
http://wrap.warwick.ac.uk

Original citation:
Pennycook, Simon J., Hammond, Simon D., Mudalige, Gihan R., Wright, Steven A. and
Jarvis, Stephen A.. (2012) On the acceleration of wavefront applications using
distributed many-core architectures. Computer Journal, Volume 55 (Number 2). pp. 138-
153. ISSN 0010-4620

Permanent WRAP url:
http://wrap.warwick.ac.uk/45683

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Copyright statement:
This is a pre-copyedited, author-produced PDF of an article accepted for publication in
Computer Journal following peer review. The definitive publisher-authenticated version
Pennycook, Simon J., Hammond, Simon D., Mudalige, Gihan R., Wright, Steven A. and
Jarvis, Stephen A.. (2012) On the acceleration of wavefront applications using
distributed many-core architectures. Computer Journal, Volume 55 (Number 2). pp. 138-
153. ISSN 0010-4620 is available online at: http://dx.doi.org/10.1093/comjnl/bxr073

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.
For more information, please contact the WRAP Team at: publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/9323792?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/45683
http://dx.doi.org/10.1093/comjnl/bxr073
mailto:publications@warwick.ac.uk

On the Acceleration of Wavefront Applications
using Distributed Many-Core Architectures

S.J. Pennycook∗1, S.D. Hammond∗, G.R. Mudalige†, S.A. Wright∗, S. A. Jarvis∗

∗Performance Computing and Visualisation
Department of Computer Science

University of Warwick, UK

†Oxford eResearch Centre
University of Oxford

Oxford, UK

Abstract—In this paper we investigate the use of distributed
GPU-based architectures to accelerate pipelined wavefront ap-
plications – a ubiquitous class of parallel algorithm used for the
solution of a number of scientific and engineering applications.
Specifically, we employ a recently developed port of the LU
solver (from the NAS Parallel Benchmark suite) to investigate the
performance of these algorithms on high-performance computing
solutions from NVIDIA (Tesla C1060 and C2050) as well as
on traditional clusters (AMD/InfiniBand and IBM BlueGene/P).
Benchmark results are presented for problem classes A to C
and a recently developed performance model is used to provide
projections for problem classes D and E, the latter of which
represents a billion-cell problem. Our results demonstrate that
while the theoretical performance of GPU solutions will far
exceed those of many traditional technologies, the sustained
application performance is currently comparable for scientific
wavefront applications. Finally, a breakdown of the GPU solu-
tion is conducted, exposing PCIe overheads and decomposition
constraints. A new k-blocking strategy is proposed to improve
the future performance of this class of algorithm on GPU-based
architectures.

Index Terms—Wavefront; GPU; Many-Core Computing;
CUDA; Optimisation; Performance Modelling

I. INTRODUCTION

The fundamental design of high performance supercom-
puters is on the verge of a significant change. The arrival
of petascale computing in 2008, with the IBM RoadRunner
supercomputer, represented a departure from the large-scale
use of commodity processors to hybrid designs employing
heterogeneous computational accelerators. Although the pre-
cise design of RoadRunner remains unique, the utilisation of
computational “accelerators” such as field programmable gate
arrays (FPGAs), graphics processing units (GPUs) and the
forthcoming Knights-range of “many-integrated core” (MIC)
products from Intel has gained significant interest throughout
the high performance computing (HPC) community. These
designs show particular promise because of the high levels
of spatial and power efficiency which can be achieved in
comparison to general-purpose processors – both of which
represent significant concerns in the design of petascale and
exascale supercomputers in the coming decade.

1Email: sjp@dcs.warwick.ac.uk

However, despite the impressive theoretical peak perfor-
mance of accelerator designs, several hardware/software devel-
opment challenges must be met before high levels of sustained
performance can be achieved by HPC codes on these architec-
tures. First, an increase in available cores/threads has lead to
a decrease in the amount of memory per processing element.
This means that algorithms constructed under the assumption
of high-powered processors with large memories may not port
well to these new platforms; typically their parallel efficiency
when run at scale on accelerator-based clusters is very poor.
Second, there has been a trend in many early publications on
the subject of accelerator-based designs to compare general-
purpose CPUs in unfair terms. This has given an impression
that large performance gains are achievable for most HPC
codes.

The effect is that code custodians are faced with difficult
choices when considering future architectures and future code
developments. It is therefore important that the community
develop an understanding of (i) which classes of application;
(ii) which methods of code porting; and (iii) which code
optimisations/designs are likely to lead to notable performance
gains when accelerators are employed.

It is to this end that we investigate, through implementation,
benchmarking and modelling, the performance of pipelined
wavefront applications on devices employing NVIDIA’s Com-
pute Unified Device Architecture (CUDA), including the Tesla
C1060 and C2050, and two competing architectures, a quad-
core, quad-socket AMD Opteron/InfiniBand cluster and an
IBM BlueGene/P, both of which are located at the Lawrence
Livermore National Laboratory (LLNL) in the United States.

As an example of this class of application we utilise the
LU benchmark from the NAS Parallel Benchmark (NPB)
suite [1] and compare the performance of a hand-optimised
version of the original FORTRAN 77 implementation to
that of a newly developed port of the code for single GPU
devices and clusters of GPUs. We use machine benchmarks
and performance models to study the weak- and strong-
scaling behaviour of the code. The results reported are for
the complete time to solution for the LU-problem, not for a
sub-component particularly amenable to GPU-acceleration.
The speedups which are presented therefore provide evidence

for how a full code will perform.

The contributions of this paper are as follows:
• We present a study of porting and optimising the LU

benchmark for the CUDA GPU architecture. The study
includes code optimisations and the selection of advanced
compiler options for improved CPU and GPU perfor-
mance;

• The GPU-accelerated solution is benchmarked on a selec-
tion of GPUs, ranging from workstation-grade commod-
ity GPUs to NVIDIA’s HPC products. This study2 is the
first known work to feature an independent performance
comparison of the Tesla C1060 and C2050 for a pipelined
wavefront application. The results include comparative
benchmarking results from Nehalem-class CPUs, so that
we can contrast the CPU and GPU solutions for LU Class
A-C problems;

• Two recently developed application performance mod-
els (one analytical [2] and one based on discrete-event
simulation [3]) are used to project the benchmark re-
sults to systems (and problems) of larger scale. Us-
ing two modelling techniques gives us greater confi-
dence in our results as we compare GPU-based clusters
against two alternative designs – a quad-socket, quad-
core AMD Opteron/InfiniBand-based cluster and an IBM
BlueGene/P. Projections are provided for strong-scaled
Class D and E problems, as well as for LU in weak-scaled
configurations. The results provide insight into how the
performance of this class of code will scale on petascale-
capable architectures;

• The performance models are used to deconstruct the
execution costs of the GPU solution, allowing us to
examine the proportions of runtime accounted for by
communication between nodes, as well as over the PCI-
Express (PCIe) bus. Using this information we propose a
new k-blocking strategy for LU to improve the future
performance of this class of algorithm on GPU-based
architectures.

