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Highlights

• We introduce sketch to the field of action recognition and propose a rank-

ing based method to discover the most distinctive action sketches.

• We present a novel approach of action representation based on four kinds

of sketch pooling strategy.

• Extensive experiments on two public human action datasets are conducted

to demonstrate the effectiveness of the proposed method.
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Abstract

Recent developments in the field of computer vision have led to a renewed

interest in sketch correlated research. There have emerged considerable solid

evidence which revealed the significance of sketch. However, there have been

few profound discussions on sketch based action analysis so far. In this pa-

per, we propose an approach to discover the most distinctive sketches for action

recognition. The action sketches should satisfy two characteristics: sketchability

and objectiveness. Primitive sketches are prepared according to the structured

forests based fast edge detection. Meanwhile, we take advantage of Faster R-

CNN to detect the persons in parallel. On completion of the two stages, the

process of distinctive action sketch mining is carried out. After that, we present

four kinds of sketch pooling methods to get a uniform representation for action

videos. The experimental results show that the proposed method achieves im-

pressive performance against several compared methods on two public datasets.

Keywords: Action Sketch, Sketch Pooling, Action Recognition
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1. Introduction

With the flourish of computer vision, sketch based technology is becoming a

rising star for multitudinous researchers all over the world. It is well acknowl-

edged that sketch has an important practical significance. In the past few years,

there have been numerous works tackling sketch related problems from different5

angles. They mainly focused on three areas, namely sketch based image retrieval

[1, 2] and composition [3, 4], sketch based video retrieval [5, 6], sketch segmen-

tation [7] [8] and recognition [9, 10]. Although it is a widespread idea since the

success of sketch based approaches that studying the sketch of visual elements

is one of the most fundamental prerequisites for many vision applications, there10

is still limited studies revolving around action sketch.

We can probably find the trace of action sketch in the system of sketch

based video retrieval. But almost all of existing works concentrate on how

to create a better algorithm for video clip searching, departed from free-hand

sketch queries which depict the shape, color and movement of objects roughly15

[5]. Unlike any of these sketch based video retrieval works, we do not seek

to achieve determinate mapping between input sketch and video. In fact, our

problem goes retrograde in some ways, because we want to transform action

video into sketch. The progress of this issue be a powerful auxiliary tool for

many works, such as action recognition, and retrieval [11] [12].20

Among these scarce groups associated with action sketch, A.Yilmaz’s work

[13] is the most similar one to ours. They present a method of action repre-

sentation on spatio-temporal volume (STV) and differential geometric surface

properties. How to represent action better for tasks like action recognition is

what they chased. Besides, the first premise they assumed is that object con-25

tours for each action slice are given. In contrast, our work principally seeks

conversion between action and sketch which is one step ahead of action repre-

sentation.

In this paper, we propose a method of distinctive action sketch mining for

human action recognition. First of all, we generally explore the characteristic30
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Figure 1: Overview of our method. (a) Input: action videos. (b) Transform each action frame

to primitive sketch in real time by fast edge detection method [14]. (c) Locate person by

Faster R-CNN [15]. (d) Represent sketches as feature vectors. (e) Discover the top distinctive

action sketches through ranking and re-ranking. (f) Apply feature pooling on the top ranking

sketches to get a new representation. (g) Perform representation-level fusion with improved

dense trajectories with Fisher vector encoding. (h) Recognize action videos by a linear SVM

and choose the prediction with highest score as the predicted label.

of sketch in action and build an applicable system to discover the most dis-

tinctive action sketches possessing sketchability and objectiveness. For action

videos, sketches of each clip can be well generated in real time. Combining these

elaborate sketches, we propose a distinctive ranking method of action sketches.

The top ranking sketches can typically represent the action classes which they35

belong to. Among the obtained top ranking sketches, we introduce an approach

of feature pooling to get a new representation for action video. Then the new

representation will be combined with local feature based representation such as

the improved dense trajectories with Fisher vector encoding. Figure 1 gives the

overview of our method.40
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The main contributions of this work are summarized in three-fold:

• We introduce sketch to the field of action recognition and propose a rank-

ing based method to discover the most distinctive action sketches.

• We present a novel approach of action representation based on four kinds

of sketch pooling strategy.45

• Extensive experiments on two public human action datasets are conducted

to demonstrate the effectiveness of the proposed method.

