoint. The vertical rectangle contains the three ports: one of
width 1, centered on its bottom side; one on its left and one on its right side, both have
width 2 and are located at distance 2 above the bottom side.

9

3

3

5

Figure 6.5 Specification of a clause gadget. It has fixed dimensions and re-
quires three ports.

Variable gadget. The specification of a variable gadget depends on the number of oc-
currences in clauses: literals of the given variable or, alternatively, incident edges in the
embedding of F . Let k+ and k− denote the number of occurrences in gadgets above or
below the variables respectively. Let k = max{k+, k−} denote the maximum of these
two values. We assume that k > 0; a variable with k = 0 does not occur in the formula
and can be safely omitted. A visual specification of the gadget is given in Figure 6.6.
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9 14 9

9

9

22

36

Figure 6.6 Specification of a variable gadget with k+ = 2 and k− = 1.

The variable gadget admits two states: one corresponds to true, the other to false.
That is, each path in the local graph that has a Fréchet distance of at most 1 to the local
curve must correspond to one of these states. The gadget has a number of ports along its
top and bottom boundary, one for each occurrence of the variable. These ports give or
receive pressure depending on the state. A port that corresponds to a positive literal gives
pressure only in the false state. A port that corresponds to a negative literal gives pressure
only in the true state. In other words, the port gives pressure if the state of the variable
does not satisfy the corresponding clause.

The bounding polygon of the variable gadget is a rectangle that depends on the value
of k. It has a width of 4 + 16k. The height is fixed at 22.

The gates are both located on the left side, at a distance 9 and 13 from the top side. All
ports have width 2. The ith port (either above or below) is placed at distance 9 + 16(i−1)
from the left side. That is, the first port is placed at distance 9, the second at 25, etc.
Hence, the rightmost port (i = k) is at distance 9 from the right side.

Construction with gadgets. With the gadgets defined above, we now construct the com-
plete graph G and simple closed curve P based on the structure given by the (modified)
embedded formula F . Figure 6.3 illustrates this construction. Whenever we place a gad-
get, we argue that it does not overlap other gadgets that have already been placed.

First, we construct each variable gadget and place these on a horizontal line with a
distance of 6 between consecutive variables. The order of the variables is given by the
embedding of formula F . No variables overlap due to the horizontal spacing.

For the placement of clause gadgets, we introduce dominance between two clauses
either both above or both below the variables. We present the placement for clauses
above; placement for clauses below is analogous. Clause c dominates clause c′ if there
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is a vertical line that intersects both c and c′ (or the horizontal part of an incident edge)
in the embedding of F and c is above c′. This induces a partial order on the clauses. Let
dom(c) denote the clauses that are dominated by c. The dominance number of a clause is
0 if dom(c) is empty; otherwise, it is 1 + k where k is the maximum dominance number
of a clause in dom(c). We compute the dominance number of all clauses in polynomial
time by traversing the given embedding. Now, we construct and place the clause gadgets
using their dominance number. Each clause has exactly one edge without a bend in F :
the middle literal. Assume this middle literal is the ith incident edge from above for the
corresponding variable. We place the gadget such that its bottom port is above the ith port
of the variable. Moreover, we position it such that this port is at height 7 + 14k above the
top of the variable gadget where k is the dominance number of the clause. Since a clause
gadget has height 9, the vertical distance between gadgets with a different dominance
number is at least 5. As k > 0, the gadgets cannot overlap a variable gadget. The distance
between two consecutive ports is at least 14. Hence, no two clause gadgets overlap.

We now construct the propagation gadgets. For each middle edge (without a bend), we
construct the propagation gadget without bend of the required length and place it between
the clause and the variable. By placement of the clauses, the ports match up correctly: one
port of the propagation gadget coincides with the bottom port of the clause gadget; the
other coincides with the top port of the variable gadget. By the positioning of the clause
gadgets, any propagation gadget has height at least 7 and thus adheres to the minimal
height requirement. For edges with a bend, we construct propagation gadgets with a
bend. Again, assume the edge is the ith incident edge from above for the variable. We
place it such that the bottom port coincides with the ith port on the top side of the variable.
We give it the proper height and width such that the other port of the propagation gadget
coincides with the port of the corresponding clause. Due to the spacing of the ports, the
vertical parts of propagation gadgets cannot overlap nor do these parts overlap clause or
variable gadgets (except at the desired ports). Also, a propagation gadget does not overlap
a horizontal part of another propagation gadget nor does it overlap a clause gadget: such
overlaps would contradict the placement of clauses via the dominance number.

From the above, we know how to compose the various gadgets in polynomial time.
We obtain a graph G, but we do not yet have a simple closed curve: each gadget has
its own local curve. What remains is to argue that we can “stitch” these local curves
together to create a single simple closed curve. All interaction between gadgets occurs
via ports: the order of the gadgets along the curve is not used to convey information.
We thus proceed as follows. First, we define two points s and t. These are at the same
height as the gates of the propagation gadgets above the variables. Point s is 6 steps to
the left of the leftmost variable gadget; t is 2 steps to the right of the rightmost. We create
a simple curve from s to t that includes the local curves of the propagation and clause
gadgets above the variables as well as the variable gadgets themselves. To this end, we
move from s to t to construct the curve; at certain events, we include the various gadgets.
We distinguish three events.

(a) At distance 4 before the left boundary of a variable gadget, we traverse the gadget as
follows. First, we go straight down to the height of its lower gate and then four steps
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to the right to connect to the gate. After traversing the gadget, the curve exits at its
top gate. We take two steps back to the left and go back up to the height of s.

(b) At distance 4 before the left boundary of a propagation gadget that has a right bend,
we include the corresponding clause gadget. To this end, we go straight up to a height
of 4 above the topside of the clause gadget. Then we go to the right and finally four
steps down to connect to the right gate of the clause. After traversing the clause
gadget, the curve exists on the left gate. We go up two steps and then go back to the
start of the event, maintaining a distance of 2 to the curve used to arrive at the right
gate of the clause gadget.

(c) When we reach the left gate of a propagation gadget, we traverse it and continue from
its right gate.

We stop when point t is reached. Due to the spacing between the gadgets and ports, this
traversal does not intersect any gadgets and the described events do not coincide nor do
they occur within a propagation gadget. We have now constructed a simple curve from
s to t that contains the local curves of the variable gadgets as well as the propagation
and clause gadgets above the variables. We add to graph G the parts of the constructed
curve that do not originate from a local curve of some gadget. For the propagation and
clause gadgets below the variables, we use a similar procedure going back from point t′

to s′. However, the variable gadgets are not included. By adding the vertical connection
between s and s′ as well as between t and t′ to the curves and graph, we obtain the final
graph G and simple closed curve P . An example of the traversal is given in Figure 6.3.

Proving the theorem. We now have a graphG and a simple closed curve P . Let n denote
the number of variables, and m the number of clauses in formula F . For the reduction,
the complexity of G and P must be polynomial in n and m. Moreover, the coordinates
used to represent the vertices of G and P must be polynomial, such that each coordinate
does not use more than O(log nm) bits.

The width of the entire construction is at most 8 +
∑n
i=1(4 + 16ki) + 6(n− 1) where

ki is the number of occurrences of the ith variable. As
∑n
i=1 ki = 3m, we find that

the width of the construction is bounded by 2 + 10n + 48m = O(n + m). Since the
maximal dominance of a clause is m− 1, the height of the entire construction is bounded
by 22+2(7+14m+9+4) = 49+28m = O(m). Hence, the space occupied isO(nm+
m2). The required coordinates easily fit into O(log nm) bits each, as all coordinates are
required to be an integer multiple of a half. Clause and propagation gadgets have constant
complexity; the complexity of a variable gadget is O(ki). The traversal to create a simple
closed curve adds constant complexity per event, thus O(n + m) in total. Hence, the
constructed graph G and simple curve P have a polynomially bounded complexity. To
conclude the proof of Theorem 6.1, we must argue that G has a simple cycle C with
dF(P,C) 6 1 if and only if F is satisfiable.

Assume that F is satisfiable and consider some satisfying assignment. We must now
argue the existence of a simple cycle C. For each variable gadget, we choose a local path
that corresponds to the true state of a variable that is assigned the value true; we choose a
local path that corresponds to the false state otherwise. This gives pressure on a number
of propagation gadgets: we choose the only remaining admissible path for these, causing
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pressure on the corresponding clauses. For the other propagation gadgets, we choose the
path such that it gives pressure at the variable and may receive pressure at the clause.
Since the truth values of the variables originate from a satisfying assignment, we know
that at most two ports of any clause receive pressure. Hence, by its specification, the
clause admits a local simple path as well. We concatenate the local paths with the paths
that are used to stitch together the local curves of the various gadgets to obtain a simple
cycle C. By construction, dF(P,C) is at most 1.

Now, assume that G contains a simple cycle C with dF(P,C) 6 1. By construction,
cycle C traverses all gadgets and contains exactly one subpath for each gadget. This
subpath ends at the gates of the gadget and the Fréchet distance between this subpath and
the local curve is at most 1. For a variable, this local path corresponds to either the true or
false state. This directly yields the truth values of the variables. Each clause gadget also
has a local path and hence one or more of its ports give pressure. Since the propagation
gadgets have a local path, the pressure from the clauses results in pressure on a variable
gadget. This pressure ensures that a variable that receives pressure from a clause is in
a state satisfying the clause. Hence, the truth values found from the variables yield a
satisfying assignment for formula F .

This proves the theorem. However, we have worked only with the specification of the
gadgets. In the next section, we implement the gadgets accordingly.

6.1.2 Gadget implementation

In the previous section we have proven Theorem 6.1 with the specifications of three gad-
gets. In this section we show how to implement these gadgets according to their specifi-
cation by constructing a local graph and local curve.

We illustrate each of the constructions as follows. We give the local graph in thick
light-blue lines and the local curve as a red line. Both are placed on top of the visual
specification of a gadget, given in the previous section. We give various path choices using
thinner dark-blue lines. A choice of path leads to pressure on the ports. Ports that give
pressure are indicated with an outward arrow. As with the specifications, the constructions
are visualized on an integer grid of thin gray lines. Recall that all coordinates must be an
integer multiple of a half. Hence, we ensure that all vertices are placed on the integer grid,
exactly halfway an edge of the grid, or exactly in the center of a cell.

Propagation gadget. To propagate pressure from one port to the other, we construct a
local graph that admits only two paths with a Fréchet distance of at most 1 to the local
curve. Each of the choices visits exactly one of the ports. The construction is illustrated
in Figure 6.7 for gadgets without and with a right bend at minimal size: height h = 7
and, for gadgets with a bend, width w = 6. A gadget with a left bend is constructed
symmetrically to one with a right bend. However, specification requires any larger height
and width. This is achieved by stretching parts of the local graph and local curve (see
Figure 6.7). This does not increase the number of edges in the local graph and curve nor
does it change the Fréchet distance between an admissible path and the local curve.



6.1. Simple map matching is NP-complete 95

(a)

(b)

h

w

h

4

Figure 6.7 Construction of the local graph and local curve for a propagation
gadget. Last column illustrates stretched parts (dotted) to obtain
arbitrary dimensions. (a) Without a bend. (b) With a right bend.
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Figure 6.8 A clause gadget with its path choices. Each choice gives pressure
on at least one port.

Clause gadget. The clause gadget is illustrated in Figure 6.8. It is constructed such that
it admits three paths, each of which passes through a different port. Most importantly, it
does not admit a path that passes through none of the ports. Therefore, if all ports receive
pressure, no admissible path remains. However, it also admits paths that pass through
multiple ports. In particular, it admits a path that puts pressure on the left and bottom
port, on the bottom and right port, and on all three ports. Though not required, these paths
also adhere to the specification.

Variable gadget. A variable gadget requires two states: true and false. The pressure on
its ports must be consistent with its state and the literal in the corresponding clause. If
the literal is positive, then the port should give pressure if the variable is false. If the
literal is negative, then the port should give pressure if the variable is true. In short, a port
should give pressure if the variable state does not satisfy the clause. To obtain a consistent
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(a)

(b)

true false

Figure 6.9 A literal block is shaped depending on whether the literal is positive
(a) or negative (b). Regardless, it has two choices: counterclock-
wise (“true”) or clockwise pressure (“false”).
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Figure 6.10 Literal blocks are connected via propagation gadgets (dashed)
within the variable gadget. This creates the circular pressure that
represents the truth value.
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state, we insert a circular pressure within the variable gadget. We associate true with a
counterclockwise pressure and false with a clockwise pressure.

At each port, a literal block translates the circular pressure into pressure on the port
if necessary. This block is illustrated in Figure 6.9. Its shape depends on whether the
literal is positive or negative. The only difference is which of the vertical “bars” is raised
to touch the port at the top. It also features two “internal ports” that are used to create the
circular pressure that represents the value of the variable. Observe that a literal block in
isolation also admits a path that puts pressure on both internal ports. However, due to the
circular pressure within the variable gadget, this path is never used.

We must connect the literal blocks via the internal ports in a circular fashion; see the
sketch in Figure 6.10. To create the circular pressure, we reuse the construction of prop-
agation gadgets. The local curves of the literal blocks end on the inside of the circular
connection. Hence, we use two instances of a propagation gadget between two consecu-
tive literal blocks. A complete variable gadget is illustrated in Figure 6.11.

true false

9 14 9

9

9

22

36

Figure 6.11 A complete variable gadget and its two states: true and false.
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6.2 Implications
Theorem 6.1 and its proof have a number of implications on related problems. We briefly
discuss them here.

Inapproximability. For an unsatisfiable planar 3SAT formula, the minimal Fréchet dis-
tance of a simple cycle in the constructed graph is significantly larger than 1. Suppose that
this minimal Fréchet distance is strictly greater than c. Any c-approximation algorithm
for simple map matching is able to decide satisfiability of planar 3SAT formulas. Thus,
unless P=NP, no c-approximation algorithm can have polynomial execution time.

To investigate the value of c, we consider when constructions no longer adhere to their
specification. That is, we wish to know the smallest c such that a gadget or construction
admits a path with Fréchet distance c that does not adhere to its specification. A propa-
gation gadget admits only two simple paths between its gates: they remain functional for
higher values of c. For c > 6, a clause gadget admits a path that does not pass through any
ports, violating its specification: the clause is considered “satisfied” though none of its lit-
erals are true (see Figure 6.12(a)). For c >

√
0.52 + 6.52 ≈ 6.51, a literal block within

a variable gadget admits a path that does not pass through either of the internal ports:
this breaks the circular pressure that represents the truth value of the variable (see Fig-
ure 6.12(b)). One more problem may occur: two constructions that occur consecutively
along the simple curve may together admit a “shortcut” that violates the specification of
either or both constructions. The parts connecting the various gadgets (red in Figure 6.3)
always connect gates that have a distance larger than 6. Hence, these do not cause a prob-
lem. Only the connections within a variable gadget remain: between the literal blocks
and internal propagation gadgets (see Figure 6.13). Here, problems indeed arise at the
connections for c < 6. The smallest c that admits a path that does not adhere to the spec-
ification is

√
20 ≈ 4.47. Thus the construction shows that it is NP-hard to approximate

the simple map-matching problem within a factor of 4.47.
However, it is straightforward to modify the construction to increase the value of c,

while ensuring that only a satisfiable formula yields a simple cycle with a Fréchet dis-
tance of at most 1. To this end, clause gadgets and literal blocks can be elongated. Within

(a) (b)

Figure 6.12 Clause gadgets (a) and literal blocks (b) admit a path that does not
adhere to the specification for a Fréchet distance significantly larger
than 1.
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Figure 6.13 Several issues may arise in a variable gadget (dotted) for a Fréchet
distance larger than 1. By increasing the distances indicated in or-
ange, we increase the lowest value at which these problems occur.

a variable gadget, we increase the distance between the connector and the constructions
to c (as indicated by the orange arrows in Figure 6.13). We must also increase the dis-
tance between consecutive ports of the same variable gadget to be at least c. Clause
gadgets increase their height by c − 6; variable gadgets increase their height by at most
4c and their width by at most ck where k is the number of occurrences. The placement of
the various gadgets is adjusted accordingly. Now, the upper bound on the total width is
O(c(nm+m2)); the total height is bounded by O(cm) where n and m denote the num-
ber of variables and clauses respectively. Thus, for any value of c that is polynomially
bounded in m and n, the size of the constructed instance is polynomial. We obtain the
following result.

Corollary 6.2. Let G be a plane graph and let P be a simple closed polygonal curve.
Unless P=NP, no polynomial-time algorithm exists to approximate the minimal Fréchet
distance dF(P,C) of any simple cycle C in G within any factor polynomially bounded in
|G| and |P |.

Counting turns. With the inapproximability result above, we may wish to investigate
the possibility of a fixed-parameter-tractable algorithm (FPT). That is, we would like
to find an algorithm for which the execution time depends exponentially only on some
parameter of small value (rather than the input size). A schematization typically has a low
number of bends; we could therefore use the number of bends as a parameter. Suppose we
desire a rectilinear schematization, that is, graph G contains only vertical and horizontal
edges. Then any bend is either a left turn or a right turn. Every rectilinear polygon has a
certain turn profile: the sequence of left and right turns in counterclockwise order along
its boundary. The turn profile gives no information about edge lengths. As a result, many
seemingly different polygons have the same turn profile (see Figure 6.14).
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Figure 6.14 Two polygons with the same turn profile. Starting from dashed
arrow, it is: L(eft), L, R(ight), L, L, L, R, L.

Consider the following approach. We choose a turn profile for the schematization and
solve the simple map-matching problem for cycles that adhere to this turn profile. By
optimizing over all turn profiles, we find the general solution to the simple map-matching
problem. Unfortunately, even with a given turn profile, the problem remains NP-complete.
Let us consider the various gadgets in the proof of Section 6.1. In all constructions, the
turns made by the various admissible paths in the local graph are identical. Thus, we can
easily decide the turn profile that a cycle in the complete graph must adhere to.

Corollary 6.3. Let G be a plane graph, let P be a simple polygon and let T be a turn
profile. It is NP-complete to decide whether G contains a simple cycle C that adheres to
T with dF(∂P,C) 6 1.

This does not decisively prove that no FPT algorithm exists. However, it does show
that one of the more obvious ways of obtaining an FPT is not feasible.

Variants. Finally, we observe that there are a number of variants of the problem that can
be proven to be NP-complete via the same construction.

The strict monotonicity of the Fréchet distance is not crucial for the construction.
Hence, the problem under the weak Fréchet distance is also NP-complete. Using the
weak Fréchet distance does allow for more admissible paths in the local graph of a clause
gadget. It now admits a path that results in pressure on both the left and right port (but
not the bottom port). This path adheres to the specification and thus does not influence
the proof.

We may sample the graph and curve on the integer grid. As the construction has
polynomially bounded width and height, the resulting sampled graph and curve are also
polynomially bounded in size. Hence, the problem is also NP-complete when applying
the discrete (weak) Fréchet distance.

All interaction between and within gadgets is based on edges. Therefore, it is also
NP-complete to determine the existence of an “edge-simple” cycle that uses each edge at
most once (but vertices may be used more than once).

The proof straightforwardly extends to simple open curves and paths in the graph.
Omitting the connection between s and s′ (see Figure 6.3) yields a simple open curve,
rather than a closed curve. Also, generalizations of the problem in which the graph is not
a plane graph or the curve is not simple are NP-complete.
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6.3 Solving simple map-matching problems
In this section we investigate schematization via map matching by considering the bend-
minimization variant. That is, we study the following problem: given a plane graph G,
a simple closed polygonal curve P and a value ε > 0, compute a simple cycle in G
with a Fréchet distance of at most ε to P with a minimal number of bends (if it exists).
As we have proven in the previous sections, it is unlikely that an efficient (approxima-
tion) algorithm exists. We now consider some options of computing exact solutions for
comparatively small instances.

To facilitate this, we first transform the problem into a conceptually simpler problem
in Section 6.3.1. This transformation avoids the need for computing or verifying Fréchet
distances afterwards. This leads to a simple brute-force algorithm as described in Sec-
tion 6.3.2. In Section 6.3.3 we show that this transformed problem can be solved via an
integer linear program (ILP). Though this is also an NP-hard problem, there are methods
to solve ILPs that are efficient in practice. By formulating a simple map-matching prob-
lem as an ILP, we may be able to leverage these methods. We present some experimental
results of the brute-force and ILP methods in Section 6.3.4.

6.3.1 Interval graph
For our transformation, we wish to compute a structure that allows us to rid ourselves
of further Fréchet distance computations. To this end, we compute for each edge in G
the subcurves (“intervals”) of P that have a Fréchet distance at most ε to the edge . The
structure describes exactly which subcurve of an edge (u, v) can precede a subcurve of
another edge (v, w). Thus, by traversing this structure, we may construct cycles that have
a Fréchet distance of at most ε to P . We refer to this structure as the interval graph.

We assume that the plane graph G is given as a (discrete) set of vertices V ⊂ R2 and
directed edges E ⊂ V × V . As the given graph is typically undirected, we represent an
undirected edge between u and v as two directed edges, (u, v) and (v, u). We treat the
simple closed curve P as a function P : S1 → R2 where S1 denotes the unit circle. We
assume that the diameter of P is strictly greater than 2ε, i.e., no single point has a Fréchet
distance of at most ε to P . Such cases can be considered degenerate: the value of ε is too
large to find a meaningful schematization in G. Moreover, we assume that all vertices of
G lie within distance ε of some point on P . Vertices that lie further away cannot be used
in a cycle; these can easily be discarded beforehand.

Sectors and sector points. To construct the interval graph, we first determine all points
s on S1 such that the distance between P (s) and some vertex v ∈ V is exactly ε. We
refer to these points as sector points and we denote them, in sequence along S1, by S =
〈s1, . . . sk〉. These points are correspond to the intersections of P with the circles of
radius ε centered at the vertices of G. For vertex v, we denote by Sv the subsequence of
S corresponding to intersections between P and the circle centered at v. As a circle and a
line segment intersect at most twice, we know that Sv contains at most 2|P | sector points;
the size of S is at most 2|P ||V |. The sector points partition S1 into sectors.
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Figure 6.15 (a) The intersections of P with circles centered at vertices of G de-
fine a sequence of sector points, S = 〈s1, . . . , s8〉. (b) The domain
of P is the unit circle. Each edge has a set of intervals with Fréchet
distance exactly ε to a subcurve of P .
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Figure 6.16 (a) An edge (u, v) and two sector points, p and q, that define a
maximal subcurve (and hence an interval) with a Fréchet distance
of exactly ε. (b) The free-space strip can be traversed to find the
interval. The green area represents the reachable space, starting at
(p, u). Its rightmost point determines the interval.
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Intervals. In the second step we compute, for each edge e ∈ E, the subcurves of P with
a Fréchet distance of at most ε to e. An edge may have an infinite number of such sub-
curves. Therefore, we restrict ourselves to maximal subcurves. We refer to a (contiguous)
subdomain of S1 that corresponds to a maximal subcurve as an interval. An interval is
not contained in another, though intervals may overlap. An example to illustrate sectors,
sector points and intervals is given in Figure 6.15.

