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Online low-light sand-dust video enhancement
using adaptive dynamic brightness correction and a

rolling guidance filter
Dongdong Ni, Zhenhong Jia *, Jie Yang member, IEEE, and Nikola Kasabov, Fellow, IEEE

Abstract—Sand-dust videos obtained in a low-light environ-
ment are characterized by low contrast, nonuniform illumination,
color cast, and considerable noise. To realize sand-dust removal
and brightness enhancement simultaneously, this paper proposes
an online low-light sand-dust video enhancement method using
adaptive dynamic brightness correction and a rolling guidance
filter. The proposed dual-threshold interframe detection strategy
involves two methods to treat low-light sand-dust video frames.
The first method involves two components: an adaptive dynamic
brightness correction algorithm to correct the color deviation of
the low-light video frame and improve its brightness and a rolling
guidance filter combined with guided image filtering to enhance
the frame details. The second method enhances the quality of
the incoming frame by reducing the amount of calculation. The
first frame of the video is processed using the first method.
The processing method of each subsequent frame is determined
according to its interframe detection value with the buffer frame.
Through qualitative and quantitative comprehensive experiments
on low-light sand-dust images and videos, the performance of
the proposed method is compared with those of state-of-the-art
methods. The proposed method for frame quality improvement
achieves the best visual effect in enhancing the quality of low-light
sand-dust images, as indicated by the best objective evaluation
indicators. Moreover, compared with the framewise enhancement
method, the video processing efficiency associated with the dual-
threshold interframe detection strategy is 2.77 times higher.

Index Terms—Low-light sand-dust video, adaptive dynamic
brightness correction, rolling guidance filter, dual-threshold in-
terframe detection strategy.

I. INTRODUCTION

HUMAN beings obtain most of their information using
the visual system, in the form of images. Thus, images

are irreplaceable information carriers for human perception
[1]. However, images and videos captured in outdoor scenes
are often degraded by the interaction of atmospheric phenom-
ena, which affects people’s access to correct and effective
information [2]. In sand-dust weather, the sand-dust particles
suspended in the air absorb, emit, or scatter light, thereby
severely degrading the videos and images collected by visual
acquisition equipment. These videos and images suffer from
color cast, reduced contrast, noise, and loss of details, which
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impede important computer vision tasks, such as target recog-
nition [3], road monitoring [4], aerospace applications [5],
military surveys [6], and satellite remote-sensing monitoring
[7]. Therefore, removing the effect of sand dust from videos
and images collected under sand-dust weather and recovering
the scene correctly are essential and fundamental steps in
computer vision. In addition, with the dramatically increasing
number of surveillance cameras installed worldwide, real
video is available to be streamed online. Thus, an online
scheme must be established to enhance low-light sand-dust
videos: Such a scheme must be able to manage the incoming
data of each frame online without storing the complete video
in memory.

Many researchers have attempted to address these issues
[8]-[20]. Although most of the existing image methods are
effective for daytime sand-dust removal, their performance is
inadequate for low-light sand-dust removal due to the multiple
light scattering and low level of illumination. Thus, low-light
image sand-dust removal continues to be a challenging task.
In general, daytime illumination is dominated by uniformly
distributed sunlight, whereas the illumination in a low-light
environment is spatially irregular and susceptible to noise [21].
Moreover, the illumination is extremely weak, the visibility
is reduced, and the scene details are hidden, resulting in
the failure of the currently used priors and assumptions,
such as the color attenuation [22] and dark channel priors
[23]. Although various effective methods for low-light image
enhancement have been developed [20], [24]-[27], [29], sand-
dust removal and brightening are treated separately in low-
light image processing. Consequently, the ambient illumina-
tion is dim in images treated for sand-dust removal, and sand
dust remains in images treated for low light. Considering
these aspects, this paper proposes an online low-light sand-dust
video enhancement method using adaptive dynamic brightness
correction and a rolling guidance filter to simultaneously
realize sand-dust removal and brightness enhancement.

In our preliminary work [28], we developed a straightfor-
ward and unsupervised method for improving sand-dust video
quality. This practical and efficient method is effective in
daytime conditions but fails in low-light conditions. To solve
the problem of dimness and noise in the existing method [28]
when processing low-light sand-dust videos and images, we
design an adaptive dynamic brightness correction (ADBC)
algorithm and a rolling guidance filter combined with a guided
image filtering (RGF-GIF) algorithm. The ADBC algorithm
enhances the brightness of low-light sand-dust videos, and
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the RGF-GIF algorithm enhances the details of the low-light
sand-dust videos and suppresses noise. In addition, the dual-
threshold interframe detection strategy designed in this study
can reduce the time for calculating intermediate variables
compared with the interframe detection strategy.

Fig. 1 illustrates the process flow of the proposed method.
First, the dual-threshold interframe detection strategy initial-
izes the buffer frame as the first frame of the low-light sand-
dust video. Second, the ADBC and RGF-GIF algorithms are
used for color correction, brightness correction, and detail
enhancement. Additionally, the frame variation is initialized as
the difference between the processing result of the first frame
and buffer frame at each position of the R, G, and B color
channels, and the intermediate variables in the frame image
enhancement process are saved. Finally, the dual-threshold
interframe detection strategy provides two optional methods
to improve the quality of each subsequent frame. The first
method uses the ADBC and RGF-GIF algorithms to process
the incoming frame. At the same time, the buffer frame
is updated to the incoming frame, the frame variation is
updated to the difference between the incoming frame and
processed incoming frame, and the new intermediate variables
are saved. The second method enhances the quality of the
incoming frame by reducing the amount of calculation. The
threshold Th is a critical value that determines which method
is used to process the incoming frame. SV represents the
interframe detection value of the incoming and buffer frames.
If SV < Th, the first method is used to process the incoming
frame; otherwise, the second method is used to process the
incoming frame. The second method adopts two strategies to
reduce the amount of computation. If SV ≥ Tf , the sum of
tonal values of the incoming frame and frame variation at each
position of the R, G, and B color channels are considered the
processing result of the incoming frame. If SV < Tf , the
intermediate variables are directly substituted into Equations
(1), (2), (6), and (16) to obtain the result of the incoming frame
to reduce the time for calculating the intermediate variables.
Furthermore, the buffer frame is updated to the incoming
frame, and the frame variation is updated to the difference
between the incoming frame and processed incoming frame.

The contributions of this research can be summarized as
follows:

1. An adaptive dynamic brightness correction algorithm
based on the average brightness information of the frame
is proposed, which can dynamically adjust the brightness
range of the frame combined with the brightness information
characteristics of the frame.