The remainder of this paper is organised as follows: Section
II discusses previous work, and Section III describes the
operation of the LU benchmark and the CUDA programming
model; in Section IV we detail the CUDA implementation of
the LU benchmark and Section V outlines the optimisations
applied to both the CPU and GPU versions of the code;
Section VI presents a performance comparison of the CPU and
GPU codes running on single workstations, including several
NVIDIA GPUs of different compute capability; Section VII
discusses the performance models used in this work and
validates them against benchmark data; Section VIII presents
both weak- and strong-scaling studies of the CPU and GPU
implementations of the benchmark; Section IX discusses the
issues affecting the scalability of the GPU implementation and
presents a new k-blocking strategy for this class of algorithm;
Section X concludes the work and discusses future research.

2including the original workshop paper that this paper extends

II. RELATED WORK

We present a port of the LU benchmark to NVIDIA’s CUDA
architecture. LU belongs to a class of applications known
as pipelined wavefront computations, which are characterised
by their parallel computation and communication pattern.
The performance of such applications is well understood for
conventional multi-core-processor-based clusters [2], [4] and
a number of studies have investigated the use of accelerator-
based architectures for the Smith-Waterman string matching
algorithm (a two-dimensional wavefront algorithm) [5], [6],
[7]. However, performance studies for GPU-based implemen-
tations of three-dimensional wavefront applications (either on
a single device or at cluster scale) remain scarce; to our
knowledge, our implementation of LU is the first such port
of this specific code to a GPU.

Two previous studies [8], [9] detail the implementa-
tion of a different three-dimensional wavefront application,
Sweep3D [10], on accelerator-based architectures. The first of
these [8] utilises the Cell Broadband Engine (B.E.), exploiting
five levels of parallelism in the implementation. The perfor-
mance benefits of each are shown in order, demonstrating a
clear path for the porting of similar codes to the Cell B.E.
architecture. In the second [9], the Sweep3D benchmark is
ported to CUDA and executed on a single Tesla T10 processor.
Four stages of optimisation are presented: the introduction of
GPU threads, using more threads with repeated computation,
using shared memory and using a number of other methods
that contribute only marginally to performance. The authors
conclude that the performance of their GPU solution is good,
extrapolating from speedup figures that it is almost as fast as
the Cell B.E. implementation described in [8].

These studies suggest that accelerator-based architectures
are a viable alternative to traditional CPUs for pipelined
wavefront codes. However, one must be cautious when reading
speedup figures: in some studies the comparison between
execution times is made between an optimised GPU code
and an un-optimised CPU code [11]; in other work we do
not see the overhead of transferring data across the PCIe
bus [12]; in some cases the CPU implementation is serial [13];
in others, parallel CPU and GPU solutions are run at different
scales [14], or the CPU implementation is run on outdated
hardware [9]. This is not the first paper to dispute such
speedup figures [15], [16] and others have highlighted the
importance of hand-tuning CPU code when aiming for a fair
comparison [17], [18].

In this paper, performance comparisons are presented from
three standpoints: (i) the performance of single GPUs is
compared to that of single CPUs using all of the available
cores, forming a full device-to-device comparison; (ii) a weak-
scaling study, comparing the performance of CPU and GPU
clusters; and (iii) a strong-scaling study, also comparing the
performance of CPU and GPU clusters. This allows a compar-
ison at both small- and large-scale, and permits an exploration
of the likely performance of future GPU clusters based on the
data from existing benchmarks.

This paper is an extension of the work originally presented
in [19], which itself appeared as a Feature Article in HPC Wire
in November 2010 [20]. This extended paper: (i) documents
additional optimisations to both the CPU and GPU codes –
in comparison to the results in [19], the benchmarked times
reported here are up to 26.9% faster and are thus more
representative of the raw performance of each architecture;
(ii) extends the performance modelling to include additional
weak-scaling results (to complement the strong-scaling results
previously presented); (iii) decomposes the runtime costs to
expose the impact of communication between nodes and over
the PCIe bus; and (iv) proposes a new k-blocking strategy
for LU, to improve the future performance of this class of
algorithm on GPU-based architectures.

III. THE LU BENCHMARK

The LU benchmark belongs to the NAS Parallel Bench-
mark (NPB) suite, a set of parallel aerodynamic simulation
benchmarks. The code implements a simplified compressible
Navier-Stokes equation solver, which employs a Gauss-Seidel
relaxation scheme with symmetric successive over-relaxation
(SSOR) for solving linear and discretised equations. The
reader is referred to [1] for a thorough discussion of the
mathematics. In brief, the code solves the (n+ 1)th time step
of the discretised linear system:

Un+1 = Un + ∆Un

using:

Kn∆Un = Rn

where K is a sparse matrix of size Nx×Ny×Nz and each of
its matrix elements is a 5 × 5 sub-matrix. An SSOR-scheme
is used to expedite convergence with the use of an over-
relaxation factor δ ∈ (0, 2), such that:

Un+1 = Un + (1/(δ(2− δ))∆Un

The SSOR operation is re-arranged to enable the calculation
to proceed via the solution of a regular sparse, block-lower
(L) and upper (U) triangular system (giving rise to the name
LU). The algorithm proceeds through the computing of the
right-hand-side vector Rn, followed by the computing of the
lower-triangular and then upper-triangular solutions. Finally
the solution is updated.

In practice, the three-dimensional data grid used by LU is
of size N3 (i.e. the problem is always a cube), although the
underlying wavefront algorithm works equally well on grids
of all sizes. As of release 3.3.1, NASA provide seven different
application “classes” for which the benchmark is capable of
performing verification: Class S (123), Class W (333), Class
A (643), Class B (1023), Class C (1623), Class D (4083)
and Class E (10203). GPU performance results for Classes
A through C are presented in Section VI; due to the lengthy
execution times and significant resource demands associated
with Classes D and E, benchmarked times and projections are

shown for cluster architectures in Section VIII. The use of
these standard problem classes in this work ensures that our
results are directly comparable to those reported elsewhere in
the literature.

In the MPI implementation of the benchmark, this data grid
is decomposed over a two-dimensional processor array of size
Px × Py , assigning each of the processors a stack of Nz data
“tiles” of size Nx/Px × Ny/Py × 1. Initially, the algorithm
selects a processor at a given vertex of the processor array
which solves the first tile in its stack. Once complete, the
edge data (which has been updated during this solve step) is
communicated to two of its neighbouring processors. These
adjacent processors – previously held in an idle state via the
use of MPI-blocking primitives – then proceed to compute the
first tile in their stacks, while the original processor solves its
second tile. Once the neighbouring processors have completed
their tiles, their edge data is sent downstream. This process
continues until the processor at the opposite vertex to the
starting processor solves its last tile, resulting in a “sweep”
of computation through the data array.

Such sweeps, which are the defining features of pipelined
wavefront applications, are also commonly employed in parti-
cle transport codes such as Chimaera [2] and Sweep3D [10].
This class of algorithm is therefore of commercial as well
as academic interest, not only due to its ubiquity, but also
the significant time associated with its execution at large
supercomputing sites such as NASA, the Los Alamos National
Laboratory (LANL) in the US and the Atomic Weapons
Establishment (AWE) in the UK.