Any interval for an edge (u, v) ∈ E must start at a sector point in Su and end at a
sector point in Sv . If an interval does not start at one of these points, it does not corre-
spond to a maximal subcurve. Hence, an interval spans a number of (complete) sectors
and represents a subcurve that has a Fréchet distance of exactly ε. We can compute the
intervals for each edge as follows. We treat the vertices in Su in order while maintaining a
linked list L of current intervals. At each of these sector points s, we compute a candidate
interval that starts at s with a Fréchet distance of exactly ε to (u, v). We consider the
free-space strip of e and P starting at s: this is a free-space diagram for e and P , where P
is “cut” at P (s) into an open polygonal curve. This is illustrated in Figure 6.16. Using the
dynamic programming techniques of Alt and Godau [10], we can traverse the free-space
strip to compute the candidate interval in O(n) time. This procedure gives us the sector
point in Sv at which the candidate interval ends (if any exists). The candidate interval I
may contain or be contained in intervals of L. If I is contained in some interval of L,
it must be contained in the last, since we process the vertices in Su in order. Thus, we
can check in constant time whether this is the case. If it is contained, we discard I and
continue with the next sector point. If it is not contained, we append it to L and remove
any intervals in L that are contained in I . If any interval is contained in I , in particular
the first must also be contained in I . We remove the first element of L until it is no longer
contained in I . Hence, processing one vertex takes O(|P |) time. After iterating over all
points in Su, we found all intervals of (u, v). This takes O(|P |2) time per edge and thus
O(|P |2|V |) time in total.

Transitions and transition points. As a last step in building the interval graph, we de-
termine which interval of edge (v, w) can follow which interval of edge (u, v) in a cycle
in G with a Fréchet distance of at most ε to P . We refer to these as transitions between
intervals. To model transitions, we introduce transition points for all intervals. For each
sector point that is contained in an interval (including its endpoints), we introduce a tran-
sition point. Consider a potential transition between two transition points, t and t′, that
correspond to the same sector point s. Moreover, assume that t is part of an interval of
an edge (u, v) and that t′ is part of an interval of an edge (v, w) such that u 6= w. A
transition from t to t′ is admissible if and only if ‖P (s) − v‖ 6 ε. If a transition is
admissible, two intervals can be glued together at sector point s: the result has a Fréchet
distance of at most ε to the sequence of two edges (see Figure 6.17). This follows from
the fact that each interval has some matching between the edge and the subcurve of P and
that cells are convex [10]: the two matchings can be combined at s into a new matching
for the combined edges. If t is the last transition point or t′ is the first transition point of
its interval, then ‖P (s) − v‖ = ε must hold: the transition is always admissible. In our
interval graph, we store all transition points and admissible transitions.
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Figure 6.17 (a) Two edges (u, v) and (v, w) and part of P . (b) Their corre-
sponding free-space strips. At any point on P with distance at most
ε to v, the two matchings (green) can be combined (orange) to cre-
ate a matching for the two edges combined in sequence.

Correctness. To prove correctness of this transformation, we argue two implications: any
cycle of admissible transitions in the interval graph corresponds to a cycle in graphGwith
a Fréchet distance of at most ε to P and vice versa.

Suppose we have a cycle of admissible transitions 〈t0, . . . , tk−1, tk = t0〉, such that
the transition that leaves an interval is not before the transition that arrives at an interval.
Let Q be the polygonal closed curve that represents the corresponding cycle in G. We
must show that dF(P,Q) 6 ε. Each transition ti matches a point pi along P to a vertex
qi of Q (and thus of G); by definition, ‖pi − qi‖ 6 ε holds. Because the transitions
make a cycle in the interval graph, the interval Ii at which ti ends corresponds to the
interval at which ti+1 starts. Therefore, ei = (qi, qi+1) is an edge in G for all i ∈
{0, . . . , k− 1}. Interval Ii corresponds to this edge and a maximal subcurve C of P with
a Fréchet distance of exactly ε. Hence, a Fréchet matching must exist between the edge
and C. Because ti comes before ti+1 on Ii, we know that pi comes before pi+1 along C.
Because ‖pi − qi‖ 6 ε holds for all i, we know that we can use this matching to define
a Fréchet matching between ei and the subcurve from pi to pi+1 (see Figure 6.18(a)).
Each edge ei therefore admits a Fréchet matching that starts where ei−1 ends. Thus,
all these Fréchet matchings can be concatenated into one Fréchet matching that proves
dF(P,Q) 6 ε.

What remains is to prove the converse. Suppose we have a cycle Q in G that has
a Fréchet distance of at most ε to P . We must show that there is a cycle of admissible
transitions that corresponds toQ. Recall that we split the parameter space of P into sector
points S . Let P = {P (s) | s ∈ S} denote the corresponding points of P . We show that Q
admits a Fréchet matching that matches each vertex qi of Q to some point pi ∈ P . This
implies that an admissible transition exists from an interval of edge (qi−1, qi) to (qi, qi+1)
at this sector point; this in turn proves that there is a cycle of transitions that corresponds
to Q. Consider some Fréchet matching µ and let k denote the number of vertices qi—
matched to pi according to µ—such that pi 6∈ P . If k = 0, then we are done. For k > 0,
we show that k can be reduced by at least one. Let qi be a vertex of Q that is matched
to pi according to µ and pi 6∈ P . Let p′i be the first point in P after pi. In the free-space
diagram, we observe that the entire region above qi, left of p′i and below (and to the right
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Figure 6.18 (a) We may use a matching for an interval to find a matching be-
tween edge (qi, qi+1) and the subcurve between pi and pi+1. (b)
Sketch of a free-space diagram with matching µ in dark green. By
construction, the light green region must be part of the free space.
The change from µ to µ′, indicated in orange, ensures that qi is
matched to a point p′i ∈ P .

of) µ must be part of the free space (see Figure 6.18(b)): because µ is part of the free
space, any point—corresponding to a vertex of Q—that is not part of the free space in
this region implies that p′i is not the first sector point after pi. Convexity of the cells [10]
implies that all other points are also part of the free space. Hence, we may change µ into
a new Fréchet matching µ′ that matches qi to p′i without changing the matching after p′i or
before pi. Note that any other vertices crossed in between pi and p′i are now also matched
to p′i. We conclude that k is reduced by at least one.

6.3.2 Brute-force optimization

A naive brute-force algorithm can be obtained by simply trying all simple cycles in G
and computing whether the Fréchet distance to P does not exceed ε. A downside of this
approach is that the Fréchet distance needs to be computed repeatedly, for an exponential
number of cycles. Using the interval graph, it is straightforward to write a brute-force
algorithm that avoids this repeated computation of the Fréchet distance.

First, we pick the sector (si, si+1) that is spanned by a minimum number of inter-
vals. For each interval I , we run a recursive brute-force algorithm to find a cycle of
transitions—corresponding to a simple cycle in G—from the transition point of I corre-
sponding to sector point si+1 to the transition point corresponding to si. This cycle uses
only admissible transitions: upon finding a cycle, we already know that the Fréchet dis-
tance is at most ε. During the recursion we maintain the number of bends in the current
path as well as the minimum number of bends in any cycle that was found. When the
number of bends in the current path is greater than or equal to the minimum number of
bends, the recursion is stopped: completing the path to a cycle cannot result in less bends.
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There are—roughly speaking—two ways to find a cycle: we either traverse the tran-
sition points or the intervals. Traversing the transition points is conceptually easier. How-
ever, often there are multiple transition points that can be used to go from one interval to
the next on a cycle. Many identical cycles are explored in such a situation. Therefore, it
is better to work on an interval-basis. We maintain a list of intervals that have been used
and mark the corresponding edges and vertices in the graph accordingly. Moreover, we
maintain the earliest transition point t that can be used to reach the last interval in the
current list (constrained by using that particular sequence of intervals). Let I denote the
last interval and assume its (directed) edge is (u, v). For each interval I ′ that is part of
an edge (v, w), we find the first transition point t′—in or after the sector point of t—that
admits a transition from I to I ′. We recurse on each of these intervals using t′ as the new
earliest transition point. We process these intervals in reverse order of their endpoint (i.e.,
the interval that can represent the largest part of curve P after the current transition point
t). When the very first interval is reached (in sector point si or an earlier transition point),
we have computed a new cycle with a minimal number of bends.

6.3.3 ILP formulation
Rather than using an explicit brute-force solution, an integer linear program (ILP) can be
used to model NP-hard optimization problems. Due to their wide-spread applicability for
optimization problems, ILPs have been studied intensively and a number of implemen-
tations exist that perform well in practice. We present an ILP formulation to solve the
simple map-matching problem, using the interval graph described in Section 6.3.1. This
may allow us to leverage optimized ILP implementations. We describe the ILP formula-
tion by introducing variables, an optimization criterion and linear constraints.

Variables. All variables in the ILP formulation are constrained to be either 0 or 1; the
ILP is a 0-1 linear program. We introduce the following variables.

• A variable t for each transition point, to describe a cycle of admissible transitions
in the interval graph.

• An indicator variable I for each interval, indicating whether one or more of its
transition points are used.

• An indicator variable Bv for each vertex v, indicating whether the described cycle
causes a bend at v.

• An additional indicator variable UI for each interval I in a single given sector.

The last variable is required to “bootstrap” the ILP: most constraints work based on the as-
sumption that something is “used”. Hence, if nothing is used, all constraints are satisfied.
The last variable is used to alleviate this problem.

Optimization criterion. We wish to minimize the number of bends in the schematization.
This is easily formalized using the variables Bv as follows.

Minimize
∑
v∈V

Bv
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Constraints. We first introduce constraints to express that the transition points describe
a cycle. Let Aout(t) denote the admissible transition endpoints that are reachable from
transition point t with one transition: Aout(t) = {t′ | (t, t′) is an admissible transition}.
We use Ain(t) to denote its inverse, Ain(t) = {t′ | t ∈ Aout(t

′)}. For convenience, we
assume that the previous and next transition point on the same interval (if they exist) are
also in Ain(t) and Aout(t) respectively. To ensure that the transition points form a cycle,
we add two types of constraints. The first expresses that, if a transition point is used, at
least one of its admissible transitions is also used (that is, the endpoint of this transition
is set to 1). The second expresses that a transition point has at most one used incoming
transition, regardless of whether this transition point is used.

t−
∑

t′∈Aout(t)

t′ 6 0 , for all transition points t (6.1)

∑
t′∈Ain(t)

t′ 6 1 , for all transition points t (6.2)

We now introduce the constraints for I , the indicator variables of intervals. An interval
is “used” in the cycle if at least one of its transition points is used. We denote the transition
points of interval I by T (I); let k denote the number of transition points. Constraint 6.3,
given below, then captures the constraint that the use of a transition point implies the use
of an interval. Note that this formulation allows an interval to be considered “used” even
if no transition points are used. However, the simplicity constraints and minimization
criteria ensure that this does not occur in a minimal solution.∑

t∈T (I)

t− k · I 6 0 , for all intervals I (6.3)

Let us now turn to enforcing a simple result. To this end, we require that every edge
uses at most one interval and every vertex uses at most one outgoing edge. We denote the
intervals of an edge (u, v) by I(u, v). An edge is used if one of its intervals is used; thus
the sum over all variables can be used as an indicator for the use of an edge. Therefore,
the following constraint expresses that every vertex uses at most one outgoing edge. Note
that it directly implies that at most one interval per edge is used.∑

(u,v)∈E

∑
I∈I(u,v)

I 6 1 , for all u ∈ V (6.4)

The constraints above are all implications or cannot force the use of a transition point.
Hence, they can be satisfied by setting all variables to 0, resulting in an invalid solution.
So far, the formulation lacks constraints that cause at least something to be used. We
observe that in any sector, exactly one of the intervals must use both transition points
that define the sector. We simply need something to be used to make the ILP work. We
model this as follows. Let (si, si+1) denote the sector that contains a minimal number
of intervals; let I(si, si+1) denote these intervals. For each interval I ∈ I(si, si+1), we
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introduce a variable UI . We use this variable to indicate that this interval must use both
transition points. We denote the variables of these transition points by tI,i and tI,i+1.
Exactly one of the UI variables is set to 1 to force the use of these transition points. This
leads us to the following two constraints.∑

I∈I(si,si+1)

UI = 1 , for one sector (si, si+1) (6.5)

2UI − tI,i − tI,i+1 6 0 , for all intervals I ∈ I(si, si+1) (6.6)

Constraints 6.1 to 6.6 ensure that the variables describe a simple cycle. However, we
measure the number of bends using the variables Bv . We must ensure that this variable
is 1 only if the cycle indeed causes a bend at the vertex. This is the case if any incoming
edge (u, v) is used (i.e., any of its intervals is used), unless the next edge on the cycle is
the straight continuation of (u, v). We denote this special edge by N(u, v). Again, we
use I(u, v) to indicate the intervals of an edge; we can express the use of an edge as the
sum over its interval variables. This leads to Constraint 6.7 as given below. Note that the
minimization criterion ensures that Bv is set to 1 only if it is strictly necessary.∑

I∈I(u,v)

I −
∑

I∈I(N(u,v))

I −Bv 6 0 , for all edges (u, v) ∈ E (6.7)

Complexity analysis. Let us now analyze the maximal number of variables and con-
straints of the ILP. To this end, we use n to indicate the number of vertices (and edges)
of the closed polygonal curve P . The number of vertices of G is denoted by m; since
G is a plane graph, its number of edges is O(m). An important factor in the complexity
is the number of resulting sectors. Though the number of sectors is at most 2mn, this
occurs only in very degenerate cases. Therefore, we indicate the number of sectors by k
to explicitly model this dependency. In addition, we assume that the maximal degree of
any vertex is bounded by a low constant.

After constructing the interval graph, it is straightforward to generate the ILP in time
proportional to the number of vertices and constraints. Hence, we restrict our analysis to
the number of variables and constraints. For each of the variable types, we give an upper
bound on the number of variables we need.

• Number of transition point variables. As the number of sectors is bounded by k,
we know that the number of transition points is bounded by k times the number of
intervals. Hence, there are O(kmn) transition points. This is a rather coarse upper
bound: the number of sectors that an interval spans is expected to be is much lower
than k.

• Number of interval variables I . Each interval of edge (u, v) must start a unique
sector point of Su. As there are O(m) edges and |Su| 6 2n, we know that there
are at most O(mn) intervals. This assumes that all edges of a polygon lie within
distance ε of all vertices; this is rather degenerate for reasonable values of ε. Hence,
we may expect the number of intervals to be much smaller in practice.
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• Number of bend variables Bv . A bend variable corresponds exactly to one vertex,
thus there are exactly m bend variables.
• Number of indicator variables UI . One variable is introduced for each interval that

is contained in the sector containing the minimum number of intervals. A trivial
upper bound is the number of intervals, O(mn). Again, we would expect the actual
minimum to be much smaller—possibly constant—in practice.

Similarly, we give the number of constraints and terms per constraint type.

(6.1) There are at most O(kmn) transition points, thus the number of constraints of this
type is bounded by the same number. The number of terms in one constraint is
bounded by O(n), assuming a low constant degree of a vertex.

(6.2) Similar to the previous constraint, there are at most O(kmn) constraints of this
type; the number of terms in a single constraint is at most O(n).

(6.3) With one constraint per interval, there areO(mn) constraints. The number of terms
is bounded by k as each term corresponds to a transition point of one interval.

(6.4) There are m constraints of this type: one for each vertex of G. Each term corre-
sponds to an interval of an outgoing edge. As the number of intervals of one edge
is at most O(n), there are O(n) terms per constraint assuming a constant degree.

(6.5) There is exactly 1 constraint of this type: only for the sector with minimal num-
ber of intervals. The terms are exactly the variables UI . The number of terms is
therefore coarsely upper bounded by O(mn).

(6.6) There is one constraint for each variable UI , each having only 3 terms. The number
of constraints is thus O(mn).

(6.7) There is one constraint for each edge; there are O(m) edges. The number of terms
is bounded by O(n) as both (u, v) and N(u, v) may have up to 2n intervals.

We conclude that the following (coarse) upper bounds hold: the number of variables is
O(kmn); the number of constraints is O(kmn); the number of terms is O(kmn2). An
ILP can be represented using a matrix where each column corresponds to a variable and
each row to a constraint. An entry is the linear factor in the corresponding variable-
constraint pair (0 if the constraint does not depend on the variable). From the bounds
above, we conclude that the matrix is not necessarily sparse, though not all O((kmn)2)
entries can have nonzero values.

Constraint 6.2 and Constraint 6.4 enforce a simple cycle in the interval graph that
corresponds to a simple cycle in the given graph G. Even without these constraints, the
result may be a simple cycle in G; we may expect that many of these constraints are not
necessary to obtain a simple cycle. Therefore, we choose to mark these as lazy constraints.
These constraints are added to ILP only if a potential solution is found that violates the
constraint. In the next section, we briefly discuss some experimental results based on this
ILP formulation.
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6.3.4 Experimental results
In this section we discuss some experimental results. The used territorial outlines, graphs,
ε-values and corresponding schematic outlines are illustrated in Figures 6.19 through 6.23.
We first discuss the resulting schematic outlines; afterwards, we consider the performance
of the ILP formulation and the brute-force method.

Schematization. The only given input is the territorial outline. To compute a schema-
tization via map matching, we need to specify a plane graph that adheres to a desired
orientation set C. We generate these graphs based on equally spaced lines for each orien-
tation. Moreover, we also need to specify a value for ε. The value of ε and the spacing
between the lines were configured manually. The illustrated results were obtained us-
ing the brute-force method of Section 6.3.2. In each figure, we visually represent the
constructed graph and the specified value for ε. The number of bends in the resulting
schematization are indicated in the corresponding captions.

In Figure 6.19, we illustrate octilinear results for Australia. In (b–c), we show the
used graph and value of ε, resulting in a schematization with 9 bends. To obtain a more
complex schematization, we need to decrease the value of ε. However, if this value is
decreased too much, the map-matching problem does not admit a solution. Therefore, we
also refine the graph for (d–e). Ideally, we would specify a very dense graph and change
only the value of ε to control complexity of the resulting schematization. However, due
to the computational complexity, it is infeasible to combine a complex graph with a high
value of ε. Therefore, we must often alter the graph in addition to the value of ε.

Another octilinear schematization is given in Figure 6.20: it shows a schematization
of Languedoc-Roussillon (a department of France). Here, we see two possibilities to im-
prove the schematization. First, on the eastern side, we could shift one of the bends to
more accurately resemble the territorial outline. However, this does not improve the num-
ber of bends. Hence, for our optimization methods, these are considered “equal”. The
suggested improvement is “locally correct”: it is the best local choice. Can we incorpo-
rate locally correct Fréchet matchings (see Chapter 5) in our computation? However, this
likely means slowing down a possibly lengthy computation. A second improvement is
suggested on the eastern border: again, the territorial outline could be represented more
accurately without increasing the number of bends. However, this solution cannot be
found by our map-matching approach: the indicated change does not lie within the given
graph. This indicates a drawback of formulating it via map matching: we need to spec-
ify a suitable graph. On the other hand, these improvements are mostly visible when
comparing the result directly with the original outline. The general structures seem to be
maintained rather accurately. An important question is whether such “local fine-tuning”
of the schematization has a great impact on the recognizability of the map.

Our map-matching approach is not limited to octilinear results; we can use different
orientation sets to generate a graph. Figure 6.21 illustrates hexilinear results and Fig-
ure 6.23 illustrates rectilinear, hexilinear and octilinear results. Irregular orientation sets
can also be used to generate a graph, as illustrated in Figure 6.22. In fact, any plane graph
can be used in our methods: the graph need not be C-oriented and may even model smooth
curves using approximating polygonal curves (see Chapter 9).
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ε(a) (b) (c)

ε (d) (e)

Figure 6.19 Results for schematizing Australia using C4. (a) Territorial outline.
(b–c) Optimal result with 9 bends. (d–e) Optimal result with 25
bends. Compared to (b–c), ε is reduced and the graph is refined.

ε(a) (b) (c)

Figure 6.20 Result for schematizing Languedoc-Roussillon using C4. (a) Ter-
ritorial outline. (b–c) Optimal result with 10 bends. Possible im-
provements are indicated in red.
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ε
(d) (e)

ε
(a) (b) (c)

Figure 6.21 Results for schematizing China using C3(π2 ), using one graph but
different values of ε. (a) Territorial outline. (b–c) Optimal result
with 13 bends. (d–e) Optimal result with 21 bends.

ε
(a) (b) (c)

Figure 6.22 Result for schematizing France using an irregular set C = {0, 7π
18 ,

12π
18 ,

16π
18 }. (a) Territorial outline. (b–c) Optimal result with 10

bends.
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ε (d) (e)

ε(a) (b) (c)

ε (f) (g)

Figure 6.23 Results for schematizing Great Britain using orientation sets C2,
C3 and C4. (a) Territorial outline. (b–c) Optimal rectilinear re-
sult with 22 bends. (d–e) Optimal hexilinear result with 23 bends.
(f–g) Optimal octilinear result with 31 bends.
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Performance. We now discuss the performance of the ILP formulation in comparison to
the brute-force method. We implemented both approaches in Java and used IBM ILOG
CPLEX Optimization Studio 12.6 (CPLEX for short) to solve the integer linear programs,
using the built-in support for lazy constraints. These experiments were run on a DELL
Precision M4500 Laptop with 4GB RAM and an Intel Core i5 M560 processor with two
cores of 2.67GHz each (two threads per core). CPLEX uses up to four threads. For
our brute-force implementation, we also allowed the use of up to four threads. A “unit of
work” for a thread is one interval that spans the sector with a minimal number of intervals:
if only few intervals span this sector, then this also bounds the number of effective threads.

Using CPLEX in its default configuration caused very high memory usage. Therefore,
we allowed CPLEX to write compressed files to disk to use more storage. Furthermore,
we set the branching strategy to “strong branching”: this increases computation time per
branch node but reduces the number of nodes visited. We tried three different node-
selection strategies: “best bound”, “best estimate” and “depth-first search”.

