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ABSTRACT 

Real-World Image Restoration Using Degradation Adaptive Transformer-based 

Adversarial Network 

(August 2023) 

Lujun Zhai, B.S., University of Jinan; 

M.S., Prairie View A&M University 

Chair of Advisory Committee: Dr. Suxia Cui 

 

Most existing learning-based image restoration methods heavily rely on paired 

degraded/non-degraded training datasets that are based on simplistic handcrafted 

degradation assumptions. These assumptions often involve a limited set of degradations, 

such as Gaussian blurs, noises, and bicubic downsampling. However, when these methods 

are applied to real-world images, there is a significant decrease in performance due to the 

discrepancy between synthetic and realistic degradation. Additionally, they lack the 

flexibility to adapt to unknown degradations in practical scenarios, which limits their 

generalizability to complex and unconstrained scenes. 

To address the absence of image pairs, recent studies have proposed Generative 

Adversarial Network (GAN)-based unpaired methods. Nevertheless, unpaired learning 

models based on convolution operations encounter challenges in capturing long-range 

pixel dependencies in real-world images. This limitation stems from their reliance on 

convolution operations, which offer local connectivity and translation equivariance but 
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struggle to capture global dependencies due to their limited receptive field. 

To address these challenges, this dissertation proposed an innovative unpaired 

image restoration basic model along with an advanced model. The proposed basic model 

is the DA-CycleGAN model, which is based on the CycleGAN [1] neural network and 

specifically designed for blind real-world Single Image Super-Resolution (SISR). The DA-

CycleGAN incorporates a degradation adaptive (DA) module to learn various real-world 

degradations (such as noise and blur patterns) in an unpaired manner, enabling strong 

flexible adaptation. Additionally, an advanced model called Trans-CycleGAN was 

designed, which integrated the Transformer architecture into CycleGAN to leverage its 

global connectivity. This combination allowed for image-to-image translation using 

CycleGAN [1] while enabling the Transformer to model global connectivity across long-

range pixels. Extensive experiments conducted on realistic images demonstrate the 

superior performance of the proposed method in solving real-world image restoration 

problems, resulting in clearer and finer details. 

Overall, this dissertation presents a novel unpaired image restoration basic model 

and an advanced model that effectively address the limitations of existing approaches. The 

proposed approach achieves significant advancements in handling real-world degradations 

and modeling long-range pixel dependencies, thereby offering substantial improvements in 

image restoration tasks. 

Index Terms— Cross-domain translation, generative adversarial network, image 

restoration, super-resolution, transformer, unpaired training. 



 
 

v 
 
 

DEDICATION 
 

To my parents, Ruihua and Qiaoyun, my husband, Yu, and my son, Xinzhuo. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

vi 
 
 

ACKNOWLEDGEMENTS 

I extend my deepest gratitude to my advisor, Dr. Suxia Cui, for her unwavering 

support and guidance throughout my study and life at PVAMU. Her immense dedication 

has been instrumental in shaping my research journey. 

I would also like to express my special appreciation to my co-advisor, Dr. Yonghui 

Wang, for his invaluable technical guidance, which greatly contributed to the success of 

my research. 

I am sincerely grateful to the Extreme Science and Engineering Discovery 

Environment (XSEDE) Campus Champions Fellows Program, as it provided us with an 

invaluable opportunity to collaborate with the University of South Carolina. This 

collaboration enabled me to access historical motion picture film datasets from their film 

repository, which played a crucial role in the success of my research. 

Special appreciation is extended to Dr. Song Wang, whose invaluable advice, 

guidance, and suggestions greatly influenced my research work. Dr. Wang not only 

provided valuable insights but also guided me in writing high-quality papers throughout my 

Ph.D. program. I would also like to express my deep gratitude to Dr. Jun Zhou, Greg 

Wilsbacher, Zhenyao Wu, Pingpin Cai, and others from the University of South Carolina 

for their unwavering support, advice, and guidance. Their expertise and assistance were 

instrumental in overcoming challenges and making significant progress in my research. 

Furthermore, I would like to express my heartfelt appreciation to my committee 

members, Dr. Wilkins, Dr. Akujuobi, and Dr. Foreman, for their valuable suggestions and 

contributions to my dissertation proposal. I am also grateful to the faculty members for 



 
 

vii 
 
 

their exceptional teaching and instruction throughout my Ph.D. program. I am grateful to 

the staff members for creating a conducive study environment. I am deeply thankful to my 

friends and fellow classmates who provided unwavering support and companionship 

during the arduous journey of completing this dissertation. Their insightful discussions and 

helpful tips were invaluable in overcoming obstacles. I am truly grateful to everyone who 

has supported and assisted me throughout this endeavor. Words cannot express the extent 

of my gratitude. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

viii 
 
 

LIST OF ABBREVIATIONS 
 

CNN Convolutional Neural Network 

CPU Central Processing Unit 

GAN Generative adversarial network 

GPU Graphics Processing Unit 

HR High-resolution 

IR Image Restoration 

IQ Image Quality 

LR Low-resolution 

ReLU Rectified Linear Unit 

RGB Red Green and Blue 

SOTA State-of-the-art 
SR Super-resolution 

 

 

 

 

 

 

 

 



 
 

ix 
 
 

TABLE OF CONTENTS 

                                                                                                                               Page 

ABSTRACT ...................................................................................................................... III 

DEDICATION ................................................................................................................... V 

ACKNOWLEDGEMENTS .............................................................................................. VI 

LIST OF ABBREVIATIONS ........................................................................................ VIII 

LIST OF FIGURES .......................................................................................................... XI 

LIST OF TABLES ......................................................................................................... XIII 

1 INTRODUCTION ....................................................................................................... 1 

2  LITERATURE RESEARCH ...................................................................................... 5 

2.1  IMAGE RESTORATION OVERVIEW .......................................................................... 5 
2.1.1 Blind and Non-blind Image Restoration ........................................................... 6 
2.1.2 Unsupervised Image Restoration ...................................................................... 6 

2.2  CONVOLUTIONAL NEURAL NETWORK INTRODUCTION .......................................... 8 
2.2.1 Neuron unit and neuron network ...................................................................... 9 
2.2.2 Convolution operation .................................................................................... 11 
2.2.3 Application of convolution operation in extracting image feature ................. 11 
2.2.4 Fully connected neural net and locally connected neural net ......................... 14 
2.25 CNN-based Representative IR Models ........................................................... 16 

2.3 GENERATIVE ADVERSARIAL NETWORK (GAN) ................................................... 17 
2.4 TRANSFORMER .................................................................................................... 19 

2.4.1  Self-attention Mechanism .............................................................................. 19 
2.4.2 Transformers for Low-level Vision Problems ................................................ 20 

2.5 ARCHITECTURAL UNIT IMPROVED PERFORMANCE .............................................. 21 
2.5.1 Channel Attention ........................................................................................... 21 
2.5.2 Normalization ................................................................................................. 22 
2.5.3 Activation ....................................................................................................... 22 

2.6  IMAGE RESTORATION TECHNIQUES FOR SINGLE DEGRADATION (IRSD) ........... 23 



 
 

x 
 
 

2.8 IMAGE QUALITY ASSESSMENT ............................................................................ 25 

3 PROPOSED METHODOLOGY ............................................................................... 29 

3.1 OVERVIEW OF DA-CYCLEGAN .......................................................................... 29 
3.2 DA-CYCLEGAN ARCHITECTURE ........................................................................ 30 
3.3 ADVANCED SISR MODEL TRANS-CYCLEGAN .................................................... 32 

3.3.1 Motivation ...................................................................................................... 32 
3.3.2 Trans-CycleGAN Architecture ....................................................................... 33 
3.3.3  Transformer-based Generative Network ....................................................... 34 
3.3.4 Loss Functions ................................................................................................ 36 

4 EXPERIMENTS ........................................................................................................ 39 

4.1 HISTORICAL FACE IMAGE DATASETS AND IMPLEMENTATION DETAILS .............. 39 
4.2 EFFECTIVENESS OF THE PROPOSED DA-CYCLEGAN .......................................... 40 

4.2.1 Performance Comparison on Historical Image Dataset ................................. 40 
4.2.2  Generalization to different datasets ............................................................ 44 
4.2.3  SR Experiments Results Analysis ................................................................. 47 

4.3  EFFECTIVENESS OF THE PROPOSED TRANS-CYCLEGAN .................................... 51 
4.3.1  Performance Comparison on Historical Image Dataset .............................. 51 
4.3.2  Generalization to Different Datasets ............................................................. 54 
4.3.3  Experiment Results Analysis ...................................................................... 56 
4.3.4  Ablation Study ............................................................................................... 57 

5. CONCLUSION AND FUTURE WORKS ................................................................... 58 

5.1  CONCLUSION ...................................................................................................... 58 
5.2  FUTURE WORKS .................................................................................................. 58 

REFERENCES ................................................................................................................. 58 

CURRICULUM VITA ..................................................................................................... 65 

 

 
 

 



 
 

xi 
 
 

LIST OF FIGURES 

FIGURE                                                                                                                            Page 

 2. Cycle-in-Cycle SR network [3]. ........................................................................ 8 

 3. Image classifier. ................................................................................................. 9 

 4. Mathematical model of a neuron unit. ............................................................. 10 

 5. Neural network model...................................................................................... 10 

 6. Convolutional operation on a RGB color image. ............................................. 12 

 7. Convolution operation in image feature exaction [4]. ..................................... 13 

 8. Feature extractor using convolutional operation.............................................. 14 

 9. Fully connected neural net and locally connected neural net. ......................... 15 

 10. Convolutional operation using local connections. ......................................... 15 

 11. The structure of SRCNN [5]. ......................................................................... 16 

 12. (a) Restormer’s Block and (b) NAFNet’s Block [6]. ..................................... 17 

 13. The data diagram of CycleGAN [7]............................................................... 18 

 14. Structure of CycleGAN. ................................................................................. 18 

 15. (a) Standard Channel Attention [8] (b) Simplified Channel Attention [6]. ... 22 

 16. Different Types of Normalization. ................................................................. 22 

 17. Activation Functions. ..................................................................................... 23 

 18. The Structure of IPT [9]. ................................................................................ 25 

 19. The Diagram of AirNets [10]. ........................................................................ 25 

 20. Architecture of DA-CycleGAN for historical image super-resolution. ......... 30 

 21. Architecture of generator with Degradation-Adaptive module integrated. ... 31 



 
 

xii 
 
 