2. A rolling guidance filter algorithm combined with guided
image filtering is developed to enhance the details of the
frame and suppress the influence of noise on the enhancement
process.

3. A dual-threshold interframe detection strategy is designed
to improve the efficiency of processing low-light sand-dust
videos without deteriorating the processing effect.

The remaining paper is organized as follows. Section II
provides a review of the related work. Section III describes the
principles and process flow of the proposed method. Section
IV presents the experimental results. Section V presents the

concluding remarks.

II. RELATED WORK

Clear scenes satisfy human visual needs and are beneficial
for higher-level processing. This section provides a brief
review of the existing work focused on low-light and sand-
dust image enhancement.

Low-light enhancement methods for a single image have
recently attracted significant research attention. For example,
Wu et al. [24] proposed an HE-based method that adaptively
controls the contrast gain according to the potential visual
importance of the intensities and pixels to guarantee global
contrast preservation. Li et al. [20] used a robust Retinex
model to improve the brightness of dusty images. Dong et al.
[25] exploited a DCP-based method to improve the brightness
of low-light videos. Lei et al. [29] proposed a simple yet
effective low-light image enhancement method to perceive
unknown information from dark areas. However, traditional
methods cannot effectively extract enhanced details and en-
counter challenges related to low contrast and unnatural colors.
Learning-based methods have achieved considerable success
in low-light image enhancement. Xu et al. [26] proposed a
novel frequency-based image decomposition-and-enhancement
model to adaptively enhance the image contents and details
in different frequency layers while suppressing noise. Wang
et al. [27] proposed a novel framework for low-light image
enhancement based on a normalizing flow model, which can
effectively adjust illumination and suppress noise and artifacts.
Liu et al. [34] systematically reviewed and evaluated the
existing single-image low-light enhancement algorithms.

In recent years, with the increasing frequency of sand-
dust weather, video and image clarity processing under sand-
dust weather has received extensive attention. The methods
for enhancing sand-dust videos and images can be divided
into three categories: image enhancement methods, image
restoration methods, and deep-learning methods.

Image enhancement methods enhance images according
to the image degradation characteristics, independent of the
imaging process of objects in the image environment. Repre-
sentative algorithms include histogram equalization techniques
and multiscale Retinex enhancement algorithms with color
recovery [30], [31]. For example, Shi et al. [8] developed a
normalized gamma transformation-improved CLAHE method
for enhancing the image contrast, which uses the normal-
ized gamma function to reduce the excessive increase in
the brightness induced by CLAHE. Park et al. [9] proposed
an efficient sand-dust image enhancement algorithm using
a successive color balance to obtain a coincident chromatic
histogram. Li et al. [10] proposed a region-adaptive image
dehazing and enhancement method based on a replaceable
plug-in region segmentation module and seamless stitching
for hazy outdoor scenes with a large range of depth of field.
The most notable advantage of such methods is that the
prior conditions of the images do not need to be considered,
resulting in high calculation efficiency. However, in practical
applications, computer-vision-acquisition equipment is often
contaminated with noise [32]. Thus, in addition to enhancing
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Fig. 1. Process flow of the proposed method. In step 1⃝, the buffer frame is initialized to the first frame of the video to be processed. In steps 2⃝ and 6⃝,
the frame variation is updated to the difference between the processed frame and buffer frame at each position of the R, G, and B color channels, and the
intermediate variables in the image enhancement process are saved. In step 3⃝, the sum of tonal values of the incoming frame and frame variation at each
position of the R, G, and B color channels is set as the processing result of the incoming frame. In steps 4⃝ and 7⃝, the buffer frame is updated to the
incoming frame. In step 5⃝, the intermediate variables are directly substituted into Equations (1), (2), (6), and (16) to obtain the result of the incoming frame
to reduce the time for calculating the intermediate variables.

the visual effect of images, such methods also amplify the
noise, thereby deteriorating the video and image quality. As
shown in Figs. 9(d), 9(f), 15(b), and 15(g), although the license
plate information is enhanced, the noise is also amplified.

Image restoration methods construct a corresponding physi-
cal model by analyzing the reasons for image degradation and
restore the original information of the image in combination
with prior knowledge. The most widely used method, proposed
by He et al. [33], adopts the dark channel prior for haze
removal. Inspired by this method, Gao et al. [11] reversed
the blue channel and used the dark channel prior to estimate
the atmospheric light and transmission map to recover sand-
dust images. Yang et al. [12] applied optical compensation and
Gaussian adaptive transmission to eliminate the color cast of
hazy dust images and enhance their visibility. Salazar et al.
[13] developed a morphological reconstruction method based
on the dark channel prior to eliminate the effect of dust. Shi
et al. [14] used a halo-reduced DCP dehazing method and
gamma function to obtain normal visual colors and a detailed
clear image. Such methods can obtain promising experimental
results for data that meet the prior conditions; however, they
are ineffective for data that do not meet the prior conditions.

Deep-learning methods typically apply two strategies to
enhance sand-dust images and videos. The first strategy is
to estimate the transmittance and atmospheric light in the
atmospheric scattering model through deep learning [16], [17].
The second strategy is to establish an end-to-end network from
sand-dust images to sand-dust-free images through deep learn-
ing [15], [18], [19]. Notably, the construction of a network to
improve the definition of dust images based on deep learning
is a data-driven method that requires comprehensive datasets.
However, in the real world, it is difficult to obtain the true
transmittance and atmospheric light maps and to collect a large
number of pairs of real sand-dust and corresponding sand-dust-
free images of various outdoor scenes.

III. PROPOSED METHOD

This section describes the proposed adaptive dynamic
brightness correction algorithm, frame detail enhancement
based on a rolling guidance filter combined with guided image
filtering, and dual-threshold interframe detection strategy.

A. ADBC algorithm for brightness enhancement
Low-light sand-dust videos are characterized by color devi-

ations and insufficient brightness. Compared with histograms
of high-quality images, the color range of each color channel
of a low-light sand-dust image is narrow and concentrated on
the left side of the histogram. The V component distribution
of the HSV color space is concentrated in the range of low
brightness values, as shown in Fig. 2. The proposed method
applies color stretching and brightness correction techniques
to solve these problems.

To promptly solve the color cast problem of low-light sand-
dust videos, Equation (1) [35] is used to preprocess the video
frames by stretching the color range.

Cout = (Cin − L) /(H− L)× range + cmin (1)

where Cout is the output tonal value of a pixel, Cin is the
original tonal value of a pixel, H and L are thresholds, range
is the output tonal range (with a default value of 255), and
Cmin is the lowest tonal value of the pixels (with a default
value of 0).