Table 6.1 lists statistics for the various instances (Figure 6.19 through Figure 6.23).
This includes the number of vertices in the given closed curve P and in the constructed
graph G. For the latter, we count only vertices that lie within ε distance of P : all other
vertices are removed from the graph during the transformation. The table also provides
some complexity measures for the interval graph (sectors, intervals, transition points) and
the resulting ILP (variables, constraints, lazy constraints, terms). Finally, it also lists the
optimal solution. Table 6.2 lists the results obtained via CPLEX and via the brute-force al-
gorithm in terms of computation time and the best solution found. For these experiments,
we used a 6-hour time limit for computation; aborted computations are indicated with an
asterisk. For the brute-force algorithm, we list values obtained through a single-thread
implementation and through a parallel implementation with up to 4 threads.

The brute-force method is significantly faster than the ILP formulation; the figures in
this section illustrate the results obtained using this method. Comparing the computation
times between the single-thread and multithreaded implementation, we see that the use
of multiple threads helps speed up the computation. However, the speed up is far from
a factor 4. This is likely due to the additional memory required and the need for some
synchronization between the threads. However, for the instances in Figure 6.23, the com-
putation times are rather high. Only for Figure 6.23(f–g), the 6-hour time limit was not
enough to verify optimality of the found solution. We removed the time bound to verify
that 31 is indeed the optimal solution; this took roughly 24 hours.

Unfortunately, CPLEX did not find any solution for a number of instances. For some
instances, it did find the optimal solution, although it lacked time to verify its optimality
(regardless of the node-selection strategy). The depth-first-search strategy was most ef-
fective in finding a (suboptimal) solution, though it sometimes deviates more from the op-
timal solution than the other strategies. Possibly, the problem resides in the map-matching
problem itself: we know that no efficient approximation algorithms exist (Corollary 6.2).
A common strategy applied in solving ILPs is to relax the integrality constraints and
round the resulting solution. A linear program can be solved optimally in polynomial
time. Hence, the result of this strategy cannot yield a good approximate solution to the
problem unless P=NP. This may partially explain the performance of the ILP method.
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Table 6.3 Lower bound, upper bound and the integrality gap for the three used
CPLEX strategies.

Instance Integrality gap
Figure Best bound Best estimate Depth-first search

6.19(b–c) 3.00 ∞ 3.00 ∞ 0.50 ∞
6.19(d–e) 9.00 25 64.00% 7.00 25 72.00% 2.51 25 89.96%
6.20(b–c) 7.67 15 48.89% 6.00 ∞ 2.01 15 86.62%
6.21(b–c) 4.99 14 64.36% 3.99 14 71.48% 2.00 34 94.12%
6.21(d–e) 11.01 21 47.59% 5.44 21 74.07% 2.00 21 90.47%
6.22(b–c) 5.00 ∞ 4.99 ∞ 1.02 11 90.70%
6.23(b–c) 4.00 ∞ 4.00 ∞ 1.00 ∞
6.23(d–e) 7.00 ∞ 7.08 ∞ 2.09 23 90.91%
6.23(f–g) 9.00 ∞ 8.85 ∞ 3.00 ∞

In finding a solution, CPLEX maintains a lower bound on the number of bends in any
solution and an upper bound (the number of bends in the best solution so far). The differ-
ence between this lower and upper bound is referred to as the integrality gap. Table 6.3
lists these bounds and the integrality gap. As we may see in this table, the best-bound and
best-estimate strategies perform much better in terms of the lower bound. If they found
a solution, the integrality gap is much smaller. This indicates that CPLEX is closer to
finding an optimal solution with these strategies compared to depth-first search.

The progression of the intermediate solution (in number of bends) over time is illus-
trated in Figure 6.24. This figure shows that the brute-force method often finds a (subop-
timal) solution within 1 second. For most instances, an optimal solution is found within
5 minutes. In contrast, it typically takes much longer for the ILP to find a first solution, if
it finds any at all. Of the three CPLEX strategies, the depth-first-search strategy is most
efficient in finding a first solution. However, this strategy performs worse in long-term
computations as was concluded above.

Figure 6.25 shows the “approximation ratio” of intermediate solutions in comparison
to the optimal solution for the brute-force method. From this, we learn that the first solu-
tions are typically a 2.5-approximation or better. After only 2 seconds, all test instances
achieved an approximation ratio below 1.25. The question is how suitable these approxi-
mate solutions are as schematization. Figure 6.26(a–i) shows all solutions that were found
for the instance of Figure 6.23(d–e). It seems that these intermediate solutions are rea-
sonable, though it may have unwarranted bends at comparatively arbitrary positions. We
think that this reasonable quality is due to our interval processing order: we always first
try the interval that can reach the furthest sector point. This choice corresponds to the edge
that represents the local geometry rather well. To support this hypothesis, Figure 6.26(j)
shows a result with 31 bends using a random processing order: it is significantly worse
than the result in Figure 6.26(a). We also observe that some suboptimal patterns repeat
itself in the computation. To improve computation time, it is desirable to find a method
that avoids recomputing these local patterns.
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Figure 6.24 Progression of number of bends over time during computation.
Time is given on a logarithmic scale (in milliseconds). (a) Brute-
force results. Solid lines and dotted lines indicate the multithreaded
and single-thread variant respectively. (b) CPLEX results. Solid
lines, dashed lines, and dotted lines indicate “best bound”, “best
estimate” and “depth-first search” strategies respectively.
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Figure 6.25 Progression of number of bends over time relative to optimal so-
lution for the brute-force method. Time is given on a logarithmic
scale (in milliseconds). The representation and colors correspond
to those of Figure 6.24(a).
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Figure 6.26 Intermediate results (a–h) and optimal result (i) for Figure 6.23(d–
e), starting at 31 and ending at 23 bends. Some unnecessary bends
(a) and repeated patterns (d,g; e,h) are highlighted. (j) Random
interval selection leads to poor approximate solutions.
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6.4 Conclusions
We have shown that it is NP-complete to determine the existence of a simple cycle in
a plane graph such that its Fréchet distance to a given simple closed polygonal curve is
at most 1. In addition, we considered the implications of our proof. Most importantly,
it shows that no polynomial-time algorithm exists with a polynomially bounded approx-
imation factor, unless P=NP. It also implies that no FPT algorithm can be obtained by
characterizing polygons via their turn profile and trying all possible profiles. Finally, the
proof readily extends to a number of variants, including the use of the weak or discrete
Fréchet distance.

We introduced an interval graph that allows us to formulate the simple map-matching
problem as an ILP. The interval graph also leads to a simple brute-force algorithm that
avoids repeated computation of the Fréchet distance in the exponential-time search. Based
on these two methods, we discussed some experimental results on small instances. These
results indicate that solving the given ILP remains infeasible, though other ILP formu-
lations may exist that are more efficient. The brute-force algorithm performs better and
can often quickly find an optimal or close-to-optimal result. The obtained results show
that our method maintains the most salient structures of the given territorial outlines. This
encourages further research for the simple map-matching problem.

Open questions. An interesting question is to see what further restrictions we can pose on
the input. For example, the constructed graph is relatively sparse and constructed specif-
ically for the proof. With schematization in mind, we define our own graph; typically,
this graph is constructed from a line arrangement using only a few line orientations. Is
the problem NP-complete if we consider, for example, a square grid or equilateral trian-
gle grid? The same construction does not seem to work directly. Though variable and
propagation gadgets can be defined, clause gadgets pose a challenge.

Another open question is whether the (general) simple map-matching problem admits
solutions via other ways of dealing with NP-hard problems. For example, does it admit
a moderately exponential-time algorithm, that is, an algorithm in which the exponential
dependency has a low base number?

In our experimental results, we observed that minimizing only the number of bends is
not always sufficient to get the best visual result. In some cases, the resulting schematic
outline locally deviates further than necessary from the geographic outline. This is caused
by a value for ε that is too large for the local situation. However, a large value for εmay be
required to allow for a simple cycle elsewhere along the outline. This raises the question
whether we can extend local correctness, as defined in Chapter 5, to map matching. A
foremost question is how local correctness interacts with simplicity: a local improvement
to the schematization may be hindered by the simplicity constraint.





Chapter 7

Schematization via Iterative
Replacement

In the previous chapter we studied an optimization problem for schematization by model-
ing it as a map-matching problem. Unfortunately, this leads to an NP-hard problem, even
in an approximation setting. In this chapter we investigate a heuristic iterative algorithm
that is fast and works well in practice. This algorithm repeatedly applies operations that
cause local changes to a subdivision. The local changes are chosen such that they have
the lowest impact on the shape: in other words, it aims to maintain similarity in a greedy
way. The operations are performed until the desired complexity is reached. We describe
an edge-move operation that, when applied in pairs, results in a simplification algorithm
(described in Section 7.2) with the following properties:

• the result has the same topology as the input;
• the area of each face is preserved;
• every orientation in the result occurs in the original input;
• every nonconvex simple polygon admits a pair of edge-moves.

The operation is illustrated in Figure 7.1. This is a simplification algorithm and as such
it does not directly result in C-oriented schematization. However, as edge-moves do not
introduce new orientations, the result is guaranteed to be C-oriented if the input is C-
oriented. In Section 7.3 we describe an algorithm to perform angular restriction, that is,
to convert any subdivision into an area-equivalent C-oriented one (for both regular and
irregular sets C). Combining the two algorithms yields a C-oriented schematization algo-
rithm that preserves both area and topology. In Section 7.4 we discuss results obtained by
applying these algorithms to various territorial outlines; a preview of these results is given
in Figure 7.2. We conclude that, with user-defined orientation sets and complexities, the
resulting schematic outlines maintain the high-level structures of the geographic outlines.
Note that our algorithms are also suitable to simplify other shapes, such as buildings (see
Chapter 8).
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Figure 7.1 A combination of two edge-moves preserves the area and reduces
the complexity; no new orientations are introduced. Multiple op-
tions may be possible.

(a) (b) (c) (d)

Figure 7.2 Results of our algorithm for a group of countries in southeast Asia,
each with 130 edges. The area of each country is preserved. (a) In-
put subdivision. (b) Simplification. (c) Octilinear schematization.
(d) Schematization with irregular orientations.

Related work—simplification. If we formulate topologically safe simplification as an
optimization problem (e.g. minimize the complexity of the result), many variants are NP-
hard [95] and thus are unlikely to admit an efficient algorithm. Nonetheless, numerous
methods exist for the simplification of lines, polygons and subdivisions. These either
simplify heuristically, disregard topology, or guarantee correct topology by imposing ad-
ditional constraints that are stricter than necessary. One of the most popular methods in
automated cartography is the Douglas-Peucker method [69] (note that it has also been in-
dependently developed by Ramer [143]). This vertex-restricted algorithm does not guar-
antee a minimal complexity and discards topology—though extensions have been made to
address this issue [156]. Van de Kraats et al. [114] discuss the case where the input subdi-
vision represents a printed circuit board. Estkowski and Mitchell [77] describe a heuristic
method for simplifying parallel lines, such as elevation contours. Mustafa et al. [130]
obtain topologically safe simplification by restricting results to Voronoi cells. Van der
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Poorten and Jones [139] use the constrained Delaunay triangulation to find and simplify
features without changing the input topology. Raposo [144] uses a hexagonal tiling to
compute a nonvertex-restricted simplification; he describes a method of “untwisting” the
result to remove any intersections.

Imai and Iri [109] transformed vertex-restricted simplification into a shortest-path
problem on a suitably defined graph; this approach can be used for both minimizing the
complexity and for minimizing some error bound. Chan and Chin [52] proved that this
graph can be constructed in O(n2) time, thus yielding a quadratic-time algorithm for the
simplification problem. A similar approach has been followed by a number of methods,
e.g. [1, 25, 27]. De Berg et al. [25] introduce special input points—“landmarks”—to guar-
antee a topologically safe result. Bose et al. [27] study simplification with an areal dis-
placement criterion for monotone curves. They show that it is NP-hard to decide whether
a vertex-restricted area-equivalent solution exists and give an approximation algorithm.
These measures are also studied for general curves by Daneshpajouh et al. [63].

More akin to the simplification method that is described in this chapter, there are also a
number of iterative approaches. A well-known example is the algorithm by Visvalingam-
Whyatt [172]. This method repeatedly eliminates the point for which the triangle formed
by its incident edges has the lowest area. In its original formulation, topological con-
straints were not considered; the method can thus be implemented in O(n log n) time
using a priority queue. Tutić and Lapaine [166] give an iterative nonvertex-restricted sim-
plification algorithm that produces area-equivalent results. However, their algorithm is
not topologically safe and no prioritization is used. The latter is likely problematic when
a very low complexity is desired.

The algorithms mentioned above, however, are suitable only for simplification; they
are not designed to obtain C-oriented results.

Related work—schematization. Work on C-oriented schematization with constraints on
similarity or recognizability is sparse. For schematization of a single line, Neyer [132]
gives an algorithm to compute a C-oriented schematization constrained by a maximal
Fréchet distance ε. This method requires that the distance between two consecutive ver-
tices is at least 2ε, reducing its effectiveness to schematize detailed geographic territorial
outlines. Merrick and Gudmundsson [126] describe an algorithm to generate C-oriented
paths that visits the points of the original curve “in order” and apply this technique to com-
pute metro map layouts. Delling et al. [64] describe a method to generate C-oriented route
sketches with orthogonal-order constraints for monotone paths. Gemsa et al. [88] show
that such route sketching problems are NP-hard in general and provide a mixed-integer
linear program. However, it is generally not advisable to simplify or schematize each bor-
der of a subdivision separately, especially when aiming for a result with low complexity.
In a noncartographic setting, Cicerone and Cermignani [59] describe a heuristic method
for rectilinear and octilinear schematization based on discretizing space near each vertex.
However, this method does not guarantee area-equivalent results nor does it necessarily
preserve the correct topology.

However, there is an ample body of work on the C-oriented schematization of net-
works (e.g. transit maps). Avelar [17] discusses design aspects of schematic networks and
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presents an iterative algorithm to generate schematic road networks. Cabello et al. [47]
give an algorithm to produce schematic transit maps that use two or three links per path, if
that is possible. Stott et al. [163] apply multicriteria-optimization techniques to compute
octilinear transit maps. Note that octlinearity is one of their optimization criteria; thus the
resulting maps may deviate from a strictly octilinear design. Nöllenburg and Wolff [133]
specify seven design rules for octilinear metro maps and present a mixed-integer program-
ming approach to generate metro maps using one edge per path. Wolff [177] provides a
survey on metro map construction. Another extensive overview of algorithms for network
schematization is given by Swan et al. [164]; they study their applicability to automated
transit-map construction for web services. Algorithms for network schematization can be
used to schematize subdivisions. However, they usually do not take criteria such as shape
and size preservation into account. As such, these algorithms are unsuitable to schematize
territorial outlines.

Unrestricted schematization largely overlaps with simplification, though some meth-
ods explicitly target the creation of schematic maps [20, 56, 78]. A simulated-annealing
approach to optimize for parallelism was presented by Reimer and Meulemans [150].
Recently, curved schematization has gained increasing attention, a geometric style that
uses smooth curves rather than line segments for representing shape. Manually drawn
examples of such curved schematizations can be found, for example, in chorematic di-
agrams [149] and transit maps [151]. Van Goethem et al. [91] describe a topologically
safe framework to generate curved schematizations and illustrate this framework with
Bézier curves and circular arcs. Circular arcs are chosen such that the result is area-
equivalent to the input. However, the framework admits only vertex-restricted methods.
Van Dijk et al. [66] use this method to create circular-arc schematizations of “focus maps”
in which a certain area of interest is enlarged. Using an iterative method, Van Goethem et
al. [92] describe a nonvertex-restricted algorithm for computing area-equivalent circular-
arc schematizations. Van Dijk et al. [67, 68] also present an iterative algorithm, focusing
on nonvertex-restricted and smooth junctions. For transit maps, Fink et al. [79] present a
force-directed method to compute a schematized network with Bézier curves. An ILP for
concentric circular-arc transit maps was formulated by Fink et al. [80].

A number of methods exist that compute a simplification with G1-continuous circular
arcs, often referred to as biarcs [72, 105, 106, 122, 123]. These methods do not explic-
itly target schematization, but their use could be considered for schematization purposes.
However, it is not always desirable to obtain a smooth schematic shape: the use of sharp
bends allows for more expressive power. Drysdale et al. [72] also describe a method that
uses regular (not G1-continuous) circular arcs, though this method imposes restrictions
on “gates” which hinder a high complexity reduction.

We restrict the angles in a subdivision beforehand to obtain C-oriented results. This
problem is often encountered in computer graphics: a subdivision in R2 has to be con-
verted to a similar subdivision in “pixel space”, Z2. This rasterization problem is studied
for example by Christ et al. [57]. However, such methods require that vertices have in-
teger coordinates and consider only rectilinear orientations. Moreover, these methods do
not guarantee that the area of the result is exactly equal to the area of the input.
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7.1 Preliminaries
In this chapter we design algorithms to simplify or schematize subdivisions that represent
territorial outlines.

Vertex degrees. For simplicity, we assume that all vertices have a degree of at least two
and at most four. Since we design our algorithms for territorial outlines, these assump-
tions are valid on most inputs. If desired, vertices of other degree can be supported as
well. Degree-0 vertices could be used as “landmarks” [25]. Degree-1 vertices require an
appropriate definition of edge-moves near such vertices. Vertices of degree higher than
four pose a problem only for the angular-restriction algorithm presented in Section 7.3.
This algorithm may still be applied if a sufficient number of orientations is provided and
the incident edges of these junctions are spread reasonably well around the vertex.

Area preservation. The algorithms in this chapter ensure that the faces of the resulting
subdivision have the same area as the corresponding faces in the detailed input subdivi-
sion. Hence, we refer to our algorithms as area-preserving methods. The result is called
area equivalent to the input. Large (relative) size distortions interfere with an observer’s
mental map, making a schematization harder to recognize. By ensuring that faces strictly
maintain their given size, we avoid this interference. Thus, this property helps to make
regions easier to recognize in a set of territorial outlines.

7.2 Simplification
In this section we describe an area-preserving simplification algorithm based on an oper-
ation called edge-move. We first introduce this operation. Then we describe a heuristic
algorithm for iteratively selecting edge-moves in subdivisions. Finally, we show that any
nonconvex simple polygon admits edge-moves that preserve topology.

7.2.1 Edge-moves
Below, we give a precise definition of the edge-move operation. We first introduce it for
a simple polygon and afterwards extend it to subdivisions.

Definitions and notation. We are given a simple polygon P = 〈p0, . . . , pn−1〉 with n
vertices. We denote the edges of ∂P by e0, . . . , en−1. The directed edge ei starts at vertex
pi and ends at vertex pi+1. As with the vertices, we treat the edges modulo n: in other
words, ei is used as a shorthand for ei mod n. We call an edge convex or reflex if both its
vertices are convex or reflex respectively.

Configurations and edge-moves. Three consecutive edges 〈ei−1, ei, ei+1〉 are called a
configuration. An edge-move always operates on a configuration. We refer to its central
edge ei as its inner edge, the other edges are its outer edges.

Let X = 〈ei−1, ei, ei+1〉 be a configuration of polygon P . The outer edges, ei−1 and
ei+1, define two tracks, infinite lines through the edges. An edge-move on X moves ei
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R−

R+

(a) (b) (c)

Figure 7.3 (a) A configuration with its positive and negative contraction re-
gion. (b) A positive edge-move. (c) A negative contraction.

such that its orientation is preserved and its vertices are on the tracks, making the outer
edges longer or shorter. An edge-move is valid if at least one vertex of ei remains on its
original outer edge and ei remains on the same side of or on the intersection point of the
tracks (if it exists). A contraction is an edge-move that causes one of the edges of X to
reach length zero. Contractions are “extremal edge-moves” and reduce the complexity of
P . An edge-move is positive if it adds area to P and negative if it removes area. Figure 7.3
shows some examples.

A configuration supports edge-moves, either positive, negative, or both. A positive
configuration supports positive edge-moves; a negative configuration supports negative
edge-moves. The positive contraction region R+(X) of a positive configuration X =
〈ei−1, ei, ei+1〉 is the region enclosed by ei, the tracks, and the position of ei after a
positive contraction. A feasible positive configuration is a configuration for whichR+(X)
does not contain any points on ∂P , except for those that belong to X . Similarly, we
define the negative contraction region R−(X) and a feasible negative configuration. If
a positive or negative configuration is feasible, then any valid positive or negative edge-
move respectively is feasible. If a positive configuration is infeasible, then there is some
point on ∂P\X in R+(X). A point in ∂P\X ∩R+(X) that is closest to the line through
ei is called a positive blocking point. Analogously, X can have a negative blocking point.
Examples of blocking points are given in Figure 7.4.

Complementary moves. Since we desire an approach that preserves the area of the
polygon, we combine two complementary feasible configurations. Such a complementary
pair consists of one positive and one negative configuration and we execute an edge-move
on both simultaneously. The one with the smaller contraction region is contracted, while

p
p p′

p

p′

Figure 7.4 Configurations (blue line) with negative and positive blocking
points, labeled p and p′ respectively. Negative and positive con-
traction regions are indicated in red and green respectively.
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the other is moved just far enough to compensate for the area change. Two configurations
conflict when they share an edge, unless they share only outer edges and one of these
has a convex and a reflex vertex. In this special case the two edge-moves both either
shorten or lengthen the shared edge. We call two nonconflicting complementary feasible
configurations a proper configuration pair.

Subdivisions. We now extend the definition of edge-moves to subdivisions. To preserve
the area of each face, it is important to combine only edge-moves of which the inner
edges are incident to the same faces. In addition, we must define edge-moves in the
presence of junctions (vertices of degree 3 or higher). A configuration with inner vertices
of degree 2 supports edge-moves as defined for polygons. However, if an inner vertex
of a configuration is a junction of degree 4 or higher, then performing edge-moves on
this configuration could alter the topology or result in an area change. Hence, we do not
allow moving such junctions; as a consequence any incident edge cannot be moved. For
junctions of degree 3, there is some flexibility. The following three cases can occur for an
edge-move with inner edge e incident to a vertex v of degree 3 (refer to Figure 7.5).

(a) The other edges of v have the same orientation. These edges must lie on different
sides of the line through e. When moving e in either direction, vertex v can slide
along the other two edges.

(b) The other edges of v do not have the same orientation, but lie on different sides of the
line through e. When moving e in either direction, vertex v can slide along the edge
on that side, but a copy of v must be introduced on its original position to preserve
area and maintain correct topology.

(a)

(b)

(c) ev

ev

ev

Figure 7.5 Three cases for degree-3 vertex v (white) when moving edge e.
Copied vertices are indicated in black. From left to right: initial
situation; moving e upward; moving e downward.
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(c) The other edges of v do not have the same orientation, but lie on the same side of
the line through e. When moving e in the direction of the other edges (upward in
Figure 7.5(c)), vertex v can slide along the edge that makes the smallest angle to e, but
a copy of v must be introduced on its original position to preserve area and maintain
correct topology. When moving e in the other direction (downward in Figure 7.5(c)),
vertex v can slide along the extension of either edge. We use the edge that has the
largest angle to e, unless this edge has the same orientation as e (an angle of π). A
copy of v must be introduced on its original position and this vertex has degree 3.