The remainder of this paper is organized as follows. Section 2 reviews the

works related to our research. Section 3 shows how to transform the human

action to sketches. Section 4 describes the distinctive ranking method of action50

sketches. Section 5 introduces the approach of feature pooling for action recog-

nition. Section 6 presents the experimental results, followed by conclusion in

Section 7.

2. Related work

As one of the most important research fields in computer vision, human55

action recognition has a wide range of applications, such as human-computer

interaction, video surveillance and robot action control. In the past years, nu-

merous approaches have been proposed to understand and recognize human

actions from different angles and levels. Among these works, action represen-

tation is a key step towards a good action recognition system [16]. In practice,60

a human action clip can be represented by different views or features, such as

motion, gradients, and shapes. The action sketch we proposed can be seen as

one kind of views. In this section, we will give a brief introduction of feature

representation for action recognition and several other works closely related to

our research. For a wider range of studies on action recognition, we recommend65

the insightful reviews [11] [17] [18] to interested readers.

Traditional approaches for action recognition are mainly based on single

feature representation, such as local and global feature representation [19] [20]
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[21]. Based on hand-crafted descriptors or neural networks, these methods can

achieve good performance. However, the problems of lighting and viewpoint70

changes, complex backgrounds and intra-class variations have made it very chal-

lenging to get a higher accuracy. To address this problem, many researchers

propose new representations which combine different features together. In con-

sideration of the particular characteristics possessed by different kind of features,

some well-designed combinations are usually superior to the single feature rep-75

resentation. These methods can be classified into two groups, direct catenation

[22] and multi-view learning [23] [24] [25]. For direct catenation, space-time

interest points (STIP) [26] and improved dense trajectories (IDT) [27] are the

most classic works. Under the standard bag of visual words (BoVW) frame-

work, Laptev et al. [28] demonstrate the effectiveness of feature combination of80

the histograms of oriented gradient (HOG) descriptors and histograms of opti-

cal flow (HOF) descriptors computed for STIP. For IDT based representation,

Wang et al. [27] catenate four descriptors (i.e., trajectory, HOG, HOF and

motion boundary histograms (MBH)) coded by Fisher vector and obtain the

state-of-the-art performance for action recognition at that time. Different from85

direct catenation, multi-view learning based methods focus on exploring the re-

lationship between different features [29] and incorporate these heterogeneous

feature descriptors into one low-dimensional and compact representation [30].

Although this two kinds of works have explored numerous and diverse features,

taking the sketch to represent action is a new and largely unexploited frontier.90

An early preliminary version of this work was published in [31]. Compared

to the earlier version, the biggest difference is that we propose a novel method

of action representation based on sketch pooling. We also replace the person

detection method with the state-of-the-art Faster R-CNN [15]. Furthermore,

we present a unified approach for distinctive action sketch mining. Among95

other related works, silhouette and skeleton are similar to action sketch. The

silhouette is usually a black-white image using the edges to draw the outline of

person or object. It is a critical research medium in the field of human pose

recovery. Typical approaches of image-based pose recovery reconstruct 3D poses

6
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by the learned mapping function between 2D silhouettes and 3D poses [32] [33]100

[34]. For human skeleton, it is composed of several rigid segments which are

articulated by joints. The skeleton looks like a matchstick man that forms the

rough structure of a human body. By modeling and classifying the temporal

evolution of human skeleton, human action can be recognized in a 3D feature

space [35] [36]. Unfortunately, both silhouette and skeleton are mostly applied105

in 3D video sequences that require a sophisticated motion capture system or

effective depth sensors. For this reason, they cannot be implemented to the

conventional human action videos while the proposed action sketch does not

have this limitation.

3. Action sketching110

When we talk about painting art, a sketch usually refers to a quick and

informal drawing done from real life. An excellent sketch should capture the

essentials of a subject, which may be the overall neurogram and characteristic

details from a specific perspective. In a general sense, the only primary mission

for static image sketching is to hit the spot of greatest possible similarity of both115

dominant lines. However, moving to action videos, the situation is quite different

in the aspect of object’s subjectivity. Meanwhile, it is the key factor we need

to consider. We implement appropriate measures to satisfy the requirement in

action sketching.