 22. Architecture of Generator based on light-weight Transformer modules. ...... 33 

 23. Samples from our LR historical. .................................................................... 39 

 24. Sample performance comparisons on historical face image dataset. ............. 42 

 25. Color-coded distribution of MOS scores [4 × upscaling]. ............................. 44 

 26. SR performance comparisons with other SR methods on Set14. .................. 46 

 27. Sample performance comparisons with SOTA SR methods on DIV2K. ...... 46 

 28. The structure of DA-CycleGAN-Water. ........................................................ 48 

 29. (a) and (b) Underwater turbid images. (c) and (d) Underwater clear images. 49 

 30. Visual performance comparison on natural underwater image. .................... 50 

 31. SR performance comparisons on historical face image dataset. .................... 52 

 32.  Sample performance comparisons with SOTA SR methods on Set14. ........ 55 

 

 

 

 

 

 

 

 

 

 

 



 
 

xiii 
 
 

LIST OF TABLES  

TABLE                                                                                                                             Page 

1. Commonly Used IQA ........................................ Error! Bookmark not defined. 

2. Performance comparison on historical face image dataset ............................... 42 

3. Performance comparison by MOS .................................................................... 43 

4. Performance comparison on Set14 dataset ....................................................... 44 

5. Performance comparison on DIV2K ................................................................ 45 

6. Quantitative performance evaluation ................................................................ 51 

7. Visual Performance comparison evaluated by MOS ........................................ 53 

8. Performance comparison on historical face image dataset ............................... 54 

9. Performance comparison on Set14 ×4 .............................................................. 55 

10. PSNR results of ×4 SR achieved on synthetic degradations .......................... 56 

11. Ablation experiments for the Generator block................................................ 57 

 

 



1 
 

 

1 INTRODUCTION 

The study of real-world image restoration (IR) has been attracting many interests 

all the time,    as the high-quality images are desired urgently in many applications like video 

surveillance, medical imaging, and automated driving, and vision-driven tasks like target 

recognition and tracking, are severely affected by the quality of images. However, the 

acquired images in real-world are not always clear and suffer from various kinds of 

degradations, as they are usually captured in complicated situations such as bad weather 

conditions, underwater environments, uneven illumination, immature camera technology, 

and camera-moving. Therefore, it is significant to develop an efficient real-world image 

restoration algorithm to enhance the environmental adaptability of the visual system. 

However, as a typical ill-posed inverse problem, real-world image restoration remains 

extremely challenging. 

Real-world image restoration (IR) is the process of recovering a high-quality image 

with good visibility and clean content from a given degraded correspondence, like noisy, 

motion-blurred or hazy images. Recently, general image restoration has achieved promising 

performance in various vision tasks, thanks to the advances of deep neural network. 

Owing to the powerful feature learning capability of convolutional neural networks 

(CNN), several works [12, 13, 14] have demonstrated great superiority over conventional 

restoration approaches in solving image restoration problems (e.g., denoising, dehazing, 

super-resolution). By training on a large scale of datasets with a specific type of 

degradation, these models can learn the strong priors and handle a specialized vision task. 

Since then, plenty of CNN-based IR methods have been studied for IR. The basic 
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convolution operation in CNNs provides local connectivity and translation equivariance on 

images. Although these properties provide efficiency and generalization to CNNs, they also 

lead to two main problems: (a) the convolution operator has a limited receptive field, which 

is failing to capture long-range dependencies [15] and (b) the convolutional kernels of 

models have fixed weights at inference, and thereby cannot flexibly adapt to the input 

content. 

To deal with the aforementioned drawbacks, a more powerful and dynamic 

alternative is the self-attention (SA) mechanism that calculates response context in one 

position by a weighted sum of all other positions. Self-attention is the core component in 

Transformer models. Optimized Multihead Self-attention (MSA) is used for parallelization 

and effective representation learning. Transformer and its variants [16] have shown 

remarkable performance gains on natural language processing and high-level vision tasks 

like semantic image segmentation and object detection. However, most existing CNN-

based and Transformer-based IR methods are supervisedly trained on pairs of 

degraded/non-degraded image training set, which are not are not available for most real-

world imagery data such as historical images, underwater images. 

In response to the unpaired training data, cycle-consistent adversarial network 

(CycleGAN) [1]  was proposed to handle image-to-image translation form a source domain 

X to a target domain Y, therefore making it feasible to apply to most image restoration 

tasks confronted with the absence of paired data problems. 

Considering that most real-world training data are unpaired and exhibit complex and 

unknown degradations in various forms of blurs and noises, I propose two novel networks 

to tackle this problem: the Degradation Adaptive CycleGAN (DA-CycleGAN) and the 
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Trans-CycleGAN. 

The DA-CycleGAN is designed for blind real-world Single Image Super-

Resolution (SISR) and incorporates a degradation adaptive (DA) module. This module 

enables the network to learn various real-world degradations, such as noise and blur patterns, 

in an unpaired manner, facilitating flexible adaptation. The DA module consists of two main 

designs: (a) the attention mechanism across feature dimensions is applied in DA by 

enforcing ights on different types of degradation features. This allows the DA convolutional 

layer to learn how to predict the kernel of a depth-wise convolution conditioned on the 

degradation feature and (b) channel-wise feature adaptation is used so that the 

convolutional layer can learn to modulate coefficients based on the degradation features. 

Therefore, the DA block has powerful and flexible adaptation to complex real-world image 

degradations. It can learn detailed features and help reconstruct clean images with finer 

details and textures. 

Furthermore, I propose the Trans-CycleGAN, an advanced model that combines 

the Transformer architecture with CycleGAN. The Transformer with self-attention is 

utilized to capture long-range pixel interactions and model global connectivity, 

overcoming the limitations of CNNs,   that is, limited receptive field and in adaptability to 

input content). This combination allows for image-to-image translation using CycleGAN 

while enabling the Transformer to model global connectivity across long-range pixels. 

Extensive experiments conducted on real-world images captured in diverse environments 

provide compelling evidence of the exceptional performance of the proposed methods in 

effectively addressing image restoration challenges. Compared to state-of-the-art image 

restoration methods, our approaches demonstrate superiority in terms of their ability to 
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restore images to a higher quality. 

The main contributions of this work are summarized below: 

• I proposed an effective unpaired single image super-resolution (SISR) model, 

namely DA- CycleGAN, with a DA module that exhibits powerful and flexible 

adaptation to the various complex degradations present in real-world image. 

• Additionally, I proposed an advanced SISR model called Trans-CycleGAN, 

which leverages the global self-attention mechanism to capture long-range 

dependencies, providing an advantage in image restoration. 

• To support the research, I collected a large training dataset comprising real-

world degraded images, including historical imagery and underwater imagery. 

These images exhibit diverse degradations, such as changes in camera-to-

subject distance, illumination, and scenes. 

• Comprehensive experiments were conducted on the collected real-world image 

dataset as well as benchmarking synthetic datasets. The results demonstrated 

promising outcomes, highlighting the effectiveness of the proposed methods in 

image restoration. 
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2  LITERATURE RESEARCH 

2.1  Image Restoration Overview 

The images taken in real-world often suffer from various kinds of degradations. For 

example, images taken by surveillance cameras and medical imaging usually exhibit low-

resolution [17]; images taken by moving cameras have motion-blur [18]; underwater 

images have color distortion and noises [19, 18]; and images taken in hazy, rainy, and 

foggy weather contain different levels of intensity blurs and noises [20]. Such image 

degradations cause a severe performance drop of visual system in segmentation, detection, 

and target tracking [21, 22, 23, 24]. Therefore, an efficient image restoration method is 

desired urgently in many practical applications. Image restoration aims to generate visually 

pleasant image from a given degrade image. The degradation process is generally defined 

as: 

y = kx + n   (2.1) 

where x is the clean image, y denotes the degraded image, the K represents the 

degradation matrix, and n denotes the additive noise. As presented in Fig. 1, 

conventionally, IR techniques in low-level vision domain can be grouped into six main 

categories according to the type of the degradation involved in image or video to be 

processed, likw SR, denoising, deraining, dehazing, deblurring, and image colorization. 

Specially, SR aims to reconstruct a high-resolution image from one or more low-resolution 

images. Draining (dehazing, deblurring, denoise) is the task of raindrop (haze, blur, noise) 

removal. Color correction deals with the color distortion, especially for underwater images. 

While there are many different branches or classes of IR to handle different types of 
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degradation, actually, most of the leaning-based models can deal with multiple tasks after 

re-training on different datasets, owing to the powerful prior learning capabilities of deep 

neural network and publicly available benchmark datasets for image processing. 

 

Fig. 1. Categories of low-level image processing. 

2.1.1 Blind and Non-blind Image Restoration 

Broadly, image restoration techniques are classified into two categories, blind IR 

and non-blind IR [2]. Non-blind IR algorithms assume the degradation is known and need 

modeling the degradation process by using the prior knowledge of the degradation. 

Accurate estimation of the degradation parameter is crucial for Non-blind IR. These non-

blind methods produce promising SR results when the true degradation is known in priori. 

In contrast, blind IR algorithms do not rely on the prior knowledge. They typically try to 

infer unknown degradation and reconstruct the clean images. The accurate estimation of 

the blur kernel from internal or external similar patches is essential in the IR task. When 

the degradation estimation differs from real degradation, the estimation error can further 

be amplified by the blind IR process, producing undesired artifacts like over-sharpening 

and over-smoothing. 

2.1.2 Unsupervised Image Restoration 

Most existing deep learning-based IR methods rely on image pairs to train networks 
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in a supervised manner. However, image pairs usually are absent in the physical world. 

Typically, to solve this problem, the handcrafted synthetic degradation is widely employed 

in most studies to generate the corresponding degraded image given a clean image. However, 

the IR performance will degrade severely in real-world application as the real degradation 

differs from their assumption, such as a set of Gaussian blurs, motion blurs, noises, or 

downsampling. 

