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Abstract

Image layer separation refers to one series of problems that try to de-
couple the input image into different component layers. While it has
many practical applications, it is very challenging to solve due to its
ill-posedness nature. Usually additional information and assumptions
are required to make the problem tractable. In this thesis we focus on
three types of specific layer separation problems – reflection separation,
intrinsic images decomposition, and haze removal. We try to find our
solutions to these problems by using different information or imposing
new constraints. We first describe our approach for reflection removal,
by using a small set of input image captured from different viewpoints.
Next a layer separation method for single image input is presented with
application to both reflection removal and intrinsic images estimation.
The third work targets on the specific problem of recovering the vis-
ibility in nighttime haze scene. Besides these three layer separation
works we also describe an application of layer separation that aims to
remove compression artifacts raised in image contrast boosting. In all
four works, our solutions show excellent performance in experimental
results that are either on par with or superior to the current state-of-the-
art. A summary chapter is included to summarize our contributions.
In the end of the summary chapter, potential future directions are also
presented.
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Chapter 1

Introduction

1.1 The Problem of Image Layer Separation

Figure 1.1: This image captured before a window contains two layers – background
and reflection.

Some computer vision tasks can be considered as layer separation problems

where the imaging formation is modeled as being composed of different layers.

Figure 1.1 shows such an image which contains an additional layer of reflection

as it is taken in front of a window. In this thesis, besides the window reflection

problem, we focus on the other three specific layer separation tasks, namely intrinsic

1
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Figure 1.2: Examples of the four layer separations targeted in this thesis. The left
column shows the inputs and the rest shows the separated layers from the input.

images, dehazing, and structure-texture decomposition. Given the input image,

the task of layer separation tries to decompose it into multiple layers for different

purposes. These goals can be briefly summarized as follows (examples are shown

in figure 1.2):

Reflection removal tries to separate the reflection interference and recover the

clear background scene when imaging a scene behind glass window (the first row

in figure 1.2).

2



CHAPTER 1. Introduction

Intrinsic images estimation aims to separate a given input image into its materi-

al related properties known as reflectance or albedo, and its light-related properties,

such as shading (the second row in figure 1.2).

Haze removal also referred to as dehazing, aims to recover the visibility of the

scene from haze degradation. It usually models the haze image as a superposition

of two layers– direct transmission, describing the scene’s radiance with its decay,

and airlight which results from scattered light and lead to the shift of scene color

(the third row in figure 1.2).

Structure-texture decomposition assumes the image as composed of one struc-

ture layer, corresponding to the main large objects in the image, and one textural

layer, corresponding to the fine details (the fourth row in figure 1.2).

Successful image layer separation is highly desired. In some cases, we want to

remove the influence of one layer and get the clear recovery of another. Reflection

removal and haze removal are two such examples where we want a clean image

without the degradation by reflection or haze. Layer separation can also be used

as a pre-processing step to facilitate other computer vision tasks and computer

graphics applications. Take intrinsic image decomposition for example, there are

many image editing applications like relighting, recoloring, rematerialing based

on intrinsic images (e.g. [Barron and Malik 2012]). In addition, the shape-from-

shading technique [Zhang et al. 1999], inferring object geometry from shading

changes, requires a clean input image of shading which can also be obtained from

intrinsic image decomposition. Another layer separation technique, the structure-

texture decomposition, is shown to be useful for low level vision tasks like optical

flow estimation [Sun et al. 2010], tone mapping [Durand and Dorsey 2002], JPEG

artifacts removal [Li et al. 2014] etc.

3



CHAPTER 1. Introduction

Layer separation 

Figure 1.3: This figure shows the ill-posed nature of the layer separation problem.
Given an single input image, there are multiple valid solutions as shown here.

Mathematically, many of the layer separation problems can directly take or can

be derived into the following form:

I = L1 + L2, (1.1)

where I is the observed image and it is modeled as a linear combination of the two

layers L1 and L2. The detail of the two layers for different problems will be given

in chapter 2. With two unknown layers to be solved and only one known input

image, there are infinite number of possible decomposition solutions to the problem

as shown in figure 1.3. Therefore the problem of layer separation is inherently an

ill-posed one. To make this problem tractable, additional information is needed.

With the additional information as constraint, the ill-posedness may be eased and

4
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a most likely explanation of the two layers may be found.

There are many prior works addressing layer separation problems which pro-

pose to use information supplied either from user indication (e.g. [Levin and Weis-

s 2007]), from multiple images (e.g. [Gai et al. 2012]), or from learned statistics

(e.g. [Bousseau et al. 2009]). Prior works have also made different assumptions

for applying the methods. A complete review and analysis of these related works

can be found in chapter 2. In short, while recent methods show the improvements

on the performance of layer separation, there are still a few limitations in current

methods which restrict their application to practical use. First of all, some meth-

ods make very rigid assumptions. For example, the reflection removal methods

of [Szeliski et al. 2000; Gai et al. 2012; Guo et al. 2014] assume the scenes are pla-

nar. Secondly, some recent methods use complicated modelling and optimization

methods, making the algorithm very slow in generating results. For instance, the

state-of-the-art intrinsic image method of [Gehler et al. 2011] takes more than 10

minutes to generate a 400 × 500 decomposition result even on a modern machine.

Moreover, there is still need to find better constraint to improve the quality of

layer separation result. Layer separation remains a challenging problem and more

efficient and robust solutions are needed for practical use.

1.2 Our Contributions

The goal of our work is to design robust and efficient methods for the layer sep-

aration problem. Since image layer separation is a broad topic, our study cannot

address all layer separation problems at the same time. We just choose reflec-

tion separation, intrinsic image decomposition, and nighttime haze removal as our

5
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main focus. We also present an application for the structure-texture decomposition.

Specifically, we identified the following issues to address:

1. Reflection separation methods using motion cue require no additional equip-

ment during the capturing, which is promising for casual imaging. However

current motion-based approaches require the scene to be planar and the lay-

ers to be static. This is rarely met in real cases. We examine how to relax these

constraints and make the technique more practical in use.

2. Most of the layer separation methods used multiple images or a single image

with user markups. Automatic single image layer separation is the most

difficult case due to the severe ill-posedness. We explore the possibility of

separating layers in a single image automatically with high quality results.

We also are interested in a fast solution to the layer separation problems.

3. Existing dehazing methods always assume a daytime haze scenario. These

methods tend to fail for nighttime scenes since the nighttime scenes contain

active light sources, such as street lights, car lights, building lights, etc. These

lights will cause a spatial varying environmental light color and introduce a

prominent glow to the scene due to the multiple scattering effect [Narasimhan

and Nayar 2003]. These two factors are not accounted for in the current

daytime haze model. We examine the daytime dehazing model and adjust it

to nighttime scene by introducing new terms.

4. JPEG artifacts reduction is a classic problem in signal processing which has

been addressed intensively for decades. Existing methods, however, are

unsuitable for dealing with the artifacts amplified in contrast enhancement.

6
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When applied as pre-processing, existing methods tend to over-smooth an

image. When applied as post-processing, these are often ineffective at re-

moving the boosted artifacts. We want to design a new pipeline which can

suppress the compression artifacts in contrast enhancement. We consider a

layered approach which requires layer separation as the first step.

In this thesis, four distinct works are proposed which aim to provide solutions

to above issues. These four works correspond to chapters 3, 4, 5, 6 in the thesis.

Specifically, the contributions of these works can be summarized as follows:

[Chapter 3] This work introduces an automatic method for removing reflection

interference when imaging a scene behind a glass surface. Our approach exploits

the subtle changes in the reflection with respect to the background in a small set

of images taken at slightly different viewpoints. Unlike previous approaches that

exploit motion, our approach does not make any assumptions regarding the back-

ground and reflected scenes geometry, nor requires the reflection to be static. This

makes our approach practical for use in casual imaging scenarios. Our approach is

straight forward and produces good results compared with existing methods. This

work has been published in ICCV’2013 [Li and Brown 2013].

[Chapter 4] In this work, we address the problem of extracting two layers from

an image where one layer is smoother than the other. This problem arises most

notably in intrinsic image decomposition and reflection interference removal. We

introduce a novel strategy that regularizes the gradients of the two layers such

that one has a long tail distribution and the other a short tail distribution. We

formulate our problem in a probabilistic framework and describe an optimization

scheme to solve this regularization with only a few iterations. We have applied our

7
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approach to the intrinsic image and reflection removal problems. It demonstrates

high quality layer separation on par with other techniques, but being significantly

faster than prevailing methods. This work has been published in CVPR’2014 [Li

and Brown 2014].

[Chapter 5] To address nighttime dehazing, we introduce a new nighttime haze

model that models glow in addition to the direct transmission and airlight. The

basic idea is to incorporate a glow term into the standard haze model. This results

in a new model that has three terms: the direct attenuation, airlight and glow.

Working from this new model, we propose an algorithm to first decompose the

glow from the input image. This results in a new haze image with reduced glow,

but still containing haze and potentially multi-colored light sources. To address

this, a spatially varying atmospheric light map which locally encodes different light

colors is estimated. From this atmospheric map, we calculate the transmission, and

finally obtain the nighttime scene radiance. Our estimated scene radiance has better

visibility, with reduced glow and haze and does not suffer from color shifts due to

the spatially varying lights. This work has been published in ICCV’2015 [Li et al.

2015b].

[Chapter 6] Unlike previous three works which focus on how to decouple layers

in images, this work is an application of layer separation. It adapts layer separation

as the key to address the JPEG artifacts which arise in contrast enhancement. While

contrast enhancement boosts the image appearance, it can unintentionally boost

unsightly image artifacts, especially artifacts from JPEG compression (see figure 1.4

for example). To resolve this problem, we propose a framework that suppresses

compression artifacts as an integral part of the contrast enhancement procedure.

We show that this approach can produce compelling results superior to those

8
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Figure 1.4: This figure shows the problem of arising artifacts in image contrast
enhancement. Our method in chapter 6 can provide better results.

obtained by existing JPEG artifacts removal methods for several types of contrast

enhancement problems. This work has been published in ECCV’2014 [Li et al.

2014].

1.3 Thesis Organization

This thesis is organized as seven chapters. This first chapter provides an introduc-

tion to the layer separation problems with our goals and our contributions present-

ed. The following chapter 2 provides more background on some layer separation

problems that are related to our works and gives details to prior works address-

ing these problems. The next four self-contained chapters (3, 4, 5, 6) describe our

works addressing different layer separation problems or developing applications

for existing layer separation techniques. The whole thesis is concluded in chapter 7

with future directions discussed.

9



Chapter 2

Background and Related Work

As we have mentioned in chapter 1, the problem of layer separation is an ill-posed

one and needs additional constraints to make it tractable. In this chapter, we will

provide more background for the three layer separation problems being presented

in chapter 3, 4, 5 with their related prior works being reviewed. For the layer

separation application presented in chapter 6, we leave the related work in its own

chapter.

2.1 Reflection Removal

There are situations when a scene must be imaged behind a pane of glass (e.g. on

street, in art museums, see figure 1.1 for example). This is not a conducive setup for

imaging as the glass will produce an unwanted layer of reflection in the resulting

image. This problem is a typical layer separation problem as described in chapter

1, where the captured image I is a linear combination of a reflection layer LR and

10
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Image Gradient Gradient histogram 

Figure 2.1: Natural image statistics illustration. This shows one natural image, its
gradient map and the gradient histogram plot. The gradient histogram of a natural
image centers at zero and drops fast which forms a long-tail shape.

the desired background scene, LB, as follows [Levin and Weiss 2007]:

I = LR + LB. (2.1)

The goal of reflection removal is to separate LB and LR from an input image I. In

order to solve this ill-posed problem, different methods explore different additional

information or constraints. These additional information and constraints come

from different types of input used. Therefore according to the input we categorize

the works in reflection removal into three classes:

Single image method Levin and Weiss [Levin and Weiss 2007] proposed a method

where a user labelled image gradients as belonging to either background or reflec-

tion. In addition to make the agreement with the markup, it also employs a strategy

that imposes a gradient sparsity prior on the recovered layers. The gradient spar-

sity prior, also called the natural image prior (see figure 2.1 for illustration), has

been shown to be successful in many ill-posed low-level vision problems where

11
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Input Background Reflection 

Figure 2.2: User-assisted single image reflection removal [Levin and Weiss 2007]
illustration. An input image containing reflection is labelled by the user to indicate
where are the background edges and reflection edges (yellow/blur colors). After
an optimization, each individual layer can be recovered as shown in the middle
and right column. Their associated gradient histograms are also plotted to show
that both of them follow the long-tail distribution.

multiple solutions are possible (e.g. image deblurring [Fergus et al. 2006]). The ba-

sic idea is to require the image gradient histogram to have a long-tail distribution.

With proper user labelling, their method produced compelling results as shown in

figure 2.2. One limitation with their method is that the results heavily rely on the

quality of user mark-ups. It needs intensive and careful user labelling to guarantee

a high quality layer separation.

Statistics methods A more common strategy is to use multiple images. Some

methods assume a stationary camera that is able to capture a set of images with

different mixing of the layers through various means, e.g. rotating a polarized

lens [Farid and Adelson 1999; Kong et al. 2012; Ohnishi et al. 1996; Shechner et al.

1999; Shechner et al. 2000], changing focus [Schechner et al. 2000], or applying

a flash [Agrawal et al. 2005] (see figure 2.3). With some statistic techniques like

independent component analysis (ICA), each independent layer can be recovered.

12
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Flash/no flash Changing polarizer angle Changing focus 

Figure 2.3: This shows some example inputs for statistics based methods that use
flash/no flash pair [Agrawal et al. 2005], polarized lens [Kong et al. 2012], and
focus [Schechner et al. 2000].

While these approaches demonstrate good results, the ability of controlling focal

change, polarization, and flash may not always be possible. Sarel and Irani [Sarel

and Irani 2004; Sarel and Irani 2005] proposed video based methods that work by

assuming the two layers, reflection and background, to be statistically uncorrelated.

