694 research outputs found

    Convolutional Deblurring for Natural Imaging

    Full text link
    In this paper, we propose a novel design of image deblurring in the form of one-shot convolution filtering that can directly convolve with naturally blurred images for restoration. The problem of optical blurring is a common disadvantage to many imaging applications that suffer from optical imperfections. Despite numerous deconvolution methods that blindly estimate blurring in either inclusive or exclusive forms, they are practically challenging due to high computational cost and low image reconstruction quality. Both conditions of high accuracy and high speed are prerequisites for high-throughput imaging platforms in digital archiving. In such platforms, deblurring is required after image acquisition before being stored, previewed, or processed for high-level interpretation. Therefore, on-the-fly correction of such images is important to avoid possible time delays, mitigate computational expenses, and increase image perception quality. We bridge this gap by synthesizing a deconvolution kernel as a linear combination of Finite Impulse Response (FIR) even-derivative filters that can be directly convolved with blurry input images to boost the frequency fall-off of the Point Spread Function (PSF) associated with the optical blur. We employ a Gaussian low-pass filter to decouple the image denoising problem for image edge deblurring. Furthermore, we propose a blind approach to estimate the PSF statistics for two Gaussian and Laplacian models that are common in many imaging pipelines. Thorough experiments are designed to test and validate the efficiency of the proposed method using 2054 naturally blurred images across six imaging applications and seven state-of-the-art deconvolution methods.Comment: 15 pages, for publication in IEEE Transaction Image Processin

    Effective image enhancement and fast object detection for improved UAV applications