Recently, a few works [3, 25, 26, 27, 28] proposed to adapt an unsupervised strategy 

to train SR networks. Inspired by the image-to-image translation application, Yuan et al. [3] 

proposed a Cycle-in-Cycle SR network (CinCGAN) that first learns a mapping from the 

noisy and blurry input to a noise-free LR space, and then upscales the clean LR to generate 

HR, as shown in Fig. 2. The work of [25] adopted a two-stage strategy that first trained a 

High-to-Low GAN to degrade and downsample HR images in an unpaired manner and then 

used the output of a High-to-Low GAN to train a Low-to-High GAN for SR. DNSR [26] 

was proposed as a degradation module to imitate the real-world degradation process from 

HR to LR via a GAN network. The generated photo-realistic LR images paired with real-

world HR images were used as training data. To reduce the artifact caused by bicubic 

downsampling, [27] proposed to invert the effects of bicubic downsampling and to generate 

realistic image pairs for training using a GAN model. To generate more realistic images, 

[28] adopted a pseudo supervision strategy to solve the unpaired problem, and the noise 

correction network was mainly used to handle the LR image cleaning and then fed the 

generated clean LR image to upscale to generate the SR image. However, these models have 

less flexible adaption to various unknown degradations in real-world images. 

Li et al. [29] developed a weakly underwater supervised color transfer model based 
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on the cycle consistent adversarial network (CycleGAN) to correct color distortion. 

Considering that CycleGAN is capable of performing image-to-image translation tasks 

with unpaired images from two different domains, underwater GAN (UGAN) [30] 

degraded underwater clear images to generate paired training data and used the model 

with L1 loss and gradient loss to restore image. However, it is worth noting that the 

gradient penalty in the computation process of image restoration can be more time-

consuming compared to techniques such as spectral normalization. UWGAN [31] 

employed a multiscale dense block and improved performance in color correction. 

However, UWGAN cannot generate pleasing results in low-visibility waters. In summary, 

these existing models exhibit significant performance degradation when applied to real-

world turbid and murky underwater environments. 

 

Fig. 1. Cycle-in-Cycle SR network [3]. 

2.2  Convolutional Neural Network Introduction 

Broadly, based on the network architecture, IR methods are broadly grouped into 

convolutional neural network-based (CNN) models, generative adversarial network-based 

models, and Transformer-based models. Since convolutional neural networks (CNNs) 

perform well at learning generalizable priors from large-scale data, they have emerged as 
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a preferable choice compared to conventional restoration approaches. CNN was initially 

widely used as an image classifier in the AI field. It mimics how human brains process 

information. CNN consists of many layers, including the input layer, hidden layers, fully 

connected layers, and output layers. The following will explain how it works as effectively 

as humans.  

For human, it is easy to differentiate stars from triangles. Humans can use a curve 

to separate ones from the other class as shown in Fig. 3. The mathematical model of this 

curve is what CNN is looking for. It has to extract the star features and triangle features in 

order to know the difference between them and then find a function to separate the classes. 

 

Fig. 2. Image classifier. 

2.2.1 Neuron unit and neuron network 

The basic computational unit of a neural network is a neuron often called a node. It 

receives input variables from other neurons, performs mathematical operations, and 

outputs a result as an input for the following neurons [32]. A mathematical model of a 

neuron is shown in Fig. 4. 
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z=
w1*x1+w2*x2+b a

1

x1

x2

b(bias)

W1

W2

g(z)

Axon from a neuron

Cell body Activation  
functon

Output axon

 
Fig. 3. Mathematical model of a neuron unit. 

For this neuron, there are two inputs x1 and x2, one bias b, one output a. W 1 and 

W 2 represent weights associated with inputs. Usually, there is an activation function at the 

end of the neuron performing nonlinear computation such as sigmoid, tanh, and ReLU. The 

relationship between 2 input variables and an output value is expressed as follows. 

a = g (w1 ∗ x1 + w2 ∗ x2 + bias) (2.2) 

 

Fig. 4. Neural network model. 

The input layer receives information from the outside world and then passes this 

information to the adjacent hidden layer. There is no computation performed in the input 

layer; it acts as an information receiver and transmitter. 

The hidden layer, just as the name says, hides inside a neural network and is isolated 
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from the outside world. Usually there are many hidden layers in a neural network 

performing a large number of complicated computations such as convolution operation and 

downsampling Hidden layers are responsible for transmitting information besides 

computations. The output layer performs computing and transfers the computing results to 

the outside world. 

2.2.2 Convolution operation 

The core building block of CNNs is the convolution operator, which enables 

networks to extract object features by fusing both spatial and channel-wise information 

within local receptive fields at each layer. The convolution formula of two discrete 

functions is: 

(𝑓𝑓 ∗ 𝑔𝑔)[n] = � 𝑓𝑓[𝑚𝑚]𝑔𝑔[𝑛𝑛 −𝑚𝑚]
∞

𝑚𝑚=−∞

 
(2.3) 

2.2.3 Application of convolution operation in extracting image feature 

In this study, all images from training and test datasets were RGB color images, 

each of which consisted of three color channels which were red, green, and blue 

respectively. Pixels in each color channel had 256 levels from 0 to 255 corresponding to 

the different brightness values. The 3 × 3 matrix W0 shown below in Fig. 6 is called a 

kernel or a filter. In practice, convolutional operations are performed on R, G, and B 

channels respectively, and then the results are summed to obtain each element in the feature 

map as shown in Fig. 6. 
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Fig. 5. Convolutional operation on a RGB color image. 

In order to extract the features of an object more completely, usually researchers 

use a lot of filters in each convolutional layer. These filters with different values can extract 

different features. For example, given a deer image, to extract its different features such as 

its edges and texture), lots of corresponding filters can be adopted (see Fig. 7). 
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Fig. 6. Convolution operation in image feature exaction [4]. 

When performing the convolutional operation, I need to consider the size of the 

feature map. There are three main factors that influence its size: depth, stride, and padding. 

• Depth: the number of filters in a convolutional layer is called depth. The depth 

of a filter is equal to the depth of feature maps in a network just as shown in 

Fig. 8. Performing convolution operations of the original fish image with three 

filters can obtain 3 feature maps. 

• Stride: the distance a filter moves between pixels is called stride. Generally, 

stride would be set to 1, so filters just jump forward one pixel. I seldom set the 
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stride to 2 or more since feature maps will get smaller. 

 

Fig. 7. Feature extractor using convolutional operation 

• Zero-padding: zero-padding is a common method used when performing 

convolutional operations. I can control the feature map size by padding the input 

matrix with zeros around the border. As shown in Fig. 6, zero-padding method 

is used to enlarge the input matrix. If the stride is 2 and the depth is 1, after 

performing the convolutional operation, I obtained a 3 × 3 × 1 feature map. 

2.2.4 Fully connected neural net and locally connected neural net 

For a complex neural network, usually there are two types of connections between 

two adjacent layers. They are the fully connected layer and locally connected neural layer 

respectively. 
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Fig. 8. Fully connected neural net and locally connected neural net. 
 

For a fully connected neural net, all pixels in the input layer are connected with 

each neuron in the hidden layer as shown in Fig. 9 (a). It is common that the last two layers 

in a CNN are fully connected layers. They are the softmax and output layer, respectively. 

For a locally connected neural network, only portion of pixels in the input layer are 

connected with the following neuron in hidden layer as shown in Fig. 9 (b). This kind of 

connection will reduce the number of connections and speed up calculation. Convolutional 

layer in CNN uses local connections as shown in Fig. 10. 

 

Fig. 9. Convolutional operation using local connections. 
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2.25 CNN-based Representative IR Models 

The success of CNN models can be attributed to the powerful feature representation 

capability and significant advancement in network training and design. The representative 

CNN models are: SRCNN [5] and NAFNet [6]. The pioneer work SRCNN [5] is an end-

to-end CNN mode for single image super-resolution (SR). Its goal is to reconstruct a high-

resolution image from its low-resolution observation. It has a lightweight structure with 

three convolutional layers. Its structure is as shown in Fig. 11 Given a LR image X, the 

first convolutional layer of SRCNN serves as the feature extractor and obtains its feature 

maps. The second layer performs the non-linear mapping from each low-dimensional 

vector onto high-dimensional vector. The last layer outputs a reconstructed image Y by 

combining the predictions within spatial neighborhoods. 

 

Fig. 10. The structure of SRCNN [5]. 

Chen et al. [6] proposed a Nonlinear Activation Free Network (NAFNet), a simple 

baseline but computationally efficient for IR. They observed that the widely used nonlinear 

activation functions in IR networks, like Sigmoid, ReLU, GELU [33] and Softmax, are not 

necessary and they could be replaced by multiplication or simply, removed. The 

computational complexity was greatly reduced by using simplified channel attention 
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(SCA) to capture the global connectivity.  Fig. 12 presents the comparison of the basic 

building blocks of NAFNet and Restomer. 

 

Fig. 11. (a) Restormer’s Block and (b) NAFNet’s Block [6]. 

2.3 Generative adversarial network (GAN) 

Generative Adversarial Network (GAN [34]) shows desirable performance in 

image generation. Since then, plenty of GAN -based methods have been studied for image 

processing. CycleGAN [7] is an unpaired image-to-image translation approach, as shown 

in Fig. 13. Considering that paired training data will not be available for many tasks, 

CycleGAN was proposed to learn to translate an image from a source domain A to a target 

domain B in the absence of paired examples.  
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Fig. 12. The data diagram of CycleGAN [7]. 

As shown in Fig. 14, CycleGAN contains two mapping functions G: X → Y and 

F: Y → X, and associated adversarial discriminators D𝑌𝑌  and D𝑋𝑋. D𝑌𝑌  encourages G to 

translate X into outputs indistinguishable from domain Y, and vice versa for D𝑋𝑋and F. To 

further regularize the mappings, two cycle consistency losses are introduced to capture 

the intuition that if they translate from one domain to the other and back again they should 

arrive at where they started: (b)            forward cycle-consistency loss: x → G(x) → F(G(x)) ≈ 

x, and (c) backward cycle-consistency loss: y → F(y) → G(F(y)) ≈ y. 

 

Fig. 13. Structure of CycleGAN. 
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2.4 Transformer 

Recently, Transformers, a novel class of neural architectures, have exhibited 

remarkable performance in various domains such as natural language processing (NLP) and 

high-level vision tasks. Transformer and its variants offer significant advantages in 

capturing long-range dependencies by the global self-attention, which overcomes the 

shortcoming of CNNs such as limited receptive field and inadaptability to input content). 