LU is simpler in operation than Sweep3D and Chimaera
in that it only executes two sweeps through the data grid
(as opposed to eight), one from the vertex at processor 0,
and another in the opposite direction. The execution time for
a single instance of LU itself is not very significant, taking
in the order of minutes. Nonetheless, it provides an oppor-
tunity to study a representative science benchmark which,
when scaled or included as part of a larger work flow, can
consume vast amounts of processing time. The principle use
of the LU benchmark is comparing the suitability of different
architectures for production CFD applications [21] and thus
the results presented in this paper have implications for large-
scale production codes. LU’s memory requirements are also
significant (approximately 160GB for a Class E problem),
necessitating the use of large machines.

The pseudocode in Algorithm 1 details the SSOR loop that
accounts for the majority of LU’s execution time.
Each of the subroutines in the loop exhibit different parallel be-
haviours: jacld and jacu carry out a number of independent
computations per grid-point, which can be executed in parallel,
to pre-compute the values of arrays used in the forward and
backward wavefront sweeps; blts and buts are responsible
for the forward and backward sweeps respectively; l2norm
computes a parallel reduction (on user-specified iterations);
and rhs carries out three parallel stencil update operations,
which have no data dependencies between grid-points. The
number of loop iterations is configurable by the user at both

Algorithm 1 Pseudocode for the SSOR loop.

for iter = 1 to max iter do

for k = 1 to Nz do
call jacld(k)
call blts(k)

end for

for k = Nz to 1 do
call jacu(k)
call buts(k)

end for

call l2norm()
call rhs()
call l2norm()

end for

compile- and run-time, but is typically 250 - 300 in Classes
A through E.

A. CUDA Architecture/Programming Model

Our GPU implementation makes use of NVIDIA’s CUDA
programming model, since it is presently the most mature and
stable model available for the development of GPU computing
applications. We provide a brief overview of the CUDA
architecture/programming model; for an in-depth description
the reader is directed to [22].

A CUDA-capable NVIDIA GPU is an example of a many-
core architecture, composed of a large quantity of relatively
low-powered cores. Each of the GPU’s stream multiprocessors
(SMs) consist of a number of stream processors (SPs) that
share control logic and an instruction cache. All communi-
cation between the CPU (or host) and the GPU (or device)
must be carried out across a PCIe bus. The exact hardware
specification of a CUDA GPU depends upon its range and
model; the number of SPs, the amount of global (DRAM) and
shared memory and so-called “compute capability” all vary by
card. Specifications of the GPUs used in our study are listed
in Table I.

Each minor revision to compute capability represents the
addition of new features, whilst each major revision represents
a change to the core architecture (e.g. the move from Tesla to
Fermi represents a move from 1.0 to 2.0). Support for double-
precision floating-point arithmetic was not introduced until
revision 1.2.

Functions designed for the GPU architecture are known as
kernels and, when launched, are executed simultaneously in a
single-instruction-multiple-data (SIMD) or single-instruction-
multiple-thread (SIMT) fashion on a large number of threads.
These threads are lightweight – with program kernels typically
being launched in configurations of up to thousands of threads

a2.65GB with ECC-enabled.
b48kB is available if the programmer selects for higher shared memory

instead of larger L1 cache.

GeForce Tesla
8400GS 9800GT C1060 C2050

Cores 8 112 240 448

Clock 1.40GHz 1.38GHz 1.30GHz 1.15GHzRate

Global 0.25GB 1GB 4GB 3GBa
Memory

Shared 16kB 16kB 16kB 16kBb
Memory

Compute 1.1 1.1 1.3 2.0Cap.

TABLE I
CUDA GPU SPECIFICATIONS.

– and are arranged into one-, two- or three-dimensional blocks,
with blocks forming a one- or two-dimensional grid. This
programming model allows developers to exploit parallelism
at two levels – the thread-blocks are assigned to SMs and
executed in parallel, whilst the SPs (making up an SM) execute
the threads of a thread-block in groups of 32 known as warps.

In order to permit CUDA programs to scale up or down
to fit different hardware configurations, these thread blocks
can be scheduled for execution in any order. However, this
scalability is not without cost; unless carefully designed,
programs featuring global thread synchronisation are likely
to cause deadlocks. Indeed, the CUDA programming model
does not provide any method of global thread synchronisation
within kernels for this reason. There is, however, an implicit
global thread synchronisation barrier between separate kernel
calls.

IV. GPU IMPLEMENTATION

Version 3.2 of the LU benchmark, on which our work is based,
is written in FORTRAN 77 and utilises MPI for communica-
tion between processing-elements. The GPU implementation
makes use of NVIDIA’s CUDA. The standard language choice
for developing CUDA programs is C/C++ and, although the
Portland Group offer a commercial alternative allowing the
use of CUDA statements within FORTRAN 77 applications,
the first stage in our porting of LU was to convert the entire
application to C.

To provide a comparison of the performance trade-offs for
CFD codes in using single- or double-precision floating-point
arithmetic, the ported version of the benchmark was instru-
mented to allow the selection of floating-point type at compile
time. Although NASA explicitly requests the use of double-
precision in the benchmark suite, we have included single-
precision calculations to allow us to measure the performance
of consumer GPU devices. The accuracy of these single-
precision solutions is lower (i.e the error exceeds the default
epsilon of 10−8) but the mathematics is otherwise identical
and represents a coarse-grade calculation which might provide
useful approximate solutions on low-end, lower-cost hardware.

0

100

200

300

400

500

600

A B C

E
xe

cu
tio

n
Ti

m
e

(S
ec

on
ds

)

Problem Class

xxxxx

xx
xx

xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xxxxx
xxxxx

xx xx
xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xxxxx
xxxxx

xx
xx

xx
xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xxxxx

xx xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

C SP
C (SMT) SP

FORTRAN 77 SP
FORTRAN 77 (SMT) SP

C DP
C (SMT) DP

FORTRAN 77 DP
FORTRAN 77 (SMT) DP

Fig. 1. Execution times for FORTRAN 77 and C implementations of LU.

For all single-precision executions described in this paper
a manual check of the resulting output was performed to
ensure that the solution was comparable to its double-precision
equivalent.

Figure 1 shows a performance comparison of the original
FORTRAN 77 code with our C port, running on an Intel
X5550 in both single (SP) and double (DP) precision. The
execution times given for the C port are prior to the use of
a GPU (i.e. all mathematics are ported and running on only
the CPU). As shown by the graph, the original FORTRAN 77
implementation is approximately 1.4x faster than our C port
running on identical hardware.

There are two differences between the C and FORTRAN 77
implementations that are likely to be the cause of this perfor-
mance gap: firstly, the port to C was structured from the outset
to be more amenable to CUDA, rather than being optimised for
CPU execution; and secondly, the multi-dimensional solution
arrays are statically allocated in the FORTRAN 77 code, but
dynamically allocated in the C code. The fact that the C code
is slower demonstrates that the performance improvements
shown in Sections VI and VIII come from the utilisation of
the GPU, rather than from any optimisations introduced during
the process of changing programming language.