When processing low-light sand-dust videos, the brightness
distribution of different frames is different. Thus, if the same
brightness adjustment range is used, the brightness correction
effect of certain frames may not be satisfactory. To improve
the brightness of low-light sand-dust videos and dynamically
determine the brightness adjustment range of each frame
according to its brightness information, Equation (2) is used
to process the low-light sand-dust video based on dynamic
brightness correction according to the Weber–Fechner law
[36].

F ′
v = Fv ×

(
range + k × Fv

)
max

(
Fv, Fv−g

)
+ k × Fv

(2)
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(a) (b) (c) (d)
Fig. 2. Comparison of histograms of low-light sand-dust images and high-quality images. (a) Original low-light sand-dust image and its R, G, and B color
channel histograms. (b) V component of the original low-light sand-dust image HSV color space and its histogram. (c) Original high-quality image and its
R, G, and B color channel histograms. (d) V component of the original high-quality image HSV color space and its histogram.

where range is the output brightness value range, with a
default value of 255. Fv is the V component of the original
video frame HSV color space, F ′

v is the V component of the
video frame after brightness enhancement, k is the adjustment
factor, and Fv is the mean value of the V component. A smaller
value of k×Fv corresponds to a wider brightness adjustment
range. For a given k, a smaller Fv corresponds to a wider range
of brightness adjustment. Fv−g is the illumination component
estimated according to Fv . Fig. 3 shows the adjusted result
of the V component and its histogram for different k. As
k decreases, the V component of the image becomes more
concentrated in the range of high brightness values, and the
details of the image are covered by high brightness.

(a) (b) (c)

(d) (e) (f)
Fig. 3. Adjusted results of the V component and its corresponding histogram
for different k values. (a) V component of the original image HSV color
space; (b)–(f) adjusted results of the V component for k = 0.1, k = 0.3,
k = 0.5, k = 0.7, and k = 0.9, respectively.

The multiscale Gaussian filter method is selected to extract
the illumination component of the frame as it can accurately
and rapidly estimate the illumination component of the scene
[37]. The mathematical expression of the Gaussian function is

as follows:

fG (I, σs) =
1

Kp

∑
q∈N(p)

exp

(
−∥p− q∥2

2σ2
s

)
I(q) (3)

where σs is a scale parameter. Kp =∑
q∈N(p) exp

(
−∥p−q∥2

2σ2
s

)
is used to normalize all weights

of the Gaussian filter. p and q represent the coordinates
of different pixel points of the image. I(q) indicates the
brightness value of the pixel. N(p) is the domain pixel set
of pixel point p, and it contains all the points in the square
with point p as the center and a side length of (2 ∗ σs + 1).
Using the Gaussian function to convolve the V component of
the image, the estimat of the illumination component can be
obtained. The output can be defined as follows:

Fv−g = fG (Fv, σs) (4)

Generally, Gaussian functions with large-scale parameters
can preserve the color information of the image illumination
component, but the local contrast and object shape information
of the image is lost. In contrast, Gaussian functions with
small-scale parameters can preserve the details of the image
illumination component, but they may induce halos and color
artifacts, as shown in Fig. 4. To balance the global and
local characteristics of the extracted illumination component,
a multiscale Gaussian function is employed to extract the
illumination component of the scene. Weights are assigned to
the functions to obtain the estimated values of the illumination
component. Such a function can be expressed as follows:

Fv−g =

M∑
i=1

wi [fG (Fv, σsi)] (5)

where wi is the weight coefficient of the illumination com-
ponent extracted by the Gaussian function with scale i, and
M is the number of scales. We assume that the extracted
illumination components at each scale contribute equally to
the final fusion result. If the illumination component extracted
by a large scale is assigned a large weight, the local contrast
and object shape information of the image will be lost, and
if the illumination component extracted by a small scale is
assigned a large weight, artifacts may be generated. In Fig.
4, the results of σs0 = 1 and σs5 = 200 are similar to
those shown in Figs. 4(c) and 4(h), respectively. Considering
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Fig. 4. Extraction of the illumination components by four-scale Gaussian filtering. (a) Original image; (b) color stretched image; (c) V component of the
color stretched image; (d)–(i) illumination components obtained at σs0 = 1, σs1 = 5, σs2 = 15, σs3 = 80, σs4 = 150, and σs5 = 200, respectively; and
(j) illumination component extracted by four-scale Gaussian filtering.

the accuracy and computational efficiency of the illumination
component extraction of the image, the parameters are set as
M = 4, w1 = w2 = w3 = w4 = 0.25, σs1 = 5, σs2 = 15,
σs3 = 80, and σs4 = 150. The four-scale Gaussian function is
used to extract the illumination component of the frame, and
the result is shown in Fig. 4(j).

The adjustment factor k must be appropriately set to achieve
the desired brightness correction results. As shown in Fig. 3,
when k = 0.1, the brightness is over enhanced, and the details
are masked. In comparison, when k = 0.9, the brightness
enhancement is not adequate. To realize brightness adaptive
dynamic correction and preserve the details of the image when
the brightness value is changed, image fusion is performed.
This process can be expressed as follows:

Ffus = α1S1 + α2S2 (6)

where Ffus indicates the V component of the image after
fusion, α1 and α2 are weight coefficients, S1 is the V
component of the original image after color stretching, and
S2 is the V component after the brightness enhancement of
the image. Principal component analysis (PCA) [46] is applied
to calculate α1 and α2 through the following steps:

1: Treat each source image S1 and S2 as an n-dimensional
vector denoted as Xp, p = 1, 2.

2: Construct matrix X using the source images.

X = [X1,X2] =


X11 X21

X12 X22

...
...

X1n X2n

 (7)

3: Determine the covariance matrix C of the data matrix X .

C =

[
σ2
11 σ2

12

σ2
21 σ2

22

]
(8)

where σ2
ij is the covariance of the image, which satisfies

σ2
i,j =

1

n

n∑
l=1

(xi,l − x̄i) (xj,l − x̄j) (9)

where x̄i is the average brightness value of the ith source
image.

4: Create the eigenvalue equation |λI−C| = 0 and calculate
the eigenvalue (λ1, λ2) and feature vector (ξ1, ξ2) of the

covariance matrix C, where ξi is a vector
[

ξi1
ξi2

]
whose size

is 2× 1.
5: Select a large eigenvalue.

p = argmax (λp) , p = 1 or 2 (10)

6: Calculate the weight coefficient using the feature vector
corresponding to the largest eigenvalue λp.