Subsequent research explorations on low-level vision Transformers (e.g., ViT [35], SwinIR 

[36], Uformer [37] ) have exemplified their great potential as alternatives to the go-to CNN 

models. 

2.4.1  Self-attention Mechanism 

The core component of the Transformer architecture is the self-attention (SA) 

mechanism, which calculates the response at a given pixel by taking a weighted sum of all 

other positions. This allows the model to selectively focus on different parts of the context 

based on their relative importance. The SA mechanism can be described as mapping a 

query and a set of key-value pairs   to generate an output. Standard SA scoring function is 

defined as: 

Attention(Q, K, V ) =  softmax�
𝑄𝑄𝐾𝐾𝑇𝑇

√𝑑𝑑𝑑𝑑
�𝑉𝑉 

(2.4) 

where key (K) ∈ 𝑅𝑅𝐶𝐶 ×𝐻𝐻𝐻𝐻 , query  (Q) ∈ 𝑅𝑅𝐻𝐻𝐻𝐻 ×𝐶𝐶, value (V) ∈ 𝑅𝑅𝐻𝐻𝐻𝐻 ×𝐶𝐶, and α is a 

learnable scaling parameter. 

Given an input image of W×H pixels, global self-attention brings a computational 

cost, O ∈ W2𝐻𝐻2, from the key-query dotproduct interaction. It is worth noting that the 

computational complexity grows quadratically with the spatial resolution, therefore 
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making standard SA infeasible to directly apply SA to most image restoration tasks 

involving high-resolution images. To tackle this problem, significant research has been 

dedicated to exploring the potential of vision Transformers for image restoration. These 

studies aimed to develop alternative techniques that can effectively handle high-resolution 

images while mitigating the computational burden associated with SA. 

2.4.2 Transformers for Low-level Vision Problems 

In the realm of low-level vision tasks, pioneering vision Transformers such as those 

introduced by Chen et al. [38, 9] adopt a strategy of dividing the input image into smaller 

patches or tokens. However, this approach gives rise to undesired artifacts at the boundaries 

of these patches when dealing with larger images. To overcome this limitation, the Swin 

Transformer [39] introduces a shifted windowing scheme. This novel scheme ensures that 

self-attention computations are confined to non-overlapping local windows while still 

allowing for cross window connections. By doing so, the Swin Transformer effectively 

addresses the issue of patch boundary artifacts while maintaining computational efficiency. 

Taking advantage of the Swin Transformer architecture, SwinIR, as proposed by Liang et 

al. [36], incorporates multiple Swin Transformer layers to facilitate local attention and 

cross-window interaction. Additionally, SwinIR utilizes a multi-layer perceptron (MLP) 

with two layers and employs the GELU activation function for feature transformations. This 

combination of techniques further enhances SwinIR’s capacity for image restoration tasks. 

To overcome the limitation of Transformers in utilizing only a limited spatial range 

of input information, a hybrid attention Transformer (HAT [40]) has been introduced. HAT 

combines the strengths of channel attention and self-attention schemes, leveraging their 

complementary advantages. Additionally, HAT incorporates an overlapping cross-
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attention module to enhance interaction among neighboring window features. This allows 

the model to capture relevant information from nearby regions and improve its ability to 

capture dependencies and relationships among features. 

Restormer [41] addresses the issue of quadratic growth in computational 

complexity with spatial resolution by proposing transposed attention across channels. By 

leveraging this approach, it is able to reduce the computational loads from O ∈ W2𝐻𝐻2 to 

O ∈ C2, and can effectively handle high-resolution images. Restormer [41] provides a 

solution for taking the entire HR image as input instead of the image patches and 

effectively avoids the boundary issue when fusing the restored patches into an intact 

restored image. Transposed attention is defined as: 

                       Attention(Q, K, V ) =  𝑉𝑉softmax �𝐾𝐾𝑄𝑄
α
�𝑉𝑉 (2.5) 

where key (K) ∈ 𝑅𝑅𝐶𝐶 ×𝐻𝐻𝐻𝐻 , query (Q) ∈ 𝑅𝑅𝐻𝐻𝐻𝐻 ×𝐶𝐶, value V ∈ 𝑅𝑅𝐻𝐻𝐻𝐻 ×𝐶𝐶, and α is a 

learnable scaling parameter. 

2.5 Architectural Unit Improved Performance 

Extensive prior research has investigated how to strengthen the representational 

capacity of a CNN by enhancing the quality of spatial encodings throughout its feature 

hierarchy. I review the state-of-the-art architectural units in this section. 

2.5.1 Channel Attention 

The function of channel attention is to captures the global information. The 

extracted feature map is multiplied by the weights. To be specific, it squeezes the spatial 

information into channels first and then a multilayer perceptual applies to it to calculate the 

channel attention (see Fig. 15). 
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Fig. 14. (a) Standard Channel Attention [8] (b) Simplified Channel Attention [6]. 

2.5.2 Normalization 

Normalization is widely adopted in high-level computer vision tasks, and there is 

also a popular trend in low-level vision. Different types of normalization are shown in Fig. 

16. 

 

Fig. 15. Different Types of Normalization. 

2.5.3 Activation 

In general, linear functions alone are not capable of accurately representing the 

complex relationship between input and output in a neural network model. Hence, it 

becomes essential to incorporate nonlinear activation functions alongside linear functions. 

These nonlinear activation functions enable the network to capture and model the intricate 

and nonlinear patterns present in the data, enhancing the expressive power and performance 

of the neural network. 

The Rectified Linear Unit (ReLU) is commonly used as an activation function in 
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the convolutional layer of Convolutional Neural Networks (CNNs). It has been widely 

recognized that ReLU performs better than other nonlinear functions such as tanh or 

sigmoid in terms of its effectiveness in capturing complex patterns. In the field of high-

level computer vision algorithms, ReLU is extensively employed. However, there is a 

growing tendency to replace ReLU with Gaussian Error Linear Units (GELU), particularly 

in low-level computer vision tasks. GELU has demonstrated superior performance 

compared to ReLU in tasks like image restoration, as seen in methods such                           as Restormer 

[zamir2022restormer] and All-In-One IR [li2022all]. While ReLU and GELU differ in 

their functional forms, both are commonly used as activation functions in neural networks. 

Fig. 17 illustrates the graphical representation of these activation functions. 

 

Fig. 16. Activation Functions. 

2.6  Image Restoration Techniques for Single Degradation (IRSD) 
 

The primary goal of IRSD is to restore a clean image from a particular type of 

degradation, such as motion blur or Gaussian noise. Notably, various IRSD approaches 

have been developed, broadly categorized into CNN-based models, GAN-based models, 

Transformer-based models, and Diffusion models. Each of these categories offers distinct 

methodologies to tackle the challenges associated with image restoration and produce high-

quality results. 
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2.7 Image Restoration for Multiple Degradation (IRMD) 

Recently, several works [42, 9] have shifted their attention to IRMD to meet 

practical needs, considering that the real-world images may suffer from diverse types of 

degradations, that is, different combinations of motion blur, rain, haze, snow, and noises), 

and the inconsistency between the multiple degradations in the real world and the 

predefined single degradation causes a severe performance drop of IRSD in real-world 

scenarios. Li et al. [42] proposed a single network-based method to handle multiple bad 

weather degradations including rain, fog, snow and adherent raindrop. To achieve this, they 

leveraged a generator with multiple task-specific encoders and a generic decoder, and each 

of encoder corresponded to a particular bad weather degradation type. Image Processing 

Transformer (IPT) [9] is a pre-trained model on a large-scale dataset utilizing the powerful 

feature representation capability of Transformer, which can be used for super-resolution, 

denoising, and derainning tasks after fine-tuning. The IPT model consisted of multiple 

pairs of head and tail for different tasks and a shared transformer body including encoder 

and decoder, as shown in Fig. 18. Specifically, the multi-head takes the degraded images 

as input and converts to feature maps then splits into patches as “visual words” for 

subsequent processing in transformer. The clean images are reconstructed by ensembling 

output patches. Notably, these models [42, 9] require the degradation information in priori 

and specify the associated head. 
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Fig. 17. The Structure of IPT [9]. 

Different from the above methods [42, 9], AirNet [10] is an all-in-one solution 

without requiring the degradation information in advance. To be specific, contrastive 

learning is used to extract the degradation representation from the input and the subsequent 

image restoration is a degradation-guided network, as shown in Fig. 19. 

 

Fig. 18. The Diagram of AirNets [10]. 

2.8 Image Quality Assessment 
 

Image Quality Assessment (IQA) plays a vital role for effective model comparison 

in the field of image processing, since the goal of IQA is to accurately predict the perceived 
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quality by human viewers and further benefit image processing algorithms to improve the 

image quality to an acceptable level for the human viewers. 

In general, IQA can be briefly grouped into two categories, human perception-

based subjective assessment and quality metrics-based objective assessment. Overall, the 

human evaluation is a more direct, easier way, and more in line with the practical needs. It 

is typically referred to as Mean Opinion Score (MOS), which is an average rating that 

human raters assign to images. However, the disadvantage of subjective evaluation is two-

fold: (i) the evaluation result is easily affected by personal preferences; and (ii) as a non-

automated process, subjective assessment is often costly and time consuming. While 

several pre-trained CNN or Transformer models [56, 57] based on a large number of human 

preference score have been proposed to solve the labor consuming problem, the predicted 

quality scores are not always accurate and the model training process still needs extensive 

human-judged score collection. 

By contrast, objective evaluation is more convenient, although the results by 

different assessment metrics may not necessarily be consistent with each other as well as 

subjective evaluation. The existing image quality metrics can be grouped into two 

categories, no-referenced and full-referenced metrics, depending on whether ground truth 

images are required, Table 1 reports widely used metrics for image quality assessment, 

including no-referenced and full-referenced metrics. 

MS-SSIM [43]: Multi-scale structural similarity (MS-SSIM), as a full-referenced 

image quality assessment (IQA), first performs contrast comparison, structure comparison, 

and luminance comparison on multi-scale images, and then combines the measurement at 

different scales. Further, an image synthesis approach is adopted to calibrate the parameters 
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of cross-scale image quality models to define the relative importance between scales. 

TABLE I  

COMMONLY USED IQA 

 

PSNR: The representative of the commonly and widely used full-reference quality 

metric is Peak Signal-to-Noise Ratio (PSNR), which focuses more on the proximity 

between pixels and assumed pixel-wise independence, resulting in the low consistency with 

perceptual quality in some cases. 