When combining edge-moves that introduce a new vertex, it is important to ensure that the
complexity of the subdivision is still reduced. Combinations of edge-moves that do not
decrease the complexity are not permitted. Computing the total complexity reduction of
a single contraction or edge-move is straightforward. Finally, to ensure correct topology,
it is important that a junction is never removed or moved on top of another junction.

7.2.2 Simplification algorithm
In the previous section we introduced edge-moves for polygons and subdivisions. By
performing these operations in proper configuration pairs, the complexity of the subdivi-
sion is reduced while preserving area and topology. Here we describe how to use these
edge-moves to build an efficient simplification algorithm.

Algorithm 7.1 provides an overview of our simplification algorithm. It iteratively
finds two complementary feasible configurations that incur minimal change. This min-
imal configuration pair is executed to reduce the complexity of the subdivision. This
process is repeated until either the desired output complexity is reached or no minimal
configuration pair exists. It makes use of “blocking numbers” to keep track of the feasi-
bility of configurations. Below, we provide the details for the two crucial steps: how to
compute a minimal configuration pair (Line 3) and the steps involved in performing the
contraction (Line 7). The latter must ensure that the blocking numbers remain correct.

Choosing edge-moves. We need to choose a proper configuration pair to perform a con-
traction and an edge-move simultaneously. We search for a pair that incurs the smallest

Algorithm 7.1 SIMPLIFY(S, k)

Require: a subdivision S and integer k; every face-face boundary in S is known.
Ensure: S has no feasible complementary pair or S has at most k edges.

1: Initialize blocking numbers for each edge
2: while |S| > k do
3: Determine minimal configuration pair (X1, X2) over all boundaries in S
4: if no minimal configuration pair exists then
5: return S
6: else
7: Contract (X1, X2) to reduce |S|
8: return S
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visual change; we refer to this pair as the minimal configuration pair. This minimality
can be formalized in various ways. For our algorithm, we use the area of the contraction
region of the smallest of the two involved configurations. This corresponds to half the
symmetric difference of a face before and after the operation is performed. We found that
minimizing the symmetric difference does not always yield satisfying results (see Sec-
tion 3.2). However, the problem of severely changing the shape does not occur here,
since edge-moves make only local changes.

There may be more than a single border between two adjacent faces; edge-moves in
one may be combined with edge-moves in the other. To avoid the need to explicitly search
for other borders, we assume that the subdivision is partitioned into face-face boundaries.
That is, for every pair of adjacent faces, all borders that separate them are stored together.
In a preprocessing step, these boundaries can be computed inO(n2) time andO(n) space,
where n is the complexity of S. Note that there are at most a linear number of such
boundaries since S is a subdivision (a plane graph). The sum of the number of edges over
all boundaries is n.

To find the minimal configuration pair, we proceed as follows for each face-face
boundary. First, we find the six smallest positive and the six smallest negative feasi-
ble configurations on this boundary in O(b) time, where b is the number of edges of the
boundary. Here, “smallest” refers to the minimality measure: the area of the contraction
region. Since an edge-move can conflict with at most five other edge-moves, at least one
of these must be part of a proper configuration pair if the boundary admits any feasible
pair. As we need to find only the minimal pair, we compute which of these twelve candi-
date configurations admits the smallest contraction that is part of a proper configuration
pair. For each, we can simply traverse the border in O(b) time to search for a nonconflict-
ing complementary feasible configuration. If there are multiple complementary moves,
we use the one that is nearest, measured in the number of edges along the boundary. There
are only O(1) candidates for one boundary. Hence, computing the minimal pair of a sin-
gle boundary takes O(b) time. The minimal configuration pair is then simply the minimal
pair over all boundaries; it is computed in O(n) time.

If none of the boundaries has a proper configuration pair, no minimal configuration
pair exists. In this case, the algorithm terminates before reaching the desired complexity
k. By Theorem 7.1 (proven in Section 7.2.3), we know that this does not occur for simple
polygons (unless k is less than twice the number of orientations in the input).

In the analysis above, we assumed that we can determine in constant time whether a
configuration is feasible. To this end, each edge e stores two blocking numbers. The pos-
itive blocking number indicates the number of edges that (partially) reside in the positive
contraction region of configuration X with inner edge e; the edges of X are excluded in
this number. Analogously, the negative blocking number indicates the number of edges
that overlap the negative contraction region. In the remainder, we refer to the negative and
positive blocking numbers collectively as blocking numbers. To initialize these blocking
numbers (Line 1), we can simply iterate over all pairs of edges and increment the val-
ues accordingly. Hence, this takes O(n2) time in total. However, we need to update the
blocking numbers when contracting the minimal configuration pair. This is discussed in
the upcoming paragraph.
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Performing a contraction. Once the algorithm has computed a minimal configuration
pair (X1, X2), it performs the contraction to reduce the complexity of S. A contraction
is performed in a sequence of steps to ensure that the blocking numbers have the correct
values afterwards.

In the first step, we discard the contribution that the edges of X1 and X2 made to
the blocking numbers. To this end, we iterate over all edges in S. For each edge, we
decrement the positive (or negative) blocking number by one for each edge of X1 or X2

that overlaps the positive (or negative) contraction region. Since the number of edges of
X1 and X2 is 6, we can perform this entire step in O(n) time.

In the second step, we perform the edge-moves that constitute the contraction of
(X1, X2). The subdivision S is updated accordingly.

In the third step, we add the contribution to the blocking numbers for the edges that
changed during the contraction (i.e., the remaining edges of X1 and X2). We repeat the
same linear-time process as before, but now increment the numbers instead.

As a result of the contraction, the contraction region changes for a number of con-
figurations. This implies that the blocking numbers may be incorrect for the inner edges
of those configurations. Hence, in the fourth and last step, we ensure that these blocking
numbers are correct as well. The contraction region of a configuration changes only if one
or more of its edges were part of X1 or X2. As we do not allow edge-moves for junctions
of degree 4 or higher, only a small constant number of configurations are affected. For
each of the affected edges, we simply reinitialize the blocking number by iterating over
all other edges of S. This takes O(n) time per edge and thus also O(n) time in total.

Analysis. To initialize the algorithm, we compute the boundaries of the subdivision and
set the blocking numbers for the edges. Both steps take O(n2) time. As described above,
each simplification step can be performed in O(n) time using these numbers. Each con-
traction reduces the complexity of |S| by at least one: at most O(n − k) = O(n) steps
are performed. Thus, Algorithm 7.1 computes a simplification in O(n2) time.

Increasing flexibility. It is relatively straightforward to modify the algorithm such that
infeasible configurations can be used to compensate for area change. That is, we may
allow edge-moves on configurations that have a blocking point p, if we ensure that this
edge-move does not move the inner edge to or beyond p. We need to quickly decide
whether a configuration can compensate for a change in area. To this end, the algorithm
should not maintain the blocking number but the actual blocking point of a configura-
tion. We can then compute in O(1) time the maximal area change that the configuration
can compensate for. A simple implementation leads to a cubic-time algorithm. However,
for territorial outlines, we expect edge-moves to be obstructed by relatively few edges.
Hence, the actual execution time is expected to not differ much from the original algo-
rithm. This modification is especially relevant for subdivisions as it gives more flexibility.
We apply this modified algorithm to obtain the results presented in Section 7.4.

Alternative choices. We use the area of the contraction region to define the minimal
configuration pair. As an alternative, we may use the Fréchet distance between the con-
figuration before and after the edge-move. However, some operations may cause a rela-
tively large Fréchet distance but only a small change in area. The visual change seems
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to be more strongly correlated to the area than the distance. This is similar to the use of
area (rather than distance) to decide on simplification steps in the Visvalingam-Whyatt
algorithm [172].

To compute the minimal configuration pair, we select the nearest complementary
edge-move, measured in the number of edges along the boundary. As an alternative,
we could opt to use one of the smallest complementary moves which have already been
found: as there are six, at least one of these must not conflict. Though it does not improve
the asymptotic running time, it eliminates the need for extra traversals. However, this
change reduces the “locality” of the minimal configuration pair. To perform edge-moves
that make small local changes, we opted to use the nearest complementary move instead.

We do not allow edge-moves that move junctions of degree 4 or higher as these either
alter topology or area. By combining more than two edge-moves, we can move area
along a “cycle” of faces, allowing edge-moves involving these junctions. This does incur
a higher computational cost. However, we consider such an extension to be unnecessary:
in our experiments, the desired complexity could be reached without this addition.

7.2.3 Existence of edge-moves for polygons

The algorithm presented in the previous section needs to find a proper configuration pair,
i.e., a nonconflicting pair of complementary edge-moves. One of these edge-moves needs
to be a contraction to reduce the complexity and ensure progress. In a subdivision, such a
pair may not exist and the desired complexity of the output may be unattainable. In this
section we prove that this does not occur for a simple polygon (i.e., a polygon that has no
self-intersections), unless it is convex. This is formulated in the theorem below.

Theorem 7.1. Every nonconvex simple polygon has a nonconflicting pair of complemen-
tary edge-moves, one of which is a contraction.

Definitions and notation. In order to prove the theorem, we first introduce some ad-
ditional terminology and notation. We define a chain S as a sequence of at least three
consecutive edges of simple polygon P . Its edges are denoted by 〈s1, . . . , sm〉 where m
is the number of edges in S. Its vertices are denoted by u0, . . . , um and edge si is di-
rected from ui−1 to ui. The edges s1 and sm are the outer edges of S; the other edges are
its inner edges. Likewise, u0 and um are outer vertices and the other vertices are inner
vertices. By α(S), we denote the sum of the exterior angles of the inner vertices of S.

A lid is an open line segment between a point on s1 (strictly before u1) and a point
on sm (strictly after um−1) and is fully contained in the interior of P . If S has any lid, it
is a closable chain. If the open line segment (u0, um) is a lid, S is a proper chain. For
a closable chain S and a lid l, we denote by Rl(S) the region enclosed by S and l. For
a proper chain, R(S) denotes this region using the lid (u0, um) implicitly. Due to the
lid, we know that for every closable chain, any point on ∂P that is inside Rl(S) must be
part of S. Some examples are given in Figure 7.6. A configuration is a (not necessarily
closable) chain of length three.
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(a) (b) (c)

l

Figure 7.6 (a) Unclosable chain. (b) Closable chain with a lid l and Rl(S)
given in orange. (c) Proper chain with R(S) indicated in orange.

Proving the theorem. We are now ready to give the proof of Theorem 7.1. We do this
via a sequence of six lemmas. First, we prove two lemmas about closable chains.

Lemma 7.2. For any closable chain S, α(S) > 0 holds.

Proof. Since S is a closable chain, it must have some lid l. Let u and v denote the
endpoints of l. Endpoints u and v and the inner vertices of S define a simple polygon P ′

that corresponds to Rl(S). We know that the sum of the exterior angles for any simple
polygon is exactly 2π. Hence, we find that α(P ′) = 2π = α(S)+α(u)+α(v). Moreover,
we know that the exterior angle of any vertex is strictly less than π. Hence, we may
conclude that α(S) = 2π − α(u)− α(v) > 0.

Lemma 7.3. Let S be a closable chain without a convex inner edge such that the first
inner vertex is reflex. Then S contains a configuration X such that the first inner vertex is
reflex and α(X) > 0.

Proof. Since S is closable, we know that α(S) > 0 (Lemma 7.2). By assumption we
know that S contains no two consecutive convex inner vertices and that its first inner
vertex is reflex. Hence, we may characterize the inner vertices of S by k sequences of one
or more reflex vertices followed by a single convex vertex. Let ςi denote the ith sequence.
Slightly abusing notation, let α(ςi) denote the sum of exterior angles of all the vertices of
sequence ςi. Now we know that

∑k
i=1 α(ςi) = α(S) > 0. In particular, this implies that

α(ςi) > 0 holds for at least one sequence. Since reflex vertices have a negative exterior
angle, this implies that the exterior angle of the single convex vertex is bigger than the
reflex vertex preceding it. Hence, at the end of a sequence ςi with α(ςi) > 0, we find
configuration X such that the first inner vertex is reflex and α(X) > 0.

We now prove the existence of feasible negative configurations in chains. We provide
two lemmas assuming different properties of the chain (Lemma 7.4 and Lemma 7.5).

Lemma 7.4. Let S = 〈s1, . . . , sm〉 be a closable chain without a convex inner edge such
that the first inner vertex is reflex. Then S has a feasible negative configuration X such
that the first inner vertex is reflex, α(X) > 0 and R−(X) ⊆ Rl(S) for any lid l of S.

Proof. We prove this lemma by induction. For the base case, assume that m = 3. Con-
figuration X ′ = 〈s1, s2, s3〉 has a first inner vertex that is reflex. Any lid l of S must be
on one side of the line through s1, whereas this track enforces a triangular contraction
region on the other side. Hence, R−(X ′) ⊆ Rl(S) holds and X ′ is a feasible negative
configuration. Figure 7.7 shows closable and, for comparison, unclosable configurations.
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(a) (b)

Figure 7.7 Configurations with α > 0; the first inner vertex is reflex. (a) Clos-
able chains. (b) Unclosable chains.

For the inductive step, we use as induction hypothesis that this lemma holds for any
closable chain with less thanm edges. LetX ′ = 〈si−1, si, si+1〉 be the first configuration
such that the first inner vertex is reflex and α(X ′) > 0. This implies that the second inner
vertex is convex. From Lemma 7.3, we conclude that S must contain such a configuration.
If X ′ is feasible, we are done. If X ′ is not feasible, let p denote the corresponding
blocking point. We prove that p is part of S and comes after si+1.

Refer to Figure 7.8(a–b). Chain S is closable and hence has some lid l that does not
intersect any part of S (dotted in the figure). Suppose l intersectsR−(X ′), the contraction
region ofX ′. Since the contraction region is bounded by si and si+1 of S on two sides, we
know that the lid must intersect the track of si−1 in some point q. Note that this is actually
possible, as illustrated in Figure 7.8(a). However, this implies that some other part of S
also intersects this track and it does so before q (indicated in dark red in the figure). We
prove this by contradiction. Assume that there is no intersection between S and the track
of si−1 that lies between si−1 and q. This implies that the endpoint of l on s1, the chain
〈s2, . . . , si−2〉 and q define a simple polygon (indicated in orange in Figure 7.8(b)). Since
the sum of exterior angles of a simple polygon is 2π and u and q have an exterior angle
strictly smaller than π, the sum of exterior angles in the inner vertices 〈s1, . . . , si−1〉 is
positive. However, this contradicts that X ′ is the first configuration such that the first
inner vertex is reflex and α(X ′) > 0. Therefore, there must be an intersection of S that

(a) (b) (c)

X ′

p
p S′

si−1

q

u si+1

(d)

q

Figure 7.8 Negative configuration X ′ with R−(X ′) given in light red. Lid l is
dotted; the track of si−1 is dashed. (a) Intersection between l and
R−(X ′) is possible. (b) If the orange polygon is simple, we derive
a contradiction on the definition of X ′. If q exists, the dark red part
of R−(X ′) cannot contain the blocking point. (c) Blocking point p
must come afterX ′. Otherwise, the orange polygon contradicts the
definition of X ′. (d) Chain S′ defined by p.
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is closer to the inner edge of X ′ than intersection q. In particular, this also means that
anything outside of Rl(S) that lies in R−(X ′) cannot be the blocking point; this area is
indicated in dark red in Figure 7.8(b).

Now that we have concluded that blocking point p of X ′ is part of S, we must argue
that it comes after si+1. Refer to Figure 7.8(c). If blocking point p occurs along an edge
prior to X ′, then we may again construct a simple polygon using p and the edges after
p up to si−1 (indicated in orange in the figure). Since p and the first vertex along S
after p have an exterior angle smaller than π, we again conclude that the sum of exterior
angles leading up to si−1 is positive, contradicting the definition of X ′. We conclude that
blocking point p must come after si+1 on S.

Since p is a point on S after si+1, we consider the closable chain S′ = 〈si+1, . . . , p〉,
that is, until the edge containing p or incident to p if p is a vertex). Chain S′ is illustrated
in Figure 7.8(d). Since S does not contain convex edges, we know that S′ does not have
convex edges and that its first inner vertex is reflex. Since S′ also has less edges than S,
we know from the induction hypothesis that S′ has a feasible negative configuration.

Lemma 7.5. Let S = 〈s1, . . . sm〉 denote a proper chain with a convex inner edge. Then
S has a feasible negative configuration X = 〈si−1, si, si+1〉 with R−(X) ⊆ R(S) and
α(X) > 0. Also, si is convex or starts at a reflex vertex or si 6= sm−1.

Proof. We prove this lemma by induction on m, the number of edges in S. For the base
case, assume m = 3. Since S is a proper chain and s2 is a convex edge, 〈s1, s2, s3〉 is a
configuration satisfying the conditions for X .

For the inductive step, we use as induction hypothesis that this lemma holds for any
suitable chain with less than m edges. Let sj be a convex inner edge. Hence, X ′ =
〈sj−1, sj , sj+1〉 is a negative configuration. If X ′ is feasible, we are done since a convex
edge implies α(X ′) > 0. If X ′ is not feasible, then there is a blocking point that is in fact
a vertex of S. This follows from the fact that the inner edge of X ′ is convex: this implies
R−(X ′) ⊆ R(S) and that R−(X ′) is bounded on three sides by the edges of X ′. Let uk
denote the blocking vertex and assume that k > j + 1. Consider the proper chain S′ =
〈sj , . . . , sk−1〉 (see Figure 7.9(a)). If S′ has a convex inner edge, it must have a feasible
negative configuration by induction. However, if it does not, S′′ = 〈sj+1, . . . , sk−1〉 is
a closable chain such that its first inner vertex is reflex and it has no convex inner edge.
Note that the direction of S′′ should be reversed when k < j − 1. By Lemma 7.4, S′′ has

(a) (b)

uk sj+1

sk−1

uksj−1

sk+1

Figure 7.9 (a) Chain S′′ defined by blocking vertex uk and the last outer edge
of X ′. (b) Reversed chain S′′ defined by blocking vertex uk and
the first outer edge of X ′.
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a feasible negative configuration X ′′. Moreover, the first inner vertex of X ′′ is reflex in
the direction of S′′. If k < j − 1, we use a reversed chain S′′ = 〈sj−1, . . . , sk+1〉 (see
Figure 7.9(b)). We may follow the same line of argument. The first inner vertex in the
direction of S′′ of the found configuration may be reflex. However, we know that sm is
not part of S′′ and thus sm−1 cannot be the inner edge of X ′′. Hence, the third alternative
condition for the desired configuration holds.

Now that we know that feasible negative configurations exist, we need a feasible posi-
tive configuration to make a proper configuration pair. The existence of a feasible positive
configuration is proven in Lemma 7.6. However, not any positive configuration suffices:
it must not conflict with the negative one. We prove in Lemma 7.7 that such a proper
configuration pair indeed exists.

Lemma 7.6. Every simple nonconvex polygon P has a feasible positive configuration X
with α(X) < 0 or all positive configurations are feasible.

Proof. If P has a reflex edge, then let X be a configuration with a reflex inner edge. If X
is feasible, we are done as α(X) < 0. If it is not, we can define a chain S that is inverted:
the interior of S is in fact the exterior of the polygon. This is done as follows.

We cut polygon P into two chains S1 and S2 using the blocking point and one inner
vertex of X . For both, the line segment l between the blocking point and the inner vertex
can be considered a proper lid as it does not cross any part P . Hence, the enclosed regions
R(S1) andR(S2) are well defined. One of these enclosed regions is fully outside polygon
P (i.e., their interiors are disjoint); the other encloses both P and the region enclosed by
the other chain. The former is the inverted chain that we use. Figure 7.10(a–b) indicates
the inverted chain for both inner vertices in blue; the other chain is indicated in black.

We use both inner vertices of X to obtain two inverted chains. Both of these are
in fact proper chains and one is a single edge longer than the other. Let Sa denote the
longer and Sb the shorter of the chains. If Sa has a convex inner edge (i.e., a reflex edge
in the polygon), then Lemma 7.5 states that a feasible negative configuration X− with
α(X−) > 0 exists in Sa. Since Sa is inverted, this corresponds to a feasible positive
configuration X+ in P with α(X+) < 0. If Sa does not have a convex inner edge, then
Sb must have a first inner vertex that is reflex (with respect to R(Sb)). Hence, we can

(a) (b) (c)

Sa

Sc

Sb

Figure 7.10 Feasible positive configurations are found using inverted chains.
The dotted line is the lid used to define an inverted proper chain.
(a–b) The inverted chains Sa and Sb when P has a reflex edge.
(c) The inverted chain Sc when P has no reflex edge.
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now apply Lemma 7.4 to Sb in a similar way to conclude that there is a feasible positive
configuration X+ in P with α(X+) < 0.

If P has no reflex edge, then let X be an infeasible positive configuration. If none
exists, all positive configurations are feasible. Otherwise we can define an inverted chain
using X . Let Sc be the inverted proper chain obtained by using the lid defined by the
blocking point of X and its reflex vertex (see Figure 7.10(c)). Note that, Sc must start
with a reflex vertex (a convex vertex in P ), otherwise, P would have a reflex edge. Thus,
by Lemma 7.4, P has a feasible positive configuration X+ with α(X+) < 0.

Lemma 7.7. Every simple nonconvex polygon P has a proper configuration pair.

Proof. From Lemma 7.6, we conclude that polygon P has a feasible positive configu-
ration X+ = 〈ei−1, ei, ei+1〉. Assume without loss of generality that the second inner
vertex of X+, pi+1, is reflex. Let pj denote the first convex vertex after pi+1. Config-
uration X− = 〈ej−1, ej , ej+1〉, of which pj is the first inner vertex, is negative. We
distinguish two cases.

Assume that X− is feasible. If no edge is shared or if edge ei+1 = ej−1 is shared
(having a convex and a reflex vertex), we have a proper configuration pair as illustrated
in Figure 7.11(a–b). If ei−1 = ej+1 is shared but the other outer edge is not, then pj ,
pj+1 = pi−1, and pi are the only convex vertices in P and there is at least one edge in
between ei and ej−1. This edge is the inner edge of a feasible positive configuration, one
that does not conflict with X−; this is illustrated in Figure 7.11(c).