α1 =
ξi1

ξi1 + ξi2
and α2 =

ξi2
ξi1 + ξi2

(11)

where i = p.
7: Obtain the fused image Ffus.
In the PCA fusion method, image fusion is performed

according to the correlation between the selected images.
Data with common characteristics are compressed, and those
with unique characteristics are expanded. The fusion result is
shown in Fig. 5. The amount of image information gradually
decreases. Thus, in the following experiments, for the two
images used for image fusion, the V component of the color-
stretched image and that after brightness adjustment with
k = 0.1 are selected.

Overall, Fig. 6 illustrates the proposed process for the
adaptive dynamic brightness correction of low-light sand-dust
video frames.

B. RGF-GIF algorithm for detail enhancement

The details of the low-light sand-dust video frames pro-
cessed by the ADBC algorithm are not adequately pronounced.
These details are enhanced using a rolling guidance filter
combined with guided image filtering. To promptly extract the
image details, the rolling guidance filter is used to extract the
structural information of the image [38].
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(a) (b) (c)

(d) (e) (f)
Fig. 5. Fusion results of the original image and image adjusted by different
brightness correction coefficients using the PCA method. (a) Original image;
(b)–(f) fusion results of the original image and brightness-corrected image for
k = 0.1, k = 0.3, k = 0.5, k = 0.7, and k = 0.9, respectively.

The rolling guidance filter is an efficient scale-aware filter
that iteratively recovers the edges of large-scale objects while
smoothing small-scale objects and texture details. The imple-
mentation of the rolling guidance filter involves two steps:
small-scale structure smoothing and large-scale structure edge
restoration. In the first step, a Gaussian filter is used to smooth
the small-scale structure of the source image. Let I be the
original image and J1 be the Gaussian smoothed image. Then,
the Gaussian filtering process can be expressed as

J1 = fG (I, σs) (12)

where the scale σs is used to control the window size of the
Gaussian filter kernel. All structures with a scale smaller than
σs are smoothed, but the edges of large-scale structures are
blurred to a certain extent.

In the second step, bilateral filtering [47] is performed: The
result J1 of the Gaussian filter in the first step is used as the
guide image, and the original image I is used to iteratively
restore the smoothed large-scale structural edges. The guide
image and original image of the next iteration are the output
image of the previous iteration and initial original image,
respectively. As the number of iterations increases, the edges
of the blurred large-scale structures become clearer, and this
step can be expressed as

J
t+1

(p) =
1

Kp

∑
q∈N(p)

exp

(
−

∥p − q∥2

2σ2
s

−
∥∥Ut(p) − Jt(q)

∥∥2
2σ2

r

)
I(q) (13)

where Kp =
∑

q∈N(p) exp

(
−∥p−q∥2

2σ2
s
− ∥U

t(p)−Jt(q)∥2
2σ2

r

)
is

used for normalization. I , which is the initial original image,
is defined as in Equation (12). J t indicates the output image
of the last iteration, and t indicates the number of iterations.
When t = 0, J0 is a constant, and the result of Equation (13)
is the same as that of Equation (12). U t(p) and J t(q) refer
to the tonal values of the pixels whose coordinates are p and
q in the image, respectively. σr is used to control the range
weight. Thus, the equation of the rolling guidance filter is

Ores = frgf (I, σs, σr,T) (14)

where I is the original image, Ores is the output image, and
T is the total number of iterations.

The image details typically include the edge, corner, and
other information of different objects in the image. When a
rolling guidance filter is used to smooth an image, within
a certain range, a higher σs means that more details are
smoothed out. A higher σr means blurring of a larger amount
of the target edge retained in the image. According to this
principle, the difference between the original image and the
image smoothed by the rolling guidance filter can be consid-
ered the image details. Therefore, the details of the image can
be defined as follows:

Od = I−Ores (15)

In the iterative process of the rolling guidance filter, the
spatial and range weights of the filter are controlled by σs

and σr, respectively. These weights facilitate the effective
segmentation of different scales of the image and smoothing
of the small-scale results while accurately preserving the target
edge. The edge information of a part of the target increases
in each iteration. As the number of iterations, T , increases,
the edge information contained in Ores increases [38] and
that of Od decreases. In other words, the increase in T not
only increases the amount of calculation but also reduces the
details of Od. Thus, we set T = 1. By setting the values
of multiple groups of σs and σr, the details of the image
shown in Fig. 5(a) are extracted. The amount of image detail
information depends on the storage space occupied by the
extracted detail information image. For a given resolution
and format, a larger storage space occupied by the extracted
detail information image corresponds to more abundant detail
information extracted. The storage space can be determined by
the basic attribute information of the image. When σs = 10
and σr = 0.5, the rich details of the image can be extracted,
as shown in Fig. 7 and Table I.

TABLE I
THE AMOUNT OF IMAGE DETAIL INFORMATION OF FIG. 5(A) EXTRACTED

WITH DIFFERENT σs AND σr . (UNIT: BYTE)

σs = 15 59720 59410 59397
σs = 10 60001 60179 59960
σs = 5 59745 60043 60043

σr = 0.1 σr = 0.5 σr = 0.9

Nevertheless, Od of the image still contains noise. Thus,
when the details are directly used to enhance the details of
the image processed by the ADBC algorithm, the enhanced
image contains significant noise, as shown in Fig. 8(b). The
guided image filter smooths the image while preserving the
edges and has been widely used in noise reduction [39].
Therefore, guided image filtering is introduced to suppress the
interference of noise while retaining the edge information. The
image detail enhancement process can be expressed as follows:

Oe = I + γO′
d = I + γfgif(r,ε) (Od,Od) (16)

where I is the image processed by the ADBC algorithm; γ is
the magnification factor, with a default value of 1; fgif(r,ϵ)
is the GIF operator; and r and ϵ are the window radius
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Fig. 6. The proposed process for the adaptive dynamic brightness correction of low-light sand-dust video frames.

σs = 15

σs = 10

σs = 5

σr = 0.1 σr = 0.5 σr = 0.9

Fig. 7. Detail extraction of the image shown in Fig. 5(a) with different σs and
σr . A higher σs means more details are smoothed out. A higher σr means
blurring of a larger amount of the target edge retained in the image. When
σs = 10 and σr = 0.5, the image details contain the maximum amount of
image information.

and regularization coefficient of the GIF, set as 2 and 0.01,
respectively [39].