SSIM [44]: The structural similarity index (SSIM) is a comprehensive image 

quality metric that assesses the similarity in structure, as well as the luminance and contrast 

comparisons, in a reference image. Unlike the peak signal-to-noise ratio (PSNR), SSIM 

provides a better reflection of visual quality [44]. Typically, both PSNR and SSIM are 
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employed together to evaluate the quality of restored images, taking into account different 

aspects of image quality. 

UIQM [51]: Underwater image quality measure (UIQM) serves as a no-reference 

metric for evaluating the quality of underwater images. UIQM combines three measures: a 

colorfuless measure (UICM), a sharpness measure (UISM), and a contrast measure 

(UIConM) and these individual metrics can be used separately for specific underwater image 

processing tasks. Specifically, UICM assesses colorfulness using an asymmetric alpha-

trimmed mean. UISM measures sharpness by estimating enhancement using a grayscale 

edge map obtained from multiplying the original image with the edge map from the Sobel 

edge detector. Contrast is evaluated using the logAMEE measure [58] on the intensity 

image. 

IQT [54]: Image Quality Transformer (IQT) is a perceptual full-reference image 

quality assessment. It employs a CNN backbone to extract feature representations from 

pairs of clean and distorted images. These extracted feature maps are then fed into a 

transformer model, which predicts the quality score of the reconstructed super-resolution 

(SR) image. 

Neural Side-By-Side [55]: Neural Side-By Side (NeuralSBS) is a no-reference 

image quality measure that utilizes a CNN model and was trained on a dataset of paired 

images, where each pair has been assigned a human evaluation score indicating their 

preference. By leveraging this training data, NeuralSBS can predict the probability of an 

image being preferred over its counterpart. 
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3 PROPOSED METHODOLOGY 

In this chapter, I first present the unsupervised degradation learning model for real-

world image super-resolution, DA-CycleGAN, which effectively adapts to realistic noise 

and blur patterns in real-world images and generates HR images with finer details and 

textures. 

In addition, I introduce the Transformer architecture into the CycleGAN 

framework, allowing the model to capture long-range pixel interactions and establish 

global connectivity. This integration of Transformer into CycleGAN provides a notable 

advantage in the field of image restoration. I refer to this enhanced model as Trans-

CycleGAN. 

3.1 Overview of DA-CycleGAN 

The proposed DA-CycleGAN network consists of two main parts, (as shown in Fig. 

20), namely an unpaired blur/noise correction network and a pseudo-paired SR network. The 

correction network works for unpaired LR ↔ clean LR translation by denoising/deblurring 

the LR image. The pseudo-paired SR network is used for mapping the clean LR images 

into HR images. Here, I define "clean LR" as the output of bicubic downsampling operation 

Y → 𝑌𝑌↓ from HR images to LR images, 𝑦𝑦↓ ∈ 𝑌𝑌↓ . 

The DA-CycleGAN network aims to learn a mapping 𝐹𝐹𝑋𝑋𝑌𝑌  from LR source 

domain X to HR target domain Y using unpaired training samples x ∈ 𝑋𝑋 and y ∈ 𝑌𝑌. The 

mapping 𝐹𝐹𝑋𝑋𝑌𝑌 consists of two mappings 𝐺𝐺𝑋𝑋𝑌𝑌↓  and 𝑈𝑈𝑌𝑌↓𝑌𝑌  , where 𝐺𝐺𝑋𝑋𝑌𝑌↓  is a denoise/ deblur 

mapping from X to 𝑌𝑌↓ ,  and 𝑈𝑈𝑌𝑌↓𝑌𝑌 is an upsampling mapping from 𝑌𝑌↓  to Y. 

Domain transfer in LR. I adopt Pseudo CycleGAN [28]-based model as the 

noise/blur correction network for the domain transfer in LR. At the training stage, the 
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correction network learns to produce pseudo-clean LR images. Specifically, the forward 

generator 𝐺𝐺𝑌𝑌↓𝑋𝑋 first maps the clean LR images in domain 𝑌𝑌↓ to the true LR domain X. 

Then, the inverse generator 𝐺𝐺𝑋𝑋𝑌𝑌↓  pulls them back to the clean LR domain. These two 

generators are trained simultaneously to learn a pair of opposite mappings with cycle 

consistency, 𝐺𝐺𝑋𝑋𝑌𝑌↓ �𝐺𝐺𝑌𝑌↓𝑋𝑋(𝑦𝑦↓)� ≈ 𝑦𝑦↓. The discriminators D𝑋𝑋  and 𝐷𝐷𝑌𝑌↓  are trained to 

distinguish between the translated images and the real source 𝑦𝑦↓ and x, respectively. 

 

Fig. 19. Architecture of DA-CycleGAN for historical image super-resolution. 
 

Mapping from LR to HR. Upsampling mapping 𝑈𝑈𝑌𝑌↓𝑌𝑌in SR network is trained 

to reconstruct HR image y from the pseudo-clean LR image generated by 𝐺𝐺𝑋𝑋𝑌𝑌↓ �𝐺𝐺𝑌𝑌↓𝑋𝑋(𝑦𝑦↓)�. 

Hence, pixel-wise loss functions can be adopted to train upscalor 𝑈𝑈𝑌𝑌↓𝑌𝑌 . I denote the 

operation result of two inverse mappings 𝐺𝐺𝑋𝑋𝑌𝑌↓ �𝐺𝐺𝑌𝑌↓𝑋𝑋(𝑦𝑦↓)� as 𝑦𝑦↓.  

3.2 DA-CycleGAN Architecture  

To extract various degradations from historical images and restore details of the SR 

images, I proposed to use the DA module with powerful flexible adaption in the generative 
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network, as shown in Fig. 21. 

 

Fig. 20. Architecture of generator with Degradation-Adaptive module integrated. 
 

     Generators. The generators network 𝐺𝐺𝑋𝑋𝑌𝑌↓and 𝐺𝐺𝑌𝑌↓𝑋𝑋  are designed based on the 

RCAN [59] model. RCAN is a very deep SR network exploiting residual in residual (RIR) 

structure, consisting of several residual groups with long skip connections, proposed to 

solve the redundant low-frequency information problem during the feature extraction in 

the very deep convolutional networks. Fig. 21(a) illustrates the architecture of the generator 

network. I used the DA module as the building block and each residual group comprised 

five DA modules. The generator mainly consists of three parts, which are the first 

convolution block, five residual groups, and the   final convolution module, respectively. 

DA Module. The proposed DA module structure is shown in Fig. 21(b). Referring 

to the insights from [60], it's observed that filters trained for different restoration levels 

display similar visual patterns, but their weights differ, including mean and variance. 

Besides, by modulating the statistics of filters, the output of the network can be changed 

continuously to avoid producing either too sharp or too smooth restored images. Inspired 
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by these, I proposed to use a DA convolutional layer to adaptively modulate the kernel of 

a depth-wise convolution corresponding to the different degradations from the previous 

feature map. Specifically, the previously extracted degradation features F is first fed to two 

fully connected (FC) layers in the top branch and then is reshaped to form a convolutional 

kernel W. Later, the degradation feature F is processed with a 3×3 depth-wise 

convolutional kernel w and a following 1×1 convolution to output F1. Furthermore, 

motivated by the observation in an interactive image restoration work CResMD [61] that 

users can adjust the controlling coefficient based on controllable residual connections to 

determine the restoration level when handling multiple types of degradations in real-world 

applications, the DA convolutional layer can also learn to effectively generate the 

modulation coefficients based on the different degradation features to perform channel-wise 

degradation adaption. Specifically, degradation features are fed to another two FC layers 

in the bottom branch and a following sigmoid activation layer to produce channel-wise 

degradation modulation coefficients V. Then, channel components in degradation features 

F perform a rescale operation with V to produce 𝐹𝐹2. Finally, 𝐹𝐹2 is fused with 𝐹𝐹1 and fed to 

the subsequent layers to output the feature 𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜. 

Discriminators. LR discriminators D𝑋𝑋 and D𝑌𝑌↓  have the same architecture and use 

five convolution layers. The first four convolutional layers are followed by LeakyReLU 

layers without Batch Normalization (BN). 

 

3.3 Advanced SISR model Trans-CycleGAN 

3.3.1 Motivation 

Motivated by recent advances of Transformer and its variants that have shown 
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impressive performance in natural language processing and high-level vision tasks like 

semantic image segmentation, and object detection, I used Transformer to replace CNN-

based network to extract degradation features. Specifically, I followed the former DA-

CycleGAN framework but introduced a Transformer to handle deep degradation 

information. The advanced IR model in the proposal is called Trans-CycleGAN. The key 

component of Transformer is the self-attention (SA) mechanism that calculates response 

context in one position by a weighted sum of all other positions. SA has strong capability 

in capturing long-range dependencies. In this way, Transformer mitigates the shortcomings 

of CNNs (i.e., limited receptive field and inadaptability to input content). 

3.3.2 Trans-CycleGAN Architecture 

I kept the entire architecture of TransGAN the same as DA-CycleGAN, except the 

Generators. In Trans-CycleGAN, I used Transformer to replace RCAN module.  

 

Fig. 21. Architecture of Generator based on light-weight Transformer modules. 

As the Transformer model can mitigate the shortcomings of CNNs that is, limited 

receptive field and inadaptability to input content, I adopted Transformer to process image 

degradation information. Specifically, I kept the entire architecture of Trans-CycleGAN 
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the same as DA-CycleGAN, except the Generators. In Trans-CycleGAN, I used 

Transformer to replace RCAN module. 

3.3.3  Transformer-based Generative Network 

Same as in DA-CycleGAN, the two generators are inverse of each other. 

Transformer modules   were introduced to replace the convolution in the generators and 

a multiscale hierarchical design was adopted. The forward generator 𝐺𝐺𝑋𝑋𝑌𝑌↓  is a degradation-

removal Transformer while the inverse generator 𝐺𝐺𝑌𝑌↓𝑋𝑋 generates diverse forms of noise 

and blur. The generator architecture is shown in Fig. 22. 