These methods can handle complex geometry in the reflection layer, but require a

long image sequence such that the reflection layer has significant changes in order

for a median-based approach [Weiss 2001] to extract the intrinsic image from the

sequence as the initial guess for one of the layers.

Motion based methods The third category of reflection removal techniques ex-

ploits motion between the layers present in multiple images. These approaches

require no additional equipment as in statistics methods. The user just needs to

13
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… … 

I1 I8 I15 

Figure 2.4: This shows three input samples from one input sequence containing 15
images for motion based method. Images are from [Guo et al. 2014].

move the camera and capture the same scene at different viewpoints. One issue

with changing viewpoint is to handle alignment among the images. Szeliski et

al. [Szeliski et al. 2000] proposed a method that could simultaneously recover the

two layers by assuming they were both static scenes and related by homography

transformations. Gai et al. [Gai et al. 2012] proposed a similar approach that aligned

the images in the gradient domain using gradient sparsity, also assuming static

scenes and homography motion. The most recent motion base method, [Guo et al.

2014], again assumed that the motion of each layer is a homography, and proposed

a low-rank approximation formulation for the layer separation. One sample input

sequence of motion based reflection separation method can be found in figure 2.4.

The homography motion used in these methods lead to one major limitation that

these methods work well only on planar scenes, like the case shown in figure 2.4.

Tsin et al. [Tsin et al. 2006] relaxed the planar scene constraint in [Szeliski et al.

2000] and used dense stereo correspondence with stereo matching configuration

which restricts the camera motion to unidirectional parallel motion. Therefore,

even though motion based methods are more casual in use, the constraints on

14
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scene geometry or restricted motion of the camera limit the type of scenes that

can be applied. In chapter 3, we will present our motion based reflection removal

solution without using the planar scene and static reflection constraint.

2.2 Intrinsic Image Decomposition

The intrinsic images problem was first raised by Barrow and Tenenbaum [Barrow

and Tenenbaum 1978]. The intrinsic image model assumes that an image scene is

the product of a scene’s reflectance and illumination at each pixel, expressed as

I = RL, (2.2)

where R is the reflective property or albedo at each pixel and L is the illumination

falling on this pixel. The multiplication here is performed element-wise. Intrinsic

image decomposition’s aim is to estimate R and L given an input I. This problem

can be reformulated into the form in equation (1.1) by taking the log at both side,

i.e.

log(I) = log(R) + log(L). (2.3)

One of the earliest works addressing intrinsic image decomposition was the

Retinex algorithm [Land and McCann 1971] that employed simple heuristics on

local edges. Other intrinsic image decomposition methods using multiple im-

ages [Weiss 2001] or using user markup [Bousseau et al. 2009] have been proposed

and shown to produce good results in some cases. More works focus on automatic

single image intrinsic image estimation. Many later works [Grosse et al. 2009; Shen

et al. 2008; Tappen et al. 2005] followed the idea of the Retinex method and focused
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Figure 2.5: This shows four exemplar input and its associated ground truth re-
flectance and shading images in MIT dataset [Grosse et al. 2009].

on separating reflectance and illumination edges. These methods are referred to as

edge-based methods. Among them, the work of [Tappen et al. 2005] proposed to use a

learned classifier to label edges and then use a Markov Random Field to propagate

the initial guesses with regularization. The authors of [Grosse et al. 2009] extend-

ed the original Retinex algorithm to work on full RGB color images. Their work

also provided a ground-truth dataset (the MIT dataset, see 2.5 for sample images

) for intrinsic images containing 16 real objects. Surprisingly, according to their

survey [Grosse et al. 2009], just extending the Rentix approach to color images was

the top performing algorithm at that time.

Latest methods adopt complicated modelling and optimization. Unlike edge-

based methods which rely on local information, these new methods share the idea
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Figure 2.6: This image shows the notion of “global sparsity” in reflectance layer.
This ground true reflectance image from MIT dataset [Grosse et al. 2009] contains
only seven reflectance colors as listed below.

that there is a sparse set of reflectance value present in the scene (as illustrated

in figure 2.6), which is usually referred to as global sparsity prior [Barron and

Malik 2012; Gehler et al. 2011; Shen and Yeo 2011; Zhao et al. 2012]. For example,

the work in [Gehler et al. 2011] used the Conditional Random Field (CRF) and

modeled the global sparsity as a global potential. In the work of [Barron and Malik

2012] the authors forced the global sparse reflectance by minimizing a measure of

global entropy on reflectance values. They also proposed to solve intrinsic image

decomposition, and shape from shading together in a unified framework. These

global approaches achieve excellent results on the MIT dataset. However, in order

to obtain a global solution, they usually require huge computational complexity in

optimization (except [Zhao et al. 2012] which derived a closed-form solution). In

chapter 4, we will propose a new edge-based method which can get comparable

results with those global methods, while being significantly faster in computation.
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Haze image I Scene radiance R Atmospheric light A Transmission t

Figure 2.7: This shows the components in haze removal using standard haze model.

2.3 Haze Removal

The presence of haze significantly degrades the quality of an image, which is

due to tiny particles floating in the air that adversely scatter the line of sight of

lights rays entering the imaging sensor. In particular, light rays are scattered-out to

directions other than the line of sight, while other light rays are scattered-in to the

line of sight. The scattering-out process causes the scene reflection to be attenuated.

The scattering-in process creates the appearance of a particles-veil (also known as

airlight) that washes out the visibility of the scene.

A number of methods have been developed to address visibility enhancement

for hazy or foggy scenes from a single image (e.g. [Tan 2008; Fattal 2008; He et al.

2011; Meng et al. 2013; Tang et al. 2014; Fattal 2014]). The key to their success relies

on the optical model and the possible estimation of its parameters, particularly

the atmospheric light and transmission. The standard haze model [Koschmieder

1925] describes a hazy scene as a linear combination of the direct transmission and

airlight as following:

18
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I(x) = R(x)t(x) + L(1 − t(x)), (2.4)

where I(x) is the observed color at pixel x, R(x) is the scene radiance when

there is no haze or fog particles. There is one more fractional term t which is

the transmission factor indicating the portion of scene reaching the camera. The

transmission factor is related to the scene depth as t(x) = exp(−βd(x)), where the

term β is the attenuation factor of the particles, and d is distance between the camera

and the object or scene. The two terms R(x) and t(x) multiply together to form the

direct transmission. The last term L(1− t(x)) is the airlight, representing the particle

veil induced by the scattering-in process by the atmospheric light, L, which is

assumed to be globally uniform. Example of these components are illustrated in

figure 2.7.

Given a color image I, the main goal of single image dehazing is to recover the

scene’s reflection R, or at least to enhance the visibility of R. The most commonly

employed steps to achieve this goal is to first estimate the globally uniform atmo-

spheric light, L, and then to estimate the transmission t(x). Having obtained these

two components, estimating R for every pixel becomes straightforward. Most of

the methods assume that the atmospheric light is present in the input image and

can be estimated by the brightest region in the image. Although, this estimation is

a crude approximation, in most cases it works adequately. An exception applies to

[Fattal 2014], which utilizes the atmospheric light estimation proposed in [Sulami

et al. 2014]. The method [Sulami et al. 2014] estimates the globally uniformed

color of the atmospheric light by using small patches of different reflections that

form color lines in RGB space and estimates the magnitude of the atmospheric
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light by minimizing the distance between the estimated shading and the estimated

transmission for different levels of transmission. Having estimated the atmospher-

ic light, these methods estimate the transmission using various cues, such as local

contrast [Tan 2008], independence between shading and transmission [Fattal 2008],

dark channel [He et al. 2011], boundary constraint [Meng et al. 2013], learned re-

gressor [Tang et al. 2014] and more. The methods differentiate themselves from

each other mainly on the cues used for estimating the transmission. All of these

aforementioned methods use the standard dehaze model and work well on daytime

haze scenes. We will show in chapter 5, for nighttime haze scenes, this standard

model and the methods based on this model may not be suitable. We will also

present our solution to this problem in chapter 5.

2.4 Summary

This chapter has provided detail background for the problems of reflection re-

moval, intrinsic image decomposition, and haze removal. Related works for these

problems have been reviewed with their limitations discussed. Our works in this

thesis focus on solving these limitations as mentioned in section 1.2. In the next

chapter, we begin to present our first work for motion based reflection removal .
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Chapter 3

Exploiting Reflection Change for

Automatic Reflection Removal

In this chapter we describe our multi-view approach for the problem of reflection

removal. Key to our idea is to use dense correspondence to align the images from

different viewpoints. This will remove the planar constraint underlying homog-

raphy motion used in previous methods. After the alignment, a pixel-wise com-

parison can be made across the input set that gradients with variation across the

image set are assumed to belong to the reflected scenes while constant gradients are

assumed to belong to the desired background scene. By correctly labelling gradi-

ents belonging to reflection or background, the background scene can be separated

from the reflection interference. Experimental comparisons with prior works and

a discussion will also be presented at the end of this chapter.
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3.1 Introduction

As described in chapter 2, an image I captured before glass window can be modelled

as a linear combination of a reflection layer LR and the desired background scene LB

as I = LR + LB. In order to solve this problem, one single image reflection removal

method by Levin and Weiss [Levin and Weiss 2007] requires additional user mark-

ups as constraint and force gradient sparsity prior to both of background and

reflection layers. Other methods usually use multiple images. Techniques closer

to ours exploit motion between the layers present in multiple images. However, as

pointed out in chapter 2, their constraints on scene geometry or assumed motion

of the camera limit the type of scenes that can be processed.

Our proposed method in this chapter builds on the single-image approach [Levin

and Weiss 2007] , but removes the need for user markups by examining the relative

motion in a small set (e.g. 3-5) of images to automatically label gradients as either

reflection or background. This is done by first aligning the images using SIFT-flow

and then examining the variation in the gradients over the image set. Gradients

with more variation are assumed to be from reflection while constant gradients are

assumed to be from the desired background. While a simple idea, this approach

does not impose any restriction on the scene or reflection geometry. This allows a

more practical imaging setup that is suitable for handheld cameras.
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Input images
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I1 (ref)
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Figure 3.1: This figure shows the pipeline of our approach: 1) warping functions
are estimated to align the inputs to a reference view; 2) the edges are labelled as
either background or foreground based on gradient frequency; 3) a reconstruction
step is used to separate the two layers; 4) all recovered background layers are
combined together to get the final recovered background.

3.2 Method

3.2.1 Imaging Assumption and Procedure

Our approach takes as input a small set of k images taken of the scene from slightly

varying viewpoints. Following the motion base method, we assume that when

the background is captured from different points of view, the background and the

reflection layers undergo different motions due to their different distance to the

transparent layer. This configuration is shown in figure 3.2. These input images

are assumed to be related by a warping, such that the background is constant and

the reflection layer is changing. This relationship can be expressed as:

Ii = wi(LRi + LB), (3.1)
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Background

layer

Reflection

layer

View 1 image View 2 image

window

Figure 3.2: This shows the configuration of motion based reflection separation
method. Different displacements for the two layers appear in two different views.

where Ii is the i-th mixture image, {wi}, i = 1, . . . , k are warping functions caused

by the camera viewpoint change with respect to a reference image (in our case I1).

Assuming we can estimate the inverse warps, w−1
i , where w−1

1 is the identity, we get

the following relationship:

w−1
i (Ii) = LRi + LB. (3.2)

Even though LB appears static in the mixture image, the problem is still ill-posed

since we have an infinitely possible LB. However, the presence of a static LB in the

image set makes it possible to identify gradient edges of the background layer LB

and edges of the changing reflection layers LRi . More specifically, edges in LB are

assumed to appear every time in the image set while the edges in the reflection
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layer LRi are assumed to vary across the set. This means edges can be labeled based

on the frequency of a gradient appearing at a particular pixel across the aligned

input images. After labeling edges as either background or reflection, we can

reconstruct the two layers using an optimization that imposes the sparsity prior

on the separated layers as done by [Levin and Weiss 2004; Levin and Weiss 2007].

Figure 3.1 shows the processing pipeline of our approach. Each step is described

in the following sections.

3.2.2 Warping

Our approach begins by estimating warping functions, w−1
i , to register the input to

the reference image. Previous approaches estimated these warps using homogra-

phies [Gai et al. 2008; Gai et al. 2012; Szeliski et al. 2000], however, this planarity

constraint often leads to regions in the image with misalignments when the scene

is not planar.

To remove the planar constraint behind global homography, we seek a dense

correspondence estimation across different views. A commonly used dense corre-

spondence technique is the optical flow estimation [Sun et al. 2014; Li et al. 2015a]

which estimates at each point a 2D translation indicating the displacement of the

pixel. However in our case the scene is interrupted by the reflection, leading to

the brightness constancy assumption in the optical flow estimator to fail. This is

demonstrated empirically as shown in figure 3.3 with a top performance optical

flow estimator Classic+NLP [Sun et al. 2014]. Our observation is that even with

moderate reflection interference, the structures of the images are mostly the same

across the image set. This led us to try structural descriptor based dense corre-
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Input I1

(ref.view)

Input I2

Warped Î2

(SIFT-

Flow)

Warped Î2

(Optical 

Flow)

Figure 3.3: We have compared optical flow with SIFT flow in aligning the input
set. For the optical flow, we used the popular Classic+NL method [Sun et al. 2014].

spondence method. We adopt common-used SIFT-flow estimator [Liu et al. 2011]

and found it is able to handle the moderate interference of reflection and provide

a dense warp suitable to bring the images into alignment as also illustrated in

figure 3.3.

Our implementation fixes I1 as the reference, then uses SIFT-flow to estimate the

inverse-warping functions {w−1
i }, i = 2, . . . , k for each of the input images I2, . . . , Ik

against I1. We also compute the gradient magnitudes Gi of the each input image
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Warped gradients
Graphs show magnitude of gradi-
ents for each image at a given pixel 

EB1PB1 PR1 ER1

1   2  3   4  5

1. 2.

3.
4.