3.1. Primitive sketch generation120

In the previous works, Yilmaz et al. take the object contours as their basic

elements [13]. Admittedly, object contours may have some certain degree of

ability to express the sketch of action. Nonetheless, the ability is not enough to

fully appear in the person of action sketch. Beyond that, methods like tracka-

bility maps [37] and action templates [38] are also proposed to represent action125

videos. Leaving aside the performances of these methods, the outcome has

identifiable differences as compared with the sketch.
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In our research, the primary character for sketching action will be referred

to as sketchability . Methods that meet the requirements of sketchability must

be able to depict the full profile of subject similar to object contours and some130

other important details. It should be pointed out that the transformation be-

tween real image and sketch is immensely challenging [39]. This is not our work

in this paper. A reasonable way is to select some appropriate representative

edges for each action clip. To generate the primitive sketch, we adopt the fast

edge detection method proposed by P. Dollár et al. [14]. In consideration of135

the structure underlie local image patches, they presented a structured learn-

ing framework for local edge mask prediction integrated into random decision

forests. In this stage, we can transform each action frame to primitive sketch in

real time.

3.2. Person localization140

What we are talking about here is human-centered action videos. Of course,

it can be easily extended to other types of subjects. The most important char-

acteristic of these videos is that the actions must be performed by a specific

subject. We call this property of action videos objectiveness.

To capture the objectiveness in action videos, we use the method called145

Faster R-CNN [15] as an accurate and efficient tool for person localization. The

Faster R-CNN depends on region proposal network (RPN) that shares full-image

convolutional features with the detection network, which makes it become the

state-of-the-art object detection network. In practice, we use the open sourced

code of Ren et al. [15] and the ImageNet pre-trained network released on their150

website1 to detect the person in each frame. Then we filter out the detections

with too small size and unsatisfied aspect ratio for better model detection. It

is necessary to note that this stage is completely independent of the stage of

primitive sketch generation, so we can deal with this two processes in two parallel

channels, which can provide significant run time savings. After that, we will get155

1https://github.com/ShaoqingRen/faster_rcnn
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a corresponding sketch which is only associated with the subject for every action

clip when combining these two stages together.

4. Distinctive action sketch mining

It is generally known that there are discriminative and representative themes

with semantic interpretation in a specific type of photos, such as city and land-160

scape images [40] [41]. Similarly, some distinctive patterns also exist in different

types of actions. While the actions appear in the form of sketch, distinctive

sketches will correspond to these patterns. Acquisition of these sketches can

be a significant assistant to many action related applications. In this section,

we will present the details of the proposed method for distinctive action sketch165

mining.

4.1. Feature representation

Given a sequence of action sketches generated in the stage of action sketch-

ing, we must first find a fine feature representation for every sketch. It is gen-

erally agreed that a deeper convolutional neural network can describe richer170

semantic information of the image. However, the very deep network calls for

large-scale labeled training dataset, which is not always available in research.

Fortunately, there are a handful of superior deep models for image classifica-

tion from ImageNet large scale visual recognition challenge (ILSVRC). These

deep nets are delicately designed and well trained with millions of images from175

ImageNet. Ali et al. [42] report that the pretrained deep model from ILSVRC

is able to get consistent superior results on a diverse range of tasks including

scene recognition, image retrieval, etc. Notably, the recent work of Sketch-a-

Net proposed by Yu et al. [43] present persuasive evidence that deep model is a

super choice for representation of sketch. To get better representative features,180

we employ the VGG-19 Net [44] and extract features of each sketch from the

fully-connected (FC) layer. Finally, the sketch will be represented by a feature

vector X with 4096 dimensions.
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4.2. Distinctive ranking

We want to discover these sketches which can distinctively represent a par-185

ticular category of action. In other words, these distinctive action sketches have

to meet requirements of the following two aspects: a) sketches must be very

representative in the class they belong to; b) they also should be diverse among

the sketches we selected.

For the first requirement, we propose a distinctive ranking method based on

clustering. Among these feature vectors X of sketches, we gather them into k

clusters by k-means and get the feature vectors Y of each cluster center. After

that, all sketches are ranked according to the distinctive score computed by

S =

k∑
i=1

d12(Xc, Yi)

d12(Xc, Ys)
,

(1)

where d12 refers to the Euclidean distance, Xc and Ys are the feature vector of190

current sketch and the center of its cluster respectively.