(a) (b) (c)
Fig. 8. The RGF-GIF algorithm can enhance the image details and suppress
the noise of low-light sand-dust images. The bottom image is a magnified view
of the red box. (a) Original image. (b) Image subjected to detail enhancement
without guided image filtering; obvious noise can be observed on the surface.
(c) Image subjected to detail enhancement with guided image filtering.

Algorithm 1 summarizes the implementation steps of the
proposed RGF-GIF algorithm.

Algorithm 1 RGF-GIF algorithm for detail enhancement

Input: I , σs, σr, r, ϵ, γ
Output: Oe

1: Initialize J0 as a constant image
2: Ores ← frgf (I, σs, σr, 1)
3: Od ← I −Ores

4: O′
d ← fgif(r,ϵ)(Od, Od)

5: Oe ← I + γO′
d

Compared with the detail enhancement algorithms coupled
with a denoising filter, the RGF-GIF algorithm can enhance
details and suppress noise while preventing the loss of im-
age details, as shown in Fig. 9. Table II lists the quantita-
tive evaluation indices for the RGF-GIF algorithm and its
comparison algorithms used to process 200 low-light sand-
dust images. With no noise-free detail-enhanced images to
reference, we select the widely used reference-less image
spatial quality evaluator (BRISQUE) [50], naturalness image
quality evaluator (NIQE) [51], and contrast-enhanced distorted
image nonreference quality evaluation index (CEIQ) [52] to
quantitatively evaluate the algorithm performance. The RGF-
GIF algorithm achieves the best BRISQUE and CEIQ values,
and its NIQE value is second only to the method Zhang et al.
[32] coupled with Kostadin et al. [49], although the image in
Fig. 9(d) exhibits considerable noise amplification.

TABLE II
THE QUANTITATIVE EVALUATION INDICES FOR THE RGF-GIF

ALGORITHM AND ITS COMPARISON ALGORITHMS

Method [32]+[48] Method [32]+[49] Method [45]+[48] Method [45]+[49] RGF-GIF
BRISQUE↓ 18.94 22.42 27.51 56.92 9.42

NIQE↓ 4.29 2.38 4.27 4.44 2.54
CEIQ↑ 3.50 3.49 3.46 3.47 3.51
↓ means a small metric is better, and ↑ means a large metric is better.

C. Acceleration using the dual-threshold interframe detection
strategy

The adjacent frames of the video are highly similar. Thus,
if the frame quality improvement method is used to process
the low-light sand-dust video frame-by-frame, many repetitive
calculations will be required, which will reduce the efficiency
of video processing. To enhance the processing efficiency,
we design a dual-threshold interframe detection strategy that
uses the similarity of consecutive frames to accelerate the
processing of low-light sand-dust videos. The normalized
mean square error (NMSE) is used to measure the similarity
between frames because it requires limited computation. The
SV value between the incoming frame and buffer frame is
quantitatively measured by the NMSE, which can be mathe-
matically expressed as

SV = 1− 1

MN

M∑
m=1

N∑
n=1

1

L
[ F1( m,n)− F2( m,n)]

2 (17)

where M and N represent the total number of rows and
columns of the video frame, respectively. L is the dynamic
range of tonal values, and F1(m,n) and F2(m,n) represent
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(a) (b) (c) (d) (e) (f) (g)
Fig. 9. Comparison of detail enhancement algorithms. (a) Original low-light sand-dust image. (b) Original image processed by the ADBC algorithm. The
remaining five images show the results of detail enhancement of the image in Fig. 9(b) by the following methods: (c) Zhang et al. [32] coupled with Zhang
et al. [48]; (d) Zhang et al. [32] coupled with Kostadin et al. [49]; (e) Jiang et al. [45] coupled with Zhang et al. [48]; (f) Jiang et al. [45] coupled with
Kostadin et al. [49]; and (g) the proposed RGF-GIF algorithm. The noise in Figs. 9(c) and 9(e) is significantly suppressed, but certain details are lost, such as
the tree branch information in the magnified area. The details in Figs. 9 (d) and 9 (f) are significantly enhanced, but the noise is not suppressed. For example,
the noise of the license plate is significantly amplified. In contrast, the proposed RGF-GIF algorithm can enhance details and suppress noise while preventing
the loss of image details.

the tonal values at position (m,n). F1 and F2 represent the
incoming frame and buffer frame, respectively. The range
of SV is [0,1]. A higher value means a smaller difference
between frames.

In the experimental analysis, we note that several adjacent
frames are almost identical. Therefore, we design the first
threshold Tf for this case. When SV ≥ Tf , we use the sum
of the low-light sand-dust video frame to be processed and
the frame variation associated with the frame to be processed
to reduce the amount of calculation. Notably, the threshold
Tf must not be set to be excessively small; otherwise, certain
video frames with improved quality will have blurred edges,
as shown in Fig. 10. Fig. 11 quantitatively shows the structural
similarity (SSIM) between reference video 1 and the process-
ing results of video 1 at different Tf values.

(a) (b) (c)
Fig. 10. Comparison results for frame 6 of Video 1 at different Tf values.
The bottom images are magnified views of the red-box regions. (a) Tf = 1;
no edge blurring occurs. (b) Tf = 0.99; the edges are not visually blurred.
(c) Tf = 0.97; visible blurring occurs at the edges of buildings and moving
cars. Therefore, a lower Tf corresponds to more blurring.

In addition, for a given scene, the intermediate variables
are nearly unchanged when the frame quality improvement
method is used to process the low-light sand-dust video frame-
by-frame, as shown in Fig. 12. Therefore, we design a second
threshold Th. When Th ≤ SV < Tf , the intermediate

Fig. 11. Structural similarity (SSIM) between reference video 1 and the
processing results of video 1 at different Tf values. Reference video 1 is
the result of processing video 1 frame-by-frame using the frame quality
improvement method. A lower SSIM means more severe blurring.

variables are directly substituted into Equations (1), (2), (6),
and (16) to obtain the quality improvement result of the
incoming frame. The threshold Th must not be too small;
otherwise, the difference between the real parameters of the
incoming frame and parameters in the intermediate variables
will be large, which can deteriorate the quality improvement
effect of the incoming frame.