At the time of writing, the maximum amount of memory
available on a single CUDA GPU is 6GB (available in the
Tesla C2070). At least 10GB is required to solve a Class D
problem, thus the use of MPI is necessary if the code is to
be able to solve larger problems than Class C. Our CUDA
implementation retains and extends the MPI-level parallelism
present in the original benchmark, mapping each of the MPI
tasks in the system to a single CPU core, which is in turn
responsible for controlling a single GPU.

The parallel computation pattern of wavefront applications
involves a very strict dependency between grid-points. Lam-
port’s original description of the Hyperplane algorithm in [23]
demonstrated that the values of all grid-points on a given
hyperplane defined by i + j + k = f can be computed in
parallel, with the parallel implementation looping over f rather

0 2

1
0

2

2

5

7

0

5

6

3

4

1

Fig. 2. Two-dimensional mapping of threads in a thread-block onto the entire
three-dimensional grid.

than i, j and k. In order to ensure that the dependency is
satisfied, it is necessary that we have a global synchronisation
barrier between the solution of each hyperplane; since the
CUDA programming model does not support global synchro-
nisation within kernels, each hyperplane must be solved by a
separate kernel launch. As shown in Figure 2, which details
the mapping of threads to grid-points on a hyperplane, the first
kernel is responsible for computing the value of one grid-point,
the second for three, the third for six and so on.

V. OPTIMISATION

A. Loop Unrolling and Fusion

Each of the solution arrays in LU is a four-dimensional
array of the form (k, j, i,m), where m ranges from 0 to 4 and
i, j and k range from 0 to (Nx − 1), (Ny − 1) and (Nz − 1)
respectively. In the vast majority of the loop nests encountered
in blts, buts, rhs and l2norm, the inner-most loop is
over these five values of m.

Algorithm 2 Pseudocode for the original blts.

for all k do

for all j do
for all i do

for m = 0 to 4 do
call update (k, j, i, m)

using (k − 1, j, i, m)
end for

end for
end for

for all j do
for all i do

for m = 0 to 4 do
call update (k, j, i, m)

using (k, j − 1, i, m)
and (k, j, i− 1, m)

end for
end for

end for

end for

The pseudocode in Algorithm 2 represents the original loop
structure of the blts method. By hand-unrolling these loops,
we decrease the number of branch instructions executed on

both CPUs and GPUs (but at the expense of increased register
pressure).

We also fuse the two sets of loops over j and i into a single
set of loops, mainly for the benefit of the GPU implementation:
it enables a single kernel to carry out the updates in all three
neighbouring directions, as opposed to requiring a separate
kernel for each of the loops over j and i; it enables the GPU to
hide memory latency much more effectively, as fewer memory
loads need to be completed before the solution can be updated
in the j and i directions; the number of registers required
to hold intermediate values is decreased, which may increase
occupancy (i.e. the ratio of active warps to the maximum
number of warps supported on a single SM).

Pseudocode for our optimised implementation of blts is
shown in Algorithm 3.

Algorithm 3 Pseudocode for the optimised blts.

for all k do
for all j do

for all i do

call update (k, j, i, 0)
using (k − 1, j, i, 0)

...
call update (k, j, i, 4)

using (k − 1, j, i, 4)

call update (k, j, i, 0)
using (k, j − 1, i, 0)

...
call update (k, j, i, 4)

using (k, j − 1, i, 4)

call update (k, j, i, 0)
using (k, j, i− 1, 0)

...
call update (k, j, i, 4)

using (k, j, i− 1, 4)

end for
end for

end for

B. Memory Access Optimisation

For each grid-point, the jacld and jacu methods read in
five solution values and five values from three neighbours (20
values in total). These data are used to populate four 5 × 5
matrices (100 values in total) per grid-point, which are later
used by the blts and buts methods. In our optimised code,
we move this calculation into the wavefront section; instead
of loading 100 values per grid-point, we load 20 values and
perform the jacld and jacu calculations inline.

In addition to reducing the amount of memory required
for each problem size, this optimisation decreases the number
of memory accesses made by the blts and buts kernels,
whilst increasing their computational intensity. This improves

Processor 0

kblock

Processor 1 Processor 2

Fig. 3. The k-blocking policy.

the GPU’s ability to hide the latency of the remaining memory
accesses.

Recent work [24], which investigates a space/time tradeoff
in GPU codes, reaches a similar conclusion – that it is
beneficial to compress data structures in order to decrease the
frequency and size of memory accesses at the expense of more
floating-point arithmetic operations.

C. Message Size Optimisation

The majority of the messages sent by LU are small, since
each processor works on a single tile of data (of size Nx/Px×
Ny/Py × 1) at a time. Each of the messages sent during the
wavefront section contains a single row or column of either
Nx/Px or Ny/Py floating-point values, which does not make
efficient use of network bandwidth.

To address this, we implement a system we refer to hence-
forth as k-blocking, which is implemented in the Sweep3D
benchmark. Under this system, as shown by Figure 3, each
processor computes the values of a stack of kblock tiles
prior to communicating with its neighbouring processors.
Each message now consists of a face of Nx/Px × kblock or
Ny/Py × kblock floating-point values and adjusting the value
of kblock allows us to achieve better network (and/or PCIe
bus) efficiency. In the GPU solution, k-blocking also increases
the amount of available parallelism; rather than carrying out
a two-dimensional wavefront sweep across each tile, we can
carry out a three-dimensional wavefront sweep across the stack
of kblock tiles.

The optimal value of this kblock parameter differs according
to architecture, and also whether we are operating on a single
processor or a collection of processors communicating via
MPI. On a single processor, the best value of kblock is Nz ,
since it maximises the size of the hyperplanes that can be
processed in each parallel step.

When running on multiple processors, however, it becomes
necessary to consider the effect of the chosen kblock value on
communication and so-called pipeline fill time (i.e. the time
required for the wavefront sweep to reach the last processor).
For CPUs, the dominating factors are typically the bandwidth
and latency of the network: choosing too small a kblock may
not overcome the problem of high network latency, whilst

choosing too large a kblock will cause delays to downstream
processors. For GPUs, the amount of parallelism is another
important factor: too small a kblock will limit the amount
of available parallelism, but too large a kblock will again
cause pipeline delays. Due to this tradeoff, it is necessary to
choose an optimal value of kblock via empirical evaluation or
performance modelling.

On the CPU, we typically set kblock = 1, as the negative
effect of larger values on pipeline fill time tends to outweigh
the positive effects upon bandwidth efficiency. In theory,
the selected kblock value for the GPU should be greater
than or equal to Nx/Px + Ny/Py − 1, since this is the
number of wavefront steps required to complete a single tile
and (generally) to reach the largest hyperplane. In practice
however, we find that the increase in parallel efficiency is
outweighed by the increase in pipeline fill time; we instead
set kblock = min(Nx/Px, Ny/Py), as this strikes a balance
between the reduction in parallelism and increase in pipeline
fill time. Empirical benchmarking confirms that these values
of kblock provide the best levels of performance. Although
we do not use auto-tuning, this approach could also be used
to establish parameter settings that maximise per-machine
performance.