In the fraction above, d12(Xc, Ys) denotes distance between current sketch

and its cluster center. A smaller value means that the sketch is more likely to

represent the class it belongs to. On the other hand,
k∑
i=1

d12(Xc, Yi) indicates

the sum of distance from the sketch to every cluster center. A larger value shows

that the sketch is more diverse among these sketches. The scores by division

between them can trap the degree of distinctive property. What we want is that

the most representative sketches have the highest order. It can be represented by

a function D of distinctive score maximization, which is formulated as follows,

D = max
θ

n∑

i=1

(n− i+ 1)Sθi

= max
θ
{(n+ 1)

n∑

i=1

Sθi −
n∑

i=1

iSθi}
(2)

where θ is an array with n parameters that indicate the positions to place each

sketch, n means the number of sketches in an action clip, and Sθi denotes the

distinctive score of the θi-th sketch. Only when the value of Sθi is greater than

Sθi+1 (i = 1, 2, . . . , n − 1), the equation (2) can get the maximal value. Given

10
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Figure 2: Illustration of distinctive action sketch mining. Top row: top 6 ranking distinctive

action sketches. Second row: results after re-ranking. Third row: original frames correspond-

ing to the re-ranking results.

the distinctive scores of all sketches computed by equation (1), the first item of

equation (2) equals to a constant C. Hence the equation is converted to

D = max
θ
{C −

n∑

i=1

iSθi}

= min
θ

n∑

i=1

iSθi

(3)

Now the maximization function of distinctive score becomes a process to find the

arrangement of sketches that can minimize the value of equation (3). To achieve

this goal, all sketches are ranked in descending order based on the distinctive

scores.195

4.3. Re-ranking

Distinctive ranking gives us an acceptable mining result of action sketches,

but it is coarse somewhat and has a potential shortcoming. From the top row

of Figure 2, we can see an undesired phenomenon that several similar sketches

have close order. That is to say, the ranked sketches cannot satisfy the second200

requirement of distinctive action sketch. In such cases, a sectionalized re-ranking

approach is presented to overcome the shortcoming.

In consideration of practical necessity and computation cost, we limit the

re-ranking process to a separate interval w of ranking order. When the top

11
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m ranking sketches are the expected output, we do re-ranking among double

ranking sketches, i.e. the interval w equals 2m. For example, if we set m as 10,

then we only need to do re-ranking on the top 20 distinctive action sketches.

At the individual range, we iteratively find the most dissimilar one with sorted

sketches in the remaining samples. The procedure can be formalized as:

max
p

j−1∑

k=1

√√√√
d∑

t=1

(xpt − xkt)2, (4)

where p = {j, . . . , w}, j marks the current position calling for re-ranking in the

process of iteration, d means the dimension of feature vector X. The re-ranking

process is designed to maximize the diversity of action sketches obtained in the

stage of distinctive ranking. Based on equation (4), it can be written as

R = max
ϕ

w∑

j=2

j−1∑

k=1

d12(Xϕj
, Xϕk

), (5)

where ϕ is a new arrangement for the top w action sketches obtained in the dis-

tinctive ranking stage, d12(Xϕj
, Xϕk

) computes the Euclidean distance between

feature vectors of the ϕj-th and ϕk-th action sketch. By combining equation 3

and (5), the process of distinctive ranking and re-ranking can be unified into a

max-min formulation,

max
ϕ

min
θ

n∑

i=1

iSθi +
w∑

j=2

j−1∑

k=1

d12(Xϕj
, Xϕk

). (6)

Figure 2 shows an illustration of distinctive action sketch mining. After the

operation of re-ranking on the sketches generated above, the discovered action

sketches are more distinctive and acceptable.205

5. Sketch pooling for action recognition

After obtained the top m distinctive ranking sketches, the most important

task is to get a uniform representation for action videos. The feature vectors of

top m sketches for each video are donated as {X ′1, X ′2, . . . , X ′m}. Based on these

12
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vectors, our goal is to generate a feature vector X ′′ with the same d dimensions.

X ′′ = [x′′1 , x
′′
2 , . . . , x

′′
d ]. (7)

We apply four kinds of feature pooling methods to achieve the task, respec-

tively are average pooling, max pooling, min pooling and every pooling. For

multi-class action classification, we implement these methods and want to find

the most suitable one by the evaluation on public human action datasets.210

• Average pooling. The average operation is performed on the front u

feature vectors of top m sketches which is defined as follows,

X ′′ =

u∑

i=1

X ′i/u. (8)

In fact, it is taking the mean value of each dimension in the u vectors as

the new element x′′t of X ′′,

x′′t =

u∑

i=1

x′it/u, (9)

in which t = 1, 2, . . . , d.