Generator Pipeline. The degradation-removal Generator 𝐺𝐺𝑋𝑋𝑌𝑌↓ was used as an 

example to illustrate the Transformer architecture. Given an LR image I ∈  𝑅𝑅𝐻𝐻 × 𝐻𝐻×𝐶𝐶, the 

Transformer first employs a 3×3 convolutional layer to obtain shallow feature 𝐹𝐹0 ∈

 𝑅𝑅𝐻𝐻 × 𝐻𝐻 × 𝐶𝐶   (H×W is the image size and C denotes the number of channels). Subsequently, 

a 3-level symmetric encoder-decoder is utilized to obtain deep features 𝐹𝐹𝑑𝑑 ∈  𝑅𝑅𝐻𝐻 × 𝐻𝐻 × 2𝐶𝐶. 

More specifically, each level of encoder-decoder comprised certain Transformer blocks, 

and the number of blocks progressively increased from the top to the bottom levels. The 

encoder successively reduced its spatial size while enhancing its channel capacity. 

Conversely, the decoder takes the latent features 𝐹𝐹𝑙𝑙 ∈
𝐻𝐻
4

× 𝐻𝐻
4

× 4𝐶𝐶 progressively recover 

the spatial dimension representations. For feature downsampling and upsampling between 

each level, the pixel-unshuffle and pixel-shuffle operations [62] were utilized, respectively. 

After concatenating the encoder features with the decoder features through skip 

connections, a 1 × 1 convolutional layer was applied to reduce the number of channels by 

half at all levels (except the top one). At level 1, the Transformer blocks merged the low-
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level features from the encoder with the high-level features from the decoder resulting in 

the preservation of fine structural and textural details in the restored images. The 

refinement stage further enriched the deep features F𝑑𝑑  at high spatial resolution. 

Afterwards, a convolutional layer was applied to the refined features, followed by the 

addition of a residual connection. Finally, the residual image and the degraded input image 

were added to produce the final restored image. Next, I discuss the modules comprising 

the Transformer block. 

Multi-head Light-weight Transposed Attention (MLTA). To reduce its 

quadratic computational cost in global SA and enhance the Transformer’s suitability for 

image SR task, Lightweight Transposed Attention (MLTA) was employed: 

Attention(Q, K, V ) =  softmax �
𝐾𝐾𝑄𝑄
α
�𝑉𝑉 (3.1) 

where key (K) ∈ 𝑅𝑅𝐶𝐶 ×𝐻𝐻𝐻𝐻 , query  (Q) ∈ 𝑅𝑅𝐻𝐻𝐻𝐻 ×𝐶𝐶 , value (V) ∈ 𝑅𝑅𝐻𝐻𝐻𝐻 ×𝐶𝐶, and α is a 

learnable scaling parameter. 

In the Multi-Layer Transpose Attention (MLTA) mechanism, the process began by 

converting the layer-normalized tensor into query, key, and value projections. This 

conversion was achieved by applying 1×1 convolutions and 3×3 depth-wise convolutions. 

Notably, the depth-wise convolutions played a crucial role in emphasizing the local context 

before feature covariance computation. After obtaining the query and key projections, the 

query and key projections were reshaped so that their dot-product created a transposed-

attention map A of size 𝑅𝑅𝐶𝐶 ×𝐶𝐶, instead of 𝑅𝑅𝐻𝐻𝐻𝐻 ×𝐻𝐻𝐻𝐻. 

Gating Feed-Forward Network (GFN). GFN adopted depth-wise convolutions to 

encode information from neighboring pixels, helping to learn the local image structure. 
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Additionally, motivated by the observation that the nonlinear activation function GELU is 

not necessary for SR tasks and can be replaced by a more efficient multiplication ⊙ [6], 

the GFN was proposed to use the Simple Gate (SG). This directly splits the feature map 

into two parts (X, Y) in the channel dimension and multiplied them. SG is formulated as: 

SimpleGate(X, Y ) =  X ⊙ Y, (3.2) 

where ⊙ denotes element multiplication.  

3.3.4 Loss Functions 

Adversarial loss. I imposed an adversarial loss [34] on 𝐺𝐺𝑋𝑋𝑌𝑌↓ and 𝐺𝐺𝑌𝑌↓𝑋𝑋  to 

generate samples with the goal of fooling their discriminators discriminators D𝑋𝑋 and D𝑌𝑌↓ , 

respectively. Taken 𝐺𝐺𝑌𝑌↓𝑋𝑋  and D𝑌𝑌↓ as an example, the adversarial loss can be expressed as 

follows: 

𝐿𝐿𝑎𝑎𝑑𝑑𝑎𝑎�𝐺𝐺𝑋𝑋𝑌𝑌↓ ,𝐷𝐷𝑌𝑌↓ ,𝑋𝑋,𝑌𝑌↓� = 𝐸𝐸𝑦𝑦↓∼𝑃𝑃𝑌𝑌↓�𝑙𝑙𝑙𝑙𝑔𝑔𝐷𝐷𝑌𝑌↓(𝑦𝑦↓)� +  𝐸𝐸𝑥𝑥↓∼𝑃𝑃𝑋𝑋  [𝑙𝑙𝑙𝑙𝑔𝑔(1 − 𝐷𝐷𝑌𝑌↓�𝐺𝐺𝑋𝑋𝑌𝑌↓(𝑥𝑥)�)]    (3.3) 

where 𝑃𝑃𝑋𝑋(𝑃𝑃𝑌𝑌↓)  denotes the probability distribution of the domain 𝑋𝑋(𝑌𝑌↓). The forward 

mapping 𝐺𝐺𝑋𝑋𝑌𝑌↓  and the discriminator  𝐷𝐷𝑌𝑌↓  implement a two-player minimax game to 

optimize each other, min𝐺𝐺𝑋𝑋𝑌𝑌↓𝑚𝑚𝑚𝑚𝑥𝑥𝐷𝐷𝑌𝑌↓𝐿𝐿𝑎𝑎𝑑𝑑𝑎𝑎�𝐺𝐺𝑋𝑋𝑌𝑌↓ ,𝐷𝐷𝑌𝑌↓ ,𝑋𝑋,𝑌𝑌↓�.  Similarly, the inverse 

generator 𝐺𝐺𝑌𝑌↓𝑋𝑋 and the discriminator DX are optimized by the GAN loss, 

min𝐺𝐺𝑌𝑌↓𝑋𝑋 𝑚𝑚𝑚𝑚𝑥𝑥𝐷𝐷𝑋𝑋 𝐿𝐿𝑎𝑎𝑑𝑑𝑎𝑎(𝐺𝐺𝑌𝑌↓𝑋𝑋 ,𝐷𝐷𝑋𝑋 ,𝑌𝑌↓,𝑋𝑋). 

Cycle consistency loss. Considering that the framework needs to handle multiple 

degradations, for example, various unknown noises or distributions generated in LR source 

domain X, I utilized general cycle consistency loss [28] to perform unpaired image-to-
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image translation (i.e., X → Y→ X and Y → X → Y). Hence, I imposed the cycle 

consistency constraint for only one side. Cycle consistency loss is expressed as 

𝐿𝐿𝑐𝑐𝑦𝑦𝑐𝑐(𝐺𝐺𝑌𝑌↓𝑋𝑋,𝐺𝐺𝑋𝑋𝑌𝑌↓) =  �𝐺𝐺𝑋𝑋𝑌𝑌↓�𝐺𝐺𝑌𝑌↓𝑋𝑋 (𝑦𝑦↓)� − 𝑦𝑦↓�1 (3.4) 

With the one-side cycle consistency constraint, 𝐺𝐺𝑌𝑌↓𝑋𝑋  can perform a one-to-many 

mapping and mimic real degradations of the historical images. Consequently, the 

framework can deal with various noise types/distributions in the LR source domain X. 

Identity mapping loss. Identity mapping loss was introduced in the original 

CycleGAN acting as an effective stabilizer used to preserve the color of the input paintings 

[7]. In this proposal, I imposed the identity mapping loss for GXY↓ to avoid changing the 

color tone of the input image. 

       Lidt(GXY↓) =  �GXY↓(y↓) − y↓�1 (3.5) 

Geometry consistency loss. Geometry-consistency loss, as a reconstruction loss, 

first introduced in geometry-consistent generative adversarial network (GcGAN) [63], 

helps preserve the geometry of a scene for unsupervised domain mapping. I imposed the 

Geometry-consistency loss on GXY↓  that avoids flip or rotation bringing semantic 

distortions when mapping to the target domain: 

Lgeo(GXY↓) =  �GXY↓ −�𝑇𝑇𝐼𝐼−1(GXY↓(𝑇𝑇𝑖𝑖(𝑥𝑥)))/8
8

𝑖𝑖=1

�
1

 
(3.6) 

where {𝑇𝑇𝑖𝑖}𝑖𝑖=18  represents eight different patterns of flip and rotation of input images. 

Full objective of loss. By combining adversarial constraint with cycle consistency 

loss, identity mapping loss, and geometry-consistency loss, a remarkable unsupervised 
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domain mapping can be targeted. The full objective for the two generators and their 

corresponding discriminators is as follows: 

𝐿𝐿𝑜𝑜𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡 = 𝐿𝐿𝑎𝑎𝑑𝑑𝑎𝑎�𝐺𝐺𝑋𝑋𝑌𝑌↓ ,𝐷𝐷𝑌𝑌↓ ,𝑋𝑋,𝑌𝑌↓� + 𝐿𝐿𝑎𝑎𝑑𝑑𝑎𝑎�𝐺𝐺𝑌𝑌↓𝑋𝑋,𝐷𝐷𝑋𝑋,𝑌𝑌↓,𝑋𝑋� + λ𝑐𝑐𝑦𝑦𝑐𝑐𝐿𝐿𝑐𝑐𝑦𝑦𝑐𝑐�𝐺𝐺𝑌𝑌↓𝑋𝑋,𝐺𝐺𝑋𝑋𝑌𝑌↓�  

+ λ𝑖𝑖𝑑𝑑𝑜𝑜𝐿𝐿𝑖𝑖𝑑𝑑𝑜𝑜�𝐺𝐺𝑋𝑋𝑌𝑌↓� +  λ𝑔𝑔𝑔𝑔𝑜𝑜𝐿𝐿𝑔𝑔𝑔𝑔𝑜𝑜�𝐺𝐺𝑋𝑋𝑌𝑌↓�, 

(3.7) 

where hyperparameters λcyc, λidt and λgeo represent the contributions of each 

objective. To reconstruct an HR image from a pseudo-clean LR image generated by the 

correction network, I used UY↑Y as an amplifier in the SR network to perform upscaling. The 

SR network is also updated during the training of the correction network by using L1 loss: 

𝐿𝐿𝑖𝑖𝑑𝑑𝑜𝑜(𝐺𝐺𝑋𝑋𝑌𝑌↓) =  �𝑈𝑈𝑌𝑌↓𝑌𝑌(𝑦𝑦↓) − 𝑦𝑦�
1

 (3.8) 
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4 EXPERIMENTS 

4.1 Historical Face Image Datasets and Implementation Details 

LR Historical Face Image Dataset. I collected the LR image dataset by cropping 

faces from a large set of historical video sequences and further processed it with bicubic 

downsampling. In the LR image dataset, it had 10,000 downscaled 16 × 16 LR face images, 

of which 8,000 images   were used as a training dataset, and 2000 images were used as a test 

dataset. Fig. 23 shows samples from the LR image dataset. 