Figure 3.4: Edge separation illustration: 1) shows the all G̃ gradient maps – in this
case we have five input images; 2) plots the gradient values at two position across
the five images - top plot is a pixel on a background edge, bottom plot is a pixel on
a reflection edge; 3) shows the probability map estimated for each layer; 4) Final
edge separation after thresholding the probability maps.

and then warp the images Ii as well as the gradient magnitudes Gi using the

same inverse-warping function w−1
i , denoting the warped images and gradient

magnitudes as Ĩi and G̃i.

3.2.3 Edge separation

Our approach first identifies salient edges using a simple threshold on the gradient

magnitudes in G̃i. The resulting binary edge map is denoted as Ei. After edge
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detection, the edges need to be separated as either background or foreground in

each aligned image Ĩi. As previously discussed, the edges of the background layer

should appear frequently across all the warped images while the edges of the

reflection layer would only have sparse presence. To examine the sparsity of the

edge occurrence, we use the following measurement:

Φ(y) =
‖y‖22
‖y‖21

, (3.3)

where y is a vector containing the gradient magnitudes at a given pixel location.

Since all elements in y are non-negative, we can rewrite equation (3.3) as Φ(y) =∑k
i=1 y2

i /(
∑k

i=1 yi)2. This measurement can be considered as a L1 normalized L2

norm. It measures the sparsity of the vector which achieves its maximum value of

1 when only one non-zero item exists and achieves its minimum value of 1
k when

all items are non-zero and have identical values (i.e. y1 = y2 = . . . = yk > 0). This

measurement is used to assign two probabilities to each edge pixel as belonging to

either background or reflection.

We estimate the reflection edge probability by examining the edge occurrence,

as follows:

PRi(x) = s
( ∑k

i=1 G̃i(x)2

(
∑k

i=1 G̃i(x))2 −
1
k

)
, (3.4)

where, G̃i(x) is the gradient magnitude at pixel x of Ĩi. We subtract 1
k to move

the smallest value close to zero. The sparsity measurement is further stretched

by a sigmoid function s(t) = (1 + e−(t−0.05)/0.05)−1 to facilitate the separation. The

background edge probability is then estimated by:

PBi(x) = s
(
−

( ∑k
i=1 G̃i(x)2

(
∑k

i=1 G̃i(x))2 −
1
k

))
, (3.5)
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where PBi(x) + PRi(x) = 1. These probabilities are defined only at the pixels that are

edges in the image. We consider only edge pixels with relatively high probability

in either the background edge probability map or reflection edge probability map.

The final edge separation is performed by thresholding the two probability maps

as:

EBi/Ri(x) =

 1, Ei(x) = 1 and PBi/Ri(x) > 0.6;

0, otherwise.

Figure 3.4 shows the edge separation procedure.

3.2.4 Layer Reconstruction

With the separated edges of the background and the reflection, we can reconstruct

the two layers. Levin and Weiss [Levin and Weiss 2007] showed that the long tailed

distribution of gradients in natural scenes is an effective prior in this problem. In

our work, we use Laplacian approximation since the L1 norm converges quickly

with good results. For each image Ĩi , we try to maximize the probability P(LBi ,LRi)

in order to separate the two layers and this is equivalent to minimizing the cost

− log P(LBi ,LRi). Following the same deduction in [Levin and Weiss 2004], with

the independent assumption of the two layers (i.e. P(LBi ,LRi) = P(LBi) · P(LRi)), the

objective function becomes:

J(LBi) =
∑
x,n

|(LBi ∗ fn)(x)| + |((Ĩi − LBi) ∗ fn)(x)|

+ λ
∑
x,n

EBi(x)|((Ĩi − LBi) ∗ fn)(x)|

+ λ
∑
x,n

ERi(x)|(LBi ∗ fn)(x)|,

(3.6)
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where fn denotes the derivative filters and ∗ is the 2D convolution operator. For fn,

we use two orientations and two degrees (first order and second order) derivative

filters. While the first term in the objective function keeps the gradients of the two

layer as sparse as possible, the last two terms force the gradients of LBi at edges

positions in EBi to agree with the gradients of input image Ĩi and gradients of LRi

at edge positions in ERi agree with the gradients of Ĩi. Following the procedure of

iterative reweighted least square (IRLS) [Meer 2004] optimization technique, this

objective function can be further rewritten in the following form:

J(LBi) =
∑
x,n

1
WBi(x)

‖(LBi ∗ fn)(x)‖2 +
1

WRi(x)
‖((Ĩi − LBi) ∗ fn)(x)‖2

+ λ
∑
x,n

EBi(x)
1

WRi(x)
‖((Ĩi − LBi) ∗ fn)(x)‖2

+ λ
∑
x,n

ERi(x)
1

WBi(x)
‖(LBi ∗ fn)(x)‖2,

(3.7)

where the weights WBi(x) = |(LBi ∗ fn)(x)| and WRi(x) = |((Ĩi − LBi) ∗ fn)(x)|. Next,

iterating between solving the least square system with fixed weights and updating

the weights can efficiently solve this optimization problem.

3.2.5 Combining the Results

Our approach processes each image in the input set independently. Due to the

reflective glass surface, some of the images may contain saturated regions from

specular highlights. When saturation occurs, we can not fully recover the structure

in these saturated regions because the information about the two layers are lost.

In addition, sometimes the edges of the reflection in some regions are too weak

to be correctly distinguished. This can lead to local regions in the background
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Figure 3.5: This figure shows our combination procedure.

where the reflection is still present. These erroneous regions are often in different

places in each input image due to changes in the reflection. In such cases, it is

reasonable to assume that the minimum value across all recovered background

layers may be a proper approximation of the true background. As such, the last

step of our method is to take the minimum of the pixel value of all reconstructed

background images as the final recovered background, as follows:

LB(x) = mini LBi(x). (3.8)
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Input I1 (ref. view) Background edges 

EB1 

Reflection edges 

ER1 

Background layer 

IB 

Reflection layer 

IR1 

Figure 3.6: Example of edge separation results and recovered background and
foreground layer using our method.

Based on this, the reflection layer of each input image can be computed by

LRi = Ĩi − LB. The effectiveness of this combination procedure is illustrated in

figure 3.5. The recovered background on each single image is good at first glance

but may have reflection remaining in local regions. A simple minimum operator

combining all recovered images gives a better result in these regions.

3.3 Results

In this section, we present the experimental results of our proposed method. The

effectiveness of our method is demonstrated by comparing ours with previous

methods. All of the data captured are real scenes of objects behind glass windows
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Ours Levin and Weiss 2007 Gai et al. 2012

Estimated EB

IB :
Input I1 (ref)

Estimated EBUser Mark-ups

Figure 3.7: This figure shows a comparison between our method and those in [Levin
and Weiss 2007] and [Gai et al. 2012].

and share the problem of reflection interference. They are taken under different

lighting conditions from both indoor and outdoor, e.g. on shop streets, in museums

etc. We have tested the reflection separation task using our method and previous

methods. Input sequences range from three to five images of size 400*500. The

experiments were conducted on an Intel i7 PC (3.4GHz CPU, 8.0GB RAM). The

code was implemented in Matlab.

Figure 3.6 shows two examples of our edge separation results and final recon-

structed background layers and reflection layers. Our method provides a clear

separation of the edges of the two layers which is crucial in the reconstruction step.

Figure 3.10 shows more reflection removal results of our method.
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Ours Levin and Weiss 2007 Gai et al. 2012

Input I1 (ref) IB IR1 IB IR1 IB IR1

Input I1 (ref) IB IR1 IB IR1 IB IR1

Figure 3.8: Two more examples of reflection removal results of our method and
those in [Levin and Weiss 2007] and [Gai et al. 2012].

We also compare our methods with those in [Levin and Weiss 2007] and [Gai

et al. 2012] as shown in figure 3.7. For these two methods, we use the source code

from the authors to generate the results. In the upper row we show the crucial

intermediate step of labelling out the background edges. Unlike the automatic

labelling in [Gai et al. 2012] and our approach, in this step the method of [Levin

and Weiss 2007] needs the user to provide markups. The bottom row shows the

corresponding final reflection removal results from those edge labelling. As can be

seen, our method can get a clearer and more accurate edge map of the background

than the method in [Gai et al. 2012]. This high quality edge map contributes to

better layer recovery. The method of [Gai et al. 2012] gives less edges labelling due
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to the unsatisfactory alignment using the global transformation in their method.

For the method in [Levin and Weiss 2007], even with these elaborate markups, the

reflection removal result is not as satisfactory as ours. The comparisons between

our and [Levin and Weiss 2007] are not entirely fair since [Levin and Weiss 2007]

uses single image to generate the result, while we have the advantage of the entire

set.

Figure 3.8 shows two more comparisons of the reflection removal results. Back-

ground and reflection layers are displayed side by side with zoomed in patches

listed below for better visualization. Our result arguably provides the best result.

The results of [Levin and Weiss 2007] still exhibited some edges from different

layers even with the elaborate user mark-ups. This may be fixed by going back to

further refine the user markups. But in the heavily overlapping edge regions, it is

really challenging for users to indicate the edges. If not clearly indicated, then it

tends to over smooth one layer in the result. For the method of [Gai et al. 2012],

since it uses global transformations to align images, local misalignment effects of-

ten appear in the final recovered background image. Also, their approach uses

all the input image into the optimization to recover the layers. This may lead to

a result that has edges from different reflection layers of different images mixed

and appear as ghosting effect in the recovered background image. For heavily

saturated regions, none of the two previous methods can give visually plausible

results like ours. This is because our final combination step is specifically designed

for handling this situation.
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Figure 3.9: A failure case of our approach due to dominant reflection against the
background in some regions (i.e. the upper part of the phonograph).

3.4 Discussion and Conclusion

We have presented our method to automatically remove reflection interference due

to a glass surface. Our approach works by capturing a set of images of a scene from

slightly varying viewpoints. The images are then aligned and edges are labeled as

belonging to either background or reflection. This alignment was enabled by SIFT-

flow, whose robustness to the reflection interference enabled our method. When

using SIFT-flow, we assume that the background layer will be the most prominent

and will provide proper SIFT features for matching in the SIFT-Flow algorithm.

While we found this to work well in practice, images with very strong reflection

can produce poor alignment as SIFT-flow may attempt to align to the foreground

which is changing. This will cause problems in the subsequent edge separation

and final reconstruction. Figure 3.9 shows such a case. While these failures may

be handled by user input, it is a notable issue.
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Another challenging issue is when the background scene has large homoge-

neous regions. In such cases there are no edges to be labeled as background. This

makes subsequent separation challenging, especially when the reflection interfer-

ence in these regions is weak but still visually noticeable. While this problem is not

unique to our approach, it is an issue to consider. We also found that by combining

all the background results of the input images we can overcome local regions with

high saturation. While a simple idea, this combination strategy can be incorporated

into other techniques to improve their results. Lastly, we believe reflection removal

is an application that would be welcomed on many mobile devices, however, the

current processing time is still too long for real world use. Exploring ways to speed

up the processing pipeline is an area of interest for future work.

In the next chapter, we will present our second work in layer separation which

can extract two layers from one image while one layer is smoother than the other.
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Input I1 (ref) IB IF1

Figure 3.10: More results of reflection removal using our method in varying scenes
(e.g. art museum, street shop,etc.).
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Chapter 4

Single Image Layer Separation using

Relative Smoothness

Our layer separation method in chapter 3 requires multiple images as input. In

this chapter, we present another method which takes only a single image input for

layer separation. Layer decomposition from a single image is the most ill-posed

case and solutions require additional constraints to be enforced. We show the

separation is possible when one layer is smoother than the other. Two example

problems are intrinsic image decomposition and reflection interference removal.

We introduce a novel strategy that regularizes the gradients of the two layers to

different distributions and describe an optimization scheme to find the most likely

solution under this regularization with only a few iterations. The experiments on

benchmark dataset and real images are presented with a discussion at the end.
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Reflection 

Removal

Using Focus

LB

R LInput I

Intrinsic Images

LR*hInput I

Figure 4.1: This figure shows the two problems our method is applied to: intrinsic
image decomposition and single image reflection removal using focus. The cor-
responding gradient histograms of each layer is shown below. In both of these
problems one layer has fewer large gradients than the other layer.

4.1 Introduction

The work in this chapter addresses the problem of layer separation from a single

image with application to 1) intrinsic image decomposition and 2) single image

reflection interference removal using focus. For intrinsic images, we take the log

form that log(I) = log(R) + log(L). As mentioned in chapter 3, images with window

reflection can be directly expressed as a linear combination of a reflection layer

LR and and the background scene LB. In this chapter, we use a slightly modified

version based on Schechner et al.’s [Schechner et al. 2000] proposition of using focus
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such that the desired layer is more in focus while the reflection is blurred. This

can be expressed as: I = LB + LR ∗ h, where the reflection layer is convolved with

the depth of field kernel h modelled as a Gaussian blur. Therefore, both of these

problems take the form as in equation (1.1).

The work in this chapter is inspired by the success of imposing a gradient spar-

sity constraint on the images, however, in our problem, the two layers’ gradients

do not have the same distributions. Prevailing methods for intrinsic image decom-

position (see [Gehler et al. 2011; Grosse et al. 2009; Shen and Yeo 2011; Tappen

et al. 2005]) typically adapt the idea that natural images have piecewise constant

reflectance while the illumination is smoothly varying. This means that the illu-

mination layer L is smoother than the reflectance R. Therefore one of the layers

is assumed to be smooth, i.e. illumination L and the defocused reflection LR ∗ h,

and therefore should have very little large gradient. Figure 4.1 shows an example.

This means we need an additional constraint on the smooth layer. Based on this

intuition, we propose a novel method to solve the layer separation problem by

building two likelihoods for each layer from the gradient histograms in which one

layer is smoother than the other. To get the desired layer separation, the neces-

sary objective function is formulated. An efficient scheme is described to optimize

the objective function which is non-convex and has an inequality constraint. Our

method provides high-quality results on megapixel images in a matter of seconds.

This is much faster than existing intrinsic image and reflection separation methods.