• Max pooling. It select the maximum value of the front u feature vectors

which is defined as follows,

X ′′ = maxX ′i, (10)

where i = 1, 2, . . . , u. Max pooling means that the new element x′′t equals

to the maximum value of each dimension,

x′′t = maxx′it. (11)

• Min pooling. On the contrary to max pooling, it chooses the minimum

value of each dimension,

x′′t = minx′it. (12)

13
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• Every pooling. The aim of every pooling is to produce the chance of

representing action video by a single sketch. It simply takes the u-th

feature vector as a new representation which is defined as follows,

X ′′ = X ′u. (13)

Although the distinctive action sketch can express spatial information very

well, it has a big drawback of lacking temporal cues. In order to solve the

problem, we propose to combine the pooling feature and improved dense tra-

jectories (IDT) based features. For representation-level fusion, we concatenate215

the feature vector of action sketch and the normalized Fisher vectors of IDT

descriptors into a single one. The obtained feature vector will be further fed

into a linear SVM classifier for action recognition.

6. Experiments

In this section, we describe the detailed experimental settings and show the220

results on two public human action datasets. We first introduce the datasets

used for evaluation and their corresponding experimental setup. Then we present

implementation details of our experiments. After that, we evaluate the perfor-

mance of our method for action recognition and explore different factors that

may impact on the final recognition accuracy.225

6.1. Datasets

We conduct experiments on two public datasets, respectively are KTH [45]

and UCF101 action recognition dataset [46]. The KTH dataset is relatively

simple while the UCF101 dataset is more complicated as it is a realistic action

dataset collected from YouTube. Some examples of video frames from the two230

action datasets are illustrated in Figure 3 and Figure 4.

The KTH dataset consists of 600 video files in total and each class has

100 videos which have a uniform resolutions of 160×120 pixels2. The videos

2http://www.nada.kth.se/cvap/actions
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are collected from 4 different scenarios and evenly divided into six types of

actions: walking, jogging, running, boxing, hand waving and hand clapping.235

We train models on the training + validation set and report average accuracy

for evaluation on the test set.

Walking Jogging Running Boxing Waving Clapping

Figure 3: Sample frames from the KTH human action dataset with six classes (columns) and

four scenarios (rows) presented.

Figure 4: Sample frames of 8 action classes from the UCF101 dataset. From left to right,

the first row: ApplyEyeMakeup, Biking, BlowingCandles, Diving. Second row: Haircut,

HorseRiding, PlayingViolin, Surfing.

The UCF101 dataset3 has 101 action classes and can be divided into five

3http://crcv.ucf.edu/data/UCF101.php
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types: Human-Object Interaction, Body-Motion Only, Human-Human Inter-

action, Playing Musical Instruments, and Sports. We perform evaluation ac-240

cording to the three splits of training and test as described in [46] and present

exhaustive results on the dataset.

Although Faster R-CNN is the state-of-the-art object detection method,

there still exists lots of action frames that it cannot detect or only detect very

few persons. As person detection is a very important part of our method, small245

number of sketches is not enough to find the most distinctive action sketches.

Considering the practical needs and computational cost, we set the max number

of top distinctive action sketches m = 20 for each video. So the videos will be

removed from the original dataset if the number of person detected by Faster

R-CNN is less than the max number m. Table 1 gives the number of train/test250

samples in the two public action datasets after removing some videos. In the

following parts, all experiments are conducted on the refined action datasets if

not specifically stated.

Table 1: The number of train/test samples in KTH and UCF101 human action datasets after

removing the videos that Faster R-CNN detect very few persons.

KTH
UCF101

split1 split2 split3

train 342 7708 7766 7805

test 181 3083 3025 2986

total 523 10791 10791 10791

6.2. Implementation details

For IDT based features, we choose the combined descriptors (HOG + HOF +255

MBHx + MBHy) with default parameter settings and utilize the implementation

of Wang4 to extract features from action videos. Regarding the feature encoding,

the Fisher vector which has shown empirically to give good results is adopted

4http://lear.inrialpes.fr/~wang/improved_trajectories
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to represent the videos. For the training of Gaussian mixture model (GMM),

we randomly sample a subset of 256,000 features to learn GMMS and set the260

mixture number K = 256. Finally, the power and L2 normalization are applied

to normalize the obtained Fisher vectors of each descriptor type.

