9,093 research outputs found

    SEMANTIC AND ABSTRACTION CONTENT OF ART IMAGES

    Get PDF
    In this paper the semantic and abstraction content of art images is studied. Different techniques for search in art image repositories are analyzed and new ones are proposed. The content-based retrieval process integrates the search on different components, linked in XML structures. Some experiments over 200 paintings of six Israel contemporary artists are done and analyzed

    Distinctive action sketch for human action recognition

    Get PDF
    Recent developments in the field of computer vision have led to a renewed interest in sketch correlated research. There have emerged considerable solid evidence which revealed the significance of sketch. However, there have been few profound discussions on sketch based action analysis so far. In this paper, we propose an approach to discover the most distinctive sketches for action recognition. The action sketches should satisfy two characteristics: sketchability and objectiveness. Primitive sketches are prepared according to the structured forests based fast edge detection. Meanwhile, we take advantage of Faster R-CNN to detect the persons in parallel. On completion of the two stages, the process of distinctive action sketch mining is carried out. After that, we present four kinds of sketch pooling methods to get a uniform representation for action videos. The experimental results show that the proposed method achieves impressive performance against several compared methods on two public datasets.The work was supported in part by the National Science Foundation of China (61472103, 61772158, 61702136, and 61701273) and Australian Research Council (ARC) grant (DP150104645)

    Phase Retrieval via Matrix Completion

    Full text link
    This paper develops a novel framework for phase retrieval, a problem which arises in X-ray crystallography, diffraction imaging, astronomical imaging and many other applications. Our approach combines multiple structured illuminations together with ideas from convex programming to recover the phase from intensity measurements, typically from the modulus of the diffracted wave. We demonstrate empirically that any complex-valued object can be recovered from the knowledge of the magnitude of just a few diffracted patterns by solving a simple convex optimization problem inspired by the recent literature on matrix completion. More importantly, we also demonstrate that our noise-aware algorithms are stable in the sense that the reconstruction degrades gracefully as the signal-to-noise ratio decreases. Finally, we introduce some theory showing that one can design very simple structured illumination patterns such that three diffracted figures uniquely determine the phase of the object we wish to recover

    Toward Entity-Aware Search

    Get PDF
    As the Web has evolved into a data-rich repository, with the standard "page view," current search engines are becoming increasingly inadequate for a wide range of query tasks. While we often search for various data "entities" (e.g., phone number, paper PDF, date), today's engines only take us indirectly to pages. In my Ph.D. study, we focus on a novel type of Web search that is aware of data entities inside pages, a significant departure from traditional document retrieval. We study the various essential aspects of supporting entity-aware Web search. To begin with, we tackle the core challenge of ranking entities, by distilling its underlying conceptual model Impression Model and developing a probabilistic ranking framework, EntityRank, that is able to seamlessly integrate both local and global information in ranking. We also report a prototype system built to show the initial promise of the proposal. Then, we aim at distilling and abstracting the essential computation requirements of entity search. From the dual views of reasoning--entity as input and entity as output, we propose a dual-inversion framework, with two indexing and partition schemes, towards efficient and scalable query processing. Further, to recognize more entity instances, we study the problem of entity synonym discovery through mining query log data. The results we obtained so far have shown clear promise of entity-aware search, in its usefulness, effectiveness, efficiency and scalability

    Towards Bridging the Gap between Sheet Music and Audio

    Get PDF
    Sheet music and audio recordings represent and describe music on different semantic levels. Sheet music describes abstract high-level parameters such as notes, keys, measures, or repeats in a visual form. Because of its explicitness and compactness, most musicologists discuss and analyze the meaning of music on the basis of sheet music. On the contrary, most people enjoy music by listening to audio recordings, which represent music in an acoustic form. In particular, the nuances and subtleties of musical performances, which are generally not written down in the score, make the music come alive. In this paper, we address the problem of bridging the gap between the sheet music domain and the audio domain. In particular, we discuss aspects on music representations, music synchronization, and optical music recognition, while indicating various strategies and open research problems

    Techniques for organizational memory information systems

    Get PDF
    The KnowMore project aims at providing active support to humans working on knowledge-intensive tasks. To this end the knowledge available in the modeled business processes or their incarnations in specific workflows shall be used to improve information handling. We present a representation formalism for knowledge-intensive tasks and the specification of its object-oriented realization. An operational semantics is sketched by specifying the basic functionality of the Knowledge Agent which works on the knowledge intensive task representation. The Knowledge Agent uses a meta-level description of all information sources available in the Organizational Memory. We discuss the main dimensions that such a description scheme must be designed along, namely information content, structure, and context. On top of relational database management systems, we basically realize deductive object- oriented modeling with a comfortable annotation facility. The concrete knowledge descriptions are obtained by configuring the generic formalism with ontologies which describe the required modeling dimensions. To support the access to documents, data, and formal knowledge in an Organizational Memory an integrated domain ontology and thesaurus is proposed which can be constructed semi-automatically by combining document-analysis and knowledge engineering methods. Thereby the costs for up-front knowledge engineering and the need to consult domain experts can be considerably reduced. We present an automatic thesaurus generation tool and show how it can be applied to build and enhance an integrated ontology /thesaurus. A first evaluation shows that the proposed method does indeed facilitate knowledge acquisition and maintenance of an organizational memory
    • …
    corecore