As we have reviewed in chapter 2, there are mainly two categories of methods

for single image intrinsic image estimation. The first one is the local approach

which tries to separate reflectance and illumination edges before recovering the

two layers. The other category of intrinsic image estimation is the global approach
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which usually forces a global constraint that the reflectance values present in the

scene are sparse. These global approaches achieve excellent results on the MIT

dataset. Since our method does not make use of a prior on the reflectance values

directly, we categorize our method as local one. We show, however, that our method

can achieve much better performance than other local edge-based methods. Our

results are close (sometimes even better in a few cases) to those obtained by the

state-of-art global approaches that use sophisticated models and inference while

being significantly faster.

focal 

plane 
window sensor 

plane 

p 

q q’ 

Figure 4.2: The optical geometry of camera defocus in reflection separation.

A complete review on the second problem – reflection removal was also given

in chapter 2. The most close method to this work is the reflection removal using

focus blur by Schechner et al. [Schechner et al. 2000]. However their method still

requires two input images, specifically one where the reflection was in focus and

one where the background was in focus. We show that using our method we can

obtain a high-quality separation of reflection with only a single image focused on

the background (See figure 4.2 for the configuration). Moreover, we do not need

to explicitly estimate the blur point-spread-function h as done in [Schechner et al.

2000].
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P1 P2

Figure 4.3: This shows the probability distribution of P1(x) and P2(x). P1(x) has
the long-tail form whereas P2(x) is Gaussian with small standard deviation. The
probability P2(x) drop to zero very fast.

4.2 Our Approach

4.2.1 Model

Inspired by the gradient sparsity prior used in [Levin and Weiss 2007], we introduce

our priors on the two layers’ gradients. Suppose L2 is smoother than L1, then large

gradients are more likely to belong to L1. We encode this into two probabilities as:

P1(x) =
1
z

max{e
−

x2

σ2
1 , ε},

P2(x) = 1
2πσ2

2
e
−

x2

σ2
2 ,

(4.1)

where x is the gradient value, z is a normalization factor, σ1 and σ2 are both small

values making two narrow Gaussians which drop very fast. However by using the

max operator with ε in P1 we explicitly add a tail to prevent the probability from

getting close to zero. P1(x) and P2(x) are illustrated in figure 4.3.

In order to solve the layer separation problem, we adapt a probabilistic model to

seek the most likely explanation of the input image using the probabilities of the two
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layers defined in equation (4.1). In essence, we are maximizing the joint probability

P(L1,L2). This can be achieved by minimizing the negative log probabilities. Taking

the negative log to the probabilities in equation (4.1), we obtained:

− log P1(x) ∝ min{
x2

σ2
1(− log ε)

, 1} + C1,

− log P2(x) ∝ x2

σ2
2

+ C2.

(4.2)

Here, C1 and C2 are constants that we can drop later. While − log P2(x) is in L2 form,

− log P1(x) is in truncated L2 form which we further simplify as ρ(x) = min{x2/k, 1}.

The term k is still a small number fixed as a constant 10−4 in our method. The

function ρ is similar to the sparse penalty used in [Xu et al. 2013]. With the

assumption that the two layers are independent (i.e. P(L1,L2) = P(L1) · P(L2)) and

the derivative filter output are independent (i.e. P(Lt) =
∏

i Pt( f j ∗ L)i, t ∈ {1, 2}),

minimizing − log P(L1,L2) becomes:

min
L1,L2

∑
i, j

(
ρ(L1 ∗ f j)i + λ(L2 ∗ f j)

2
i

)
, (4.3)

where i is the pixel index, f j denotes different derivative filters. We used two

directional first order derivative filters and a second order Laplacian filter, namely

f1 = [−1 1], f2 = [−1 1]T, f3 =
[

0 1 0
1 −4 1
0 1 0

]
, and for simplicity we write F j

i L = (L ∗ f j)i in

the rest of this chapter. From the experiments we found using first order derivative

filters for L1 and a second order Laplacian filter for L2 produced good results. The

first order derivative filter helps to recover the significant edges in L1, while the

Laplacian filter encodes smooth variations in L2. We integrate the weight between

the two terms and the multiplier 1
σ2

2
together as one parameter λwhich controls the
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smoothness of the output L2. The effect of different λ setting is shown in figure 4.4.

I1

λ = 10 λ = 100 λ = 1000

I1 + I2*h
L1

L2

L1 L1

L2L2I2

Histogram of L1

Histogram of L2

Histogram of 

mixed layer

Figure 4.4: This figure shows the effect of different λ setting on the final separation
results on a synthesized case. The corresponding gradient histograms are displayed
below.

As can be seen, asλ increase, L2 become more smooth (or more sparse in gradient

histogram) and more images details move gradually from L2 to L1. Therefore, λ

controls the detail transfer in the layer separation. When λ was small (λ = 10), L1

lost many details which incorrectly appeared in L2. When λ was large (λ = 1000),

L2 became over-smooth and the part of the detail appeared back in L1. Setting

λ = 100 is an appropriate choice as it gives the most pleasing result.

Our probabilities are defined on the gradients and to recover meaningful layers

we have to bound the solution range i.e. (L1)i ∈ [lbi,ubi]. The ranges are set accord-

ing to the application which will be discussed in section 4.3. Moreover, we can

substitute L2 with I − L1 into the objective, making the final objective function on

parameter L1 as:
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min
L1

∑
i

(
ρ(FiL1) + λ(FiL1 − F3

i I)2
)

s.t. lbi ≤ (L1)i ≤ ubi.

(4.4)

4.2.2 Optimization

Our objective function is non-convex due to the non-convex ρ(x) component. There

is also an inequality constraint. Such problems require care when optimizing.

We employ a two stage approach. First, we use the half-quadratic separation

scheme [Geman and Yang 1995; Wang et al. 2008] to solve the non-convex problem

without the inequality constraint and at the end of each iteration we perform a

normalization step to force the solution to fall within the constrained range.

Using the half-quadratic method, auxiliary variables g j
i are introduced at each

pixel that allow us to move the F j
i L1 term outside the ρ(·) function, giving a new

cost function:

min
L1,g j

∑
i

( ∑
j=1,2

(β(F j
i L1 − g j

i )
2 + ρ(g j

i )) + λ(F3
i L1 − F3

i I)2
)
, (4.5)

where β is a weight that we will increase during the optimization (in our implemen-

tation , starting from 10 or 20 and multiplied by η = 2 each time). As β gets larger

the solution gets closer to that of equation (4.4). Minimizing equation (4.5) for a

fixed β can be performed by alternating between computing L1 and updating of

g j. The computation of L1 and g j-updates are described in the following paragraphs.

Update g j To solve the problem of updating g j with fixed L1, we isolate each
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g j
i and try to find its minimum, which corresponds to:

min
g j

i

β(F j
i L1 − g j

i )
2 + ρ(g j

i ). (4.6)

It is easy to find the two local minimum points of this equation, F j
i L1 and

βF j
i L1

β+ 1
k

. If

β � 1
k ,

βF j
i L1

β+ 1
k
≈ 0. When g j

i = F j
i L1, the function value is 1, when g j

i = 0 the function

value is β(F j
i L1)2. Therefore when 1 < β(F j

i L1)2, namely (F j
i L1)2 > 1

β , the global

minimum is at g j
i = F j

i L1. Otherwise, the global minimum is at g j
i = 0. Therefore

the closed-form solution at each pixel is found to minimize equation (4.5) w.r.t. g j

as:

g j
i =

 F j
i L1, (F j

i L1)2 > 1
β

0, otherwise.
(4.7)

This simple thresholding rule holds when β� 1
k .

Compute L1 With g j fixed, the function of equation (4.5) w.r.t. L1 is as follows:

min
L1

∑
i

( ∑
j=1,2

(β(F j
i L1 − g j

i )
2 + λ(F3

i L1 − F3
i I)2

)
. (4.8)

This is quadratic w.r.t. L1 and a global minimum can be obtained directly by

taking the derivative over L1 and setting it equal to zero. Rewriting this in matrix

form gives the following equation:

β
∑
j=1,2

F jT F jL1 + λF3T
F3L1 = β

∑
j=1,2

F jT g j + λF3T
F3I. (4.9)

Assuming circular boundary conditions, we can apply a 2D FFT F which diag-
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onalizes the convolution matrices F j’s, allowing us to find the optimal L1 directly:

L1 = F −1(
β
∑

j(F (F j)?F (g j)) + λF (F3)?F (F3)F (I)

β
∑

j(F (F j)?F (F j)) + λF (F3)?F (F3) + τ
, (4.10)

where ? is the complex conjugate, the parameter τ added to the denominator is a

small number necessary to increase the stability of our algorithm (τ = 10−16 in our

implementation). The multiplication and division are both performed element-

wise. Solving equation (4.10) requires only two FFT for g1 and g2 and one IFFT at

each iteration since the other terms can all be precomputed.

Normalize L1 After getting L1, we perform a normalization step to bring the

solution to a meaningful range. This step is important since the solution to equa-

tion (4.5) is not unique and is related by a global constant. Therefore the goal of

the normalization step is to make the solution fall in the range [lbi,ubi]. To find a

suitable constant t we try to minimize the following objective function

min
t

∑
i

mi((L1)i + t − lbi)2 +
∑

i

ni((L1)i + t − ubi)2, (4.11)

where mi,ni are indicative functions such that mi is equal to 1 only when (L1)i+t < lbi,

and ni is equal to 1 only when (L1)i + t > ubi, otherwise they all equal to 0. From

this, L1 is updated to L1 + t. Simple gradient descent can be used for this step.

After this, a few values may still fall outside the interval [lbi,ubi]. These values

are clipped to lbi or ubi. We summarize the whole process in Algorithm 1. In all

of our experiments, the optimization converges very quickly (within 5 iterations)

and produces high-quality results. Convergence is empirically demonstrated in

section 4.3.
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Algorithm 1 Layer Separation using Relative Smoothness
Input: input image I; smoothness weight λ; initial β0; iterations number imax;

increasing rate η;
Initialization: L1 ← I; β← β0; i← 0.

while i < imax do
update g j

i using equation (4.7);
compute L1 using equation (4.10);
normalize L1 using equation (4.11);
β = η ∗ β, i + +;

end while
L2 = I − L1;

Output: The estimation of two layers L1 and L2;

4.3 Experimental Results

Our experiments are done on a PC with Intel I7 CPU (3.4GHz) and 8GB RAM. The

implementation is done using Matlab without any GPU acceleration.

4.3.1 Intrinsic Image Decomposition

We denote log(I), log(R), and log(L) as Î, R̂, L̂ respectively in the equations. In

our implementation, the original images are normalized to [1/256, 1]. Therefore,

after log, R̂ should fall in the range [Î, 0]. Using our method, the objective function

becomes:
min

R̂

∑
i

( ∑
j=1,2

ρ(F j
i R̂) + λ(F3

i R̂ − F3
i Î)

2
)

s.t. Îi ≤ R̂i ≤ 0.

(4.12)

If we set the smoothness weight λ to zero and just run our whole process once,

meaning only threshold the gradient once to get the g j and then recover R̂, our

method acts just like the Retinex algorithm [Grosse et al. 2009]. Our implementation

of the Retinex algorithm can achieve better performance than the original one
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Energy

0      1        2        3        4       5 6        7        8        9       10

Error

iter 0

iter 1 iter 5

iter: 

Figure 4.5: This figure illustrate the convergence of our algorithm. The red line
and the blue line denote the energy defined by our objective function and the
error between current estimation and ground truth using LMSE measurement
respectively. Note that the scales of the energy and the error are different. We put
them together here for illustration. The estimated reflectance of some of the steps
are also plotted above.

described in [Grosse et al. 2009]. Therefore we report the Retinex result using our

implementation.

Evaluation on the MIT dataset

We have tested our algorithm on the MIT intrinsic image dataset [Grosse et al. 2009].

Fast convergence We show here that our optimization framework can converge to

a good solution very fast (no more than 5 iterations needed). We plot the energy

values at each iteration for one intrinsic decomposition example in figure 4.5. At

each iteration we measure the error between our layer estimation at the current
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Ours Retinex [14] (Ours) Gehler et al. [12]

LMSE = 2.48

LMSE = 16.0

LMSE = 26.0

LMSE = 7.90

LMSE = 17.1

LMSE = 29.8

LMSE = 2.94

LMSE = 16.7

LMSE = 22.4

R L LR LR

LMSE = 5.3 LMSE = 9.9 LMSE = 3.3

LMSE = 4.5 LMSE = 7.0 LMSE = 4.8

LMSE = 3.1 LMSE = 4.9 LMSE = 1.4

Figure 4.6: This figure shows the decomposition results by Retinex [Grosse et al.
2009], the method in [Gehler et al. 2011] and our approach on three images from
the MIT intrinsic dataset. LMSE errors shown below are in 10−3.

state w.r.t. the ground truth data using Local Mean Square Error (LMSE) [Grosse

et al. 2009]. The curve is also plotted in figure 4.5 to show that our method can

converge to high quality results quickly.

Comparison with previous methods We have compared the performance of our

method with several representative intrinsic image estimation methods and re-

ported the running time per image as well as the LMSE on the MIT dataset in

table 4.1. Tappen et al.’s method [Tappen et al. 2005] is an edge-based method that
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learns a classifier to distinguish reflectance edges and illumination edges. Methods

in [Barron and Malik 2012; Gehler et al. 2011; Shen and Yeo 2011] use the global

sparsity prior and the framework in [Barron and Malik 2012] uses more constraints

to solve the shape from shading problem jointly with intrinsic images. These three

methods are generally considered as state-of-art in terms of the performance on

the MIT dataset. Note that for methods [Gehler et al. 2011] and [Barron and Malik

2012], we cannot get the LMSE as small as in the original paper. We report results

provided by the authors that are considered to be their best performance.