In the experiments, we take the linear support vector machine (SVM) which

is very efficient in dealing with large data sets as the action recognition classifier.

Specifically, we use the code of LIBSVM implemented by Chang et al. [47]265

released on their website5. In the case of multi-class classification, we adopt

the one-vs-all approach and select the class with highest score. Besides, we

also fix C = 100 as described in [27] which has shown good performance. For

different sketch pooling methods, we adopt 5-fold cross validation to find the

best parameters u and m on the training set.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5: Examples of top 10 distinctive action sketches for each action class. From top

to bottom, they are boxing, hand clapping, hand waving, jogging, running and walking,

respectively.
270

6.3. Results of distinctive action sketch

We implement our method of distinctive action sketch mining on the six

action class of KTH dataset. Figure 5 shows examples of top 10 distinctive ac-

tion sketches for each action class. The experimental results demonstrate that

5http://www.csie.ntu.edu.tw/~cjlin/libsvm
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different action categories generally have diverse distinctive action sketches (ac-275

tion patterns) and that our method performs well in capturing these sketches.

Through these vivid action sketches, the actions can be distinguished conve-

niently and efficiently. Another point emerged from Figure 5 is that sketches

of quick actions (walking, jogging, running) have more obvious variations than

the sluggish action (boxing, hand waving and hand clapping). Furthermore, we280

can find that there exist many similar patterns in different categories of action

sketches. Actually, it is coincident with the intrinsic property in actions, for

that sequences between various actions usually share some analogous parts.

In the process of distinctive action sketch mining, a very important factor is

the cluster computation by k-means. To analyze the influence of cluster number285

on final results, we carry out several experiments using different cluster numbers

on the KTH dataset. Figure 6 shows some results of distinctive action sketches

under different cluster numbers.

k=5

k=10

k=15

Figure 6: Results of distinctive action sketches under different cluster numbers. Take the case

of walking, from top to bottom is top 6 distinctive action sketches under three kinds of cluster

numbers (k = 5, k = 10, k = 15).

It can be seen that a small number of cluster class yields weak distinctive

action sketches. The reason is that a relatively small cluster number will make290

the results tend to on behalf of those sketches occurred frequently. Along with

the increasing of cluster number, we will get more similar distinctive sketches.

It means that there is no need to apply a too large number of clusters in pursuit

of the results’ diversity. It not only cannot improve performance but also will
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increase the computation cost. In the experiment, we set the cluster number295

k = 10.

6.4. Comparison of different pooling methods

We test the performance of different pooling methods by taking the feature

vectors after pooling as the input of action classifier. Because the vectors do not

combine with IDT features, so we can evaluate the pure performance when using300

them alone. Figure 7 gives a comparison of the four kinds of pooling methods

on KTH and UCF101 datasets. The parameter u in pooling process is varying

from 1 to 20 while top m = 20 distinctive action sketches are discovered. We

can see that every pooling is the worst method for action recognition. That is

to say, it is very difficult to classify the videos represented by one action sketch305

only. Other three pooling methods achieve good performance on the KTH and

UCF101 datasets. For a simple dataset like KTH, the variations of action and

backgrounds are very limited. It is possible to classify the action videos through

values with the maximum responses. But for the UCF101 dataset, the situation

is more complex. Average pooling takes the mean value of top distinctive action310

sketches as the video representation. It can minimize the negative effect of action

variations. As the results shown, the max pooling and average pooling get the

highest accuracy on the two datasets respectively. It also demonstrates that the

top ranking action sketches are distinctive for action recognition.

0

0.2

0.4

0.6

0.8

1 5 10 15 20

average every max min

(a) KTH

0

0.1

0.2

0.3

0.4

1 5 10 15 20

average every max min

(b) UCF101

Figure 7: Comparison of different pooling methods with varying parameter u on the KTH

and UCF101 datasets when m = 20.
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Table 2 presents the performance of using different pooling methods alone315

and gives the accuracies of combination with the Fisher vector of IDT features

on the KTH and UCF101 datasets. We can see that the accuracies of action

recognition are significantly improved after the representation-level fusion. It is

interesting to note that the every pooling get a surprising higher performance

than the other pooling methods on the KTH dataset. For the UCF101 dataset,320

the combination of max pooling based action sketch and IDT features is the

best choice for action recognition.

