29,885 research outputs found

    Baseband analog front-end and digital back-end for reconfigurable multi-standard terminals

    Get PDF
    Multimedia applications are driving wireless network operators to add high-speed data services such as Edge (E-GPRS), WCDMA (UMTS) and WLAN (IEEE 802.11a,b,g) to the existing GSM network. This creates the need for multi-mode cellular handsets that support a wide range of communication standards, each with a different RF frequency, signal bandwidth, modulation scheme etc. This in turn generates several design challenges for the analog and digital building blocks of the physical layer. In addition to the above-mentioned protocols, mobile devices often include Bluetooth, GPS, FM-radio and TV services that can work concurrently with data and voice communication. Multi-mode, multi-band, and multi-standard mobile terminals must satisfy all these different requirements. Sharing and/or switching transceiver building blocks in these handsets is mandatory in order to extend battery life and/or reduce cost. Only adaptive circuits that are able to reconfigure themselves within the handover time can meet the design requirements of a single receiver or transmitter covering all the different standards while ensuring seamless inter-interoperability. This paper presents analog and digital base-band circuits that are able to support GSM (with Edge), WCDMA (UMTS), WLAN and Bluetooth using reconfigurable building blocks. The blocks can trade off power consumption for performance on the fly, depending on the standard to be supported and the required QoS (Quality of Service) leve

    Transport delay compensation for computer-generated imagery systems

    Get PDF
    In the problem of pure transport delay in a low-pass system, a trade-off exists with respect to performance within and beyond a frequency bandwidth. When activity beyond the band is attenuated because of other considerations, this trade-off may be used to improve the performance within the band. Specifically, transport delay in computer-generated imagery systems is reduced to a manageable problem by recognizing frequency limits in vehicle activity and manual-control capacity. Based on these limits, a compensation algorithm has been developed for use in aircraft simulation at NASA Ames Research Center. For direct measurement of transport delays, a beam-splitter experiment is presented that accounts for the complete flight simulation environment. Values determined by this experiment are appropriate for use in the compensation algorithm. The algorithm extends the bandwidth of high-frequency flight simulation to well beyond that of normal pilot inputs. Within this bandwidth, the visual scene presentation manifests negligible gain distortion and phase lag. After a year of utilization, two minor exceptions to universal simulation applicability have been identified and subsequently resolved

    Ring oscillator clocks and margins

    Get PDF
    How much margin do we have to add to the delay lines of a bundled-data circuit? This paper is an attempt to give a methodical answer to this question, taking into account all sources of variability and the existing EDA machinery for timing analysis and sign-off. The paper is based on the study of the margins of a ring oscillator that substitutes a PLL as clock generator. A timing model is proposed that shows that a 12% margin for delay lines can be sufficient to cover variability in a 65nm technology. In a typical scenario, performance and energy improvements between 15% and 35% can be obtained by using a ring oscillator instead of a PLL. The paper concludes that a synchronous circuit with a ring oscillator clock shows similar benefits in performance and energy as those of bundled-data asynchronous circuits.Peer ReviewedPostprint (author's final draft

    Efficient resources assignment schemes for clustered multithreaded processors

    Get PDF
    New feature sizes provide larger number of transistors per chip that architects could use in order to further exploit instruction level parallelism. However, these technologies bring also new challenges that complicate conventional monolithic processor designs. On the one hand, exploiting instruction level parallelism is leading us to diminishing returns and therefore exploiting other sources of parallelism like thread level parallelism is needed in order to keep raising performance with a reasonable hardware complexity. On the other hand, clustering architectures have been widely studied in order to reduce the inherent complexity of current monolithic processors. This paper studies the synergies and trade-offs between two concepts, clustering and simultaneous multithreading (SMT), in order to understand the reasons why conventional SMT resource assignment schemes are not so effective in clustered processors. These trade-offs are used to propose a novel resource assignment scheme that gets and average speed up of 17.6% versus Icount improving fairness in 24%.Peer ReviewedPostprint (published version

    Analogue to Digital and Digital to Analogue Converters (ADCs and DACs): A Review Update

    Full text link
    This is a review paper updated from that presented for CAS 2004. Essentially, since then, commercial components have continued to extend their performance boundaries but the basic building blocks and the techniques for choosing the best device and implementing it in a design have not changed. Analogue to digital and digital to analogue converters are crucial components in the continued drive to replace analogue circuitry with more controllable and less costly digital processing. This paper discusses the technologies available to perform in the likely measurement and control applications that arise within accelerators. It covers much of the terminology and 'specmanship' together with an application-oriented analysis of the realisable performance of the various types. Finally, some hints and warnings on system integration problems are given.Comment: 15 pages, contribution to the 2014 CAS - CERN Accelerator School: Power Converters, Baden, Switzerland, 7-14 May 201

    Impact of parameter variations on circuits and microarchitecture

    Get PDF
    Parameter variations, which are increasing along with advances in process technologies, affect both timing and power. Variability must be considered at both the circuit and microarchitectural design levels to keep pace with performance scaling and to keep power consumption within reasonable limits. This article presents an overview of the main sources of variability and surveys variation-tolerant circuit and microarchitectural approaches.Peer ReviewedPostprint (published version

    On the acceleration of wavefront applications using distributed many-core architectures

    Get PDF
    In this paper we investigate the use of distributed graphics processing unit (GPU)-based architectures to accelerate pipelined wavefront applications—a ubiquitous class of parallel algorithms used for the solution of a number of scientific and engineering applications. Specifically, we employ a recently developed port of the LU solver (from the NAS Parallel Benchmark suite) to investigate the performance of these algorithms on high-performance computing solutions from NVIDIA (Tesla C1060 and C2050) as well as on traditional clusters (AMD/InfiniBand and IBM BlueGene/P). Benchmark results are presented for problem classes A to C and a recently developed performance model is used to provide projections for problem classes D and E, the latter of which represents a billion-cell problem. Our results demonstrate that while the theoretical performance of GPU solutions will far exceed those of many traditional technologies, the sustained application performance is currently comparable for scientific wavefront applications. Finally, a breakdown of the GPU solution is conducted, exposing PCIe overheads and decomposition constraints. A new k-blocking strategy is proposed to improve the future performance of this class of algorithm on GPU-based architectures
    corecore