Table 4.1: Quantitative Comparison with Previous Methods
Method Runtime LMSE
Tappen et al. 2005 [Tappen et al. 2005] >200 s 0.0347
Shen & Yeo 2011 [Shen and Yeo 2011] >300 s 0.0204
Gehler et al. 2011 [Gehler et al. 2011] >600 s 0.0131*
Barron & Malik 2012 [Barron and Malik 2012] >200 s 0.0133*
Retinex [Grosse et al. 2009] <1 s 0.0217
Ours 1–3s 0.0149

As can be seen, our optimization with Matlab implementation is efficient com-

pared with others due to the FFT acceleration. Even without using the global

sparsity prior, our method can achieve high quality performance close to specially

designed methods for intrinsic image (e.g. [Barron and Malik 2012; Gehler et al.

2011]).

We also show three example results in figure 4.6 and compare with the Retinex

method [Grosse et al. 2009] and the best over-all performance method [Gehler et al.

2011]. Our method gives visually better results than Retinex [Grosse et al. 2009]

since our results shows clearer edges and no bleeding artifacts. For the raccoon

and teabag cases, our results are even better than [Gehler et al. 2011]. The results

of [Gehler et al. 2011] has more regions with incorrect separations of the two layers,
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Bousseau et al. 2009 Tappen et al. 2005

Shen and Yeo 2011 Gehler et al. 2011 Ours

Input 

R L L

L L L

R

R R R

Figure 4.7: Comparison of decomposition results on a photo with the user-assisted
approach [Bousseau et al. 2009] and other representative automatic approaches
of [Tappen et al. 2005; Shen and Yeo 2011; Gehler et al. 2011]. All illumination
images are shown in gray scale.

e.g. illumination components remaining in raccoon’s reflectance and illumination

details near the border of the teabag appears in the reflectance image.

Comparison on Real Input

We have also tested our method on the input image used in previous work

in [Bousseau et al. 2009]. The method in [Bousseau et al. 2009] is a user-assisted

one that can generate more piece-wise constant reflectance with user’s labelling

of regions sharing same reflectance or same illumination. However, their local 2D

subspace model would fail on high contrast region (e.g. the border of the doll), re-

sulting in artifacts in the reflectance image. Other three methods [Gehler et al. 2011;

Shen and Yeo 2011; Tappen et al. 2005] more or less mixed the texture on the cloth

into the illumination map. Our method shows arguably the the best reflectance
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L1 L2 L1+L2*h

SSIM = 0.8891

SSIM = 0.9197

SSIM = 0.8763

SSIM = 0.6249

SSIM = 0.8089

SSIM = 0.7538

Recovered L1 Recovered L2

Figure 4.8: Three reflection removal examples on synthesized data. The corre-
sponding SSIM with regard to the ground truth background layer are also listed
below for quantitatively showing the effectiveness of our separation. Note that we
just write the recovered reflection layer as LR.

and illumination decomposition results, considering the piece-wise flat reflectance,

clear edges and texture information.

4.3.2 Single Image Reflection Removal with Defocus Blur

For the reflection removal problem, the estimated background value (LB)i should

fall in the range [0, Ii], giving the objective function:

min
LB

∑
i

( ∑
j=1,2

ρ(F j
i LB) + λ(F3

i LB − F3
i I)2

)
s.t. 0 ≤ (LB)i ≤ Ii.

(4.13)
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Input I LB LR LB LR

Ours Levin and Weiss 2007

Markup

Figure 4.9: Two examples of reflection removal results of our method and prior
single image approach in [Levin and Weiss 2007]. Our method provides visually
clearer separation results. But in the top case, a small part of the background is
smooth (pointed out by yellow arrow) which breaks our assumption, leading to
incorrect separation at that small region (How to correct such cases is shown in
figure 4.11).

Results on Synthetic Data

Based on the mixing process I = LB + LR ∗ h, we have synthesised layer mixing data.

A 2D Gaussian of standard deviation five is used as the defocus blur kernel h in

our synthesis. The input mixing images as well as the final separation results are

shown in figure 4.8. To quantitatively assess our algorithm, we have computed the

the Structural Similarity Index (SSIM) [Wang et al. 2004] as the quality measure of

the recovered background layers.

As can be seen, after separation on the synthesized images using our method,

the SSIM is increased by at least 0.1 compared with the original mixed image;
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visually, the background layer is much clearer after separation.

Input I LB LR

Figure 4.10: This shows two more examples of reflection removal results of our
method.

Results on Real World Data

We have tested our method on reflection separation on real world cases and com-

pared ours with the Levin and Weiss’s user-assisted method in [Levin and Weiss

2007]. For the results produced by [Levin and Weiss 2007], large amount of user-

markup is provided. However, at some locations, the background edges and

reflection edges intersect, making it hard for the user to label the gradients, es-

pecially because the reflection layer has defocus blur. Our method can generate

clearer separation of the background and the reflection layer than that of [Levin and

Weiss 2007]. It is worth noting that the method in [Levin and Weiss 2007] is time

consuming. Manually providing sufficient labelling can be challenging. In addi-

tion, this method solves the non-convex optimization using Iterative Reweighed
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Input +

User mark-up
LB LR

Figure 4.11: This is the previous example from figure 7 where part of the image is
incorrectly separated. We show here that a simple user interaction (e.g. drawing
a red rectangle indicating the region belongs to background) can help solve the
problem.

Least Square that takes several minutes. Our method is automatic and requires

less than two seconds to produce the results. However, the top image in figure 4.9

does reveal a limitation in our work. In particular, the specular highlight (pointed

by the yellow arrow) on the ball pattern of the book cover is falsely categorized to

reflection layer. This is due to the fact that the highlight is a smooth pattern which

violates our assumption that the background layer is sharper than reflection.

4.4 Discussion and Conclusion

We have presented a method to automatically extract two layers from one image

where one layer is smoother than the other. Our approach works by building

two likelihoods for each layer from gradient histograms, that models this relative
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smoothness. In order to solve the layer separation problem, the necessary objective

function that finds the most likely explanation of the two layers is proposed. We

also derived an efficient scheme to optimize the objective function which is non-

convex and has an inequality constraint. We have tested our method on two

layer separation problems of intrinsic image decomposition and reflection removal

using defocus blur. Our method provides high-quality results in a manner that is

significantly faster than prior work.

One challenging issue is that if our assumption that the two layer have different

smoothness is violated, our method will fail to correctly separate the layers. An

example was shown in section 4.3. If this happens, user intervention may be used

to help. For example, we can simply have the user denote which layer a particular

region should belong to as shown in figure 4.11.

In the next chapter, we will present our third work for nighttime dehazing that

has seen less attention compared to daytime dehazing.
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Chapter 5

Nighttime Haze Removal with Glow

and Multiple Light Colors

The work presented in this chapter focuses on dehazing nighttime haze images.

As we have mentioned in section 2.3, most existing dehazing methods use models

that are formulated to describe haze in daylight. Daytime models assume a single

uniform light color attributed to a light source not directly visible in the scene.

Nighttime scenes, however, commonly include visible light sources with varying

colors. Moreover, these light sources often introduce noticeable amounts of glow

that is not present in daytime haze. To address these effects, we introduce a new

nighttime haze model that accounts for the varying light sources and their glow.

Based on the model, we propose a framework to recover the clear scene radiance.

We demonstrate the effectiveness of our nighttime dehaze model and correction

method on a number of examples and compare our results with existing daytime

and nighttime dehazing methods’ results.
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Input Daytime dehazing [Meng et al. 2013]

Nighttime dehazing [Zhang et al. 2014] Ours

Figure 5.1: This shows a nighttime dehazing case. A daytime dehazing
method [Meng et al. 2013] fails to handle glow and haze. A nighttime dehaz-
ing method [Zhang et al. 2014] is erroneous in dealing with glow and boosts the
intensity unrealistically. Our result shows reduced haze and looks more natural.

5.1 Introduction

As mentioned in section 2.3, there are many methods dedicated to daytime de-

hazing for single images, such as [Tan 2008; Fattal 2008; He et al. 2011; Tarel and

Hautiere 2009; Nishino et al. 2012; Ancuti and Ancuti 2013; Meng et al. 2013; Tang

et al. 2014; Fattal 2014]. All methods employ a standard haze model [Koschmieder

1925] which describes a hazy scene as a linear combination of the direct trans-

mission and airlight and assumes that the atmospheric light can be reasonably
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approximated from the brightest region in the input image.

While these prior works are effective to handle daytime haze, they are not well

equipped to correct nighttime scenes (see Fig 5.1). This is not too surprising, as

the standard daytime haze model does not fit well with the conditions of most

nighttime hazy scenes. Nighttime scenes generally have active light sources, such

as street lights, car lights, building lights, etc. These lights add to the scattering-in

process, giving more brightness to the existing natural atmospheric light. This

implies that the airlight is brighter when the active lights are present in the scene.

More importantly, nighttime light sources also introduce a prominent glow to the

scene. This glow is a result from both strong lights directly travelling to the camera

and light scattered around the light sources by haze particles [Narasimhan and

Nayar 2003]. This noticeable glow is not accounted for in the standard haze model.

Furthermore, unlike daytime haze, the atmospheric light cannot be obtained

from the brightest region in nighttime images. Due to the presence of active lights

and their associated glow, the brightest intensity in the scene can differ signifi-

cantly from the atmospheric light. Also, because of the multiple light sources, the

atmospheric light cannot be assumed to be globally uniform. Consequently, nor-

malizing the input image with the brightest region intensity will cause a noticeable

color shift in the image.

There are significantly fewer methods that address nighttime haze. Pei and

Lee [Pei and Lee 2012] propose a color transfer technique as a preprocessing step

to map the colors of a nighttime haze image onto those of a daytime haze image.

Subsequently, a modified dark channel prior method is applied to remove haze.

While this approach produces results with improved visibility, the overall color in

the final output looks unrealistic. This is due to the color transfer, which changes
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colors without using a physically valid model. Zhang et al.’s [Zhang et al. 2014]

introduce an imaging model for the nighttime haze that includes spatially varying

illumination compensation, color correction and dehazing. The overall color of

their results looks more realistic than those of [Pei and Lee 2012], however, the

model does not account for glow effects, resulting in noticeable glow in the output.

The method also involves a number of additional adhoc post processing steps such

as gamma curve correction and histogram stretching to enhance the final result

(see figure 5.1). In contrast to these methods, we model nighttime haze images

by explicitly taking into account the glow of active light sources and their light

colors. This new model introduces a unique set of new problems, such as how

to decompose the glow from the rest of the image and how to deal with varying

atmospheric light. By resolving these problems, we found our results are visually

more compelling than both existing daytime and nighttime methods.

5.2 Nighttime Haze Model

For daytime haze scenes, as we have mentioned in section 2.3, the most commonly

used optical model assumes that haze image is a linear combination of the direct

transmission and airlight as

I(x) = R(x)t(x) + L(1 − t(x)).

As discussed in section. 2.3, nighttime scenes typically have active light sources

that can generate glow when the presence of particles in the atmosphere is sub-

stantial. This glow has been analyzed by Narasimhan and Nayar [Narasimhan
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Daytime haze imaging model

Atmosphere
Object

Direct transmission

Atmospheric light

Airlight

Camera Image

Nighttime haze imaging model

Atmosphere

Light source

Object

Direct transmission

Multiple scattering Glow in imageAtmospheric light

Airlight

Camera Image

Figure 5.2: This figure compares the standard daytime haze model with our
proposed nighttime haze model. The standard daytime haze model assumes that
the atmospheric light is globally uniform and contributes to the brightness of the
airlight. The model has another term called the direct transmission, which describes
light travelling from the the object or scene radiance making its way to the image
plane. The bottom shows a diagram of our proposed nighttime haze model. Aside
from the airlight and direct transmission, the model also has a glow term, which
represents light from sources that gets scattered multiple times and reaches the
image plane from different directions. In our model, light sources potentially have
different colors that contribute to the appearance of the airlight.

and Nayar 2003] who describe it as light from sources that gets scattered multiple

times and reaches the observer from different directions. They model this glow

as an atmospheric point spread function (APSF). Inspired by this, we model the

entire nighttime hazy scenes by adding the glow model into the slightly modified

standard haze model:

I(x) = R(x)t(x) + L(x)(1 − t(x)) + La(x) ∗ APSF. (5.1)
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The new parameter La is the active light sources, where the light is convolved with

the atmosphere point spread function, APSF, yielding a glow effect in the image

[Narasimhan and Nayar 2003]. Besides this additional glow layer, we retain the

other terms scene radiance R, atmospheric light L, and transmission factor t of the

standard haze model. Although, the atmospheric light, L, in our model is no longer

globally uniform. Our atmospheric light can change for different locations. This is

due to the fact that various colors from different light sources can contribute to the

atmospheric light as a result of the scattering-in process. While this represents a

rather simple modification to the standard haze model, to the best of our knowledge

this model is novel and offers a useful means to describe nighttime haze images

with glow and active light sources.

For illustration, figure 5.2 shows diagrams of both the daytime haze and night-

time haze models. In the nighttime haze, aside from the natural atmospheric light,

the airlight obtains its energy from active light sources, boosting the brightness in

the image. The active light sources also creates its own presence in the image by

having its direct light to the image and its scattered light that manages to reach the

camera after multiple bounces inside the medium. In the image, these manifest

themselves as glow, which is separate imagery from other objects in the scene. In

the real world, the presence of glow can be significantly prominent in terms of the

affected areas and the brightness. Also, due to the scattering, the brightness of the

glow effect gradually decreases, making its appearance smooth.

Note that our model is different from the model proposed by Zhang et al. [Zhang

et al. 2014]. Zhang et al.’s model is similar to the standard haze model that employs

the two terms, yet adds a new parameter accounting for various light colors and

brightness values. This varying light color and brightness is similar to the varying
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Figure 5.3: Our nighttime dehazing Pipeline: (column 1-3) given an input I, we
decompose it into a glow image, G, and haze image J; (column 4-6) we further
dehaze the haze image, J, yielding the transmission, t, atmospheric light, L and
scene radiance, R.

atmosphere light, L(x) in our model in equation 5.1. We note that our model is also

related to some extent to Schechner and Karpel’s model [Schechner and Karpel

2004] for underwater images, which takes image blur into account by convolving

the forward scattering with a Gaussian function. However, Schechner and Karpel

do not intend to model glow, instead they want to model the scene blur caused by

the significant amount of particles in underwater scenes.