 

Fig. 22. Samples from our LR historical. 

The historical video dataset is drawn from the United States Marine Corps Film 

Repository. Historical imagery is defined as LR based on the fact that typical historical 

imagery has less than 300 dpi (dots per inch). Besides, due to the low quality of video 

capture devices during World War II, the produced historical images contain multiple 

types of degradations, for example,  blur, noise, and compression). Hence, LR images 

inherit the various complex degradations formed   in historical HR imagery, which means 

it has richer and more natural degradation features over synthetic fixed degradations. 
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HR Face Image Dataset. I used the HR face image dataset provided by Bulat et 

al. [25]. They collected 182,866 64 × 64 HR face images from the VGGFace2 [64], 

AFLW [65], Celeb-A [66], and LS3D-W [67]. The HR face images were cropped by 

using the face detector S3FD[68].  

Hyperparameters. For the experiments on real-world degradations, it is found that 

using x instead of  𝑦𝑦↓as an argument of the identity mapping loss produces better SR results 

[28]. Thus, I used the identity mapping loss as: 

𝐿𝐿𝑖𝑖𝑑𝑑𝑜𝑜(𝐺𝐺𝑋𝑋𝑌𝑌↓) =  �𝐺𝐺𝑋𝑋𝑌𝑌↓(𝑥𝑥) − 𝑥𝑥�
1

 (4.1) 

I set hyperparameters λ = 1 , λidt = 2 , λcyc = 1 , and λgeo = 1 . The network 

training is on 16 × 16 LR image set and 64 × 64 HR image set with an SR scale factor of 

4. 

4.2 Effectiveness of the Proposed DA-CycleGAN 

In this section, I evaluate the effectiveness of the proposed DA-CycleGAN for image 

restoration tasks. I conducted experiments on the historical face image dataset, benchmark 

SR datasets, and even the underwater image dataset to assess its performance. 

4.2.1 Performance Comparison on Historical Image Dataset 

This experiment evaluated the SR performance of the proposed DA-CycleGAN on 

the collected historical image dataset. I numerically and visually compared the method with 

two representative SR methods of the state-of-the-art (SOTA): CycleGAN-based 

unpaired pseudo SR method [28] and Transformer-based Real-world SwinIR [36]. Fig. 24 

presents example images for the visual performance comparison. It can be seen that SR 

results of Pseudo CycleGAN [28] still contain blurs or noises. Reconstruction result from 
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SwinIR exhibits distortion and over-sharpening to some extent, for example, nose and 

mouth are distorted in the first row, and facial skin is over-sharpened in the third row of 

Fig. 24. Notably, SwinIR cannot be retrained on unpaired datasets due to its supervised 

learning mechanism. The pre-trained Real-world SwinIR has an obvious performance drop 

when it super-resolves historical images. In summary, SwinIR has no superiority to 

reconstruct historical images. In contrast, the DA-CycleGAN can restore high-frequency 

details and alleviate the blurring artifacts, producing better restoration results with more 

realistic and     natural-looking details.  

Moreover, I also numerically compared the DA-CycleGAN with several SOTA SR 

method: EDSR [69], RCAN [59], Pseudo CycleGAN [28], Real-world SwinIR [36], and 

Real-ESRGAN [70]. Considering that the historical LR images had no corresponding HR 

references (ground-truth images), traditional full-reference image quality metrics, such as 

PSNR and SSIM, were not applicable in this case. Therefore, I adopted a no-reference 

image quality metric, Neural Side-By-Side [55], to evaluate the restored image quality. 

Neural Side-By-Side is a pretrained CNN-based model used to measure a no-reference 

image quality by predicting probabilities of being more preferable compared to its 

counterpart. Table II shows numerical comparison results on the historical face image 

dataset. Higher value of the metric indicates better performance. These numerical results 

indicate that the method produced perceptually better results than the SOTA SR methods. 
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Fig. 23. Sample performance comparisons on historical face image dataset. 

Mean opinion score (MOS) testing. Considering that human evaluation is more 

in agreement with the practical need than general image quality assessment metrics, like 

PSNR and SSIM, to make a fair comparison with existing SR models in terms of the 

perceptual quality of super-resolved historical images, I performed a MOS testing. MOS 

is the results of human evaluation of reconstructed images and the evaluation scores reflect 

only image quality and do not relate to their content [71].  

TABLE III 

 PERFORMANCE COMPARISON ON HISTORICAL FACE IMAGE DATASET 
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For MOS testing, specifically, first, I prepared a subset of LR images by randomly 

selecting 200 images from historical image dataset. Then, I employed the 7 different SR 

models respectively to super-resolve the LR images and obtained 7 versions of super-

resolved images correspondingly. Lastly, I asked 10 raters to rate the reconstructed images 

for perceptual quality on a five-point scale, where 1 is bad and 5 is excellent. For each 

method 2000 samples (200 images × 10 raters) were assessed. I adopted the average score 

of MOS test statistics. I found that the MOS test had good reliability as there was no 

noticeable difference between the ratings of the same image. The experimental results of 

the MOS test are presented in Table IV and Fig. 25. 

TABLE V 

PERFORMANCE COMPARISON BY MOS 
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Fig. 24. Color-coded distribution of MOS scores [4 × upscaling]. 

4.2.2  Generalization to different datasets 

Considering that real images from different scenes have various forms of 

degradation, it is necessary to study the generalizability of the proposed network on other 

datasets.  

 DA-CycleGAN SR generalization effectiveness is demonstrated on widely used 

benchmark SR dataset Set14 [72] and DIV2K [11], as shown in Table VI and Table VII, 

respectively.  

TABLE VIII.  

PERFORMANCE COMPARISON ON SET14 DATASET 

 

I first employed the SOTA CNN-based and GAN-based SR models on Set14 

dataset. As can be seen from Table IX, the DA-CycleGAN method outperformed all other 
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compared methods in terms of PSNR and SSIM. Fig. 26 shows the visual performance 

comparison on Set14. I can observe that the model produced sharper edges and finer details.  

TABLE X.  

PERFORMANCE COMPARISON ON DIV2K 

 

Besides, I compared the SR performance on benchmark DIV2K [11], which 

consisted of 800 high-quality (2K resolution) training images that were diverse in their 

content. The realistic-wild LR set simulated real “wild” LR images by a scale of 4 

downscaling, and noise addition. The degradation operations were the same within a single 

image but varied for different images. I augmented the training data with random flipping 

and rotating. All those models were re-trained on DIV2K. Evaluation was conducted on 

the DIV2K validation set with PSNR and SSIM assessment metrics. Table V presents the 

quantitative results. SwinIR outperformed all other SR methods and the DA-CycelGAN 

achieved the second best performance. Fig. 27 presents the visual SR performance on 

DIV2K. 
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Fig. 25. SR performance comparisons with other SR methods on Set14. 

 

 

 

Fig. 26. Sample performance comparisons with SOTA SR methods on DIV2K. 
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4.2.3  SR Experiments Results Analysis  

The proposed DA-CycleGAN and other five SOTA methods (SRGAN [71], 

SRResNet [71], EDSR [69], RCAN [59], Pseudo CycleGAN [28]) had consistent 

performance comparison results on three different datasets. SRGAN [71] introduced 

perceptual loss and adversarial loss to train a generative adversarial network in a relatively 

direct and coarse approach. SRRestNet [71] introduced an MSE loss and further improved 

the perceptual quality. EDSR [69] further improved the SR performance by removing the 

unnecessary batch normalization modules in conventional residual networks. RCAN [59] 

developed a residual in residual structure with a channel attention scheme and enhanced 

the super-resolved image quality. Target the absence of paired LR/HR images in real world, 

Pseudo CycleGAN [28] made use of pseudo HR as reference. Real-world SwinIR [36] 

outperformed all other SR methods on DIV-2K dataset. However, Real-world SwinIR had 

a severe performance degradation in historical images, as SwinIR was not re-trainable on 

noreference/unpaired dataset, due to its supervised learning mechanism. The DA-

CycleGAN embraces the benefits of the above SOTA SR methods and the proposed DA 

module integrated into generators with a residual in residual structure based on unpaired 

pseudo CycleGAN can handle various complex and unknown degradations. Therefore, 

DA-CycleGAN has great superiority in solving historical image restoration problems and 

can recover clearer and finer details. 

I further extended the application of DA-CycleGAN to demonstrate its 

effectiveness in image restoration tasks such as deblurring and color correction specifically 

targeted towards underwater images. This showcased the generalizability of DA-

CycleGAN in addressing multiple aspects of image quality enhancement in the challenging 
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underwater environment. Here, I kept the DA-CycleGAN structure the same as in SR 

experiments, just take the upscalor off and name the model as DA-CycleGAN-Water (see 

Fig. 28), as underwater images captured by modern digital cameras does not exhibit low-

resolution. 

 

Fig. 27. The structure of DA-CycleGAN-Water. 

Underwater Datasets and Implementation Details: The DA-CycleGAN-Water 

network was trained using an unpaired training approach, employing two distinct groups 

of underwater images: turbid images (domain X) and clear images (domain Y). Fig. 29 

shows samples from the training images set with the high variability in natural underwater 

scenes. For domain X, I collected a total of 2000 turbid underwater images, out of which 

1800 were utilized as the training dataset, while the remaining 200 images were reserved 

for testing purposes. On the other hand, domain Y comprises 1500 clear images. 
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Fig. 28. (a) and (b) Underwater turbid images. (c) and (d) Underwater clear images. 