Now assume that X− is not feasible. By construction, the blocking point cannot be in
between vi and vj+1. If X− is blocked by a vertex vh, then, depending on the convexity
of vj+1 and vj+2, either Lemma 7.4 or Lemma 7.5 shows that there is a (nonconflicting)
feasible negative configuration. If X− is blocked by an edge eh, pj+1 must be reflex. We
distinguish two cases on the closable chain S = 〈ej , . . . , eh〉.

ei
ej ei ej ei ej

(a) (b) (c)

Figure 7.11 Three cases if X− is feasible. (a) No edge is shared. (b) Edge
ei+1 = ej−1 is shared. (c) Edge ei−1 = ej+1 is shared.

ei

ej
X ′

eh

ei
ej

eh
X ′

(a) (b)

Figure 7.12 Two cases if X− is not feasible and chain S = 〈ej , . . . , eh〉 has
no convex inner edge. (a) X ′ does not conflict with X+. (b) X ′

conflicts with X+.
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If S does not have a convex inner edge, then we refer to Lemma 7.4 to find a feasible
negative configurationX ′. IfX ′ does not conflict withX+, we are done (Figure 7.12(a)).
If X ′ conflicts with X+, we know that eh = ei−1 holds and that eh−1 is the inner edge
of X ′ (Figure 7.12(b)). Moreover, it holds that α(X+) > 0 and thus, by Lemma 7.6, we
need to consider this case only when all positive configurations are feasible. Hence, the
positive configuration 〈ei, ei+1, ei+2〉 is feasible and it does not conflict with X ′.

If S has a convex inner edge et, then let X ′ = 〈et−1, et, et+1〉 denote the correspond-
ing negative configuration. If X ′ is feasible and not conflicting with X+, we are done. If
X ′ is feasible but conflicting with X+, we can argue as above: 〈ei, ei+1, ei+2〉 is a fea-
sible positive configuration and it does not conflict with X ′. If X ′ is not feasible, it must
be blocked by some vertex pb. Assume that the proper chain S′ = 〈et, et+1, . . . , eb−1〉
does not contain edge ei. If it does, we may argue analogously for the reversed chain
〈eb, . . . , et−1, et〉. Depending on the convexity of vertex pt+2, Lemma 7.4 or Lemma 7.5
shows that there is a feasible negative configuration X ′′ in S′. Either the first inner vertex
ofX ′′ along S′ is reflex, the inner edge ofX ′′ is convex or the inner edge ofX ′′ is not the
before-last edge of S′. To derive a contradiction, we assume that X ′′ conflicts with X+.
This is possible only if pb = pi (or pb = pi+1 in the analogous case), otherwise S′ and
X+ have no edges in common. Since pb is the blocking point of X ′, it is a reflex vertex.
As X ′′ conflicts with X+, it is the last configuration in S′, i.e., X ′′ = 〈ei−3, ei−2, ei−1〉.
Therefore, pi−1 must be reflex: otherwise it would not be a conflict as the shared edge
then has a reflex and a convex vertex. Since X ′′ is a negative configuration, pi−2 is
therefore convex. However, now we know that the first vertex of X ′′ along S′ is convex,
the inner edge of X ′′ is not convex, and the inner edge of X ′′ is the before-last edge of
S′. This contradicts the properties for X ′′ that we obtained from applying Lemma 7.4 or
Lemma 7.5 on S′. Hence, our assumption is invalid andX ′′ cannot conflict withX+.

A proper configuration pair is a nonconflicting complementary pair of configurations
that admit a contraction. Thus, Theorem 7.1 follows directly from Lemma 7.7.

7.3 Schematization
In the previous section we described a topologically safe and area-preserving simplifica-
tion algorithm. The edge-moves used by this algorithm do not introduce new orientations
either. Hence, the orientation set of the result is equal to the orientation set of the input
(or a subset thereof). Due to these properties, we obtain an area-preserving C-oriented
schematization algorithm by applying an angular-restriction algorithm beforehand. This
algorithm turns a subdivision into an area-equivalent C-oriented subdivision for any ori-
entation set C. The quality of the result improves if the input subdivision does not contain
“long” edges. We use a small constant fraction λ = 0.05 of the diameter of the input as
an upper bound for the edge length and split all edges which are longer.

An overview of the algorithm is given in Algorithm 7.2. It consists of three high-level
steps, each of which we describe in detail in this section. First, the algorithm assigns
directions and, based on this assignment, classifies the vertices and edges (Line 1–2, see
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Algorithm 7.2 ANGULARRESTRICTION(S, C)
Require: S is a subdivision; C is an orientation set.
Ensure: A C-oriented subdivision R that is area-equivalent and topologically equivalent

to subdivision S.
1: Assign directions to each incident edge for each vertex in S
2: Classify vertices and edges in S
3: Determine staircase region for each edge in S
4: for all edges e in S do
5: Determine possible interfering edges using staircase regions
6: Compute required number of steps for e
7: Initialize empty subdivision R
8: for all edges e in S do
9: Construct staircase for e with the computed number of steps

10: Add the staircase to R
11: return R

(b) (c) (d)(a)

Figure 7.13 Subdivision (a) and area-equivalent angular restrictions with λ = 1:
(b) Rectilinear, C2; (c) Octilinear, C4; (d) Irregular, {π4 , 11π

12 }.

Section 7.3.1). Using this classification, it eventually constructs a C-oriented curve, a
“staircase”, for each edge (Line 7–10, see Section 7.3.2). To this end, the required number
of “steps” in the staircase is computed such that the result is crossing-free (Line 3–6, see
Section 7.3.3). Though the construction of staircases occurs afterwards, this is described
before the details of computing the number of steps: this depends heavily on the geometry
of the various staircases. Possible results of this algorithm are illustrated in Figure 7.13.

7.3.1 Classification of vertices and edges

The first step in our algorithm is to assign directions and classify vertices and edges in
the subdivision (Algorithm 7.2, Line 1–2). We call an edge aligned if it already adheres
to an orientation in C, and unaligned otherwise. The orientations of C partition the space
around each vertex into |C| sectors. Each sector has two associated directions (see Fig-
ure 7.14): these are the directions along the orientations that bound the sector. At both
of its endpoints, an edge has one or two associated directions. If the edge is aligned, it
has one associated direction, being the direction of the edge. If it is unaligned, the two



7.3. Schematization 139

(b) (c)(a) (d)

Figure 7.14 Associated directions of sectors. (a) Rectilinear, C2. (b) Hexilinear,
C3. (b) Octilinear, C4. (d) Irregular, {π4 , 11π

12 }.

associated directions correspond to the associated directions of the sector in which it lies.
We call a vertex insignificant, if the associated directions of its incident edges are disjoint.
This means that we can freely choose an associated direction for each incident edge with-
out limiting the choice for other edges. A vertex is called significant otherwise, indicating
that we are not free to choose directions. We assume that every edge has at most one sig-
nificant vertex. This property is ensured by splitting an edge with two significant vertices,
as the new vertex is insignificant.

For each edge, we now assign a C-oriented direction at its significant vertex. If an
edge has two insignificant vertices, we randomly pick one to be treated as the significant
vertex. Since we assume that each vertex has degree at most 4 (see Section 7.1), we can
always find an assignment that ensures the following three properties:

• no two edges are assigned the same direction at a common vertex;
• the cyclic order of edges is preserved;
• the total angular deviation is minimized.

The angular deviation of an edge at its significant vertex is always smaller than π. Based
on this assignment, we classify the edges as follows (refer to Figure 7.15 for examples).

• Aligned basic edge: the edge is aligned and its assigned direction is its (only) asso-
ciated direction. See Figure 7.15(b–c,i–j,n).
• Unaligned basic edge: the edge is unaligned, its assigned direction is one of its

associated directions, and its significant vertex does not have another incident un-
aligned edge in the same sector that is assigned one of its associated directions. See
Figure 7.15(a–c,g–n).
• Evading edge: the edge is unaligned, its assigned direction is one of its associated

directions, and its significant vertex has another incident unaligned edge in the same
sector that is assigned one of its associated directions. Evading edges always occur
in pairs and aligned evading edges cannot occur. See Figure 7.15(d–g,l–n).
• Aligned deviating edge: the edge is aligned and its assigned direction is different

from its associated direction. Note that its significant vertex must be a junction. See
Figure 7.15(f,m).
• Unaligned deviating edge: the edge is unaligned and its assigned direction is not

one of its associated directions. Note that its significant vertex must be a junction.
See Figure 7.15(e–g,m).
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Figure 7.15 Classification of edges: basic edges (green); evading edges (or-
ange); deviating edges (purple). Significant vertices are marked
with black dots. (a–g) Rectilinear, C2. (h–n) Octilinear, C4.

7.3.2 Converting edges to staircases

To construct a C-oriented subdivision, we create a staircase for each edge (Algorithm 7.2,
Line 7–10). A staircase is a sequence of C-oriented edges that starts and ends at the
vertices of the edge. A step in a staircase is a combination of two C-oriented edges such
that the step starts and ends on the edge that the staircase must represent. By increasing the
number of steps in the staircase, intersections can be avoided. We describe in Section 7.3.3
how to obtain the correct number of steps. Once we know the appropriate number of steps,
the edge is converted in isolation. Let e = (v, w) denote the edge we wish to convert and
se the number of steps it must use. Without loss of generality, we assume that v is the
significant vertex. The construction of a staircase depends on the classification of edge e.

If e is an aligned basic edge, we do not change it as it is already C-oriented. If e is an
unaligned basic edge, we treat it as follows. Let d1 denote its assigned direction and d2

its other associated direction. Each step uses one edge parallel to d1, called the assigned
edge of the step, and one parallel to d2, called the associated edge. A step can start either
with the former (an assigned step) or with the latter (an associated step). Moreover, every
step should span exactly a fraction of 1/se of the length of e. The length of the assigned
and associated edge is the same in all steps. Assuming that d1 and d2 are normalized
vectors, these can be found by solving (w − v)/se = l1 · d1 + l2 · d2 for l1 and l2. Every
step adds area to one incident face of e and removes it from the other. Since an assigned
and an associated step counterbalance the area change, we combine se/2 assigned steps
with se/2 associated steps.1 By choosing these steps, the procedure guarantees an area-
equivalent result. Starting at v, we alternate the steps starting with an assigned step to
adhere to the assigned direction. The number of edges used in the staircase is se + 1.
Figure 7.16(a–b) shows examples for the staircase of a basic edge.

1We ensure that se is even for all edges in Section 7.3.3.
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(a) (b) (c) (d)

Figure 7.16 Staircase examples for basic and evading edges, indicated in green
and orange respectively. Black vertices are significant. (a) Rec-
tilinear basic edge. (b) Octilinear basic edge. (c) Two rectilinear
evading edges. (d) Two octilinear evading edges.

For an evading edge e, we know that there is another evading edge in the same sec-
tor of its shared significant vertex. To avoid intersections, we apply so-called evasive
behavior. We build a staircase similar to the staircase for an unaligned basic edge. How-
ever, instead of alternating the steps, we now first place all assigned steps (starting at v)
followed by all associated steps. This results in a staircase of which the first half lies com-
pletely on the far side of the evading edge with respect to the other evading edge. This
guarantees that there are no intersections near the significant vertex. The number of edges
in the staircase is 2se − 1. Figure 7.16(c–d) shows examples of this evasive behavior.

An aligned deviating edge is not converted with steps and uses a fixed number of
edges. Instead of a number of steps se, we derive a value δe for such an edge; in Sec-
tion 7.3.3 we show how to obtain a sufficiently small value to prevent intersections from
occurring. In addition, it uses a small constant ε to ensure that the edge e = (u, v) adheres
to its direction at the insignificant vertex w. We use ε = 0.1. Let d1 denote the assigned
direction and d2 the direction of the edge (i.e., d2 = w−v). We start at vertex v. The first
edge is directed along d1 and has length δe. The second edge has length ‖e‖(1−ε)/2 and
is directed along d2. The third edge has length 2δe and is directed in the opposite direction
of the first edge. The fourth edge is analogous to the second. The fifth edge is analogous
to the first. The sixth edge is directed along d2 and has length ε‖e‖. The number of edges
used in the staircase is six, independent of δe. Figure 7.17(a–b) shows examples.

(a) (b) (c) (d)

Figure 7.17 Examples of rectilinear and octilinear staircases. Black vertices
are significant. (a–b) For an aligned deviating edge. (c–d) For an
unaligned deviating edge. Appended region is shaded in purple.
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For an unaligned deviating edge, we make a staircase that resembles that of an evading
edge, but adapt it to use the correct assigned direction. We first create the staircase as
if the edge was an evading edge. For the purpose of the evasive behavior, we use as
an “assigned direction” the associated direction closest to its (actual) assigned direction.
However, instead of using se steps, we use only se − 1 steps: (se/2) − 1 assigned steps
followed by se/2 associated steps. This violates both the area-preservation constraint as
well as the assigned direction. To correct for this, we append a region—the area of a
single step—to the first edge by “dragging” the first edge of the intermediate staircase in
the assigned direction. Note that se must be at least four. The number of edges used in
the staircase is 2se − 1. Figure 7.17(c–d) shows examples.

7.3.3 Computing the number of steps
Here we describe how to compute the number of steps, se, for an edge e such that the
resulting angular restriction is free of intersections (Algorithm 7.2, Line 3–6). We ensure
that the staircase of an edge is less than a distance de/2 away from the edge itself, where
de is the minimal distance from e to another point in subdivision S. However, we need
not and should not take all other edges into account. Neighboring edges of e have points
that are arbitrarily close to e. This would cause an infinite number of steps. Moreover, we
may exclude edges that cannot cause intersections regardless of the number of steps.

Interference. We first determine which edges may interfere with edge e = (v, w), that
is, which edges may have staircases that could intersect the staircase of e. Let e′ denote
some other edge of S. If e and e′ do not share a vertex, we first make a rough estimate
of whether the staircases could intersect. To this end, we define the staircase region of
an edge. The staircase region is a bounding region of an edge that contains the staircase
regardless of the number of steps.

For an aligned basic edge, the staircase region is simply the edge itself. For unaligned
basic and evading edges, the staircase region is the area bounded by lines oriented accord-
ing to the associated directions (both at v and w); this is illustrated in Figure 7.18(a).

For unaligned deviating edges, we use a similar staircase region as an evading edge,
but it must accommodate for the appended area that is used to make the staircase adhere to
the assigned direction (see Figure 7.18(b–c)). The appended area is largest for a minimal

(a) (b) (c)

v

w

p

v

w

v

w

p

v

w

(d)

Figure 7.18 Examples of staircase regions. (a) Unaligned basic and evading
edges. (b–c) Unaligned deviating edge. (d) Aligned deviating edge.
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number of steps (4 steps); let point p denote the vertex of this maximal appended area that
is furthest from v. The staircase region is the region containing e that is enclosed by the
following lines: lines through w adhering to the associated directions of e; line through
v adhering to associated direction with largest angle to assigned direction; line through p
adhering to associated direction with smallest angle to assigned direction. In the above,
we assumed that p lies in the defined region (see Figure 7.18(b)). However, if this is not
the case, we can extend the staircase region by including the vertices of the appended
region; this is illustrated in Figure 7.18(c).

Aligned deviating edges do not use steps, but a value δe instead. We use a value ∆e

as an upper bound for δe. To define this value, we use a constant fraction of the edge
length: ∆e = 0.1‖e‖. We compute the staircase using δe = ∆e and use its convex hull as
staircase region (see Figure 7.18(d)).

Any staircase with more steps (or δe < ∆e) is contained in the staircase region.
Hence, there is interference only if the staircase regions of e and e′ intersect, assuming
that these edges do not share a vertex. If e and e′ share a vertex v, they interfere only
if the edges reside in the same sector with respect to v. To this end, aligned deviating
edges are considered to reside in both sectors. For these pairs, we determine interference
purely based on the classification. Aligned basic edges cannot cause interference. Un-
aligned basic edges interfere with unaligned and aligned deviating edges: by definition an
unaligned basic edge cannot be in the same sector as an evading edge. Evading edges in-
terfere with other evading edges, unaligned and aligned deviating edges. Deviating edges,
both aligned and unaligned, cannot interfere with one another: the assigned direction is
not one of the associated directions and hence another edge must lie in between.

Edge distance. We define the distance de for an edge e as the minimum over all distances
de,e′ for all edges e′ that interfere with e. Distance de,e′ is computed as follows. If e
and e′ do not share a vertex, then de,e′ is simply the minimal distance between the edges.
However, if e and e′ do share a vertex, then we must again look at the classification.
Depending on this classification, we ignore parts of the edges (measured from the shared
vertex) in the distance computation. In these cases, the staircase construction guarantees
that no intersections are introduced.

If e is an unaligned basic edge, then e′ is either an aligned or unaligned deviating edge.
If e′ is aligned, then we ignore a fraction of (1− ε)/2 of e′. This fraction corresponds to
the part of the staircase of e′ that resides on the “far side” of e′. If e′ is unaligned, then
we ignore a fraction of e′ equal to the length of the first step. That is, we ignore a fraction
of 1/(se′ − 1). This is illustrated in Figure 7.19(a).

If e is an evading edge, then e′ is either an evading or deviating edge. If e′ is an
evading edge, we ignore the first half of e (but not of e′). Due to the evasive behavior
in the construction, we know that there are no intersections here. This is illustrated in
Figure 7.19(b). If e′ is a deviating edge, we treat it as if e was an unaligned basic edge.

If e is an aligned deviating edge, then e′ is either an unaligned basic edge or an evading
edge. Regardless of e′, we ignore a fraction of (1− ε)/2 of e (see Figure 7.19(c)).

If e is an unaligned deviating edge, then e′ is either an unaligned basic edge or an
evading edge. A fraction of (se/2 − 1)/(se − 1) evades the other edge, where s is the
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(b) (c)(a)
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e′

e

Figure 7.19 Examples of parts ignored in the computation of de,e′ , as indicated
by dotted lines. (a) Basic edge e and unaligned deviating edge e′.
The staircase of e′ is already known. (b) Two evading edges. (c)
Aligned deviating edge e. (d) Unaligned deviating edge e.

computed number of steps for e. Since this fraction is increasing with s and there is a
minimum of 4 steps, the minimal fraction is 1/3. Regardless of the class of e′, we ignore
a fraction of 1/3 of e. This is illustrated in Figure 7.19(d).

The edge distance depends on se′ if e is an unaligned basic or evading edge and e′

is an unaligned deviating edge. Since se′ can be computed for e′ without dependencies,
this poses no problem. We first compute the distances and step numbers for all deviating
edges, followed by the computation for the remaining edges.

Step number. The number of steps se for an edge e depends on its classification. Let v
and w denote the significant and insignificant vertex of e respectively.

For basic and evading edges, the maximal distance is attained in the apex of a step.
Let α1 denote the absolute angle between vector w − v and the assigned direction of
e. Similarly, α2 denotes the absolute angle between vector w − v and the other asso-
ciated direction of e. Basic computations show that a step must span less than lmax =(
(tanα1)−1 + (tanα2)−1

)
de/2 to avoid deviating more than a distance de/2 from e.

Hence, the number of steps is computed as d‖e‖/lmaxe2, where dxe2 denotes the smallest
even integer that is strictly greater than x. Note that the staircase may not be at exactly
distance de/2 from e; hence, if x is an even integer, dxe2 equals x+ 2.

An aligned deviating edge does not use the step number. Instead it requires a distance
δe. This distance is an upper bound on the maximal distance between the staircase of e
and e itself. Hence, we use δe = min {de/2,∆e}, where ∆e = 0.1‖e‖ as defined for the
staircase regions.

For an unaligned deviating edge, the maximal distance to e is attained in one of
the corners of the appended region. The easiest way to compute se is by first com-
puting the maximal distance to e when using a step of unit length and the correspond-
ing appended region. Let d1 denote this maximal distance for e. Scaling to a differ-
ent step length scales the entire step and appended region uniformly. Hence, we find
that df = f · d1 when scaling by a factor f . Since f corresponds directly to the step
length, we find that the maximum step length is de/(2d1). From this, we can derive that
se = max {4, d2d1‖e‖/de + 1e2}.
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7.3.4 Analysis
For the analysis of Algorithm 7.2, let n denote the complexity of the input subdivision
S and m the complexity of the resulting C-oriented subdivision R. Since every edge of
the input is converted into a staircase, m is at least as big as n. Often, consecutive edges
may have oppositely assigned directions at their shared vertex. In such cases, the shared
vertex becomes superfluous in the resulting subdivision. Removing these vertices allows
m to become smaller than n, though this is unlikely to occur in practice.

Depending on the vertex-edge distances and the angles between edges with a shared
vertex, the staircases use less or more steps. The smaller the vertex-edge distances or
angles become, the more steps a staircase needs such that no intersections are introduced.
Most importantly, the number of steps for a single edge does not depend on n. Hence,
m is worst-case linear in n. A theoretic upper bound can be computed based on minimal
angles, lengths, and distances. However, the increase predicted by such an upper bound is
far greater than the increase observed in practice. Deviating edges especially may cause a
large increase (locally) in the number of edges in worst-case conditions. These are caused
by vertices of degree 3 or 4 such that all edges lie in the same sector or same adjacent
sectors. This situation rarely occurs for territorial outlines.

Table 7.1 lists the increase in complexity caused by Algorithm 7.2 for the territorial
outlines that are used in Section 7.4. To measure the increase, the table contains both the

Table 7.1 The increase in complexity caused by Algorithm 7.2 for the various
inputs used in Section 7.4. The increase is given as a percentage of
the output complexity, m, with respect to the input complexity, n.

Figure Input n C m Increase
Fig. 7.20 Languedoc-Roussillon 847 C4 2 046 242%
Fig. 7.21 Antartica 225 C3 686 305%

C3(π2 ) 735 327%
C6 618 275%

Fig. 7.22 Australia 223 C2 682 306%
C3 580 260%
C4 597 268%
C5 616 276%

Fig. 7.23 Great Britain 549 C3 1 808 329%
C4 1 369 249%

{ π12 ,
5π
12 ,

7π
12 } 2 428 442%

Fig. 7.24 Italy 1 297 C4 3 020 233%
Fig. 7.25 Japan 2 000 C4 5 286 264%

C6 5 494 275%
Fig. 7.26 Southeast Asia 250 C4 658 263%

{ π12 ,
π
2 ,

11π
12 } 719 288%

Fig. 7.27 The Netherlands 1 506 C4 3 804 253%
Fig. 7.28 Dutch provinces 2 010 C4 5 086 253%
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complexity of the input subdivision as well as the complexity of the C-oriented subdivi-
sion as computed by the angular-restriction algorithm. The latter indicates the complex-
ity, after removing the beforementioned superfluous vertices. In these experiments, the
increase was on average 284% and never exceeded 450%.

The angular-restriction algorithm described in this section executes in O(n2 + m)
time. This assumes a simple implementation in which the interfering edges are found by
iterating over the other edges (Algorithm 7.2, Line 5). This may possibly be improved
upon by using a more intelligent search. However, note that an improvement here does not
yield an asymptotic improvement, when combining Algorithm 7.2 with the simplification
algorithm which runs in O(m2) time.