    Get PDF
    As an emerging field, unmanned aerial vehicles (UAVs) feature from interdisciplinary techniques in science, engineering and industrial sectors. The massive applications span from remote sensing, precision agriculture, marine inspection, coast guarding, environmental monitoring, natural resources monitoring, e.g. forest, land and river, and disaster assessment, to smart city, intelligent transportation and logistics and delivery. With the fast growing demands from a wide range of application sectors, there is always a bottleneck how to improve the efficiency and efficacy of UAV in operation. Often, smart decision making is needed from the captured footages in a real-time manner, yet this is severely affected by the poor image quality, ineffective object detection and recognition models, and lack of robust and light models for supporting the edge computing and real deployment. In this thesis, several innovative works have been focused and developed to tackle some of the above issues. First of all, considering the quality requirements of the UAV images, various approaches and models have been proposed, yet they focus on different aspects and produce inconsistent results. As such, the work in this thesis has been categorised into denoising and dehazing focused, followed by comprehensive evaluation in terms of both qualitative and quantitative assessment. These will provide valuable insights and useful guidance to help the end user and research community. For fast and effective object detection and recognition, deep learning based models, especially the YOLO series, are popularly used. However, taking the YOLOv7 as the baseline, the performance is very much affected by a few factors, such as the low quality of the UAV images and the high-level of demanding of resources, leading to unsatisfactory performance in accuracy and processing speed. As a result, three major improvements, namely transformer, CIoULoss and the GhostBottleneck module, are introduced in this work to improve feature extraction, decision making in detection and recognition, and running efficiency. Comprehensive experiments on both publicly available and self-collected datasets have validated the efficiency and efficacy of the proposed algorithm. In addition, to facilitate the real deployment such as edge computing scenarios, embedded implementation of the key algorithm modules is introduced. These include the creative implementation on the Xavier NX platform, in comparison to the standard workstation settings with the NVIDIA GPUs. As a result, it has demonstrated promising results with improved performance in reduced resources consumption of the CPU/GPU usage and enhanced frame rate of real-time processing to benefit the real-time deployment with the uncompromised edge computing. Through these innovative investigation and development, a better understanding has been established on key challenges associated with UAV and Simultaneous Localisation and Mapping (SLAM) based applications, and possible solutions are presented. Keywords: Unmanned aerial vehicles (UAV); Simultaneous Localisation and Mapping (SLAM); denoising; dehazing; object detection; object recognition; deep learning; YOLOv7; transformer; GhostBottleneck; scene matching; embedded implementation; Xavier NX; edge computing.As an emerging field, unmanned aerial vehicles (UAVs) feature from interdisciplinary techniques in science, engineering and industrial sectors. The massive applications span from remote sensing, precision agriculture, marine inspection, coast guarding, environmental monitoring, natural resources monitoring, e.g. forest, land and river, and disaster assessment, to smart city, intelligent transportation and logistics and delivery. With the fast growing demands from a wide range of application sectors, there is always a bottleneck how to improve the efficiency and efficacy of UAV in operation. Often, smart decision making is needed from the captured footages in a real-time manner, yet this is severely affected by the poor image quality, ineffective object detection and recognition models, and lack of robust and light models for supporting the edge computing and real deployment. In this thesis, several innovative works have been focused and developed to tackle some of the above issues. First of all, considering the quality requirements of the UAV images, various approaches and models have been proposed, yet they focus on different aspects and produce inconsistent results. As such, the work in this thesis has been categorised into denoising and dehazing focused, followed by comprehensive evaluation in terms of both qualitative and quantitative assessment. These will provide valuable insights and useful guidance to help the end user and research community. For fast and effective object detection and recognition, deep learning based models, especially the YOLO series, are popularly used. However, taking the YOLOv7 as the baseline, the performance is very much affected by a few factors, such as the low quality of the UAV images and the high-level of demanding of resources, leading to unsatisfactory performance in accuracy and processing speed. As a result, three major improvements, namely transformer, CIoULoss and the GhostBottleneck module, are introduced in this work to improve feature extraction, decision making in detection and recognition, and running efficiency. Comprehensive experiments on both publicly available and self-collected datasets have validated the efficiency and efficacy of the proposed algorithm. In addition, to facilitate the real deployment such as edge computing scenarios, embedded implementation of the key algorithm modules is introduced. These include the creative implementation on the Xavier NX platform, in comparison to the standard workstation settings with the NVIDIA GPUs. As a result, it has demonstrated promising results with improved performance in reduced resources consumption of the CPU/GPU usage and enhanced frame rate of real-time processing to benefit the real-time deployment with the uncompromised edge computing. Through these innovative investigation and development, a better understanding has been established on key challenges associated with UAV and Simultaneous Localisation and Mapping (SLAM) based applications, and possible solutions are presented. Keywords: Unmanned aerial vehicles (UAV); Simultaneous Localisation and Mapping (SLAM); denoising; dehazing; object detection; object recognition; deep learning; YOLOv7; transformer; GhostBottleneck; scene matching; embedded implementation; Xavier NX; edge computing

    Intelligent Transportation Related Complex Systems and Sensors

    Get PDF
    Building around innovative services related to different modes of transport and traffic management, intelligent transport systems (ITS) are being widely adopted worldwide to improve the efficiency and safety of the transportation system. They enable users to be better informed and make safer, more coordinated, and smarter decisions on the use of transport networks. Current ITSs are complex systems, made up of several components/sub-systems characterized by time-dependent interactions among themselves. Some examples of these transportation-related complex systems include: road traffic sensors, autonomous/automated cars, smart cities, smart sensors, virtual sensors, traffic control systems, smart roads, logistics systems, smart mobility systems, and many others that are emerging from niche areas. The efficient operation of these complex systems requires: i) efficient solutions to the issues of sensors/actuators used to capture and control the physical parameters of these systems, as well as the quality of data collected from these systems; ii) tackling complexities using simulations and analytical modelling techniques; and iii) applying optimization techniques to improve the performance of these systems. It includes twenty-four papers, which cover scientific concepts, frameworks, architectures and various other ideas on analytics, trends and applications of transportation-related data