D. GPU-specific Optimisation

We ensure that each of our memory accesses is coalesced,
in keeping with the guidelines in [22]. The simplest way to
achieve this is to ensure that all threads access contiguous
memory locations; for the wavefront sections, we rearrange
memory in keeping with the thread allocation depicted in
Figure 2.

However, the parallel sections with no data dependencies
require a different memory arrangement and therefore be-
tween the two sections we call a rearrangement kernel to
swap memory layouts. Although this kernel involves some
uncoalesced memory accesses, which is largely unavoidable
since it reads from one memory layout and writes to another,
the penalty is incurred only once – rather than for every
memory access within the methods themselves. The lack of
global synchronisation within CUDA kernels prevents this
rearrangement from being performed in place and therefore
we make use of a separate rearrangement buffer on the GPU.
Though this does increase the memory requirement of the GPU
solution, the size of the rearrangement buffer is significantly
less than the combined size of the arrays removed as part of
the optimisation detailed in Subsection V-B.

Since the CUDA card itself does not have access to the
network, any data to be sent via MPI must first be transferred
to the CPU and, similarly, any data received via MPI must be
transferred to the GPU. Packing or unpacking the MPI buffers
on the CPU requires a copy of the entire data grid – carrying
out this step on the GPU significantly decreases the amount of
data sent across the PCIe bus and also allows for the elements
of the MPI buffers to be packed or unpacked in parallel.

Device Compiler Options

Intel X5550
(Fortran)

Sun Studio 12
(Update 1)

-O5 -native
-xprefetch
-xunroll=8 -xipo
-xvector

Intel X5550
(GPU Host) GNU 4.3 -O2 -msse3

-funroll-loops

GeForce
8400GS/9800GT NVCC -O2 -arch="sm_11"

Tesla
C1060/C2050 NVCC -O2 -arch="sm_13"

BlueGene/P IBM XLF

-O5 -qhot -Q
-qipa=inline=auto
-qipa=inline=limit=32768
-qipa=level=2
-qunroll=yes

AMD Opteron PGI 8.0.1

-O4 -tp barcelona-64
-Mvect=sse -Mscalarsse
-Munroll=c:4 -Munroll=n:4
-Munroll=m:4 -Mpre=all
-Msmart -Msmartalloc
-Mipa=fast,inline,safe

TABLE II
COMPILER CONFIGURATIONS.

VI. WORKSTATION PERFORMANCE

The first set of experiments investigate the performance of
a single workstation executing the LU benchmark in both
single- and double-precision. Problem classes A, B and C
were executed on a traditional quad-core CPU, along with a
range of consumer and high-end NVIDIA GPUs, including a
Tesla C2050 built on the newest Fermi architecture. The full
hardware specifications of the GPUs used in these experiments
can be found in Table I. The CPUs used in all workstations
are Nehalem-class 2.66GHz Intel Xeon X5550s, with 12GB of
RAM and the ability to utilise dual-issue simultaneous multi-
threading (SMT). The compilers/flags used on each platform
are in Table II.

The graphs in Figures 4a and 4b show the resulting execu-
tion times in single- and double-precision respectively. Due to
their compute capability, the GeForce consumer GPUs used
in our experiments appear in the single-precision comparison
only. It is clear from these graphs that the GPU solution
outperforms the original FORTRAN 77 benchmark for all
three problem classes when run on HPC hardware; the Tesla
C1060 and C2050 are approximately 2.5x and 7x faster than
the original benchmark run on an Intel X5550. However, it is
also apparent that a number of the optimisations outlined in
Section V are also of benefit to the CPU, reducing execution
times (and hence speedup figures) by over 30%.

Our results also demonstrate the architectural improvements
made by NVIDIA between each revision of the CUDA archi-
tecture: for our single-precision GPU implementation of LU
the 9800GT is 8x faster than the 8400GS; the C1060 is 4x

0

50

100

150

200

250

300

350

400

450

A B C

E
xe

cu
tio

n
Ti

m
e

(S
ec

on
ds

)

Problem Class

xxxxx

xx
xx

xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xxxxx
xxxxx

xx x
x
x

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xxxxx
xxxxx

xx
xx

xx
xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xxxxx

xx xx xx
xx
xx

Intel X5550
Intel X5550 (SMT)
Intel X5550 (Opt.)

Intel X5550 (SMT, Opt.)
GeForce 8400GS
GeForce 9800GT

Tesla C1060
Tesla C2050 (ECC On)
Tesla C2050 (ECC Off)

(a) Single-precision.

0

50

100

150

200

250

300

350

400

450

A B C

E
xe

cu
tio

n
Ti

m
e

(S
ec

on
ds

)

Problem Class

xxxxx

xx
xx

xx
xx
xx
xx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xxxxx
xxxxx

xx
xx

x
x
x
x

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xxxxx
xxxxx

xx xx xx

xxxxx

xx xx
xx

xx
xx
xx
xx
xx

Intel X5550
Intel X5550 (SMT)
Intel X5550 (Opt.)

Intel X5550 (SMT, Opt.)
GeForce 8400GS
GeForce 9800GT

Tesla C1060
Tesla C2050 (ECC On)
Tesla C2050 (ECC Off)

(b) Double-precision.

Fig. 4. Workstation execution times.

faster than the 9800GT; and the C2050 is 2.5x faster than the
C1060. These performance gains are not simply the result of
an increased core count; the C2050 has 4x as many cores
as a 9800GT (and the clock rate of those cores is lower)
and yet it is approximately 10x faster. Improved memory
bandwidth, relaxed coalescence criteria and the introduction
of an L2 cache are among the hardware changes we believe
are responsible for these improvements.

Although the execution times of both consumer cards are
worse than that of the Intel X5550, we believe that the per-
formance of more recent consumer cards with higher compute
capability (e.g. a GeForce GTX 280, 480 or 580) would be
more competitive; it is our understanding that the difference
between the consumer and HPC cards is largely one of
memory and quality control, suggesting that the performance
of newer consumer cards would be closer to that of the CPU.
Regardless, the results from the HPC GPUs make a compelling
argument in favour of the use of GPUs for the acceleration of
scientific wavefront codes in single workstation environments.

Unexpectedly, the performance hit suffered by moving from
single- to double-precision in the CPU and GPU implemen-
tations of LU is comparable. This is surprising because,

according to NVIDIA, the ratios of double- to single-precision
performance for the Tesla C1060 and C2050 are 12:1 and 2:1.

Our results also demonstrate that the C2050’s ECC memory
is not without cost; firstly, and as shown in Table I, enabling
ECC decreases the amount of global memory from 3GB
to 2.65GB; secondly, it leads to a significant reduction in
performance. For a Class C problem run in double-precision,
execution times are almost 15% lower when ECC is disabled.