7.4 Experimental results

We have implemented the algorithms described in this chapter and we used them to gen-
erate results for various territorial outlines. Here we present and briefly discuss results for
single outlines (polygons) and multiple outlines (subdivisions). There are three different
types of results, indicated in the figures with different colors. Simplification results are
given in orange and have been computed using only Algorithm 7.1. Schematization re-
sults are obtained by applying the simplification algorithm to the result of Algorithm 7.2.
Results that use a regular orientation set are indicated in blue; results that use an irregular
set are indicated in purple.

Polygons. Figure 7.20 shows a sequence of octilinear schematizations for Languedoc-
Roussillon (a department of France), starting from its angular restriction to the final con-
vex polygon. The first results (a–c) are barely distinguishable from the input. The results
with medium complexity (d–f) are clearly recognizable as schematizations and have a
shape that corresponds well to the original geometry. Even at low complexity (g), the
result is very reasonable, given the constraints. The final result is a convex polygon with
five edges (h). On this extremely low complexity, the result deteriorates; a better schema-
tization is illustrated. Many shapes suffer problems at extremely low complexities; the
resulting convex polygon is often not desirable. Hence, for the other examples, we shall
showcase only results with a few more edges.

Figure 7.21 shows results for the continent of Antarctica. Two schematizations use
hexilinear orientation sets with different initial angles (c–d). In general, the horizontal
variant (c) better represents the horizontal parts (that is, the upper and lower boundary);
the vertical variant (d) better represents the vertical parts (that is, the left and right bound-
ary). However, combining the two sets into a dodecilinear orientation set yields a result (e)
that is worse than either one. Hence, we conclude that simply providing more orientations
does not necessarily imply a better schematization.

Figure 7.22 shows results for Australia using a variety of regular orientation sets. The
rectilinear result is likely hard to recognize separately, but we consider it a good schema-
tization for the given constraints. It is likely to combine well with, say, a rectilinear
network. The other schematizations are closer to the original shape. Especially the hex-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.20 Octilinear schematization results with decreasing complexity for
Languedoc-Roussillon. (a) Angular restriction, 2 046 edges (up
from 847). (b) 499 edges. (c) 250 edges. (d) 100 edges. (e) 50
edges. (f) 24 edges. (g) 11 edges. (h) 5 edges. An alternative,
superior solution is sketched by the dashed polygon.

(a) (b)

(c) (d) (e)

Figure 7.21 Results for Antarctica with 25 edges. (a) Input. (b) Simplification.
(c) Hexilinear, C3. (d) Hexilinear, C3(π2 ). (e) Dodecilinear, C6.
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(a) (b) (c)

(d) (e) (f)

Figure 7.22 Results for Australia with (at most) 25 edges. (a) Input. (b) Simpli-
fication. (c) Rectilinear, C2. (d) Hexilinear, C3. (e) Octilinear, C4.
(f) Decilinear, C5.

ilinear and decilinear schematizations work well. However, the ocilinear variant seems
slightly worse. In particular, the Gulf of Carpentaria in the north is represented worse.

Figure 7.23 shows various results for Great Britain. We consider the hexilinear schema-
tization to be the best result. With octilinear orientations, the schematization requires
multiple edges to represent the rather straight eastern coastline. The result with the ir-
regular set works quite well considering its restrictions. However, a small edge remains
on the southern coast. These edges could probably have been put to better use by giving
some more detail to Wales instead. Also, the Thames estuary is represented only slightly.

(a) (b) (c) (d) (e)

Figure 7.23 Results for Great Britain with 50 edges. (a) Input. (b) Simpli-
fication. (c) Hexilinear, C3. (d) Octilinear, C4. (e) Irregular,
{ π12 ,

5π
12 ,

7π
12 }.
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Subdivisions. Figure 7.24 shows the simplification and octilinear schematization of the
regions of Italy. For schematization purposes, it uses quite a high number of edges. How-
ever, this seems unavoidable in order to maintain some geographic shape, since there are
many borders to be represented. Our algorithm is able to further reduce the complex-
ity, but recognizability suffers greatly. In particular, the southern regions of Puglia and
Calabria deteriorate and make Italy lose its characteristic “boot shape”.

(a) (b) (c)

Figure 7.24 Results for the provinces of Italy with 244 edges. (a) Input.
(b) Simplification. (c) Octilinear, C4.

Figure 7.25 shows a simplification and schematizations of the four major islands of
Japan. The dodecilinear result (d) is considered C-oriented, but it has relatively many
orientations and edges. This causes the result to look more like an unrestricted schematic
outline instead. Despite its angular restrictions—or perhaps because of it—the dodeci-
linear result approximates some parts better than the simplification. For example, the
southernmost island (Kyushu) retains more of its shape and the southern shore of the
largest island (Honshu) has a better representation.

(a) (b) (c) (d)

Figure 7.25 Results for four islands of Japan with 120 edges. (a) Input. (b) Sim-
plification. (c) Octilinear, C4. (d) Dodecilinear, C6.
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Figure 7.26 (also shown in the introduction of this chapter) shows results for a group of
countries in southeast Asia (Cambodia, Laos, part of Malaysia, Myanmar, Thailand, and
Vietnam). Their shapes have been preserved quite well in all three results. However, both
schematizations (and to a lesser extend the simplification) have made the narrow part of
Thailand even more narrow, even so far as to suggest that these are actually two separate
regions, rather than one. Though it is geometrically quite accurate, it would probably
be better for legibility to give this strip some slight exaggeration. Moreover, the local
topology changed for some of the degree-3 vertices in the schematization. For example,
the southernmost vertex of the Myanmar-Thailand border in the octilinear schematization
changed from having the shoreline continue to having the border continue southwards.
Similarly, the easternmost vertex of the Malaysia-Thailand border changed. We do not
consider this to be very problematic in these cases. However, if so desired, it can likely
be counteracted by restricting edge-moves near degree-3 vertices.

(a) (b) (c) (d)

Figure 7.26 Results for a group of countries in southeast Asia with 130 edges.
(a) Input. (b) Simplification. (c) Octilinear, C4. (d) Irregular set,
{ π12 ,

π
2 ,

11π
12 }.

In Figure 7.27 we show our schematization result for the Netherlands, at equal com-
plexity as the manual schematization given in Figure 1.1(a). For comparison, we also
show only the outline of this manual schematization. Note that, for example, the exag-
geration of southern Limburg is not possible with our algorithm. Figure 7.28 illustrates
two results for schematizing the provinces of the Netherlands. Using the same number
of edges as for Figure 1.1(b) results in a coarser schematization. However, the input has
approximately 33% more edges; the second result compensates for this by allowing 320
edges in the result. The resulting schematization has a reduction in detail comparable to
the result without the province borders.
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(a) (b) (c)

Figure 7.27 Result for the Netherlands. (a) Input. (b) Octilinear, C4, with 240
edges. (c) Outline extracted from Figure 1.1(a); this outline has
240 edges.

(a) (b) (c)

Figure 7.28 Results for the provinces of the Netherlands. (a) Input. (b) Octilin-
ear, C4, with 240 edges. (c) Octilinear, C4, with 320 edges.

7.5 Conclusions

In this chapter we studied the problem of simplifying and schematizing territorial out-
lines in combination with an area-preservation constraint. To this end, we introduced an
operation called an edge-move. In our algorithm, we perform these edge-moves in pairs
such that the complexity of the outline is reduced in an area-preserving and topologically
safe way. We proved that any nonconvex polygon admits such a pair of edge-moves. The
algorithm is a nonvertex-restricted simplification algorithm.

Since edge-moves do not change orientations, we know that the output of this simpli-
fication algorithm is C-oriented if the input is C-oriented. Hence, we introduced an area-
preserving algorithm to convert any subdivision into a topologically correct, C-oriented
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(a) (b) (c)

Figure 7.29 (a) A rectilinear “triangle”. (b) An octilinear result of our algorithm
uses only rectilinear orientations. (c) A proper octilinear schemati-
zation, unattainable by our current algorithm.

subdivision. Combining these two algorithms, we obtain an algorithm to compute a C-
oriented schematization of any simple polygon or subdivision. We observe that in some
cases it is actually desirable to introduce an orientation that is not present in the input, as
is illustrated in Figure 7.29.

Our experiments show that these algorithms preserve the important structures of the
input. However, we assumed that the desired orientations are given. The quality of
schematization depends quite strongly on the chosen orientation set C. Hence, it is desir-
able to develop algorithms to decide what set C is suitable for a given outline.

Our algorithm chooses operations that change the area as little as possible. That is, we
greedily choose the contraction that causes the least symmetric difference with respect to
the current result. While this strategy allows for an efficient algorithm, it may not always
be the “best” choice for the complete simplification. That is, choices that are “worse” ac-
cording to the symmetric difference may lead to a better solution in the end. Moreover, it
might lead to an asymmetric result for a symmetric input. Hence, other strategies or other
criteria might be more appropriate. For example, Haunert [100] presents an algorithm for
detecting symmetries in buildings and building groups. Is such a method effective also
for territorial outlines? If we can augment territorial outlines with symmetry information,
how can we incorporate this into our schematization algorithm?

To improve upon the greedy nature of the iterative algorithm, one may consider a
strategy to optimize a common distance measure. However, as argued in Chapter 3, such
optimization may yield unsatisfactory results as well. Nonetheless, we observe that not
all counterexamples are reachable by edge-moves, while the illustrated better result is
reachable. For example, this is the case for the symmetric difference. The question rises
whether it is desirable to find a result that minimizes the symmetric difference over all
results that can be obtained using valid edge-moves. If so, is there an efficient algorithm to
compute it? Our greedy approach does not minimize the symmetric difference. Moreover,
an optimal result for a given complexity k does not necessarily lead to an optimal result
for lower complexity.
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Chapter 8

Building Generalization

Generalization is the process of deriving a scale-appropriate map from detailed geo-
graphic data. It may refer to the manual process as performed by cartographers or to
the automated process; in the context of this thesis, however, we shall use it to refer to
the automated process. Generalization is typically used to produce topographic maps,
ensuring maximum detail in a legible map. Generalization involves a variety of different
generalization operators. Such an operator describes a spatial transformation on the ge-
ometry representing various elements such as roads, rivers and buildings. We briefly dis-
cuss some of the main operators. We refer to the work of Regnauld and McMaster [147]
for an extensive discussion on generalization operators.

Simplification is one of the basic operators for generalization. It is the task of reducing
the number of points that represent a shape. In the model of Regnauld and McMaster, sim-
plification refers to vertex-restricted variants. Vertex displacement is treated as a separate
operator: smoothing. Nonvertex-restricted simplification combines these two operators.

As the scale of a map decreases, small features become hard to read. A number
of operators exist to alleviate such issues. Generally speaking, there are three options:
features are enlarged, aggregated with other features, or removed completely. Feature
enlargement includes the operators enhancement and exaggeration. Aggregation includes
a variety of operators, depending on the type of features. Two examples are aggregation
(of points) and amalgamation (of areas). Removal of features is accomplished by the
operator elimination (or selection). Typification is an operator that replaces elements by
a “typical shape” that does not necessarily accurately reflect the actual geometry. For
example, a set of buildings can be replaced by a number of equally sized squares.

Buildings are man-made objects; therefore, walls typically make 90-degree angles.
Due to possible measurement imprecision in the data, the building outline may deviate
from this. It is often desirable to restore these right angles in the building outline. This
building-specific operator is referred to as building wall squaring.

When a number of features are spatially close, the reduction of the map scale may
cause these features to coalesce into what appears as a single feature. Often, this is unde-
sirable and the operator displacement is used to avoid this coalescence.
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In this chapter we apply the algorithms of Chapter 7 in the context of building gener-
alization. The purpose of this is to show the versatility of this approach: it can be used
effectively for problems other than schematization of territorial outlines. In Section 8.1
we consider building wall squaring. We describe a few preprocessing steps to make our
algorithm suitable for this task. In Section 8.2 we consider the generalization of urban ar-
eas, by extending our methods with aggregation and elimination operators. Both sections
include some experimental results to demonstrate the effectiveness of our methods.

Related work. A central technique in generalization is referred to as (multi-)agents
[21, 116, 155, 161]. It is a framework for multicriteria optimization: each agent is in
charge of generalizing certain aspects and regions of the map. The agents apply gener-
alization operators to obtain their generalization goals and constraints. However, these
may conflict; the solution is optimized to balance the degree to which each agent meets
its goals and constraints. This framework requires efficient and effective implementations
for the various generalization operators.

Implementations of the various generalization operators have received significant at-
tention, such as typification [46, 142, 146] and displacement [18, 119, 158]. Here we
focus on the operators for building generalization that are considered in this chapter: wall
squaring, simplification and aggregation. A large number of simplification methods exist
(see Chapter 7); here we focus on methods that are designed specifically for buildings.

For building wall squaring, it is essential to understand and derive what the “orien-
tation” of a building is. This need resulted in several methods to compute the orienta-
tion [73, 142, 145, 154]. Regnauld [145] observed that there is a difference in detecting
the wall orientations and the general orientation of a building. To apply our methods for
building wall squaring, we are interested in the wall orientations rather than the general
orientation. To this end, we adapt a method described by Duchêne et al. [73].

Sester [157, 158] applies least-squares adjustment for building simplification and wall
squaring. Mayer [125] uses scale-spaces to shift edges of an outline to simplify buildings
and includes a method for building wall squaring; he also extends these ideas to 3D build-
ings. Haunert and Wolff [103] apply shortcuts to formulate an ILP for the topologically
safe simplification of buildings. In addition to minimizing the number of edges in the
result, they add terms to the optimization criterion to factor in area change, corner angles
and “edge directions” of buildings.

Aggregation conceptually consists of two high-level steps: deciding which objects to
aggregate and how to aggregate them. For the first step, Steiniger and Weibel [162] distin-
guish five relation types: geometric, topological, semantic, statistical and structural. For
example, buildings may be grouped based on the road network (topology) [26, 116, 155].
However, other relations can also be considered for buildings (e.g. [26, 182]). For the
second step, the actual aggregation, a number of methods have been developed. Ware et
al. [175] use a triangulation to aggregate buildings by “adding” triangles to connect them.
Regnauld and Revell [148] describe an approach to building aggregation, involving a set
of special operations, including grouping, rotation and simplification. Damen et al. [62]
use the Minkowski sum and subtraction (“polygon offsetting”) for the simplification, ag-
gregation and elimination of buildings.
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Not only buildings but also regions can be aggregated. The regions are often referred
to as area partitions in this context. A number of aggregation methods have been sug-
gested (e.g. [55, 102, 134]). Van Oosterom [134] introduced the generalized area partition
(GAP) tree to represent a hierarchy of aggregation. It has been extended, for example, to
include buildings [140], topological constraints [171] and higher dimensional data [135].

In comparison to the methods discussed above, our method is unique in preserving
the exact area of buildings during simplification. Our techniques may be useful in con-
junction with other techniques for building generalization. For example, we choose to
integrate aggregation and elimination into our simplification algorithm of Chapter 7. This
allows for a single execution of the algorithm that produces a range of generalizations.
If the desired scale is known, these operators can also be performed beforehand using
other known techniques. As mentioned, road networks can often be used to partition the
input into small logical groups. We develop our methods without taking such auxiliary
information into account. However, if such data is available, our methods can incorporate
these to not only speed up the computation but also to guarantee that buildings do not
cross roads.

8.1 Building wall squaring
Buildings are man-made objects and as such often have right-angle corners. However,
given outlines may be inaccurate. Building wall squaring is the operator that restores
these right-angle corners where appropriate. We first discuss how to detect arcs in a
building outline, as deforming arcs as a result of squaring should be avoided. We perform
squaring by restricting the orientations, followed by a sequence of edge-moves to return
to the original complexity of the building. However, we do not wish to assume that the
orientation of the building is known; hence, we also present a method to detect the set of
orientations to be used for the angular restriction.

Arc detection. Some buildings have characteristic arcs, such as a church having circular
chapels (see Figure 8.1). Although it may require a high number of vertices in a polygonal
representation, such a feature has low visual complexity: the arc may be perceived as a
single object. To avoid squaring and deforming such arcs, we detect these beforehand,
marking the vertices as arc vertices. We characterize an arc as a sequence of vertices
that have similar exterior angles and segment lengths. We define an arc sequence to be a
sequence 〈v1, . . . , vn〉 of vertices such that the following five conditions are met.

• n > 4. A sequence of three vertices has only one bend and thus we cannot discern
whether it describes an arc or a bend.
• |α(vi)| 6 π/6 for i ∈ {2, . . . , n − 1}, where α(vi) denotes the exterior angle at

vertex vi. Sharp bends break the perception of an arc. Therefore, we constrain the
exterior angle to be at most 30 degrees.
• |α(vi)−α(vi+1)| 6 π/12 for i ∈ {2, . . . , n−2}. The exterior angle of consecutive

vertices must be similar. In particular, they may not deviate more than 15 degrees. A
gradual change in exterior angle is allowed to support arcs that change in curvature.
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(a) (b) (c)

Figure 8.1 (a) Church with round walls. Detected arcs are indicated in blue.
(b) Its squared outline. (c) Walls are aligned with edge-moves.

• 1/3 6 ‖vi−vi−1‖/‖vi+1−vi‖ 6 3 for i ∈ {2, . . . , n−1}. If consecutive distances
between vertices in the sequence differ greatly, the impression of an arc is reduced.
Hence, we bound the ratio by 3.

• vi − v1 ·vn − v1 6 0.99 for some i ∈ {2, . . . , n−1}, where v denotes a normalized
vector. A straight wall that is represented using multiple vertices should not be
considered an arc. Therefore, we require that at least one vertex lies sufficiently far
from the line connecting the first and last vertex in the sequence.

Any vertex that is part of an arc sequence is marked as an arc vertex. Note that the
constants in the above conditions can be considered as parameters. They can be changed
to classify or avoid classifying certain sequences as arcs sequences. We maintain the
given constant values throughout our experiments.

Orientation detection. To detect the orientations in a building, we extend the method by
Duchêne et al. [73]. Their method takes a set of candidate orientations. For each candidate
orientation, it computes the weighted sum of edge lengths of edges contributing to that
orientation. An edge contributes to a candidate orientation if its orientation deviates only
by a small angle from the candidate orientation or its perpendicular. In other words, the
angles are considered modulo 90 degrees. The weight of an edge depends linearly on this
angle. We modify their method in two ways.

The linear contribution function ensures that a maximal value always occurs at the
orientation of one of the edges. As illustrated in Figure 8.2, this is not always desirable
when dealing with noisy data. Instead, we use a Gaussian function with a peak equal
to the edge length and a width of 7.5 degrees (see Figure 8.3(a)). Consider an edge of

(a) (b) (c)

Figure 8.2 (a) A building with imprecise walls. (b) Result with linear contri-
bution function. (c) Result with Gaussian contribution function.
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(a) (b)
0◦ 90◦ 0◦ 90◦

Figure 8.3 (a) Two Gaussian functions with a width of 7.5◦. (b) The maximal
value (orange) does not need to correspond to an input orientation.

(a) (b)

Figure 8.4 (a) Building with two distinct orientations. (b) Its squared outline.

length l with an orientation of o degrees (modulo 90). The contribution of this edge to an
angle a ∈ [0, 90) is computed as l · e−x2/112.5 where x = min{|a − o|, 90 − |a − o|}
is the angular deviation between o and a modulo 90 degrees. Comparing to a linear
contribution function, the Gaussian function results in a higher contribution to orientations
that are close to the orientation of the edge. The maximal value may now correspond
to an orientation that is not present in the input (see Figure 8.3(b)). Instead of using
a sampled approach to find an orientation with maximal contribution, we compute the
desired orientation using numerical methods.

A building may have multiple orientations, varying between parts of the outline, as
shown in Figure 8.4. Duchêne et al. [73] compute only the main orientation of a building
(and its perpendicular), using the presence of other orientations to define a confidence
level. Instead of locating only the main orientation, we discard the edges that deviate at
most 15 degrees from the detected orientation (or its perpendicular). We then repeat the
detection process until no edges remain.

Squaring. Now that arcs and orientations have been detected, we perform two steps to
obtain the squared outline. First, we restrict the input to use the detected orientations,
using the angular-restriction algorithm described in Section 7.3. However, we do not
change the edges that end in two arc vertices, to avoid deforming the arcs. If the edges
of a degree-2 vertex have opposing associated directions, the vertex is marked as being
superfluous. These superfluous vertices are positions along a (nearly) straight wall and
should be removed after squaring. This occurs, for example, for all vertices except for the
four corner points in the building outline depicted in Figure 8.2.
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After the angular restriction, we execute the simplification algorithm described in
Section 7.2. Long edges in the building outline cause a staircase with long edges; to
simplify these staircases, the long edges have to be moved. This typically involves a
contraction area that is large in comparison to those of the finer details of the building.
Therefore, we redefine the minimal contraction pair to be based on the distance that the
inner edge of the configuration moves instead of the area it sweeps over. Edge-moves that
involve the displacement of an arc vertex are not used. The desired complexity is set to
the number of nonsuperfluous vertices of the original outline.

Simplification. It may be desirable to further simplify the building outline. Our simpli-
fication algorithm can perform more edge-moves to further reduce the complexity. How-
ever, the arcs should also be simplified if the desired complexity is sufficiently low. In
this case, we unmark the arc vertices and impose the orientation restriction on the incident
edges. That is, during the simplification we treat the arc vertices as regular vertices. This
step should be done after squaring and before any further simplification: this avoids large
deformations that may otherwise be unnecessary.

Wall alignment. Edge-moves can be further exploited to align edges (walls) that have the
same orientation and are almost collinear. For two edges that are similarly directed (e.g.
the building interior is above the edge for both), this can be done in an area-preserving
way (see Figure 8.5(a)). However, if the walls are oppositely directed, this need not be
possible or may require a large deformation. Though it would be possible to apply other
edge-moves to compensate for area gain or loss, we choose not to allow this: it may cause
a deformation that is worse than the misaligned walls; it risks misalignment of walls that
were aligned. By relaxing the area-preservation constraint, the misaligned walls with
opposite directions can move towards each other (see Figure 8.5(b)). Another example of
aligning walls is given in Figure 8.1(c). For the other results, we choose not to apply this
optional postprocessing step.

(a) (b)

Figure 8.5 (a) If two misaligned walls are similarly directed, edge-moves can
align them while preserving area. Area gain and loss are indicated
in green and red respectively. (b) If the walls are oppositely di-
rected, we may align them at the cost of changing area.

Results. The earlier results shown in Figure 8.1(b), Figure 8.2(c) and Figure 8.4(b) were
obtained by applying the methods described in this section in combination with the tech-
niques of Chapter 7. Below, we briefly discuss two additional results.