Based on this strategy, we define the speedup ratio as
follows:

Speedup =
N × t1

(N −M)× t1 + (N − 1)× t2 +K × t3 + (M −K)× t4
(18)

where N represents the total number of frames of the low-
light sand-dust video; t1 represents the time required by the
frame quality improvement method to improve the quality of
one frame; t2 represents the time required to calculate the SV
of two frames; t3 and t4 denote the time required by the frame
variation method and intermediate variable method to improve
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(a)

(b)

(c)
Fig. 12. Changes in intermediate variables when the frame quality improve-
ment method is used to process low-light sand-dust video 1 frame-by-frame. In
video 1, a scene change occurs between frames 10 and 11, and the intermediate
variables change significantly. The intermediate variables of frames 1 to 10
and frames 11 to 60 are nearly unchanged. The SV of frames 10 and 11 is
0.926. (a) Changes in HR, LR, HG, LG, HB , and LB in Equation (1). (b)
Changes in Fv in Equation (2). The Fv of frame 1 is used as a reference
to calculate the structural similarity (SSIM) of the remaining Fv with the
reference image. (c) Changes in α1 and α2 in Equation (6).

the quality of one frame, respectively; and M and K denote
the number of frames whose quality is improved using the
second method and frame variation method, respectively.

Comparing t1, t2, t3 and t4, t4 ≈ 0.9t1, and t1 is consid-
erably larger than t2 and t3. Thus, we ignore [(N − 1)× t2 +
K × t3], and Equation (18) can be rewritten as

Speedup =
N × t1

(N −M)× t1 + (M −K)× 0.9t1
=

N

N − 0.1M − 0.9K
(19)

The proposed dual-threshold interframe detection strategy
can reduce the time required for calculating the intermediate
variables compared with the interframe detection strategy
designed in [28].

Fig. 13 shows a comparison of the processing results ob-
tained using the frame quality improvement method to improve
the low-light sand-dust video quality frame-by-frame and
those using the dual-threshold interframe detection strategy
to improve the low-light sand-dust video quality.

TABLE III
THE QUANTITATIVE EVALUATION INDICES Gc , Enc , AND r IN FIGS.

13(B), 13(C), 18(B), 18(C), 19(B), AND 19(C).

Fig. 13(b) Fig. 13(c) Fig. 18(b) Fig. 18(c) Fig. 19(b) Fig. 19(c)
Gc 2.16 2.15 2.47 2.47 2.70 2.65
Enc 7.27 7.26 7.66 7.66 7.51 7.49
r 3.92 3.75 3.79 3.78 3.44 3.30

The speedup ratio of the dual-threshold interframe detection
strategy is related to the similarity of each frame of the
video. A larger number of frames with similarities meeting
the threshold corresponds to a higher speedup ratio.

IV. EXPERIMENTS

This section describes the experimental evaluation of the
proposed method and its qualitative and quantitative compar-
ison with state-of-the-art algorithms.

Experimental data: To evaluate the proposed method on real
low-light sand-dust images and videos, we use the keywords
“sand dust weather”, “sandstorm”, “low-light”, and “night”
to retrieve images and videos from the internet (baidu.com
and bing.com) and create a dataset consisting of 200 images.
We prepare 10 short videos using the videos recorded by
surveillance equipment under sand-dust weather, among which
four (videos 1–4) are full high-definition (HD) videos, four
(videos 5–8) are HD videos, and two (videos 9 and 10) are
standard-definition (SD) videos. The images are used to verify
the effectiveness of our algorithm in improving the quality of
low-light sand-dust frames, and the videos are used to verify
the effectiveness of the dual-threshold interframe detection
strategy in enhancing the processing efficiency of low-light
sand-dust videos.

Objective evaluation indices: Given the lack of free-
reference videos and images, the nonreference method is used
to objectively evaluate degraded low-light sand-dust videos
and images. We use three nonreference evaluation metrics
to evaluate the low-light sand-dust image and video quality
recovery.

1. Average gradient Gc. Gc reflects the ability of a method
in expressing the details of an image and can be used to
measure the relative clarity of the image [41]. An image is
defined as a two-dimensional function f(x, y), where (x, y)
are spatial coordinates, and the amplitude f represents the
intensity value (0–255) at location (x, y) in the image. Gc is
formulated as

Gc =
1

M ×N

M∑
i=1

N∑
j=1

√
(∂f/∂x)2 + (∂f/∂y)2

2
(20)

where M and N are the width and height of the image,
respectively. ∂f/∂x and ∂f/∂y represent the horizontal and
vertical gradients, respectively. A larger Gc corresponds to a
superior recovery effect.

2. Image information entropy Enc [42]. A still image
is considered an information source with a random output.
Source symbol set A is defined as the set of all possible
symbols {ai}, and the probability of source symbol ai is
P (ai). Thus, the average amount of information contained in
an image is

Enc = −
L∑

i=1

P (ai) log2 P (ai) (21)

A larger Enc corresponds to a superior recovery effect.
3. The r measure represents the quality of contrast restora-

tion in the sand-dust-free image [43], and its mathematical
expression is

r = exp

 1

Vr

∑
Pi∈℘r

log (ri)

 (22)
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(a)

(b)

(c)
Fig. 13. Acceleration of the processing of video 1 by the dual-threshold interframe detection strategy. The thresholds Tf and Th are set as 0.99 and 0.93,
respectively. Video 1 has 60 frames, and we select frames 1, 13, 25, 37, 49, and 60 at equal intervals for presentation. (a) Original video frames. (b) Results of
framewise processing using the frame quality improvement method; the processing time is 123.00 s. (c) Processing results using the dual-threshold interframe
detection strategy; the processing time decreases to 34.17 s. Frame 1 in Fig. 13(b) is the same as frame 1 in Fig. 13(c). The PSNR of frame 13 in Fig. 13(b)
and frame 13 in Fig. 13(c) is 75.16 dB. The PSNR of frame 25 in Fig. 13(b) and frame 25 in Fig. 13(c) is 74.09 dB. The PSNR of frame 37 in Fig. 13(b)
and frame 37 in Fig. 13(c) is 73.11 dB. The PSNR of frame 49 in Fig. 13(b) and frame 49 Fig. 13(c) is 72.57 dB. The PSNR of frame 60 in Fig. 13(b) and
frame 60 in Fig. 13(c) is 71.42 dB. PSNR ≥ 40 dB [40] corresponds to visually insensitive effects [40], and thus, the visual differences in Figs. 13(b) and
13(c) are insensitive. The differences between Figs. 13(b) and 13(c) are highlighted using quantitative evaluation indicators. As shown in Table III, compared
with Fig. 13(b), the quantitative evaluation indices Gc, Enc, and r in Fig. 13(c) are 0.5%, 0.1%, and 4.3% lower, respectively. In contrast, the dual-threshold
interframe detection strategy increases the processing efficiency of video 1 by 3.59 times.

where ℘ indicates the visible edges in the restored sand-dust
image. Vr denotes the cardinal numbers of the set of visible
edges in the contrast-restored image. ri indicates the visible
gradient ratio of the visible edge Pi. A larger r corresponds
to a superior recovery effect.