VII. PERFORMANCE MODELS
AND VALIDATIONS

The results in the previous section illustrate the performance
benefits of GPU utilisation within a single workstation. How-
ever, the question remains as to whether these benefits transfer
to MPI-based clusters of GPUs. We attempt to answer this
question, comparing the performance of our GPU solution
running at scale to the performance of two production-grade
HPC clusters built on alternative CPU architectures: an IBM
BlueGene/P (DawnDev) and a commodity AMD Opteron
cluster (Hera), both of which are located at the Lawrence
Livermore National Laboratory (LLNL).

DawnDev follows the tradition of IBM BlueGene archi-
tectures: a large number of lower performance processors
(850MHz PowerPC 450d), a small amount of memory (4GB
per node) and a proprietary BlueGene torus high-speed inter-
connect. Hera, in contrast, has densely packed quad-socket,
quad-core nodes consisting of 2.3GHz AMD Opteron cores
with 32GB of memory per node and an InfiniBand DDR
interconnect.

We augment this hardware with performance models, since
the models allow us to: (i) investigate the performance of
larger test cases (Class D and Class E) despite machine
limitations (e.g. we are limited to 1024 nodes on DawnDev
and have a maximum job-size limit on Hera); (ii) examine
the benchmark’s weak- and strong-scaling behaviour; and
(iii) discover which costs are attributable to compute, network
communications and PCIe transfers, through a breakdown of
projected execution times. The models assume one GPU per
node. Although other configurations are clearly possible, this
assumption simplifies the issue of PCIe contention (four GPUs
per node would commonly share two PCIe buses).

A. An Analytical Performance Model

We employ a recently published reusable model of pipelined
wavefront computations from [2], which abstracts the parallel
behaviour common to all wavefront implementations into a
generic model. When combined with a limited number of
benchmarked input parameters, the model is able to accurately
predict execution time on a wide variety of architectures.

The behaviour of a code’s wavefront section is captured
using the following parameters: a “grind-time” per grid-point
(Wg), so called because it represents the time a given processor
is actively working (or “grinding”), used to calculate the
compute time on each processor prior to communication (W);
and a time-per-byte used in conjunction with message sizes
(MessageSizeNS and MessageSizeEW) to calculate the

Machine Nodes
Actual Predicted

Min. Mean Max. Analytical Sim. Sim.
(No Noise) (w/ Noise)

GPU Cluster
(Class C)

1 (1 × C1060) 153.26 153.30 153.37 153.26 147.15 147.15
4 (4 × C1060) 67.06 67.25 67.58 70.45 66.43 69.32
8 (8 × C1060) 52.72 52.92 53.08 52.72 50.50 54.05

16 (16 × C1060) 44.29 44.46 44.51 44.47 42.85 46.08

GPU Cluster
(Class D)

4 (4 × C1060) 1359.93 1367.65 1372.85 1417.57 1375.28 1393.84
8 (8 × C1060) 735.53 736.60 737.47 744.24 723.83 745.47

16 (16 × C1060) 414.31 414.97 415.45 424.65 413.13 433.10

AMD Cluster
(Class C)

2 (32 Cores) 81.97 86.74 96.02 87.11 84.55 102.60
4 (64 Cores) 58.37 60.22 62.14 47.13 45.05 57.45

8 (128 Cores) 32.18 32.90 33.70 27.26 14.66 34.08

AMD Cluster
(Class D)

8 (128 Cores) 472.67 539.25 561.55 428.58 417.49 461.54
16 (256 Cores) 281.01 283.41 285.73 227.06 218.73 262.38
32 (512 Cores) 192.40 195.52 197.35 122.42 115.51 160.59

64 (1024 Cores) 114.59 122.11 131.30 67.60 64.19 107.79

BlueGene/P
(Class C)

32 (128 Cores) 49.76 49.81 49.91 55.50 55.87 60.42
64 (256 Cores) 29.11 29.12 29.14 31.20 31.34 35.01

128 (512 Cores) 19.55 19.56 19.56 19.26 19.24 22.86
256 (1024 Cores) 14.39 14.50 14.58 12.12 11.97 15.14

BlueGene/P
(Class D)

32 (128 Cores) 736.84 736.84 736.85 720.84 723.66 745.08
64 (256 Cores) 386.34 386.40 386.47 379.11 381.37 398.63

128 (512 Cores) 217.43 217.63 217.93 200.86 201.87 217.72
256 (1024 Cores) 123.60 123.97 124.20 107.33 107.76 119.71

TABLE III
MODEL AND SIMULATION VALIDATIONS (TIME IS GIVEN IN SECONDS).

communication times between processors. The value of Wg

can be obtained via benchmarking or a low-level hardware
model; the time-per-byte can be obtained via benchmarking
(for a known message size) or a network sub-model. A
Tnonwavefront parameter represents all compute and commu-
nication time spent in non-wavefront sections of the code and
can similarly be obtained through benchmarks or sub-models.

Our application of the reusable wavefront model makes
use of both benchmarking and modelling, with Wg being
recorded from benchmark runs and the message timings of
all machines taken from architecture-specific network models.
It should be noted that the value of Wg is typically too small
to benchmark directly; rather, we benchmark the time taken
to process a single stack of kblock tiles (i.e. W) and divide it
by the number of grid-points processed. The network models
were constructed based on results from the SKaMPI [25]
benchmark, executed over a variety of message sizes and
core/node counts in order to account for contention.

For the GPU cluster, the network model was altered
to include the PCIe transfer times associated with writing
data to and reading data from the GPU. The PCIe la-
tencies and bandwidths of both cards were obtained using
the bandwidthTest benchmark provided in the NVIDIA

CUDA SDK; the MPI communication times employed are
benchmark results from an InfiniBand cluster.

B. A Simulation-based Performance Model

In order to verify our findings, we also employ a performance
model based on discrete event simulation. We use the WARPP
simulator [3], which utilises coarse-grained compute models as
well as high-fidelity network modelling to enable the accurate
assessment of parallel application behaviour at large scale.

A key feature of WARPP is that it also permits the mod-
elling of compute and network noise through the application
of a random distribution to compute or networking events. In
this study, we present two sets of runtime predictions from the
simulator: a standard, noise-less simulation; and a simulation
employing noise in data transmission times.

In the simulations including noise, the network events have
a Gaussian distribution (with a standard deviation consistent
with benchmarked data) applied to MPI communications. The
simulator is therefore able to create a range in communication
costs, which reflect the delays caused by other jobs and
background networking events present in the machine.

C. Model Validation

Validations of both the analytical model and simulations from
the WARPP toolkit are presented in Table III. Model accuracy
varies between the machines, but is between 80% and 90%
for almost all runs. When reading these results it is important
to understand that:

• the code is executed on shared machines, and validating
the models on contended machines tends to increase
the error due to network contention and machine load
(the model error tends to be lower when the machine is
quieter);

• a degree of inaccuracy in the models is to be expected,
as we do not capture issues such as process placement
on the host machine (a poor allocation by the scheduler
will impact on runtime, and thus model error);

• the introduction of noise to the simulator for the AMD
cluster is important – this is an extremely heavily used
(and contended) resource;

• the inclusion of min and max values in Table III allows
the reader to understand the runtime variance on the three
platforms in question (higher on the AMD cluster, lower
on both the GPU cluster and the BlueGene) – it is harder
to validate models against machines with higher runtime
variance;

• improved model results have been demonstrated in dedi-
cated (non-shared) environments, see [2, 3], and are not
republished here;

• errors reported here are comparable with those seen in
previous research, e.g. [4].