8.1. Building wall squaring 161

(a) (b) (c) (d)

Figure 8.6 (a) Building with 95 edges. (b) Squared outline with 95 edges with
arc detection. (c) Simplified to 38 edges after squaring. (d) Simpli-
fied to 14 edges after squaring.

Figure 8.6 shows three results of a complex building obtained using the methods de-
scribed in this section. The building has been neatly squared after detecting arcs (see
Figure 8.6(b)). However, edges that are not part of an arc but that do end in two arc ver-
tices are not modified, for example the vertical edge in the bottom right. The cause is
that its end points are both arc vertices; hence the edge is considered to be part of an arc.
Releasing the arc vertices and imposing the angular restrictions on the edges allows us to
further simplify the building while maintaining the foremost features (Figure 8.6(c–d)).

Figure 8.7 illustrates the effect of arcs on the visual complexity for the main building
of the airport in Boston. The result without arc detection (b) obviously obtains the lowest
(measured) complexity. However, the visual complexity is not reduced in comparison
to (c): what is perceived as a single arc is now crudely represented using more than
one line segment. Figure 8.8 shows the result for the same building when also applying
wall squaring (b) and simplifying afterwards (c), both using arc detection beforehand.
The building has quite a few small arcs that appear to be a simple offset of a larger arc.
Since these vertices are fixed by the arc detection, these details are not eliminated by
simplification. For simplification with detected arcs, it would be desirable to move such
arcs to merge with the larger one. Details of such an operation are left as future work.

(a) (b) (c)

Figure 8.7 (a) Airport of Boston (361 edges). (b) Simplified to 54 edges.
(c) Simplified to 295 edges with arc detection.
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(b) (c)(a)

Figure 8.8 (a) Airport of Boston (361 edges). (b) Squared outline with 360
edges with arc detection. (c) Simplified to 283 edges with arc de-
tection after squaring.

8.2 Generalizing urban areas

In this section we investigate generalization for urban areas, focusing on the buildings
in such an area. Urban-area generalization can be achieved in part by simplification.
A collection of building outlines can be represented as a subdivision. Therefore, the
method that we described in Section 7.2 can be applied to obtain generalized versions of
urban areas as well. Depending on the size of the area and the target scale, simplification
alone does not suffice: additional generalization operators are required. In this section
we integrate aggregation and elimination into our simplification method. We assume that
we have detailed accurate building outlines available. Hence, we do not use squaring.
Squaring could even cause misaligned walls for buildings on opposite sides of streets,
greatly reducing the impression of a street caused by the empty region in between. This
is illustrated in Figure 8.9.

To integrate elimination and aggregation into our simplification method, we describe
operations that can be interleaved with the edge-moves. However, instead of reducing
the complexity by moving edges, such operations aggregate two buildings or eliminate a
building. For each operation, we also indicate a cost of operation; this cost is compared
to the costs of edge-moves (area of contraction region) to prioritize operations.

(a) (b)

Figure 8.9 (a) Original outlines give the impression of a street. (b) Misaligned
walls would cause the impression of the street to diminish.
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Components. Before describing our aggregation operations, we introduce the notion of
components via a dual graph (refer to Figure 8.10). Consider a subdivision S and its dual
graph S∗, constructed as follows. Dual graph S∗ contains a vertex f∗ for every bounded
face f in S. An edge between two vertices, f∗1 and f∗2 , exists if the corresponding faces,
f1 and f2, share at least a vertex in S. We define a component of a subdivision S to
be a maximal subgraph of which the incident bounded faces correspond to a maximal
connected component in S∗. A component is enclosed by a cycle of which each edge
is incident to the unbounded face of S. Note that this differs slightly from the standard
definition of a (connected) component in a subdivision.

Figure 8.10 A subdivision with three components, each indicated with a unique
color. The “courtyard” in the green component is not a separate
entity but part of the component that encloses it.

Aggregation. The goal of our aggregation operations is to gradually turn a component
into a single bounded face and a subdivision into a single component. We distinguish four
operations; refer to Figure 8.11 for illustrations.

(a) An interior merge aggregates two adjacent faces within the same component.
(b) A junction merge aggregates two faces in the same component that meet only at a

junction.
(c) An edge-split splits an edge that is incident only to the unbounded face.
(d) An exterior merge aggregates two separate components.

(c)(b)(a) (d)

Figure 8.11 Four aggregation operations. Top and bottom rows depict situations
respectively before and after performing the operation. Area defor-
mation is exaggerated to clarify the effect. (a) An interior merge.
(b) A junction merge. (c) An edge-split. (d) An exterior merge.
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An interior merge aggregates two adjacent faces. That is, it requires that the faces
have at least one border in common. The interior merge removes all common borders
between the faces. The cost of an interior merge equals the area of the smaller of the two
faces multiplied by some parameter αin. Increasing or decreasing αin makes the process
respectively less or more likely to merge faces rather than performing edge-moves. The
operation is illustrated in Figure 8.11(a).

Even if a component has no adjacent faces, it is possible that it consists of multiple
faces (see Figure 8.11(b–c) for examples). There are two cases possible: a junction is
alternatingly incident to a bounded face and the unbounded face; or an edge is incident
only to the unbounded face. The former is resolved via a junction merge, the latter via an
edge-split. Note that these operations are used only if an interior merge is not possible.

For a junction merge, we perform a positive edge-move to “cut” the junction, merging
two “vertex-adjacent” bounded faces. Again, the increase in area can be compensated for
by an edge-move in one of the merged faces. The cost of this operation is the area of the
smallest merged face multiplied by αin.

An edge-split operates on an edge that is incident only to the unbounded face. It
assumes that at least one endpoint is a vertex that lies on a bounded face of the component.
We duplicate the edge, creating a zero-area region in between the edge and its duplicate.
At least one of these edges allows a positive edge-move. In the bounded face, we search
for a negative edge-move to compensate for the area change. This effectively merges the
face with the split edge, and possibly the face at the other endpoint of the edge. The
number of edges in the component that are incident only to the unbounded face is reduced
by one. The cost of this operation is the area of the (smallest) face multiplied by αin.

An exterior merge aggregates two separate components. It first adds the shortest line
segment between the two components. This new edge is adjacent only to the unbounded
face. An edge-split is performed on this edge as part of the exterior merge. To prevent
introducing a new orientation, we may create a staircase—using two distinct orientations
in the components—for both new edges (see Section 7.3). The cost of an exterior merge
equals the area of the smaller of the two components multiplied by some parameter αex.

Above, we introduced two parameters, αin and αex, to prioritize aggregation opera-
tions and edge-moves. We require that αin 6 αex holds. This guarantees that when an
exterior merge occurs, the smaller of the two components consists of only one face: that
is, it is a simple polygon. It must then have a negative edge-move to compensate for the
change in area. In our experiments, we use αin = 0.2 and αex = 0.5.

By combining these four operations of aggregating faces and components, we obtain
a method that is complete for subdivisions. This is formulated in the following theorem.

Theorem 8.1. Let S be a simple polygonal subdivision. Unless S is a simple convex
polygon, subdivision S can be generalized, while preserving area, orientations, and pla-
narity, by one of the following operations: a complementary pair of feasible edge-moves,
an interior merge, a junction merge, an edge-split or an exterior merge.

Proof. If a component contains multiple bounded faces, then either an interior merge,
junction merge or edge-split can be performed. If two bounded faces are adjacent, an in-
terior merge is possible. Otherwise, the dual of this component (where each bounded face
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is connected to bounded faces with which it shares at least a vertex) must be a tree; in par-
ticular, this dual must have a leaf. The bounded face that is dual to a leaf consists of three
or more vertices of which only one is a junction. This junction admits either a junction
merge or an edge-split. This reduces either the number of faces in the component or the
number of edges incident only to the unbounded face, whereas the other operations do not
increase these values. Therefore, these operations make progress towards generalizing S
if a component exists that contains multiple faces.

If no component has multiple faces, each component in S is a simple polygon. If
there is only one component, then Theorem 7.1 implies that a complementary pair of
feasible edge-moves exists. Otherwise, multiple components exist; the closest pair of the
components admits an exterior merge.

Implementation. By the theorem above, it is always possible to generalize a simple
polygonal subdivision, while preserving the total area and orientations inherent in the
input. However, we choose to not apply the additional steps that ensure the last two
properties. We do not restrict orientations beforehand and there seems little value in
introducing comparatively arbitrary orientations in an exterior merge. In addition, we
relinquish the area-preservation constraint for the following reason. When considering a
group of buildings, then the area that it occupies is greater than the area of the buildings
alone. Any empty space in between the buildings can be considered to be part of such
a neighborhood. Thus, enforcing area preservation may in fact cause apparent area loss.
Hence, we do not compensate for the area increase caused by the exterior merge and even
perform edge-moves on both newly introduced edges such that a maximal area is added.
We do maintain the (possibly increased) area when performing the other operations. That
is, the area is only increased when performing an exterior merge.

Also, it is undesirable to merge small components with a component that is far away.
To this end, we use an elimination operation that simply removes a component from the
subdivision. A component is considered an outlier when the nearest other building is
further away than three times its diameter.

Discussion. We present results for a data set of building outlines of Boston1. This data
set, with 295 781 components and 1 750 427 edges, is depicted in Figure 8.12. On the
complete data set and on subsets, we ran Algorithm 7.1 without and with the extensions
described in this section; we refer to the results respectively as “simplification” and “gen-
eralization”. In the following, we discuss only two subsets: the northern part of Roxbury
(2 192 components; 15 192 edges) and North End (131 components; 2 035 edges). We re-
fer to the former simply as “Roxbury”. The input and results of these subsets are given in
Figure 8.13 and Figure 8.14. Some results for the complete data set are available online2.

At a glance, the simplification and generalization of Roxbury (Figure 8.13) are quite
similar; we consider their visual quality to be comparable. The advantage of the simplifi-
cation is that the algorithm is easier to implement without the aggregation and elimination

1This data set is freely available as part of the Massachusetts Geographic Information System, MassGIS:
www.mass.gov/mgis/lidarbuildingfp2d.htm, accessed February 2011.

2www.win.tue.nl/˜wmeulema/results.html#boston
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Figure 8.12 Overview of the Boston data set. North End (blue) and the northern
part of Roxbury (orange) are indicated.
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(a)

(b)

(c)

Figure 8.13 (a) Part of Roxbury, Boston (2 192 components and 15 192 edges).
(b) Simplified to 9 965 edges. (c) Generalized to 1 593 components
and 8 071 edges.
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(a) (b)

(c) (d)

(e) (f)

Figure 8.14 (a) North End, Boston (131 components and 2 035 edges). (b) Sim-
plified to 939 edges. (c) Generalized to 242 components and 783
edges. (d) Result of Haunert and Wolff with 932 edges [103, Figure
10]. (e) Simplified to 939 edges allowing “invalid” edge-moves. (f)
Generalized to 242 components and 783 edges allowing “invalid”
edge-moves.
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(a) (b)

Figure 8.15 Highlights of Roxbury, each depicting input, simplification, and
generalization. (a) Using aggregation, these buildings are repre-
sented with less edges without a significant loss of visual quality
at small scale. (b) Aggregation elsewhere results in a higher visual
quality at the same overall complexity level.

operators that were described in this section. However, the generalization uses about 20%
less edges while maintaining the overall appearance. Thus, the additional effort seems
worthwhile to allow for a higher reduction in complexity. When we take a closer look, we
may notice some differences. Some of these differences are highlighted in Figure 8.15.
Small buildings are merged when generalizing the urban area. This has little impact on
the visual quality but greatly reduces the complexity. As a result, other buildings can even
use some more edges: these buildings then retain more of their original shape. Also for
the results of North End (Figure 8.14(b–c)), we conclude that the generalized result is at
least comparable to the simplified result, while using almost 17% less edges.

The Boston data set has been used to analyze other simplification methods, such as
the ILP method presented by Haunert and Wolff [103]. One of their results for North End
is shown in Figure 8.14(d). Our simplification result has a similar complexity as their
result. The visual quality of the results are comparable. We highlight typical differences
by the example shown in Figure 8.16. Individually, the buildings shown are simplified
more accurately by the method of Haunert and Wolff, though locally more edges are
used. However, the region as a whole can be considered to be simplified better by our
method as it preserves the impression of a street.

We observe a difference in what is considered topologically safe. The method of
Haunert and Wolff [103] guarantees that there are no intersections, but does not account

(a) (b) (c)

Figure 8.16 Highlight of North End. (a) Buildings give the impression of streets
(orange). (b) In our result, the impression is preserved. (c) In the
result of Haunert and Wolff [103], this impression is reduced. Note
the apparent change in topology in the bottomleft building.
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for shared walls and holes (e.g. courtyards). Hence, some apparent holes may vanish
(see Figure 8.16) or adjacent buildings may disconnect. In contrast, our method works on
subdivisions and—without aggregation—preserves the exact topology. This causes the
complexity measures given by Haunert and Wolff [103, Table 1] to differ slightly from
those we give. Their result, treated as a subdivision, has 932 edges. As our method
preserves the courtyard (Figure 8.16), it is forced to locally use 7 more edges. Hence, we
may consider the comparison with our results of 939 edges to be at equal complexity.

The main advantage of our methods is that they are simple, fast, and more scalable.
In the worst-case scenario, the ILP formulation by Haunert and Wolff [103] has O(n6)
constraints, thus producing quite large ILPs. They overcome such problems by using
lazy constraints. Our methods have a worst-case complexity of O(n3) when allowing
infeasible configurations to compensate for area change. Since a component is affected
only by “nearby” components, the execution time in practice behaves significantly better.
Table 8.1 shows the execution time on North End, Roxbury and the complete data set
in comparison to the times reported by Haunert and Wolff [103]. Our methods were
implemented in Java and run on a DELL Precision M4500 Laptop with 4GB RAM and
an Intel Core i5 M560 processor with two cores of 2.67GHz each (two threads per core).
However, our algorithm runs in only a single thread. The algorithms are approximately
as fast for small data sets, but our methods are far more scalable to large data sets.

Another advantage of our simplification method (Algorithm 7.1) is that it preserves
the area of each face exactly. While Haunert and Wolff use a term to (partially) optimize
for the area change, no guarantees can be given that the area of a face is maintained
precisely. Furthermore, our method integrates with a simple aggregation method, while
this has to be done separately for the method of Haunert and Wolff.

Our method, as described, cannot eliminate short convex and reflex edges easily, as
these are not allowed to move outward or inward respectively. The effect is that round
corners are moved inward completely or that small cutoffs are not removed (as illustrated
in Figure 8.17). This is caused by the definition of valid edge-moves: only edge-moves of
which at least one of the vertices remains on the original outer edge are allowed. However,
allowing “invalid” edge-moves is possible and causes no algorithmic problems. Since
these edge-moves are not required for completeness, we may restrict their use without
interfering with this property of the method. We allow an invalid edge-move with inner
edge e only if the intersection of the tracks is in the direction of the edge-move and the

3Personal communication with J.-H. Haunert, May 2011.

Table 8.1 Execution times, measured until no further operations can be per-
formed. Last column lists execution times as reported by Haunert
and Wolff for their ILP method [103].

Data set Simplification Generalization ILP [103]
North End 2.29s 2.95s 2.06s
Roxbury 3.44s 9.04s 44s3

Boston 2h17m44s 4h57m07s N/A
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(a) (b)

Figure 8.17 Issues that can be solved by allowing “invalid” edge-moves. Both
cases depict input, regular result, and result when allowing invalid
edge-moves. Examples are found in central and southern North
End, respectively. (a) Rounded corners can only shrink. (b) Small
cutoffs cannot be removed.

(a) (b) (c)

Figure 8.18 A counterintuitive change in which buildings are aggregated in
North End, as a result of allowing invalid edge-moves. (a) Input.
(b) Regular result. (c) Result when allowing invalid edge-moves.

orthogonal distance between this intersection and the line through e is at most the length
of e. Figure 8.14(e–f) shows the result of our methods on North End when allowing these
invalid edge-moves. The problems indicated have been alleviated. However, allowing
these edge-moves comes at a price. The impression of the street at some locations is re-
duced similar to the result of Haunert and Wolff (see Figure 8.16). If a street network
is available, then such additional constraints can be included in the definition of feasible
edge-moves. That is, we may use the road network to block edge-moves. This can also
be integrated into the ILP method of Haunert and Wolff. We may also observe a counter-
intuitive change in which buildings are aggregated, as highlighted in Figure 8.18. Though
the narrow distance between the two larger buildings is represented more accurately, the
two smaller buildings on the left both aggregate with the same larger building. This is
caused by an invalid edge-move decreasing the distance between these, in combination
with the aggregation being interleaved with the simplification: it can easily be avoided by
performing aggregation beforehand.

An advantage of the algorithm by Haunert and Wolff is that it is parameterized by
error tolerance, which is comparatively easily obtained from a target scale. Our method
is parameterized by desired complexity, which does not directly correspond to a target
scale. However, an advantage of our approach is that all intermediate states can be stored
easily; these can be used to find a desired complexity level afterwards. This does require
a method to assess which result is considered the best for a target scale. Alternatively, it is
straightforward to change the algorithm such that it performs only edge-moves that stay
within some error tolerance of the original shape. This requires comparison to the original
subdivision, rather than to the current subdivision. Otherwise, steps that each incur a small
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error may accumulate to a large error in total. Depending on the used measure, this leads
to an increased worst-case execution time. Such a parametrization to scale would likely
solve some issues of components “contending” over edges as indicated in Figure 8.15(b).
It also allows for more local processing; this may potentially lead to faster algorithms.

The approach of Haunert and Wolff focuses on modeling the problem with constraints
and an optimization criterion. The increased computational complexity is counterbal-
anced by a greater control on the objective function, in weighting different criteria. The
weights of the various operations in our generalization algorithm can be modified in dif-
ferent ways to prefer certain outcomes over others. However, this does not give as strong
a control over the result as changing the objective function of the ILP.

8.3 Conclusions
In this chapter we showed that our algorithms for the simplification and schematization
of territorial outlines can also be applied in a different context. In particular, we consid-
ered building wall squaring and urban-area generalization. For wall squaring, we showed
how to compute a suitable set of orientations and the required output complexity for the
squared outline. Moreover, we showed a simple technique to avoid arced walls from being
distorted. However, when further reducing the complexity of a building, such arced walls
must either be fully preserved or “released” to be simplified using straight lines. After
detecting arced walls, we may consider fitting smooth curves (e.g. circular arcs or Bézier
curves) to these parts of the outline. An interesting question is how such elements would
integrate with the edge-moves used in simplification. Recently, iterative methods that use
circular arcs have been developed [68, 92]. However, these operations are designed to
obtain a fully curved representation. An interesting question is whether we can develop
operations for partially curved outlines that carefully integrate with edge-moves in order
to obtain a representation that uses a mix of line segments and smooth curves.

For urban-area generalization, we introduced operations to aggregate and eliminate
buildings. These operations interleave with the edge-moves applied by the simplification
algorithm. Though we showed that this can be done in an area-preserving and orientation-
preserving manner, such properties are of less value in this context. Instead, we ensured
that aggregation added area to compensate for a potentially perceived area loss. The
resulting method is comparatively simple and fast, even for large data sets. However,
for data sets that far exceed the main-memory limits of a device, we could consider IO-
efficient algorithms. An interesting question is whether our algorithms are suitable for
such IO-efficiency techniques. Arge et al. [13] describe a very local algorithm for IO-
efficient simplification. Our prioritization of operations causes changes to happen “simul-
taneously” all over the map. We could consider applying operations on a per-component
or per-border basis. The question is how this affects the quality of the result. Moreover,
Arge et al. assume that each face fits in main memory. For subdivisions that represent
territorial outlines, this may be a suitable assumption. However, in the context of build-
ings, the unbounded face is incident to a large majority of edges—essentially the entire
subdivision. Therefore, this assumption does not hold.



Chapter 9

Schematization with Other
Geometric Styles

In Chapter 6 and Chapter 7, we explored C-oriented schematization and simplification.
However, schematic maps come in a variety of geometric styles (see Section 1.1.1). One
advantage of our map-matching approach proposed in Chapter 6 is that different geomet-
ric styles can be accommodated rather easily: it requires only a different graph. In this
chapter we briefly consider three geometric styles in the context of our map-matching
technique. We first consider two known styles: parallelism and curved schematization.
Then we introduce a new geometric style: isothetic schematization. To the best of our
knowledge, this style has not been considered for schematization before. For a review of
related work on schematization in various geometric styles, we refer to Chapter 7.

9.1 Parallelism

The geometric style of parallelism was introduced by Reimer and Meulemans [150]. This
style states that lines should be parallel when possible, but there are no prescribed orienta-
tions. Reimer and Meulemans provide a simulated-annealing approach to find a schematic
outline with a high parallelism from a simplified outline. In particular, this approach also
promotes the use of line segments that “share” perpendicular lines.

Our map-matching formulation can also simulate parallelism. To this end, we con-
struct a graph with a high number of orientations. Each edge in this graph uses one of
these orientations. Let k denote the number of bends in a cycle in the graph and c the
number of used orientations. We find the cycle that optimizes k + λc for some constant
λ > 0. That is, the value of λ controls how additional orientations are weighted in com-
parison to additional bends. If we use λ 6 1/n where n is the number of vertices in the
graph, this effectively means that the number of bends is minimized. The optimal solution
is the one that minimizes the number of orientations over the solutions that use the mini-
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mum number of bends. For λ > n, the exact opposite holds: the number of orientations
is minimized and the number of bends is used as secondary criterion.

For our brute-force method, we can simply keep track of the number of orientations
that are used. This can then be used to compute the value of k + λc for a path or cycle in
the graph. Since this value can only increase by completing a path to a cycle, it can still
be used to bound certain branches in the brute-force search. Unfortunately, due to size of
the constructed graph, the computation time becomes infeasible.

9.2 Curved schematization
Recently, there has been a surge of research that considers curved schematization (e.g.
[79, 91, 92]). This geometric style uses smooth curves to represent the elements of a
schematic maps. To create curved schematization with our map-matching approach, we
need to change only the construction of the graph and add some postprocessing. To con-
struct the graph, we sample an arrangement of curves and use the resulting plane graph.
We keep track of where the edges in the graph originated from in order to determine which
combination of edges does not cause a bend at a vertex. After computing the solution in
the sampled graph, we restore the curves in the cycle to obtain a curved schematization.

A simple way of constructing a graph for curved schematization is to first define a
single center point. For the arrangement, we then use a number of circles centered at this
point and lines going radially outward. This leads to a concentric curved schematization.
This style has been used to explore transit-map design.1 For territorial outlines, this seems
to work particularly well for countries that have a roughly circular shape, or some natural
central point. In Figure 9.1 we illustrate this for the continent of Antarctica. As the central
point, we use a position near the south pole. Figure 9.2 illustrates a result for Russia in

1See www.tubemapcentral.com/circles/circles.html (accessed April 2014). Fink et al. [80]
present an automated method to compute such transit maps.