Table 2: The classification accuracies of different pooling methods and combination with IDT

features on the KTH and UCF101 datasets.

average every max min

sketch comb. sketch comb. sketch comb. sketch comb.

KTH 68.32% 92.66% 53.88% 94.58% 72.67% 92.66% 70.44% 92.66%

UCF101 33.98% 83.53% 15.72% 83.59% 32.27% 83.85% 31.06% 83.09%
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Figure 8: The confusion matrix of KTH dataset.
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6.5. Results of action recognition

Table 3 shows the action classification accuracies of our method and IDT.

As can be seen, the combination of sketch pooling and IDT leads to obvious325

performance gain. The average performance improvements are 3.03% and 1.42%

for KTH and UCF101 datasets respectively. For the KTH dataset, the confusion

matrix is shown in Figure 8. We can see that boxing, jogging and walking are

perfectly recognized. For the three splits of UCF101 datasets, we also present

the corresponding performance. As can be seen, the highest improvement 2.15%330

is achieved on the split2. Besides, Table 4 gives all the best parameters m and

u selected for sketch pooling on the two datasets. The results of two human

action datasets clearly demonstrate the effectiveness of our method.

Table 3: Comparison between our method and IDT on the KTH and UCF101 datasets.

IDT ours improvement

KTH 91.55% 94.58% +3.03%

UCF101

split1 79.95% 81.14% +1.19%

split2 82.99% 85.14% +2.15%

split3 84.36% 85.26% +0.90%

average 82.43% 83.85% +1.42%

Table 4: The best parameters m and u selected for sketch pooling.

KTH
UCF101

split1 split2 split3

m 11 10 18 20

u 6 4 3 20

We also show the comparison against several state-of-the-art methods of

action recognition on UCF101 datasets. As a final experiment, we explore the335

performance of the proposed approach by a late fusion with enhanced motion

vector (EMV) CNN [48] and Temporal Segment Networks (TSN) [49]. To get

the final output of action video, we simply plus the SVM scores of our method

with the predictions for each action class of EMV CNN and TSN. Furthermore,
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the experiments above are conducted on the refined action datasets as we have340

mentioned in Section 6.1. For these videos that do not exist in the refined

dataset, we directly take the predictions of EMV CNN and TSN as the final

outputs. The results are shown in Table 5. Combined with TSN, our method

obtains the state-of-the-art performance on UCF101 dataset (95.1%). Besides,

we achieve 3.2% performance improvement and get 89.6% compared to EMV345

CNN. It can be seen that our method can provide a significant complementary

for the approach based on convolution network.

Table 5: Comparison of the performance with state-of-the-art methods on UCF101 dataset.

Accuracy

Spatiotemporal CNN [50] 65.4%

Bimodal encoding [51] 84.2%

C3D(3 net) [52] 85.2%

Two-stream CNN [53] 88.0%

Factorized CNN [54] 88.1%

Two-stream+LSTM [55] 88.6%

TDD+IDT [56] 91.5%

Two-stream fusion+IDT [57] 93.5%

EMV CNN [48] 86.4%

TSN [49] 94.8%

Ours+EMV CNN 89.6%

Ours+TSN 95.1%

6.6. Running cost

The distinctive action sketch mining and pooling are the most important

parts of our method. It takes roughly 4 hours for all videos in the refined350

UCF101 dataset, excluding the time of feature extraction. Benefits from the

linear SVM, the training time on one split is only about 2.5 minutes while the

test time can be negligible. The experiments are performed using Matlab 2014b
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on a server configured with 24 Intel Xeon E5645 CPU and 64 G of RAM. The

detailed running time of different phases are listed in Table 6.355

Table 6: Runtime (seconds) of different phases on UCF101 dataset.

Sketch mining Sketch pooling Training Test

14167 342 150 1.5

7. Conclusion

Along with the booming development in computer vision, there is an in-

creasing realization that sketch can be an essential element for many realistic

applications. Unlike many previous works focusing the representation of action

sketch, we mainly explore the available transformation from action to sketch.360

Before implementation of the specific method, we analyze the characteristics

that action sketch must meet and propose a reasonable framework of action

sketching. Given the sketches generated under this framework, a distinctive

ranking method is presented to mine the most representative sketches in action

videos. After that, we perform sketch pooling to obtain a new representation365

for action recognition. Experimental results demonstrate the effectiveness and

excellent performance of our approach.
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