The high levels of accuracy and correlation between the
analytical and simulation-based models – in spite of the
presence of other jobs and background noise – provide a
significant degree of confidence in their predictive accuracy.
We utilise these models in the subsequent section to further
assess the behaviour of LU at increased scale and problem
size.

VIII. SCALABILITY STUDY

A. Weak Scaling

We investigate how the time to solution varies with the
number of processors for a fixed problem size per processor.
This allows us to assess the suitability of GPUs for capacity
clusters, by exposing the cost of adding extra nodes to solve
increasingly large problems.

As stated in Section III, LU operates on grids of size
N3 and uses a 2D domain decomposition across processors.
This of course renders the seven verifiable problem classes
unusable in a weak-scaling study; it is impossible to fix the
subdomain of each processor at a given number of grid-points
(Nx/Px × Ny/Py × Nz) whilst increasing Nx, Ny and Nz .
To compensate for this, we fix the height of the problem
grid to 1024. Although this prevents us from verifying the
solution reported against a known solution, we are still able
to verify that both implementations produce the same solution.

0

500

1000

1500

2000

0 50 100 150 200 250

E
xe

cu
tio

n
Ti

m
e

(S
ec

on
ds

)

Number of Nodes

BlueGene/P (A)
BlueGene/P (S)

Tesla C1060 (A)
Tesla C1060 (S)

AMD Opteron (A)
AMD Opteron (S)

Tesla C2050 (A)
Tesla C2050 (S)

Fig. 5. Weak-scaling projections.

The number of grid-points per node is set to 64× 64× 1024,
as this provides each GPU with a suitable level of parallelism.

Figure 5 shows model projections for execution times up to
a maximum problem size of 1024×1024×1024 (correspond-
ing to 256 nodes in each cluster). The reader is reminded
that each BlueGene/P node has four cores, each Opteron
node 16 cores and each Tesla node a single GPU. Both the
analytical model (A) and the simulation with noise applied
(S) provide similar runtime projections, as demonstrated by
the close performance curves.

Typically, if a code exhibits good weak scalability, then the
execution time will remain largely constant as additional nodes
are added. Our results show that, across all the architectures
studied, the execution time of LU increases with the number
of nodes – a side-effect of the wavefront dependency. As the
number of nodes increases, so too does the pipeline fill time
of each wavefront sweep.

It is apparent from the graph that the weak scalability
of our GPU implementation is worse than that of its CPU
counterparts. This is due to the selection of a relatively large
kblock for the GPU implementation; since each GPU must
process more grid-points than a CPU prior to communication
with its neighbours, the addition of an extra node has a larger
effect on pipeline fill time. The same situation arises if a large
kblock value is chosen for the CPU implementation.

B. Strong Scaling

We investigate how the time to solution varies with the
number of processors for a fixed total problem size. Figures 6a
and 6b show analytical model and simulation projections for
the execution times of Class D and E problems, respectively.
Here we demonstrate the utility of adding an extra GPU for
the acceleration of a given problem, a factor that will be of
interest when employing capability clusters.

As the total problem size is fixed, we do not encounter
the same problems as we did with the weak-scaling study
(i.e. we are able to use the standard problem classes). We
therefore investigate how the performance of the CPU and

Nodes Time
Power Consumption Theoretical

Compute-TDP Benchmarked Peak
(s) (kW) (kW) (TFLOP/s)

Tesla
C1060 1024 367.84 192.31 286.72 79.87

Tesla
C2050 256 224.98 60.93 81.92 131.84

BG/P 2048 217.32 32.77 69.96 27.85

AMD
Opteron 256 239.12 97.28 137.00 38.44

TABLE IV
CLUSTER COMPARISON FOR A FIXED EXECUTION TIME.

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250

E
xe

cu
tio

n
Ti

m
e

(S
ec

on
ds

)

Number of Nodes

BlueGene/P (A)
BlueGene/P (S)

Tesla C1060 (A)
Tesla C1060 (S)

AMD Opteron (A)
AMD Opteron (S)

Tesla C2050 (A)
Tesla C2050 (S)

(a) Class D

0

200

400

600

800

1000

1200

1400

1600

0 500 1000 1500 2000

E
xe

cu
tio

n
Ti

m
e

(S
ec

on
ds

)

Number of Nodes

BlueGene/P (A)
BlueGene/P (S)

Tesla C1060 (A)
Tesla C1060 (S)

AMD Opteron (A)
AMD Opteron (S)

Tesla C2050 (A)
Tesla C2050 (S)

(b) Class E

Fig. 6. Strong-scaling projections.

GPU implementations scale with the number of processors
for Classes D and E.

A cluster of Tesla C2050 GPUs provides the best perfor-
mance at small scale for both problem sizes. However, as
the number of nodes increases, the BlueGene/P and Opteron
cluster demonstrate higher levels of scalability; the execution
times for the CPU-based clusters continue to decrease as the
number of nodes is increased, whilst those for the GPU-based
clusters tend to plateau at a relatively low number of nodes. We
examine the reasons for these scalability issues in Section IX.

In addition to performance, another important metric to
consider when comparing machines of this scale is power
consumption, since this has a significant impact on their total
cost. Therefore, Table IV lists the power consumption and
theoretical peak for each of the four machines modelled, for
a fixed execution time of a Class E problem. We present
two different power figures for each machine: firstly, the
thermal design power of the compute devices used (Compute-
TDP), to represent the maximum amount of power each
architecture could draw to perform computation on the devices
employed (and hence the amount of power the system must be
provided with in the worst case); and secondly, benchmarked
power consumption, to represent the amount of power each
architecture is likely to draw in reality and also account for
the power consumption of other hardware in the machine.

In the case of the Tesla C1060 and C2050 machines, the
power consumption of an HP Z800-series compute blade
utilising a single Intel X5550 Nehalem processor and one GPU
was recorded during runs of a Class C problem. The figure
listed therefore represents the power usage of the entire blade:
one Tesla C1060 or C2050 GPU, a single quad-core processor,
12GB of system memory and a single local disk. It does
not include the power consumption for a high-performance
network interconnect. For the supercomputers at LLNL (to
which we do not have physical access), the benchmarked
figures are the mean recorded power consumption during
typical application and user workloads [26].