Experimental environment: The experimental software and
hardware are MATLAB R2020a. The memory is 16 GB, and
unless specified otherwise, all methods are implemented using
an Intel(R) Core(TM) i5-9400. The proposed can achieve real-
time performance for surveillance videos using a GPU (Nvidia
RTX 3080Ti).

A. Qualitative evaluation

Three low-light sand-dust images with different scenes,
sizes, and degrees of influence of low light and sand dust are
selected to demonstrate the effectiveness of the proposed frame
quality improvement method. Eight state-of-the-art algorithms
are used for comparison: [10], [12], [13], [15], [20], [28], [29],
and [33].

Figs. 14 and 15 show that the images processed using the
methods of (b) Li et al. [10], (d) Salazar et al. [13], (e) Cai
et al. [15], and (i) He et al. [33] are dark and contain sand-
dust effects. The algorithms of (f) Li et al. [20] and (h) Lei
et al. [29] can improve the image brightness, but they cannot
remove sand-dust. The methods of (c) Yang et al. [12] and (g)
Ni et al. [28] can remove sand-dust; however, the contrast of
the image processed by the method of (c) Yang et al. [12] is
lower than the proposed method. Moreover, the license plate
and roof in the image processed by the method of (g) Ni et al.
[28] exhibit problems of color cast and noise amplification.

Fig. 16 shows that the methods of (b) Li et al. [10], (c)
Yang et al. [12], (d) Salazar et al. [13], and (i) He et al. [33]
produce artifacts at locations with nonuniform illumination.
Although the methods of (f) Li et al. [20] and (h) Lei et al.
[29] can enhance the image brightness, the images processed
by the methods of (f) Li et al. [20] and (h) Lei et al. [29] have
orange and pink tints, respectively. Although the approach of
(g) Ni et al. [28] can remove sand-dust, the window frame has
a color cast problem.

B. Quantitative evaluation

We quantitatively analyze our frame quality improvement
method and eight state-of-the-art methods in terms of the
average gradient Gc, image information entropy Enc, and
quality r of the contrast restoration. The experimental results
are summarized in Tables IV∼VI. The optimal value of each
evaluation index is boldfaced.

The proposed method achieves the best indices for images
1 and 3. For image 2, the proposed method achieves the
highest Enc, and its visual effect is superior to that of Ni
et al. [28], even though the method of Ni et al. [28] achieves
the highest Gc and r. To further demonstrate the advantages
of our method in improving the quality of low-light sand-dust
images, the mean values of the objective evaluation indices for
200 experimental images are determined, as shown in Fig. 17.
The proposed frame quality improvement method outperforms
the other eight methods.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Fig. 14. Comparison results for image 1. The bottom images are magnified views of the red box regions. (a) Original image. The remaining nine images are
the restoration results generated by the methods proposed by (b) Li et al. [10], (c) Yang et al. [12], (d) Salazar et al. [13], (e) Cai et al. [15], (f) Li et al.
[20], (g) Ni et al. [28], (h) Lei et al. [29], (i) He et al. [33], and [j] this study.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Fig. 15. Comparison results for image 2. The bottom images are magnified views of the red box regions. (a) Original image. The remaining nine images are
the restoration results generated by the methods proposed by (b) Li et al. [10], (c) Yang et al. [12], (d) Salazar et al. [13], (e) Cai et al. [15], (f) Li et al.
[20], (g) Ni et al. [28], (h) Lei et al. [29], (i) He et al. [33], and [j] this study.

TABLE IV
IMAGES 1∼3 RESTORATION EVALUATION BASED ON THE Gc METRIC.

Original image Method [10] Method [12] Method [13] Method [15] Method [20] Method [28] Method [29] Method [33] Our method
Image 1 0.44 1.64 0.64 0.51 0.52 0.40 2.38 0.46 1.18 2.47
Image 2 0.65 2.65 1.02 0.28 0.36 0.21 3.46 0.42 1.04 1.82
Image 3 0.83 3.17 1.00 0.69 0.97 0.85 3.47 1.01 1.09 5.79

TABLE V
IMAGES 1∼3 RESTORATION EVALUATION BASED ON THE Enc METRIC.

Original image Method [10] Method [12] Method [13] Method [15] Method [20] Method [28] Method [29] Method [33] Our method
Image 1 6.11 6.61 6.50 6.00 5.29 5.94 7.61 6.21 5.90 7.69
Image 2 6.42 7.07 7.43 5.91 6.27 5.25 7.45 6.31 6.17 7.48
Image 3 6.75 7.20 7.06 6.67 6.83 6.59 7.42 6.45 6.32 7.57

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2023.3293276

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF ULSTER. Downloaded on July 09,2023 at 22:51:24 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Fig. 16. Comparison results for image 3. The bottom images are magnified views of the red box regions. (a) Original image. The remaining nine images are
the restoration results generated by the methods proposed by (b) Li et al. [10], (c) Yang et al. [12], (d) Salazar et al. [13], (e) Cai et al. [15], (f) Li et al.
[20], (g) Ni et al. [28], (h) Lei et al. [29], (i) He et al. [33], and [j] this study.

TABLE VI
IMAGES 1∼3 RESTORATION EVALUATION BASED ON THE r METRIC.

Method [10] Method [12] Method [13] Method [15] Method [20] Method [28] Method [29] Method [33] Our method
Image 1 3.65 1.40 1.16 1.35 6.09 6.32 1.20 2.72 6.59
Image 2 5.17 2.01 1.00 1.01 0.82 7.05 1.02 1.75 4.53
Image 3 3.86 1.02 0.82 1.16 1.83 3.78 1.14 1.81 6.00

TABLE VII
COMPUTATIONAL EFFICIENCY COMPARISON (UNIT: S).

Resolution Method [10] Method [12] Method [13] Method [15] Method [20] Method [28] Method [29] Method [33] Our method
Image 1 1996×1064 1.55 5.71 0.73 7.22 64.05 1.60 0.37 10.25 2.01
Image 2 5760×3840 16.92 58.63 7.64 52.36 980.44 15.79 4.63 86.71 19.86
Image 3 3000×2000 4.14 15.76 1.89 24.27 330.55 4.31 0.82 20.67 5.27

Fig. 17. Mean values of objective evaluation indices of 200 low-light sand-
dust images.