Visually Performance Comparison: In this experiment, I assessed the restoration 

performance of the proposed method along with five SOTA models in terms of the 

perceptual quality. Fig. 30 showcases samples of the restored images for a visual 

performance comparison. ((a) Raw, (b) UDCP, (c) UGAN, (d) UWGAN, (e) Pseudo-

CycleGAN, (f) DA-CycleGAN-Water) The results indicate that the DA-CycleGAN 

outperformed the SOTA models in terms of color correction and the restoration of fine 

details. The visual comparison clearly demonstrates the superior quality achieved by the 

approach in enhancing the color accuracy and capturing intricate image details.  

Quantitative Performance Comparison: In order to make the experimental 

results more convincing, I employed the UIQM metric, which includes UICM, UISM, and 

UIConM, as a non-referenced measure to assess the quality of the restored images. The 

quantitative comparison results on the test set are presented in Table XI. A higher UIQM 

value indicates better image quality. These comparison results indicate that the method 

consistently produced perceptually superior results compared to other models, as 

evidenced by the higher UIQM scores achieved.  
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Fig. 29. Visual performance comparison on natural underwater image.  

Analysis of Experimental Results of Underwater Image Processing: Both 

visually and numerically, the proposed model and four other state-of-the-art (SOTA) 

methods consistently demonstrated comparable performance in the comparison results. 

The traditional modeling-based method UDCP exhibited high sensitivity to degradation 

estimation and modeling, limiting its ability to effectively restore severely degraded images. 

While UGAN introduced gradient loss to CycleGAN, it fell short in recovering fine details. 

On the other hand, UWGAN, leveraging dense concatenation operations, achieved better 

detail preservation and reduced color shifts compared to UGAN. Pseudo-CycleGAN, 

which tackles the lack of underwater image pairs for training, utilizes pseudo clear 

underwater images as references. In contrast, the proposed DA-CycleGAN-Water 

combines the strengths of the aforementioned SOTA methods and incorporates the 

distortion adaptive (DA) block within the CycleGAN framework. This integration 

empowered the method with robust adaptability to diverse underwater degradations and 
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color distortions. As a result, this approach surpassed other methods in effectively 

recovering the finer details and color correction.  

TABLE XII 

QUANTITATIVE PERFORMANCE EVALUATION 

  

4.3  Effectiveness of the Proposed Trans-CycleGAN 

 In this section, I evaluate the effectiveness of the proposed Trans-CycleGAN 

through experiments on the historical face image dataset and benchmark SR datasets with 

multiple synthetic degradations. 

4.3.1  Performance Comparison on Historical Image Dataset  

This experiment evaluates the SR performance of the proposed Trans-CycleGAN 

on the collected historical image dataset. I numerically and visually compared the method 

with the topperforming SR methods: CycleGAN-based unpaired pseudo SR method [28], 

Transformer-based SwinIR [36], and Hybrid Attention Transformer (HAT) [40]. 
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Fig. 30. SR performance comparisons on historical face image dataset. 

Fig. 31 presents example images for the visual performance comparison. The 

results obtained with Pseudo-CycleGAN exhibit some distortion and over-sharpening, as 

seen in the distorted nose in the first row and the over-sharpened cap brim in the second 

and fourth rows. HAT-L [40] is not able to effectively remove blurriness and noise. 

Similarly, SwinIR also shows an issue with over-sharpening, as demonstrated by the cap 

badges in both the top and bottom rows. In contrast, Trans-CycleGAN achieves the best 

restoration results, with clearer and more natural-looking details. These findings 

demonstrate the effectiveness of the degradation-removal Transformer using unpaired 

learning, which can learn complex degradation information and capture long-range pixel 
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dependencies in historical images, leading to the more accurate reconstruction of SR. To 

ensure a fair comparison of the perceptual quality of super-resolved historical images with 

existing SR models, I conducted Mean Opinion Score (MOS) testing. MOS involves 

human evaluation, where the scores solely reflect image quality and are unrelated to the 

image content [74]. In the MOS testing, I randomly selected 500 LR images from the 

historical dataset and employed 7 different SR models to generate super-resolved versions 

of these images. Five raters then assessed the perceptual quality of these images on a five-

point scale. Each method was evaluated with a total of 2500 samples (500 images × 5 

raters). I calculated the average scores from the MOS test statistics. The results, presented 

in Table XIII, demonstrate the reliability of the MOS test as there were no significant rating 

differences for the same image. The experimental results of the MOS test are presented in 

Table XIV. 

TABLE XV 

VISUAL PERFORMANCE COMPARISON EVALUATED BY MOS 

 

Additionally, I conducted a numerical comparison between the proposed Trans-

CycleGAN and other state-of-the-art (SOTA) SR methods. Since the historical LR images 

lack corresponding HR references, traditional full-reference image quality metrics such as 

PSNR and SSIM could not be applied in this scenario. Instead, I used the Neural Side-By-
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Side [55] metric, which is a pretrained CNN-based model, to assess the quality of the 

restored images. It predicts the likelihood of an image being preferred over its counterpart 

without requiring reference images. Table XVI presents the numerical comparison results 

on the historical face image dataset using this metric. These results clearly show that the 

method outperformed the state-of-the-art (SOTA) SR methods in terms of producing 

sharper edges and visually faithful, pleasing images. 

TABLE XVII 

 PERFORMANCE COMPARISON ON HISTORICAL FACE IMAGE DATASET 

 

4.3.2  Generalization to Different Datasets 

To evaluate the SR generalization of the proposed Trans-CycleGAN model, I 

conducted the SR experiment on common evaluation dataset Set14 [72]. Here, to have a 

fair comparison I retrained the Trans-CycleGAN on DIV-2K. Fig. 4.10 shows example 

images for visual comparison, while Table XVIII shows numerical comparison results in 

terms of PSNR and SSIM. The results indicate that the Trans-CycleGAN significantly 

outperformed the state-of-the-art SR methods. 
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TABLE XIX 

PERFORMANCE COMPARISON ON SET14 ×4 

 

 

Fig. 31.  Sample performance comparisons with SOTA SR methods on Set14.  
 

Moreover, I evaluated the effectiveness of the proposed method on general 

degradations: 1) additive white Gaussian noises with noise levels σ𝑡𝑡𝑜𝑜𝑖𝑖𝑡𝑡𝑔𝑔 = 5, 10, and 15; 2) 
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Gaussian blur with blur levels σ𝑏𝑏𝑙𝑙𝑜𝑜𝑡𝑡 = 5, 8, and 10. I trained separate models for each noise 

and blur level on DIV2K. Table 10 shows our method Trans-CycleGAN produced the best 

results, except on deblurring σ𝑏𝑏𝑙𝑙𝑜𝑜𝑡𝑡 = 8. Thus, the above experiments demonstrate Trans-

CycleGAN’s strong generalization ability in SR. 

TABLE XX 

PSNR RESULTS OF ×4 SR ACHIEVED ON SYNTHETIC DEGRADATIONS 

 

4.3.3  Experiment Results Analysis  

The proposed Trans-cyleGAN and six other competitors showed consistent 

performance comparison results on both historical and synthetic LR datasets. SRGAN [74] 

introduced perceptual loss and adversarial loss to train a generative adversarial network in 

a relatively direct and coarse approach. EDSR [69] further improved the SR performance 

by removing the unnecessary batch normalization modules in conventional residual 

networks. RCAN [59] developed a residual in residual structure with a channel attention 

scheme and enhanced the super-resolved image quality. To address the absence of paired 

LR/HR images in the real world, Pseudo-CycleGAN [28] made use of pseudo HR as a 

reference. Hybrid attention Transformer HAT-L [40] further combined channel attention 

and self-attention schemes and slightly enhanced the SR performance. Transformer 

architecture-based SwinIR [36] greatly improved SR performance by benefiting from self-
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attention. However, SwinIR and HAT-L are not re-trainable on a no-reference/unpaired 

dataset, resulting in severe performance degradation in historical images, for example, 

super-resolution results still have missing details and cannot remove blurs completely. In 

contrast, the Trans-CycleGAN embraced the benefits of the above SOTA SR methods, and 

the introduced Transformed-based generators with Transposed self-attention based on 

Pseudo CycleGAN can handle various complex unknown degradations and recover the 

finer texture details. 

4.3.4  Ablation Study 

To demonstrate the effectiveness of the network structure, I conducted an ablation 

study by replacing generator modules from the baseline Pseudo CycleGAN [28]. I trained 

each model on DIV2K. PSNR is computed on Set14 ×4. Table XXI shows the influence of 

MLTA and GFN. Compared to the baseline, MLTA with gated-Dconv feed-forward 

network (GDFN) provides a significant gain of 5.94 dB over the baseline. This indicates 

that the MLTA-based generator is much more effective in image reconstruction although 

it brings the computation load. Furthermore, Table XXII demonstrates that the proposed 

Gating Feed-Forward Network (GFN) has fewer parameters than GDFN and can further 

bring a performance gain of 0.15 dB.  

TABLE XXIII.  

ABLATION EXPERIMENTS FOR THE GENERATOR BLOCK 
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5. CONCLUSION AND FUTURE WORKS  

5.1  Conclusion 

 In this dissertation, I presented two effective unpaired learning methods, DA-

CycleGAN and Trans-CycleGAN, for real-world image restoration. The introduced 

distortion adaptive (DA) module with strong flexible adaption in the CycleGAN can learn 

various degradations or distortions in a variety of scenes like turbid underwater, historical 

images), recover the details, and enhance image contrast and visibility. Trans-CycleGAN 

embraced the benefits of CycleGAN and Transformer and had an advantage in capturing 

long-range dependencies by the global self-attention mechanism. Experiments conducted 

on different real-world image datasets visually and numerically demonstrated that the 

proposed DA-CycleGAN and Trans-CycleGAN can generate more desirable results in 

terms of color correction and blurriness removal compared to the existing works. The 

presented two networks’ effectiveness makes them well suited to restore real-world images. 

 5.2  Future Works  

The future works will focus on the following tasks: (1) collect more real-world 

images from different scenes like underwater images, as learning samples for the network 

to act as all-in-one solution; (2) study how to simplify the computation of global attention 

mechanism in Transformer; and (3) even though the improvement of algorithm can speed 

up the training process to some extent, I still need a breakthrough on hardware acceleration.  
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