ε
(a) (b) (c)

Figure 9.1 A concentric curved schematization of Antarctica. (a) Territorial
outline. (b–c) Optimal result with 18 bends using a central point
near the south pole.
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ε(a) (b) (c)

Figure 9.2 A concentric curved schematization of Russia. (a) Territorial out-
line. (b–c) Suboptimal result with 62 bends using a central point
near the north pole. Red lines indicate some changes that could
further reduce the number of bends.

orthographic projection. For this result, we used an “external” central point: the north
pole. The radial lines roughly represent meridians whereas the circles correspond to the
circles of latitude. In both cases, this results in interesting schematic outlines that use
circular arcs. However, the density of the concentric graph increases towards the central
point. In the case of Russia (Figure 9.2), this causes a large number of cycles within ε
distance of the outline, greatly increasing computation time. The given result was found
after roughly 2.5 hours. A better result was not found within 24 hours, though at least 58
is attainable (as indicated in red).

9.3 Isothetic schematization
An isothetic polygon uses only edges that span a line passing through one of two focal
points. It is a generalization of a rectilinear polygon, by considering two focal points at
infinity: one left of and one above the polygon. Generalizing this idea, an isothetic graph
contains only edges that span a line through one of a small set of focal points. We gen-
erate such a graph by computing an arrangement of a discrete set of a lines that originate
from two chosen focal points. By using an isothetic graph in our map-matching formu-
lation, we obtain an isothetic schematization. Figure 9.3 shows three results that can be
obtained this way. In (b–c), we use one focal point that is near the outline to obtain a
strong “divergence”. In (d–e), we move the focal point further away to decrease this di-
vergence, allowing the schematization to more resemble a rectilinear schematization. An
isothetic polygon has two focal points. An isothetic graph may have more focal points, as
illustrated in Figure 9.3(f–g). However, similar to our observations for C-oriented schema-
tization in Section 7.4, using more focal points reduces the strength of the geometric style.
Note that the computation for this result did not finish in the allotted time (6 hours).



176 Chapter 9. Schematization with Other Geometric Styles

ε (d) (e)

ε(a) (b) (c)

ε (f) (g)

Figure 9.3 An isothetic schematization of Great Britain. (a) Territorial outline.
(b–c) Optimal result with 34 bends using a nearby focal point.
(d–e) Optimal result with 34 bends using different focal points.
(f–g) Suboptimal result with 38 bends using three focal points.
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9.4 Conclusion
In this chapter we briefly considered several different geometric styles for schematization
in the context of our map-matching approach described in Chapter 6. As we have shown,
it is straightforward to adapt this approach for various styles. The results look promising
for both isothetic and concentric curved schematization. To the best of our knowledge,
isothetic schematizations have not been investigated before. This geometric style may
provide an interesting addition to the existing styles. Unfortunately, the current method
is too slow to compute a schematic outline using complex graphs, limiting its use for
general curved schematization and parallelism. It does indicate, however, that if more
efficient algorithms are found for the simple map-matching problem, then we may use
such methods not only for C-oriented schematization but also for other geometric styles.





Chapter 10

Conclusion

In this thesis we studied the problem of automated cartographic schematization. A basic
characterization of schematic maps distinguishes between different geometric styles and
different geographic elements. We focused on the computation of C-oriented schematic
representations for territorial outlines such as country and province borders. In this geo-
metric style—the general variant of the popular octilinear style—, every line segment that
is used to represent the outline is oriented according to one of a given set C. The quality of
a schematic territorial outline depends on its recognizability. Recognizability is related to
the geometric similarity between the geographic and schematic outline. Therefore, a key
aspect for territorial outlines is the need to capture the shape of the represented regions. In
other words, we need similarity measures to formalize schematization as an algorithmic
problem and to assess the quality.

We studied algorithmic aspects for both similarity measures and schematization. In
particular, we introduced some of the first algorithms that are designed specifically for
C-oriented schematization of territorial outlines. Moreover, we provided new algorithms
to compute the Fréchet distance and showed how to improve upon the description of
similarity that one may obtain from the Fréchet distance. Below, we summarize the main
findings and the corresponding open problems. Afterwards, we discuss how this fits into
the larger picture of cartographic schematization.

10.1 Main findings

Similarity measures. We considered a variety of similarity measures and concluded that
the Fréchet distance is most suitable for schematization. For this measure, we introduced
a new algorithm which constitutes the first asymptotic improvement since the results by
Alt and Godau [10] in 1995. Our algorithm runs in O(n2

√
log n(log log n)3/2) time on a

pointer machine and in O(n2(log log n)2) time using a word RAM model. However, our
algorithms do not yet match the best known lower bound—assuming the Strong Exponen-
tial Time Hypothesis—of Ω(n2) (up to subpolynomial factors) [30]. We prove that our
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algorithm leads to an algebraic decision tree of depth O(n2−α) for some α > 0. This in-
dicates an interesting discrepancy between these different models of computation for this
problem, suggesting a possible relation with other problems that exhibit this discrepancy.

Rather than obtaining simply a number that indicates the similarity, it is often desirable
to have a matching that accurately describes the similarity between curves. To this end,
we introduced locally correct Fréchet matchings as a first step to assessing the quality
of a Fréchet matching. We prove that a locally correct Fréchet matching exists for any
two curves and show how one can be computed. This is a strictly stronger concept: any
locally correct Fréchet matching is indeed a Fréchet matching. For the discrete variant,
we show that a locally correct matching can be computed in roughly the same time as
simply computing the discrete Fréchet distance. This local correctness property does not
uniquely identify a “best” matching. Further research is required to refine the definition of
a good matching. However, the best matching likely depends on the intended application.

Schematization. We formulated the schematization problem using the Fréchet distance
as a map-matching problem. To this end, we studied the problem of finding a simple
cycle in a plane graph that has a low Fréchet distance to a given simple polygonal curve.
We prove that this problem is NP-hard, even in an approximation setting. Using brute-
force techniques, we were able to demonstrate its efficacy for C-oriented schematization.
Since this formulation allows us to use any plane graph, we also considered its applica-
bility to other geometric styles. We showed that it is also effective for schematization
with concentric circular arcs. Moreover, we introduced a new geometric style: isothetic
schematization. To formulate schematization as a map-matching problem, we use graphs
which are automatically constructed, typically from rather simple arrangements. There-
fore, an interesting question is whether the problem is indeed NP-hard for more restricted
classes of graphs. In addition, another question warrants attention. By restricting the so-
lutions to a graph, we caused a discretization of the solution space. This has a number
of conceptual advantages, such as increasing the flexibility for various geometric styles
of schematization. But it also helps in aligning collinear edges of the schematic polygon
and may prevent a shape that has parts that are too narrow to see, by avoiding a collapse
or even exaggerating the area. However, this discretization also discards many possible
solutions. If we consider the continuous solution space—that is, allow any C-oriented
polygon as a solution—, is the problem still NP-hard?

We presented a simple heuristic method for simplification and C-oriented schemati-
zation that iteratively reduces the complexity of a given set of territorial outlines. This
algorithm maintains the exact area of the given outlines and is topologically safe. The
schematic shapes obtained via this algorithm demonstrate that it maintains the most promi-
nent geographic features of given territorial outlines. Furthermore, we showed that it can
also be used in the context of building generalization. Our results suggest that the area-
preservation constraint helps in finding good simplified or schematic shapes. This is,
however, not a strict criterion for schematization. Can we quantify a tolerance for area
distortion? In other words, how much area distortion may we cause with algorithms be-
fore this causes conflicts with an observer’s mental map? Armed with such knowledge, we
may proceed to design algorithms that take this tolerance for area distortion into account.
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10.2 Looking forward

The chapters in this thesis describe various methods aimed at schematizing territorial
outlines. The solutions in each chapter raise their own set of new questions. Besides
these questions, a number of other challenges that involve cartographic schematization are
worth mentioning. This includes questions both from a holistic perspective of schematic
maps as well as from an atomic perspective that focuses on schematic territorial outlines.
Here we consider these questions and suggest potential future research directions for car-
tographic schematization.

A holistic view. We studied the computation of schematic territorial outlines. However,
this rarely constitutes a complete schematic map. To produce real schematic maps, we
need a more holistic view that encompasses the entire schematization process.

A central question here is how different types of information integrate into a single
map. If we for example consider the construction of a metro map, how do we combine net-
work schematization algorithms with region schematization algorithms? For chorematic
diagrams, how do we combine region schematization with the visual representations that
illustrate the various processes? What visualization techniques developed in the field
of geovisualization can be combined with cartographic schematization? We may con-
sider computing the geometry for the various schematic elements in sequence, taking into
consideration any previously computed geometry. For example, we may first compute
a schematic outline and, within this outline, compute a schematized network. However,
there is often an interplay between the various schematic elements, as the elements of a
map should use a consistent spatial arrangement. Hence, the design and placement of the
schematic shapes depend on each other. As a result, an approach that considers these in
separate steps is limited. That is, better schematic maps can be computed by explicitly
modeling the dependencies between the information.

Automated schematization has the potential to produce personalized maps on demand.
This requires a system that is able to fully autonomously compute a schematic map based
on simple queries. Unless the system is scoped to certain types of maps and data, it needs
ways to deduce the map type, necessary data, map extent, level of detail and possibly
other auxiliary information that is required to automatically compute a map. The sys-
tem must then retrieve the data from geographic information systems and process them
to produce a schematic map. We have introduced algorithms that can automatically de-
rive schematized outlines from detailed geographic data. However, our current algorithms
are not able to (consistently) meet the tight time constraints for on-demand maps. If the
retrieved information is highly detailed, then near real-time processing is unlikely to be
attainable even if the algorithms have good asymptotic bounds. How can we effectively
preprocess information such that any query can be answered efficiently? The design of
a schematic map depends on a number of factors, including the desired information, the
intent of the map or a preferred geometric style. Because we may expect a large number
of factors, it is not feasible to precompute information for all combinations. Therefore,
such preprocessed information must still allow for various algorithms that are aimed at
obtaining different schematic maps. A basic approach would be to simplify the infor-
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mation beforehand to a complexity level that is still significantly higher than the desired
complexity of a schematic map. Is this sufficient to obtain near real-time production of
maps? Moreover, how does such a preprocessing step affect the quality of a map? These
questions must be answered to move to a system that can produce on-demand schematic
maps of high quality.

Another important question is how we may deal with data that is updated over time.
Small changes in data should ideally not result in drastic changes in a computed map.
Can we ensure that our algorithms produce similar maps on similar data? This correlates
to maintaining a stable mental map for a user: drastic changes in a map may cause the
user to get lost. Therefore, such stability requirements are surely desirable in a scenario
of changing data. How do possible preprocessing schemes, as suggested above, cope with
changing data? Especially when data is updated frequently, time-consuming preprocess-
ing strategies are no longer an option.

We have shown that our iterative schematization algorithm is also effective for gen-
eralization purposes. Can we find other problems in automated cartography for which
schematization algorithms can be applied? We could widen the scope even further, to data
of a nongeographic nature. The visual appeal of maps has in fact led to a map metaphor:
nongeographic data is visualized in such a way that it visually resembles a cartographic
map. Can methods, developed for cartographic schematization or automated cartography
in general, contribute to such nonspatial maps? This results in interesting questions of
how spatial concepts for schematization translate, via a nonspatial domain, to geometric
relations in visualization.

An atomic view. Not just the holistic view on cartographic schematization poses in-
teresting future challenges. Also in the atomic view, many questions can be posed for
schematization for territorial outlines. We highlight some of the main open questions.

Schematic maps come in a variety of different geometric styles as well as in a range
of different complexity levels. All current algorithms assume that the geometric style as
well as the desired complexity (or some related value such as a distance threshold) are
manually specified beforehand. To fully automate the production of a schematic map, we
need some way of deciding on a style and complexity.

This decision may depend on geometric properties of the geographic shapes: some-
times hexilinear schematization is more suitable than octilinear, or vice versa. What are
the geometric properties that lead to such differences? How can we compute these proper-
ties beforehand to avoid a trial-and-error approach to schematization? However, there are
likely also nongeometric properties that affect the choice for map design. In particular,
also the map intent may be an important factor. For example, C-oriented schematization
appears very strict and hence might fit an authoritarian map, one that should not leave
room to question the map’s content. On the other hand, general curved schematization
tends to result in a much more liberal appearance, suggesting its use for maps that com-
municate thoughts and ideas rather than factual information. These are just suggestions
of possible relations between map intent and geometric style. Do these relations in fact
exist? If such relations are determined, we may exploit them to improve upon known
methods or design new algorithms that explicitly take into account the map intent.
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The desired complexity level of a schematic outline is likely related to how recog-
nizable the map must be. Can we determine the relation between complexity and recog-
nizability? The latter is affected by the observer’s familiarity with the outlined region.
The more familiar an observer is with a region, the easier it is to recognize it. Therefore,
familiarity may allow for a lower complexity. On the other hand, familiarity may cause
reluctance in accepting a schematic map. It may also simply vary per region, depending
on how characteristic and unique its shape is. For example, it has been conjectured that 9
vertices are sufficient to obtain a recognizable shape for Australia [136].

This again brings us to recognizability. Throughout this thesis we assumed that rec-
ognizability corresponds directly to a quantification of geometric similarity. Though geo-
metric similarity surely plays a significant role, this may not be the only factor involved.
Distortions in the mental map of an observer need not be “uniform”. This is often the
case for certain landmarks or characteristic portions in a geographic shape (e.g. a ma-
jor estuary or the position of a large city). These locations may be more pronounced or
even exaggerated in a mental map, even though they are (scale-wise) relatively insignif-
icant. Can we determine such characteristic features in an automated way? There are a
number of methods developed in geographic information science that aim to derive such
intangible characteristics. Such methods often use online data that is gathered (sometimes
implicitly) by many users of web services. When we have such data available, how do we
incorporate these nonuniform requirements in measuring similarity?

Even if we consider a purely geometric approach to similarity, it remains an open
problem how to obtain a (computable) formulation that precisely captures the intuitive
notion. Though this is unlikely to be possible in general, perhaps this is feasible in the
specific context of C-oriented schematization. We studied the Fréchet distance and con-
sidered improving the resulting matching to deal with outliers. In some ways, however,
this can be seen as curing the symptom rather than the cause. Integral and average Fréchet
distances are approaches that target the cause instead, but suffer from other undesirable
behavior [44]. Normalization is one of the issues that arise. For schematization, how-
ever, we want to compare different schematic outlines to the same geographic outline. In
particular, this geographic outline is significantly more detailed than the schematic ones.
Therefore, a one-sided definition based on the geographic outline may yield a good mea-
sure for schematization purposes. This of course raises new algorithmic questions of how
to use such a measure efficiently and effectively. However, to actually measure the effi-
cacy of a new measure, we need to compare its predictions on similarity to what observers
intuitively consider similar or recognizable.

On the other hand, we showed in Chapter 7 that using the symmetric difference in a
local, incremental way may yield schematic outlines of high quality. The problem that
we observed with the symmetric difference (Section 3.2) does not occur due to the local
measurements. If we consider the “counterexample” we provided, we may identify the
cause of the undesired behavior. Two overlapping regions correspond to conceptually
different parts of the polygon. Therefore, this region of overlap should also increase the
symmetric difference. Can we formally define a “topological” symmetric difference, a
variant that takes such topological differences into account?
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Looking forward. Suppose we manage to complement the results in this thesis with an-
swers to the questions outlined above in a positive way. That is, we know exactly what
shapes are perfectly recognizable, how to compute these in an instant, how to combine
these with other map elements, et cetera. We may then develop a system that can ef-
ficiently produce effective schematic maps based on simple queries. This helps us cope
with the large amounts of data that are being generated on a daily basis, by enabling visual
analysis of the larger structures that lie hidden within.
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ing the Fréchet distance between two polygonal curves. International Journal of
Computational Geometry and Applications, 22(1):27–44, 2012.

[6] N. Ailon and B. Chazelle. Lower bounds for linear degeneracy testing. Journal of
the ACM, 52(2):157–171, 2005.

[7] H. Alt. The computational geometry of comparing shapes. In Efficient Algorithms,
LNCS 5760, pages 235–248, 2009.

[8] H. Alt and M. Buchin. Can we compute the similarity between surfaces? Discrete
and Computational Geometry, 43(1):78–99, 2010.

[9] H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching planar maps. Journal of Algo-
rithms, 49:262–283, 2003.

[10] H. Alt and M. Godau. Computing the Fréchet distance between two polygonal
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matchings. In Proceedings of the 20th European Symposium on Algorithms (ESA
2012), LNCS 7501, pages 229–240, 2012.



188 References

[37] K. Buchin, M. Buchin, and A. Schulz. Fréchet distance of surfaces: Some simple
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Proceedings of the 26th Annual Symposium on Computational Geometry (SoCG
2010), pages 11–18, 2010.

[58] J. Christensen, J. Marks, and S. Shieber. An emperical study of algorithms for
point-feature label placement. ACM Transactions on Graphics, 13(3):203–232,
1995.

[59] S. Cicerone and M. Cermignani. Fast and simple approach for polygon schema-
tization. In Proceedings of the 12th International Conference on Computational
Science and Its Applications (ICCSA 2012), LNCS 7333, pages 267–279, 2012.

[60] A.F. Cook IV, A. Driemel, S. Har-Peled, J. Sherette, and C. Wenk. Computing the
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realistic curves in near linear time. In Proceedings of the 26th Annual Symposium
on Computational Geometry (SoCG 2010), pages 365–374, 2010.

[72] R. Drysdale, G. Rote, and A. Sturm. Approximation of an open polygonal curve
with a minimum number of circular arcs and biarcs. Computational Geometry:
Theory and Applications, 41(1–2):31–47, 2008.
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plification under the discrete Fréchet distance. In Proceedings of the 8th Inter-
national Symposium on Bioinformatics Research and Applications (ISBRA 2012),
LNBI 7292, pages 287–298, 2012.

[182] H. Yan, R. Weibel, and B. Yang. A multi-parameter approach to automated building
grouping and generalization. GeoInformatica, 12(1):73–89, 2008.



References 199

[183] S. Zoraster. Integer programming applied to the map label placement problem.
Cartographica, 23(3):16–27, 1986.





Summary

Similarity Measures and Algorithms
for Cartographic Schematization
A schematic map visualizes information in its geographic context. It does so in a struc-
tured and organized manner, by using abstract and stylized shapes to represent the infor-
mation and its context. The power of a schematic map lies in its emphasis on high-level
structures and relations, which are often the important aspects of the information. It does
not bother an observer with unnecessary details of geographic reality. Geographic accu-
racy is relinquished to improve upon the clarity of the map and to reduce the cognitive
load required to mentally process the information.

Cartographic schematization is the process involved in making schematic maps. The
advent of computers and the availability of digital geographic data gave rise to oppor-
tunities to automate the schematization process. This automation provides interesting
algorithmic challenges which are investigated in this thesis. In particular, we focus on the
schematization of territorial outlines such as country or province borders. Such elements
are often used to convey information about a region or in conjunction with other visual
elements to provide geographic context.

To model schematization as an algorithmic problem, we need to know what constitutes
a good schematization of a territorial outline. We study the case in which the schematic
map is represented by line segments. In this scenario we identify the following four crite-
ria for a good schematic outline: (i) it uses only a few line segments; (ii) each line segment
is oriented according to a specified set of allowed orientations; (iii) it maintains its geo-
graphic relations to other regions; (iv) it resembles the geographic outline. The first three
criteria are comparatively easy to formalize. The fourth criterion is less straightforward:
how do we quantify “resemblance”? To develop effective schematization algorithms, we
require a suitable similarity measure to quantify resemblance.

In the first part of this thesis, we investigate existing similarity measures. We conclude
that the Fréchet distance is most suitable to our problem. To compute this measure, we
describe an algorithm that computes the Fréchet distance in O(n2

√
log n(log log n)3/2)

time. This is the first asymptotic improvement on the O(n2 log n)-time algorithm that
was described in 1995. The Fréchet distance results in a single number that indicates the
similarity between two curves. In many cases an actual description of the similarity (i.e.,
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a matching) is desired. Many matchings result in the Fréchet distance. However, some
matchings describe the similarity more accurately than others. To address this problem,
we suggest a new criterion to distinguish between unintuitive and intuitive matchings. We
call matchings that adhere to this criterion “locally correct”. We prove that any pair of
curves admits a locally correct matching and show how one can be computed.

In the second part of this thesis, we investigate algorithms to schematize territorial
outlines. First, we model the schematization problem under the Fréchet distance as an-
other problem referred to as simple map matching. We prove that this leads to an NP-hard
problem: it is unlikely that an efficient algorithm exists to compute the optimal schema-
tization. We even prove that it is NP-hard to compute a close-to-optimal schematization.
We show how to build an interval graph that can be used to solve the problem without
a need for computing the Fréchet distance afterwards. By using a brute-force algorithm
in combination with this graph, we demonstrate that instances can be solved nonetheless.
The results show that the computed schematic outlines capture the prominent features of
the geographic input.

We also present a heuristic iterative algorithm for schematization. First, the outline is
changed such that all line segments adhere to the given set of orientations (criterion (ii)).
Then, the algorithm reduces the complexity (criterion (i)) step by step, while maintaining
geographic relations (criterion (iii)) and the orientations of line segments (criterion (ii)).
This complexity reduction is based on greedily performing operations that cause the least
change in similarity (criterion (iv)). The algorithm also preserves the exact enclosed area
of an outline: this ensures that relative sizes do not change when schematizing multiple
outlines simultaneously. The algorithm terminates when the desired level of complexity
is reached. We prove that, for a single nonconvex outline, an operation always exists
for the algorithm to perform. We conclude this part with an experimental evaluation of
the schematization algorithm. The results show that the computed schematic outlines
maintain the most salient geographic features.

In the third part of this thesis, we widen the scope of our schematization algorithms.
We investigate the potential of our iterative algorithm for two different aspects of building
generalization. The first aspect is building-wall squaring: we restore right-angle corners
that have been distorted due to inaccuracy in the input data. The second aspect is the
generalization of an urban area to make it appropriate for some predefined map scale:
this requires the possibility to aggregate and eliminate buildings. We present simple ex-
tensions to the schematization algorithm such that it can be adequately applied for these
problems in generalization.

Finally, we consider other geometric styles of schematization using our brute-force
algorithm for the simple map-matching problem. We show that this approach can be used
to provide good schematic outlines with concentric circular arcs. In addition, we suggest
an interesting new geometric style: isothetic schematization.
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