5.3 Nighttime Haze Removal

Given an input image I, our goal is to estimate the scene radiance, R, for every

pixel. Figure 5.3 shows the images involved in our pipeline. From the input image,

I, we decompose the glow image G to obtain the nighttime haze image J. Having

obtained the nighttime haze image that is ideally free from glow, we further dehaze

it, and recover the transmission t, the varying atmospheric light L, and finally the

scene radiance, R. Notice that, unlike in daytime dehazing, our atmospheric light

is not achromatic due to the various colors of light sources. More details to our
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nighttime dehazing process is provided in the following sections.

5.3.1 Glow Decomposition

Narasimhan and Nayar’s method [Narasimhan and Nayar 2003] models glow

by convolving a light source with the atmospheric point spread function (APSF)

represented by a Legendre polynomial and the attenuation factor represented by

the Lambert-Beer law. The model is then used to estimate the optical thickness

(the distance of a light source to the camera) and the forward scattering parameter

of the Henyey-Greenstein phase function, which represents the scattering degrees

of different aerosols. Having estimated these two parameters, the deconvolution

of the glow can be applied and as a result, the shapes of the light sources can be

obtained. Since the optical thickness is known, the depth of the scene nearby the

light sources can also be recovered. Although Narasimhan and Nayar’s method can

be used to estimate the glow’s APSF parameters, it was neither meant to enhance

visibility nor decompose glow from the input image. Moreover, it assumes that the

locations and the areas of individual light sources are known, which is in general

problematic to obtain automatically.

To resolve this, we take a different approach. We notice that appearance of

glow can be dominant in nighttime haze scenes hindering the visibility of the

scene behind. In some areas, the brightness of the glow can be so dominant that

the nearby objects to the light sources cannot be seen at all. Consequently, to

enhance visibility, we need first to remove the effects from glow. Our approach is

to decompose this from the rest of the scene. To enable this decomposition process,
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Figure 5.4: Some glow patches and their gradient histogram profile. Even though
the color, shape, direction of the glow are different, the images gradient histogram
are well modeled using a short tail distribution.

we first rewrite our model in equation (5.1) as:

I(x) = J(x) + G(x), (5.2)

where J = R(x)t(x) + L(x)(1 − t(x)) and G(x) = La(x) ∗ APSF. We call the former

the nighttime haze image, and the latter the glow image. In this form, decoupling

glow becomes a layer separation problem, with the two layers: J and G, that need

to be estimated from a single input image, I.

As discussed in section 5.2, due to the multiple scattering surrounding light

sources, the brightness of the glow decreases gradually and smoothly away from

the light sources. We exploit this smoothness attribute of the glow image and

employ our method in chapter 4, which targets layer separation for scenes where

one layer is significantly smoother than the other. In particular, it exploited the

distribution of the two layers noting that smooth layers have a “short tail” distri-
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bution of the layer’s gradient histogram. As shown in figure 5.4, the glow effect

of nighttime haze also shares this characteristic of having very few large gradients,

meaning we can also model it with a short tail distribution.

Following our work in chapter 4, we design our objective function for layer

separation as:

E(J) =
∑

x

(
ρ(J(x) ∗ f1,2) + λ((I(x) − J(x)) ∗ f3)2

)
s.t. 0 ≤ J(x) ≤ I(x),∑

x Jr(x) =
∑

x Jg(x) =
∑

x Jb(x).

(5.3)

where f1,2 f3 is the same filters used in chapter 4. In this case, the second term

uses the L2 norm regularization for the gradients of the glow layer, G, where

G(x) = I(x) − J(x), will force a smooth output of the glow layer. As for the first

term, the truncated quadratic function ρ will preserve the large gradients of I in

the remaining layer J. The parameter λ controls the smoothness of the glow layer.

Since the regularization is all in gradient values, we do not have the information

for 0-th order offset information of the layer colors. To solve this problem, our work

in chapter 4 proposes to add one inequality constraint to ensure the solution is in

a proper range. However, since this constraint is applied to each color channel

(i.e. r, g, b) independently, it may still lead to color shift problem for the nighttime

images are usually dark and very unstable for layer separation. An example of

such a case is shown in figure 5.5.

To address this problem, we add a second constraint:
∑

x Jr(x) =
∑

x Jg(x) =∑
x Jb(x). With the two constraints combined together, we can obtain a glow sepa-

ration result with less overall color shift. The second constraint forces the range of
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Input One constraint decomposition

Two constraints decomposition

Figure 5.5: Effect of our first and second constraints for the glow decomposition.
From the input image I, we decompose the glow by using solely the first constraint,
resulting in the color shift in the estimated glow image and the estimated haze
image. Based on the same input, we add the second constraint, and now the
estimated glow image and haze image are more balanced in terms of their colors.

the intensity values for difference color channels to be balanced. This effectiveness

of this additional constraint is shown in figure 5.5. The objective function in equa-

tion (5.3) can be solved efficiently using the half-quadratic splitting technique as

shown in chapter 4.

5.3.2 Haze Removal

Having decomposed the glow image, G, from the nighttime haze image J, we still

need to estimate the scene radiance, R. Presumably, since the glow has been sig-

nificantly reduced from the image J, we should be able to enhance the visibility by

using any existing daytime dehazing method. However, as previously mentioned,

daytime dehazing algorithms assume the atmospheric light is globally uniform,
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Input G J

Figure 5.6: Glow decomposition results. (Left column) shows the input images.
(Middle column) shows the estimated glow images. (Right column) shows the
estimated haze images. As one can notice, the presence of glow in the haze images
is much reduced.

which is not valid for nighttime scenes due to the presence of active lights.

To address this issue, we assume that atmospheric light is locally constant

and the brightest intensity in a local area is the atmospheric light of that area.

This brightest intensity assumption is similar to that used in color constancy that

assumes the color represents the illumination [Joze et al. 2012]. To implement this

idea, we split the image J into a grid of small square areas and find the brightest

pixel in each area. We then apply a content-aware smoothness technique, such as

the guided image filter [He et al. 2010] on the grid to obtain our varying atmospheric
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light map.

Using the atmospheric light map, we estimate the transmission. If we employ

the dark channel prior [He et al. 2011], the estimation is done by:

t(x) = 1 − min
y∈Ω(x)

(
min

c

Jc(y)
Lc(y)

)
, (5.4)

where Ω is a small patch, and y is the location index inside the patch. Unlike the

original dark channel prior, the atmospheric light spatially varies.

Figure 5.3 shows the examples of our estimation on the atmospheric light, L,

the transmission, t, and the scene radiance, R. As one can see in the figure, the

estimated scene radiance shows better visibility than the original input image.

5.4 Experimental Results

We have gathered hazy and foggy nighttime images from the Internet, with various

quality and file formats. Based on these images, we evaluated our method and

compared the results with those of daytime dehazing methods of [Meng et al. 2013],

[He et al. 2011] and nighttime method [Zhang et al. 2014].

We have two comparison scenarios. First, given an input of hazy nighttime

image, we process it directly using our method, two daytime dehazing methods

of [Meng et al. 2013], [He et al. 2011] and a nighttime method [Zhang et al. 2014].

Second, given an input of a hazy nighttime image, we decompose the glow from

the haze image, and further process the haze image with varying atmospheric light

using our method and using the method of [Meng et al. 2013]. The main purpose

of the first scenario is to show the importance of the glow-haze decomposition, and
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the main purpose of the second scenario is to show the importance of addressing the

varying atmospheric light. Note that after decomposing the glow and estimating

the varying light, our method uses the dark channel prior to obtain the final scene

radiance; however, as other dehazing methods could also be used.

Figure 5.10, 5.11 shows results for scenario 1. As can be observed, for nighttime

scenes with the presence of glow, the daytime dehazing methods [Meng et al. 2013]

[He et al. 2011] tend to fail (the first and second rows of the figure). As for the

nighttime dehazing method [Zhang et al. 2014] (the third row), the glow is not

handled properly, and due to the additional adhoc post processing, the intensity

and colors of some areas are visible exaggerated. Our results are shown in the

fourth row in the figure, which we consider to look better in terms of visibility and

with more natural colors.

Input J [Meng et al. 2013] Ours

Figure 5.7: The left column shows the haze images, J, after decomposing it from
the glow images. The middle column shows the dehazing results using an existing
daytime dehazing method [Meng et al. 2013]. The colors are noticeably shifted due
to the varying atmospheric light. Right column shows our results, where the color
shift is less significant since varying atmospheric light is used.
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Input [Meng et al. 2013] (0.9984) [He et al. 2011] (0.9978)

Groundtruth [Zhang et al. 2014] (0.9952) Ours (0.9987)

Figure 5.8: Quantitative evaluation using SSIM [Wang et al. 2004] on a synthetic
image. The numbers indicate the SSIM index to the groundtruth. Our result has
the largest SSIM index, implying that it is more similar to the groundtruth than the
other. The synthetic data is generated using PBRT [Pharr and Humphreys 2010].

Figure 5.7 shows two results for scenario 2. Having decomposed the glow, the

haze image was processed using [Meng et al. 2013], a daytime dehazing method. In

comparison to our results, for less varying colors of the atmospheric light, they are

similar to our results in terms of the dehazing quality. However, when the varying

colors of the atmospheric light are significantly visible, the color shift problem

becomes more apparent. In the middle column, Meng et al.’s method [Meng et al.

2013] shows visible color shift. The blue sky in the first row becomes reddish, and

the white wall in the second row becomes bluish. Our results, shown in the right

column, retain the colors of the scenes.

We also quantitatively evaluated our result by measuring its structural similarity

index (SSIM index [Wang et al. 2004]) to a ground truth image. For this, we used a

synthetic image generated using PBRT [Pharr and Humphreys 2010], since it is very
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Input [Zhang et al. 2014] Our Result [Meng et al. 2013]

Figure 5.9: Evaluation on a nighttime image with globally uniform atmospheric
light. These results show that our method’s result is similar to that of Meng et
al.’s [Meng et al. 2013], which is a daytime dehazing method.

difficult to obtain groundtruth image for real nighttime scenes. Figure 5.8 shows

our result and the SSIM indexs against the other methods’ results. Our SSIM value

is larger than that of the other methods, implying that our result is more similar to

the groundtruth.

Figure 5.9 shows an example of applying our method to a nighttime image

with no active light sources (no glow), where we can assume a globally uniform

atmospheric light. The result shows that our method behaves like an existing

daytime dehazing method [Meng et al. 2013], while [Zhang et al. 2014] over-boosts

the contrast such that in the bottom area of the image (red rectangle), the green

channel gets boosted more than the other channels.

5.5 Discussion and Conclusion

The work in this chapter has focused on nighttime haze removal in the presence

of glow and multiple scene light sources. To deal with these problems, we have

introduced a new haze model that incorporates the presence of glow and allows for

spatially varying atmospheric light. While our model represents a straight-forward
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departure from the standard daylight haze model, we have shown its effectiveness

for use in nighttime dehazing.

In particular, we detailed a framework to first decompose the glow image from

the nighttime haze image, by assuming that the brightness of the glow changes

smoothly across the input image. Having obtained the nighttime haze image a

spatially varying atmospheric light map was introduced to deal with the problem

of multiple light colors. Using the normalized nighttime haze image, we estimated

the transmission and finally the scene radiance. Our approach was compared

with a number of examples against several competing methods and was shown to

produce favourable results.

There are a few remaining problems, however, that need further attention.

First, our estimation on varying atmospheric light is admittedly an approximation.

In the method we assume it is locally constant and obtained from the brightest

intensity in each of the local area. Although the brightest intensity is used in color

constancy [Joze et al. 2012], optically it is not always true, since the intensity value is

dependent on other various parameters, such as reflectance and particle properties.

This is a challenging problem, even in the color constancy community and requires

additional work.
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Figure 5.10: The qualitative comparisons of Meng et al.’s method [Meng et al. 2013],
He et al.’s method [He et al. 2011], Zhang et al.’s method [Zhang et al. 2014], and
ours using various nighttime images.
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Figure 5.11: More qualitative comparisons of Meng et al.’s method [Meng et al.
2013], He et al.’s method [He et al. 2011], Zhang et al.’s method [Zhang et al. 2014],
and ours using various nighttime images.
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Chapter 6

A Contrast Enhancement Framework

with JPEG Artifacts Suppression

In the previous three chapters, we described three works for separating layers

in images. In this chapter, we present an application for another type of layer

separation, namely the structure-texture decomposition. We use it in solving the

problem of compression artifacts arised in contrast enhancement. Experimental

comparisons shows the effectiveness of our method.

6.1 Introduction

A commonly applied procedure in low-level computer vision is contrast enhance-

ment. This encompasses techniques that boost an image’s global contrast through

manipulations such as tone-curve adjustment, histogram equalization, and gradient-

based enhancement. Such enhancement is beneficial for color segmentation, edge

detection, image sharpening, image visualization, and many other tasks. In ad-
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dition, spatially varying contrast enhancement is used to dramatically improve

visibility in turbid media, such as haze, fog, rain, and underwater imaging.

Virtually all contrast enhancement algorithms operated on the assumption that

the input image is uncompressed and free from significant noise. The reality,

however, is that the vast majority of images available today on the internet or

from commodity imaging devices are compressed. Moreover, images coming from

sources that would require contrast enhancement, e.g. surveillance cameras, often

have notable amounts of image compression [Jacobs et al. 2009]. The most common

compression scheme is by far JPEG and its extension to video, MPEG. The JPEG

compression scheme breaks an input image into 8 × 8 pixel blocks and applies a

discrete cosine transformation (DCT) to each block individually. To reduce storage

space, the DCT coefficients are quantized at various levels – more quantization gives

higher compression but lowers image quality (for more details see [Watson 1993]).

Lower-quality images exhibit what is termed collectively as “compression artifacts”

that consist of the characteristic blocking artifacts resulting in discontinuities at the

8 × 8 borders, and oscillations or ringing artifacts next to strong edges.