    Mapping and Deep Analysis of Image Dehazing: Coherent Taxonomy, Datasets, Open Challenges, Motivations, and Recommendations

    Get PDF
    Our study aims to review and analyze the most relevant studies in the image dehazing field. Many aspects have been deemed necessary to provide a broad understanding of various studies that have been examined through surveying the existing literature. These aspects are as follows: datasets that have been used in the literature, challenges that other researchers have faced, motivations, and recommendations for diminishing the obstacles in the reported literature. A systematic protocol is employed to search all relevant articles on image dehazing, with variations in keywords, in addition to searching for evaluation and benchmark studies. The search process is established on three online databases, namely, IEEE Xplore, Web of Science (WOS), and ScienceDirect (SD), from 2008 to 2021. These indices are selected because they are sufficient in terms of coverage. Along with definition of the inclusion and exclusion criteria, we include 152 articles to the final set. A total of 55 out of 152 articles focused on various studies that conducted image dehazing, and 13 out 152 studies covered most of the review papers based on scenarios and general overviews. Finally, most of the included articles centered on the development of image dehazing algorithms based on real-time scenario (84/152) articles. Image dehazing removes unwanted visual effects and is often considered an image enhancement technique, which requires a fully automated algorithm to work under real-time outdoor applications, a reliable evaluation method, and datasets based on different weather conditions. Many relevant studies have been conducted to meet these critical requirements. We conducted objective image quality assessment experimental comparison of various image dehazing algorithms. In conclusions unlike other review papers, our study distinctly reflects different observations on image dehazing areas. We believe that the result of this study can serve as a useful guideline for practitioners who are looking for a comprehensive view on image dehazing

    SEPARATING LAYERS IN IMAGES AND ITS APPLICATIONS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Real-World Image Restoration Using Degradation Adaptive Transformer-Based Adversarial Network

    Get PDF
    Most existing learning-based image restoration methods heavily rely on paired degraded/non-degraded training datasets that are based on simplistic handcrafted degradation assumptions. These assumptions often involve a limited set of degradations, such as Gaussian blurs, noises, and bicubic downsampling. However, when these methods are applied to real-world images, there is a significant decrease in performance due to the discrepancy between synthetic and realistic degradation. Additionally, they lack the flexibility to adapt to unknown degradations in practical scenarios, which limits their generalizability to complex and unconstrained scenes. To address the absence of image pairs, recent studies have proposed Generative Adversarial Network (GAN)-based unpaired methods. Nevertheless, unpaired learning models based on convolution operations encounter challenges in capturing long-range pixel dependencies in real-world images. This limitation stems from their reliance on convolution operations, which offer local connectivity and translation equivariance but struggle to capture global dependencies due to their limited receptive field. To address these challenges, this dissertation proposed an innovative unpaired image restoration basic model along with an advanced model. The proposed basic model is the DA-CycleGAN model, which is based on the CycleGAN [1] neural network and specifically designed for blind real-world Single Image Super-Resolution (SISR). The DA-CycleGAN incorporates a degradation adaptive (DA) module to learn various real-world degradations (such as noise and blur patterns) in an unpaired manner, enabling strong flexible adaptation. Additionally, an advanced model called Trans-CycleGAN was designed, which integrated the Transformer architecture into CycleGAN to leverage its global connectivity. This combination allowed for image-to-image translation using CycleGAN [1] while enabling the Transformer to model global connectivity across long-range pixels. Extensive experiments conducted on realistic images demonstrate the superior performance of the proposed method in solving real-world image restoration problems, resulting in clearer and finer details. Overall, this dissertation presents a novel unpaired image restoration basic model and an advanced model that effectively address the limitations of existing approaches. The proposed approach achieves significant advancements in handling real-world degradations and modeling long-range pixel dependencies, thereby offering substantial improvements in image restoration tasks. Index Terms— Cross-domain translation, generative adversarial network, image restoration, super-resolution, transformer, unpaired training
    corecore