C. Dual-threshold interframe detection strategy for accelerat-
ing low-light sand-dust video processing

To ensure a fair comparison of the runtime and proper
implementation of the comparative algorithms, the working
MATLAB codes of the eight methods are downloaded from
the official/personal website of the authors or GitHub. The
runtime of all the methods are listed in Table VII.

The results indicate that the proposed frame quality im-
provement method does not have the efficiency advantage in
processing low-light sand-dust images. Using the proposed
method to process video frames sequentially is time-intensive,

and thus, the sand-dust videos cannot be efficiently processed.
Therefore, a dual-threshold interframe detection strategy is
designed to process low-light sand-dust videos. We select
one full HD video, one HD video, and one SD video to
demonstrate the effectiveness of the dual-threshold interframe
detection strategy in efficiently processing low-light sand-dust
videos. Figs. 13, 18, and 19 show the processing results of
videos 1, 5, and 9 using the frame quality improvement method
(frame-by-frame) and the dual-threshold interframe detection
strategy. Table VIII lists the processing speeds of videos 1,
5, and 9 using the framewise processing method and dual-
threshold interframe detection strategy.

The results demonstrate that the proposed dual-threshold
interframe detection strategy can significantly improve the
efficiency of processing low-light sand-dust videos without
affecting their processing effects. In addition, we determine
the average speedup ratio of the dual-threshold interframe
detection strategy for all the experimental videos, as shown
in Fig. 20.

The mainstream video surveillance system resolution is full
HD 1920×1080, HD 1280×720, and SD 640×480. Most
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(a)

(b)

(c)
Fig. 18. Acceleration of the processing of video 5 by the dual-threshold interframe detection strategy. The thresholds Tf and Th are set as 0.99 and 0.90,
respectively. Video 5 has 24 frames, and we select frames 1, 6, 11, 16, 21, and 24 at equal intervals for presentation. (a) Original video frames. (b) Results
of framewise processing using the improving frame quality method; the processing time is 22.32 s. (c) Processing results using the dual-threshold interframe
detection strategy; the processing time decreases to 5.35 s. Frame 1 in Fig. 18(b) is the same as frame 1 in Fig. 18(c). The PSNR of frame 6 in Fig. 18(b)
and frame 6 in Fig. 18(c) is 70.37dB. The PSNR of frame 11 in Fig. 18(b) and frame 11 in Fig. 18(c) is 70.85 dB. The PSNR of frame 16 in Fig. 18(b) and
frame 16 in Fig. 18(c) is 68.15 dB. The PSNR of frame 21 in Fig. 18(b) and frame 21 in Fig. 18(c) is 67.33 dB. The PSNR of frame 24 in Fig. 18(b) and
frame 24 in Fig. 18(c) is 70.40 dB. As shown in Table III, compared with Fig. 18(b), the quantitative evaluation indices Gc and Enc in Fig. 18(c) remain
unchanged, and the decrease rate of the quantitative evaluation index r is 0.3%. In contrast, the dual-threshold interframe detection strategy increases the
processing efficiency of video 5 by 4.16 times.

(a)

(b)

(c)
Fig. 19. Acceleration of the processing of video 9 by the dual-threshold interframe detection strategy. The thresholds Tf and Th are set as 0.99 and 0.95,
respectively. Video 9 has 30 frames, and we select frames 1, 7, 13, 19, 25, and 30 at equal intervals for presentation. (a) Original video frames. (b) Results
of framewise processing using the improving frame quality method; the processing time is 11.70 s. (c) Processing results using the dual-threshold interframe
detection strategy; the processing time decreases to 7.45 s. Frame 1 in Fig. 19(b) is the same as frame 1 in Fig. 19(c). The PSNR of frame 7 in Fig. 19(b)
and frame 7 in Fig. 19(c) is 69.17 dB. The PSNR of frame 13 in Fig. 19(b) and frame 13 in Fig. 19(c) is 70.34 dB. The PSNR of frame 19 in Fig. 19(b)
and frame 19 in Fig. 19(c) is 74.26 dB. The PSNR of frame 25 in Fig. 19(b) and frame 25 in Fig. 19(c) is 74.67 dB. The PSNR of frame 30 in Fig. 19(b)
and frame 30 in Fig. 19(c) is 74.79 dB. As shown in Table III, compared with Fig. 19(b), the quantitative evaluation indices Gc, Enc, and r in Fig. 19(c)
are 1.9%, 0.3%, and 4.1% lower, respectively. In contrast, the dual-threshold interframe detection strategy increases the processing efficiency of video 9 by
1.57 times.
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TABLE VIII
PROCESSING SPEED COMPARISON (UNIT: FPS).

Video
sequence Resolution Total number

of frames

Processing speed
of framewise

method

Processing speed
of framewise

method (GPU)1

Processing speed of
dual-threshold interframe

detection strategy

Processing speed of
dual-threshold interframe
detection strategy (GPU)1

Speedup
ratio

Video 1 1920×1080 60 0.49 6.82 1.76 24.48 3.59
Video 5 1280×720 24 1.08 9.38 4.49 39.02 4.16
Video 9 640×480 30 2.56 14.43 4.03 22.65 1.57

1 (GPU) denotes using GPU (Nvidia RTX 3080Ti)

Fig. 20. Speedup ratio of the dual-threshold interframe detection strategy for
all the experimental videos.

of these systems use either 15 FPS or 7.5 FPS, as higher
values require a large amount of storage volume in the case
of recording [44], which means that the proposed method
can theoretically meet the needs of real-time processing in
practical deployment.

V. CONCLUSIONS

This paper proposes an online low-light sand-dust video en-
hancement method using adaptive dynamic brightness correc-
tion and a rolling guidance filter. The dual-threshold interframe
detection strategy adopts two strategies to process low-light
sand-dust video frames. The first method has two components:
an adaptive dynamic brightness correction algorithm to correct
the color deviation of a low-light video frame and improve
its brightness, and a rolling guidance filter combined with
guided image filtering to enhance the frame details. The
second method obtains the quality improvement result of the
processed frame by reducing the amount of calculation. The
first frame of the video is processed using the first method.
The processing method of each frame after the first frame is
determined according to its interframe detection value with
the buffer frame. Comprehensive qualitative and quantitative
experiments are performed using low-light sand-dust videos
and images, and the results are compared with those of state-
of-the-art methods. The results demonstrate that the proposed
frame quality improvement method achieves the best visual
effect in improving the quality of low-light sand-dust images
along with the best objective evaluation indicators. The dual-
threshold interframe detection strategy can significantly im-
prove the efficiency of processing low-light sand-dust videos
without affecting their processing effect.
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