Early JPEG compression methods use fixed quantization tables for different

quality settings, however, most JPEG schemes now use what is referred to as

optimized JPEG where quantization tables are customized based on the image’s

content [Wang and Lee 2001]. This allows relatively high compression rates with

little noticeable visual artifacts. However, when contrast boosting operations are

applied, blocking and ringing artifacts become prominently visible as shown in

figure 6.1. 1

1JPEG assigns a quality factor, QX, to indicate the subjective quality from 0 to 100 (from low
quality to high quality)
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Input I Boosted Ours Pre-deblocking Post-deblocking

Input I Boosted Ours Pre-deblocking Post-deblocking

Tone
curve

De-
haze

Figure 6.1: This shows the noticeable compression artifacts after contrast enhance-
ment. Top two rows are a tone-curve adjustment case (Q40) and the bottom two
rows are a dehazing case (Q70). The zoomed-in regions are listed above to show
the details. The characteristics of the blocking artifacts are distinctive in smooth
regions (pointed out by the yellow arrows), while the ringing artifacts are along
strong edges (pointed out by the red arrows). Comparison of our results with those
of the deblocking method [Foi et al. 2007] applied before or after contrast enhance-
ment results are shown. Note, our method produces more compelling results for
reducing both blocking and ringing artifacts.

There are several existing methods to reduce JPEG compression artifacts. These

methods are often referred to as “deblocking” or “deringing”. In the context

of contrast enhancement, these methods would be applied either before or after

the enhancement process. When applied before the enhancement process, the

algorithms can smooth image details that have small contrast. When applied as a

post-processing step, the effectiveness can be diminished due to the compression

artifacts that were boosted by the contrast enhancement process. Figure 6.1 shows

an example.

In this chapter, we propose a framework based on structure-texture decompo-
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sition to remove the compression artifacts that are amplified in the image contrast

enhancement operation. After the decomposition, contrast enhancement is directly

applied to the structure layer, which is devoid of compression artifacts. Meanwhile,

the texture layer, containing both image details and compress artifacts, is carefully

processed to suppress only the artifacts. After proper scaling, the cleaned texture

component is added back to the enhanced structure layer to generate the artifacts

free output. Experimental results on various contrast enhancement task (e.g. fig-

ure 6.1) demonstrate that our strategy can produce more compelling results (both

qualitatively and quantitatively) than those of using general deblocking algorithms

in either a pre- or post-processing manner. The details of our algorithm as well as

comparisons with other methods are discussed in the following sections.

6.2 Related Work

We discuss relevant related work in the area of JPEG artifacts removal, contrast

enhancement and multi-band image decomposition.

JPEG Artifacts Removal. JPEG artifacts, particularly blocking artifacts, have

long been recognized in the image processing community (e.g. [Lee et al. 1998;

Zakhor 1992]). Despite this, they remain unsolved and it is still an active area of

research (e.g. [Dong et al. 2011; Yim and Bovik 2011]). Various methods have been

used, which can be broadly categorized into three different approaches. The first

approach treats the compression artifacts as non-Gaussian noise and attempts to

remove them by adaptive local filtering which adjusts the filter kernel to remove

block edges and preserve image edges (e.g. [Foi et al. 2007] ). The second approach
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is a reconstruction based approach that incorporates knowledge on natural im-

ages and encodes it into an energy function as a prior. Commonly used priors

include spatial smoothness [Yang et al. 1995], quantization constraints, total vari-

ation (e.g. [Goto et al. 2011]), and gradient constraints (e.g. Field of Experts [Sun

and Cham 2007]). The third approach for reducing compression artifacts relies on

machine learning techniques to learn a mapping from compressed images to their

uncompressed version [Lee et al. 2005; Burger et al. 2012]. While these approaches

can reduce JPEG artifacts in images, their application as either a pre- or post-

processing step can rarely outperform our method, which is designed explicitly for

contrast enhancement.

Image Contrast Enhancement. Contrast enhancement can be performed in many

ways. The most direct way is to apply a function f to the original pixel intensity

value, i.e. Ie = f (I). This strategy is known as tone-curve adjustment. The

function can be determined either manually or by selecting from pre-defined curves

functions. Alternatively, the function can also be based on automatic histogram

equalization, which obtains f by considering the input image’s histogram. Aside

from applying a certain function, local image gradients can also be used as a cost

function that is optimized to boost contrast [Majumder and Irani 2007].

Recovering visibility in bad weather or underwater is, in fact, a specific contrast

enhancement problem [Tan 2008; He et al. 2011; Chiang and Chen 2012; Ancuti

et al. 2012]. Optically, poor visibility in bad weather or underwater is due to the

substantial presence of medium particles that have significant size and distribu-

tion [Tan 2008]. Light from the atmosphere and light reflected from an object are

absorbed and scattered by those particles, leading to contrast reduction and thus
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to the degraded images. Most current dehazing algorithms try to estimate either

airlight or transmission map (see [Tan 2008; Fattal 2008; He et al. 2011]). Regard-

less the algorithms, the outputs of visibility enhancement show clear increase of

contrast.

Multi-band Image Decomposition A common practice in solving computer

vision and computational photography problems is to decompose images into dif-

ferent layers (or scales) and recombine them (e.g. multi-band image blending [Burt

and Adelson 1983], optical flow estimation [Wedel et al. 2009], etc.). The most

related works to ours in this direction are tone-mapping methods (e.g. [Durand

and Dorsey 2002]), which attempt to reduce the contrast of a high dynamic range

image to a limited range while preserving its details. This is usually achieved by

reducing the contrast to the coarse layer and adding back the initial detail layer.

Unlike these tone-mapping methods’ problem, we want to increase the contrast

but not the noise/artifacts. As a result, we need to put more effort on processing

the detail layer.

6.3 Proposed Method

Our basic pipeline is illustrated in figure 6.2. It starts by decomposing the original

input image into two layers: structure and texture layers. This takes the form of

the layer decomposition problem proposed in chapter 1. The input image can be

considered as the superimposition of the two layers:

I = IS + IT, (6.1)
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𝑓 

×K 

+ 

Input  𝐼 

Structure 𝐼𝑆 Structure 𝐼𝑆
𝑒 

Texture mask 𝑀 

Deblocked 𝐼𝑇
𝑑  

Texture 𝐼𝑇 

Result 𝐼𝑒 

Figure 6.2: The overview of our proposed method. The input image is decomposed
into structure and texture components. The contrast of the structure component
is then boosted directly; the texture component that contains the JPEG artifacts is
processed to reduce compression artifact. The two components are recombined at
the last step to render the final result.

where IS is the structure layer corresponding to the main large objects in the image,

and IT is the texture layer corresponding to the fine details [Aujol et al. 2006].

The contrast of the structure layer is then enhanced according to our task (e.g.,

tone-curve adjustment or dehazing). The texture layer is processed through a

combination of image matting and deblocking to remove compression artifacts.

Finally the two layers are recombined to produce the final output. In the following,

the details of each step are discussed.
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Uncompressed 𝐼 Uncompressed 𝐼𝑆 Uncompressed 𝐼𝑇 

Compressed 𝐼 (96.55) Compressed 𝐼𝑆 (99.18) Compressed 𝐼𝑇  (95.20) 

Figure 6.3: This shows two examples of structure-texture decomposition in un-
compressed and compressed image (Q40) pairs. The structure similarity index
measurement (SSIM) [Wang et al. 2004] values (in ×100 scale in this chapter) be-
tween each pair are shown in the brackets. Notice that most of the characteristic
compression artifacts exist in the texture layer, while the structure layer of the
compressed image resembles that of the uncompressed image.

6.3.1 Structure-Texture Decomposition

To decompose the input image into a structure layer and texture (high-frequency)

layer, any edge-aware smoothing operation (e.g. bilateral filter [Tomasi and Man-

duchi 1998], weight least square filter [Farbman et al. 2008]) can be applied. This

procedure produces an image that retains strong structure and over-smooths out

details. We take this image as the structure layer IS, and obtain the texture lay-

er by calculating the difference between the input image and its structure layer,

ITi = Ii − ISi .

In our problem we applied the the total-variation (TV) image-reconstruction

formulation based on Rudin-Osher-Fatemi method [Rudin et al. 1992]. Based on

the TV regularization, the structure layer IS is obtained by minimizing the following
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objective function:

min
IS

∑
i

(ISi − Ii)2 + λ|∇ISi |, (6.2)

where i is the pixel index, λ is the regulation parameter and ∇ is the gradient

operator. An efficient half-quadratic splitting scheme to solve equation (6.2) is

described in [Wang et al. 2008].

This structure-texture decomposition exploits the fact that most of the structure

layer is related to larger gradient magnitudes, while the texture layer captures

both fine image details and compression artifacts that exhibit smaller gradient

magnitudes. The parameter λ is important for controlling this separation and

needs to be adjusted according to the compression factor, i.e., more compression

requires λ to be increased. We show the values of λ used for different compression

levels in the experiments section. There are methods for deblocking using TV

regularization (e.g. [Goto et al. 2011]). The main difference here is that they do

not explicitly process the texture layer, while our method put significant effort

on processing the texture layer as will be described later. As a result, TV-based

deblocking methods tend to suffer from over-smoothing, while ours preserves

more details.

Figure 6.3 shows two examples of the structure-texture decomposition results

for the same images: one image is compressed and the other is not. As can be

observed, unlike the texture layers that contain different information due to the

artifacts, the structure layers are almost identical (both from the visual quality per-

spective and from the structure similarity index measurement, SSIM, perspective

[Wang et al. 2004]). This shows the effectiveness of the TV regularization in produc-

ing a structure layer that significantly filter out any compression artifacts. As such,
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this image layer is considered to be artifacts free and suitable to be boosted using

the desired enhancement operation directly, resulting in the enhanced version of

the structure, Ie
S.

6.3.2 Reducing Artifacts in the Texture Layer

Since the texture layer contains both scene details and compression artifacts, it

needs further refinement to be able to remove artifacts and to keep scene details.

To do this, we create a mask M that separates regions, where the most scene details

are presence, from the remaining regions. Having created the mask, for the regions

inside the mask, we refine them further to remove potential ringing and blocking

artifacts. For the remaining regions, which are those outside the mask, we remove

the content altogether, since the content is most likely compression artifacts.

Scene Detail Extraction

To create the image mask, M, we apply the discrete cosine transform (DCT) to each

8 × 8 patches in the texture layer. We use the DCT high-frequency layer to serve

as a likelihood of the scene details, i.e. stronger high-frequency DCT coefficients

means more details. Denoting the 8 × 8 DCT of one block as matrix B, then the

likelihood of this block to be part of the scene details can be expressed as:

t =
∑
u,v

B2
u,v − B2

1,1 − B2
1,2 − B2

2,1, (6.3)

where u, v denotes the position in the DCT. We take the sum of squares of all DCT

coefficients except B1,1,B1,2 and B2,1, and apply a threshold to the likelihood to

make a binary indication of each block. The threshold we use is empirically set to
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𝐼𝑇 𝐼𝑆 Initial 𝑀   Refined 𝑀 

𝐼𝑇 𝐼𝑆 Initial 𝑀   Refined 𝑀 

Figure 6.4: This shows two examples of the scene detail map generation. The
initial results obtained by checking DCT coefficients are rough estimations. A soft
matting technique can help refine the map by applying it to the structure layer, and
the result is well aligned with the objects in the images

0.1. This initial block-wise estimation of texture region, denoted as M̂, is a coarse

estimate, as shown in the second column of figure 6.4.

This initial mask provides the regions of image details, but is too coarse for

practical use. Thus, we apply a refinement step to better align the texture region

with the structure layer. For this, we use a soft matting technique (inspired by [He

et al. 2011]) by minimizing the following function on the scene detail map M:

min
m

(m − m̂)>(m − m̂) + αm>Lsm, (6.4)

where m and m̂ are the vector forms of matrix M and M̂, respectively. Ls is

Levin’s [Levin et al. 2008] matting Laplacian matrix generated from IS. The smallest

eigenvectors of the matting Laplacian correspond to the partitioning of images

[Levin et al. 2008]. The first term forces the agreement with the initial estimation
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Texture Result (89.46) Deblocked Deblocked result (90.37)IT I  dT

Figure 6.5: This shows the effect of blocking artifacts reduction. The left side
shows the textural layers and its corresponding final composition results without
the blocking artifacts reduction step. The right side shows the same pair but with
the effect of blocking artifacts reduction. As can be seen both in texture and final
results that the block is less noticeable when we apply the block artifacts reduction.
The similarity against ground truth using SSIM for with and without deblocking
are also shown in the bracket.

M̂, while the second term forces the output to be aligned with the structure layer

IS. We set the regularization parameter α a large value (105 in our implementation),

since it will provide clearer edges in the mask M. The last column of figure 6.4

shows the texture region map after refinement using the structure IS. Most of the

values in the map are near 0 or 1 (close to binary), but some values are between the

two.

The result is a mask M whose edges have been refined. Another benefit of

aligning the mask to the structure layer is that small amounts of textures around

edges, which are indicative to ringing artifacts, are removed.

Block Artifacts Reduction

Having created the mask indicating the regions of scene details, we now try to

reduce the potential blocking artifacts in the regions. Denoting the texture image
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after blocking artifacts suppression as Id
Ti

, an objective function is defined as follows:

min
Id
Ti

∑
i

(Id
Ti
− ITi)

2 + β
∑
i∈η

(∇Id
Ti

)2, (6.5)

where i is the pixel index, and η are the locations at the 8×8 block borders. The first

term forces the output to be similar to the input, while the second term smooths

the edges at the 8× 8 block borders, since they are more likely to be block artifacts.

The smoothness level is controlled by the weight term β. We empirically set it 0.5

to achieve a proper compromise between oversmoothness and noticeable artifacts.

This is effective in reducing the blockings in the texture map and result in a higher

quantitative score as can be seen in figure 6.5.

6.3.3 Layer Recomposition

Having removed the artifacts in the texture layer, we now need to apply an en-

hancement operation to the texture layer before adding it back to Ie
S. However,

since most contrast functions f are not linear and thus f (IS + IT) , f (IS) + f (IT), we

cannot simply apply the same process and then sum them up. As a consequence,

we have to approximate the enhancement function adjustment by finding a scale

multiplication factor K, which should obey the following condition as much as

possible: f (I) = f (IS) + KIT, where I is the original input image. By denoting the

enhanced texture layer as Ie
T, we intend to find the scale factor K:

Ie
T = K ◦M ◦ Id

T, (6.6)
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where ◦ is the element-wise multiplication operator. M ◦ Id
T combines the steps in

the previous section that generates the masked texture layer with reduced artifacts.

Like in the case of enhancing contrast for the structure layer IS, the scale factor

depends on the applications. For the application of image tone-curve adjustment,

the tone-curve function f is applied to the intensity values of the input image, I.

Taylor series f (t + ∆t) ≈ f (t) + f ′(t)∆t allows us to write:

f (ISi + ITi) = f (ISi) + f ′(ISi)ITi . (6.7)

Hence, from the last equation, we have the scale factor for the tone adjustment

Ki = f ′(ISi).

In the dehazing or underwater application, the enhancement should consider

the optical model of scattering media, which according to [He et al. 2011], the

output of the enhancement should follow the following equation:

Ie
i =

Ii − A
ti

+ A, (6.8)

where the Ii is the input image, A is the atmospheric light, ti is the transmission,

and i is pixel index. Therefore, the scale factor, Ki, should be approximately equal

to 1
ti

, since A is a constant and Ie
i is in Ii

ti
+ k form. Following [He et al. 2011], t

is obtained from dark channel prior and A is obtained from the patch with the

brightest intensity in dark channel.

Having recovered both the structure and texture layers, the final result can be

achieved by simply summing up the two layers: Ie = Ie
S + Ie

T.
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Low contrast (Q 40) Haze (Q 80) Underwater (Q 30)

Figure 6.6: This figure shows the inputs in the section which require contrast
boosting.

Table 6.1: Average Runtime Comparison of FoE [Sun and Cham 2007], NN [Burger
et al. 2012], SA-DCT [Foi et al. 2007] and ours

Method SA-DCT FoE NN Ours
Runtime(s) 20 287 25 15

6.4 Results

We evaluated our proposed framework by applying it to various contrast enhance-

ment tasks: image tone-curve adjustment, dehazing and underwater visibility

enhancement. Experiments were performed on a PC with Intel I7 CPU (3.4GHz)

with 8GB RAM. The test images were either self-taken or downloaded from the

Internet. Three examples are shown in figure 6.6. Note that, in these input im-

ages, there are often no noticeable artifacts. The artifacts become apparent after the

contrast enhancement is applied.

The entire process for an image (approximately 500 × 600 in size) using our

Table 6.2: Quantitative Comparison of FoE [Sun and Cham 2007], NN [Burger et al.
2012], SA-DCT [Foi et al. 2007] and ours

Method simple
boosted

FoE NN SA-DCT
(Pre)

SA-DCT
(Post)

Ours

SSIM avg. 90.79 91.14 91.88 92.03 91.79 92.05
PSNR avg. 29.17 29.69 29.94 30.12 29.42 29.76
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Ours
92.90 / 28.12

Boosted
91.55 / 27.75

SA-DCT (Post) 
92.55 / 27.95

FoE 
92.10 / 28.07

NN
92.84 / 28.24

SA-DCT (Pre) 
92.86 / 28.39 

Figure 6.7: This figure shows an example in image tone-curve adjustment using
FoE [Sun and Cham 2007], NN [Burger et al. 2012], SA-DCT [Foi et al. 2007]] and
our approach. Shown below the images are the comparison SSIM/PSNR(dB) with
respect to the groundtruth.

current un-optimized matlab implementation took about 15 seconds with the main

bottleneck being the image matting which took more than 10 seconds. The only

parameter that needs to be changed was the regulation term λ in the structure-

texture decomposition in equation (6.2). This parameter was set according to the

compression level. Higher compression requires larger λ for the decomposition.

λ = 0.02, 0.03, 0.04, 0.05 is used for > Q70, Q50 − Q70, Q30 − Q50 and < Q30,

respectively.

We compared our approach with several state-of-the-art deblocking methods:
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a local filtering based method - shape adaptive DCT(SA-DCT) [Foi et al. 2007], a

reconstruction based using Field of Experts (FoE) prior [Sun and Cham 2007] as

well as a learning based method using Neural Network (NN) [Burger et al. 2012].

These methods were all used as both a pre-processing and post-processing step for

the contrast enhancement methods. We note that the comparison with NN is not

fair since it is a more general algorithm targeting on any kinds of noise (i.e. not

just JPEG artifacts). The average run-times of these algorithms are summarized in

table 6.1. Interestingly, even though we apply layer decomposition and matting as

parts of our procedure, our method has the fastest performance among all.

For experiments involving tone-curve manipulation, we can also provide a

quantitative comparison with the groundtruth. The groundtruth image is obtained

by enhancing the uncompressed image using the same tone-curve. Quantitative

results are reported using the perceptually-based quality measurement-structure

similarity index (SSIM) [Wang et al. 2004] (in ×100 scale) as well as the peak signal-

to-noise ratio (PSNR). Table 6.2 summarizes the average SSIM and average PSNR

on all our 15 test cases and at different compression levels (from Q20 to Q90). Our

approach achieves the highest SSIM but not the highest PSNR. As sometimes the

case with PSNR, we believe it does not properly reflect the qualitative results. On

visual inspection of the images, it is clear our approach is qualitatively better than

the other methods.

Figure 6.7 shows a tone-curve adjustment comparison. As can be seen, FoE and

NN successfully removed block artifacts which resulted in overall improvements

in both PSNR and SSIM. However, they tended to smooth sharp edges and details

in the image. SA-DCT lost its effectiveness in deblocking when used after the

enhancement, but when used before the enhancement, SA-DCT did a good job
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Ours

Boosted FoE NN 

SA-DCT (pre) SA-DCT (post) 

Figure 6.8: This figure shows an example of dehazing using of FoE [Sun and Cham
2007], NN [Burger et al. 2012], SA-DCT [Foi et al. 2007] and our approach.

and achieved the highest PSNR. However, upon close visual inspection, the results

of our method are much cleaner (less ringing artifacts) and more image details

preserved, resulting the highest SSIM value.

Figures 6.8 and 6.9 show examples of applying our method to dehazing and

underwater visibility enhancement. Here, since we do not have the groundtruth

recovered image, we can only show qualitative visual comparisons. In these ap-

plications, the advantage of our method becomes more observable. The results

of using FoE and NN are over smoothed, causing them to lose details. SA-DCT

slightly outperformed FoE and NN in reducing the compression artifacts. Ours is
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Boosted FoE NN 

SA-DCT (Pre) SA-DCT (Post) Ours

Figure 6.9: This figure shows an example of underwater image enhancement using
FoE [Sun and Cham 2007], NN [Burger et al. 2012], SA-DCT [Foi et al. 2007] and
our approach.

better in terms of removing artifacts (particularly with much less ringings) as well

as preserving image details.

6.5 Discussion and Conclusion

We have introduced a framework to suppress artifacts appearing in JPEG images

that becomes prominently visible when applying contrast enhancement. While the

proposed framework is admittedly engineering in nature, our strategy of using

structure and texture layer decomposition enables us to reduce the compression
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artifacts in parallel with contrast enhancement, and to process them independently

to each other. With this integrated framework, the key benefit is that we can process

two tasks that are opposite to each other in terms of functionality. On one hand,

we have a task to suppress noise as much as possible; on the other hand, within the

same image, we have a task to enhance the content as much as possible. If these

two tasks are processed sequentially, as pre- or post-processing, the results are not

likely to be optimum. Since, the process of artifacts removal as pre-processing

will remove the image content that have low contrast, and as post-processing will

be affected by the enhanced artifacts. As shown in our experiments, we have

demonstrated the effectiveness of the proposed framework using qualitative and

quantitative measures.

While our approach targets suppressing JPEG compression artifacts for the

task of contrast enhancement, our framework is suitable to other applications

that have the same nature of problem. We consider JPEG compression artifacts

to be an important problem because these are commonly troublesome for many

computer vision and image processing algorithms that assume the input images

have little noise. We also consider contrast enhancement, since it is one of the

core operations in the low-level computer vision and image processing. Among

other applications, it is crucially used to deal with turbid media, such as haze, fog,

rain, and underwater, which has been addressed considerably in computer vision

community recently.

Regarding our framework, the remaining question is whether our structure,

texture, and masked texture layers can effectively distill JPEG images into a layer

that is mostly image content and also into another layer that is mostly affected by

compression artifacts. While our practical findings discussed in this chapter have
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given us a positive answer (and we consider as a contribution that can be improved

further), rigorous evaluation is still needed, and we will consider this in our future

work.
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Conclusion

This chapter provides a summary of the works presented in the previous four chap-

ters in this thesis. While each previously mentioned chapter has a self-contained

summary and discussion, this chapter serves to re-iterate those summaries and

discussions. Meanwhile, we also describe potential directions for future work.

7.1 Summary

This thesis has developed three distinct works for layer separation problems and

one application based on layer separation. Improvements over previous methods

have been demonstrated through experiments. Specifically we note the following

findings:

• In chapter 3, we have presented a method to automatically remove reflection

interference due to a glass surface. Our approach works by capturing a

set of images of a scene from slightly different viewpoints. By aligning all

the input images and labelling out the two kind of edges from statistics, a
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subsequent layer separation can be achieved. Our approach can produce

clearer layer separation results compared with existing methods. Moreover,

unlike previous motion based methods, our approach does not need any

constraints on scenes geometry nor require the reflection to be static. This

makes our method a practical one for use in casual imaging scenarios.

• In chapter 4, we have presented a method to automatically extract two layers

from one image where one layer is smoother than the other. Our approach

works by building two likelihoods for each layer from gradient histograms,

which models this relative smoothness. In order to solve the layer separation

problem, an objective function that finds the most likely separation has been

proposed. We have also derived an efficient scheme to optimize our objective

function which is non-convex and has an inequality constraint. Tests on two

layer separation problems of intrinsic image decomposition and reflection

removal using defocus blur show our method can provide high-quality results

that are comparable to the results by state-of-the-art methods. But our method

is significantly faster than previous works.

• In chapter 5, we have developed a method for nighttime haze removal in the

presence of glow and multiple scene light sources. We have introduced a new

haze model specific for nighttime scene that incorporates the presence of glow

and allows for spatially varying atmospheric light. Based on our nighttime

haze model, we have also proposed a framework to first decompose the glow

image from the nighttime haze image, by using our method in chapter 4.

After that, a spatially varying atmospheric light map has been introduced to

deal with the problem of multiple light colors. Compared with both previous
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daytime dehazing and nighttime dehazing approaches, our method is shown

to produce more favourable results.

• In chapter 6, as an application of layer separation, we have introduced a

framework to suppress artifacts appearing in JPEG images which become

prominently visible when applying contrast enhancement. The used struc-

ture and texture layer decomposition enables us to reduce the compression

artifacts in parallel with contrast enhancement, and to process them indepen-

dently to each other. As shown in our experiments, we have demonstrated the

effectiveness of the proposed framework using qualitative and quantitative

measures.

7.2 Future Directions

Future directions of research mentioned in prior chapters are re-iterated here. In

particular, the following issues remain open and require further investigations:

• Our reflection removal method in chapter 3 only considers the dense corre-

spondence with regards to the background to align the input images. One

extension would be joint estimation of the two layers (reflection and back-

ground) motion and layer recovery. It is hard to recover two individual

motions from the mixture image and recover the two layers simultaneous-

ly. Therefore alternating motion estimation and layer recovery may be the

correct way. With proper regularizations (e.g. pairwise smoothness) on the

motions of the two layers, it may help reduce the ambiguity when the re-

flection is prominent or the background has large textureless regions. As we
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have mentioned in chapter 3, these two cases are the most challenging ones

for our current approach.

• Our single image layer separation using relative smoothness proposed in

chapter 4 is a general method. Our approach was demonstrated on two

applications: intrinsic images and reflection separation in chapter 4. The

work in chapter 5 also apply this method for separating the glow layer.

Exploiting other layer separation problems that may benefit from our method

is an interesting future direction. One example under consideration is the

problem of removing adherent raindrops in images [You et al. 2013]. There

are situations that our lens get raindrop/waterdrop adherent and results in

another layer added to the clear image. If our focus is on the the scene at far

distance, the raindrop layer would be smooth. In such a case, our method

may help remove the raindrop layer.

• In our experiment part in chapter 5, we have used one synthetic data to quan-

titatively compare different methods. This is rarely done in prior published

works. As we have mentioned in chapter 2, there are a lot of recent works

addressing the problem of dehazing. Unfortunately, although their results

look good for human visual perception, there is no quantitative measurement

of all these methods. One of the reasons is that there is no ground truth data

used in the community as a benchmark. This hinders the further progress

of the field; as a new proposed method is difficult to be measured, and new

problems are difficult to be identified. The MIT dataset [Grosse et al. 2009]

is one successful case to demonstrate the use of ground truth dataset. The

presence of the MIT dataset spurs a lot of modern approaches for intrinsic
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image decompositions, e.g. [Gehler et al. 2011; Barron and Malik 2012]. In-

spired by this, we can try to introduce a new data set of degraded images

along with their ground truths. This dataset may be obtained using artificial

ones or using captured images from a controlled indoor environment.

• While our approach in chapter 6 targets suppressing JPEG compression ar-

tifacts for the task of contrast enhancement, our framework is suitable to

other applications that have the same nature of problem. One problem under

consideration is to apply image segmentation for JPEG compressed images.

Another interesting extension of our current approach is to study how to ad-

just our framework to solve the same problem in compressed videos. Simply

applying our method to each frame may result in flickering in video. Tem-

poral smoothness may need to be taken into consideration to stabilize the

video.
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