Of the four machines, the BlueGene/P has the lowest power
consumption and lowest theoretical peak, yet also achieves

the lowest execution time. The Tesla C2050 cluster, on the
other hand, has the second lowest power consumption and
achieves the second lowest execution time, yet has the highest
theoretical peak. This demonstrates that although GPU-based
solutions are considerably more space- and power-efficient
than commodity CPU clusters, integrated solutions (such as
the BlueGene) afford even higher levels of efficiency and
scalability. Furthermore, the level of sustained application
performance offered by GPU clusters is closer than expected
to that of existing cluster technologies – and lower as a
percentage of peak. We expect that as GPU designs improve
(by increasing parallelism and performance per watt), there
will be significant pressure on the manufacturers of such
integrated machines to provide even higher levels of scalability
in order to remain competitive.

In Section VI we demonstrated that, when comparisons are
made on a single node basis, our GPU implementation of
LU is up to 7x faster than the benchmark’s original CPU
implementation. However, when considered at scale, the gap
between CPU and GPU performance is significantly decreased.
This highlights the importance of considering scale in future
studies comparing accelerators and traditional architectures.

We note that the figures in Table 4 depend on how well
an implementation exploits the full potential of the GPU;
Sections 4 and 5 detail our attempts to maximise performance
on GPUs, and our 7x speedup over the CPU version attests to
our success in this regard. However, there are inherent issues
with the strong scalability of pipelined wavefront algorithms
(e.g. the pipeline fill), and this limits the ability of these codes
to achieve high levels of theoretical peak at scale (other studies
report a percentage of peak of around 5-10% on CPUs [27]).
A larger kblock would allow better utilisation and performance
per GPU, but this does not necessarily mean a high percentage
of peak at scale. We discuss and evaluate potential strategies
for algorithmic improvements in Section 9.

IX. ANALYSIS AND FURTHER FINDINGS

Our results show that the GPU implementation of LU does
not scale well beyond a low number of nodes (relative to
traditional CPU architectures). One issue commonly associated
with the current generation of GPUs is the PCIe overhead;
indeed, several innovations are designed to mitigate these
costs, such as: (i) asynchronous data transfer; (ii) high-speed
PCIe 2.0 buses; and (iii) future fused designs from AMD, Intel
and NVIDIA that place a CPU and a GPU on the same chip.
We are therefore interested in exposing the PCIe transfer costs
for LU, as this will allow us to speculate as to the impact of
future architectural designs upon performance.

The graph in Figure 7 shows a breakdown of execution
times for a Class E problem on different numbers of GPUs in
terms of compute, network communication and PCIe transfer
times. It is clear that the PCIe bus is not responsible for the
poor scaling of LU. Furthermore, the network communication
overhead is greater than that associated with the PCIe bus.

We identify two potential causes of the GPU implementa-
tion’s limited scalability:

0

200

400

600

800

1000

1200

1400

1600

1800

2000

64 128 256 512 1024 2048 128 256 512 1024 2048

E
xe

cu
tio

n
Ti

m
e

(S
ec

on
ds

)

Number of Nodes

Compute
Network

PCIe

Tesla C2050Tesla C1060

Fig. 7. Breakdown of execution times from the GPU model.

First, the 2D domain decomposition and strong scaling
result in a decreasing amount of parallelism per GPU as the
number of GPUs increase. The impact of this is greater for
larger problem classes, as the height of each GPU’s tile-stack
increases with problem size.

Second, the existing k-blocking policy trades GPU compute
efficiency for pipeline fill time. A large kblock value is neces-
sary to utilise the GPU’s parallel resources effectively (since it
presents more parallelism), but this does not necessarily mean
a decrease in execution time for the entire sweep. A larger
kblock is likely to take longer to process (which will increase
the pipeline fill time) but also increases MPI message size (and
larger messages may make more efficient use of network and
PCIe bandwidth).

Thus, the scalability of this class of algorithm is impacted by
device compute-performance; the SIMD width of the compute
device; available memory per node; and network/PCIe latency
and bandwidth. As CPU architectures become more SIMD-
like (e.g through increased vector length) there is increasing
need for these issues to be addressed.

A. Domain Decomposition

Under the 2D domain decomposition used in the original
CPU implementation, if Nz increases then Nx/Px and Ny/Py

must decrease in accordance with the memory limit of a node.
This is significant because the size of a 3D grid’s largest
hyperplane is bounded by the product of its two smallest
dimensions – as Nx/Px and Ny/Py decrease, so too does the
amount of available parallelism. A 3D domain decomposition
would enable us to deal with an increase in Nz by adding
more processors, thus preventing a decrease in parallelism.

To investigate this possibility, we apply the model to a
960 × 960 × 960 grid decomposed over 64 GPUs. Firstly,
we determine the number of grid-points per GPU: in a 2D
decomposition (i.e. an 8× 8× 1 processor array), each GPU
is assigned a block of 120 × 120 × 960 grid-points; in a
3D decomposition (i.e. a 4 × 4 × 4 processor array), each
GPU has a block of size 240× 240× 240. Secondly, we note

Fig. 8. The new k-blocking policy.

that the solution of a block of size Nx × Ny × Nz requires
Nx +Ny +Nz − 2 wavefront steps.

As a corollary, a processor array of size Px×Py ×Pz will
have a compute time of:

(Px + Py +

⌈
dNz/Pze
kblock

⌉
× Pz − 2)W

where W is the time a processor takes to compute a block of
size Nx/Px ×Ny/Py × kblock.

Thus an 8×8×1 processor array, with a kblock of 120, has
a compute time of 22W , whereas a 4× 4× 4 processor array,
with a kblock of 240, has a compute time of 10W . In order for
the performance of the 3D decomposition to match that of the
2D decomposition, even when assuming zero communication
cost, the value of W for a 240× 240× 240 block cannot be
more than 2.2x greater than that for a 120× 120× 120 block.
Our benchmarking reports that it is approximately 6x greater,
demonstrating that a 3D decomposition does not result in a
performance gain.

B. K-Blocking Policy

The k-blocking policy described earlier is very inefficient
for values of kblock less than Nz . During the processing of
each set of kblock tiles, the number of grid-points processed
increases from 1 towards some maximum H , before decreas-
ing again to 1.

Ideally, we want to develop a method of k-blocking that
allows us to process hyperplanes of size H in each wavefront
step whilst having a minimal effect on the pipeline fill time and
communication efficiency. Setting kblock = Nz produces the
desired compute behaviour, but causes a considerable increase
in pipeline fill time. Computing the values of all grid-points
on the current hyperplane (even if they lie in the next kblock)
also increases parallel efficiency, but is complicated by the
fact that the computation for some grid-points will depend on
values yet to be received from processors upstream.

The reader is reminded that a single wavefront step moves
from hyperplane f to (f+1); a single wavefront step increases
the depth of the deepest grid-point the hyperplane intersects
by one. Thus, a processor can execute s wavefront steps if

Nodes kblock Old Policy New Policy

4 1 759.99 80.81
81 67.25 77.13

8 1 554.34 74.94
41 52.92 61.34

16 1 381.06 77.50
41 44.46 55.60

TABLE V
COMPARISON OF EXECUTION TIMES (IN SECONDS) FOR THE OLD AND

NEW k-BLOCKING POLICIES.

and only if the data dependencies for all grid-points on the
following s levels are satisfied; a processor receiving s rows
or columns from those upstream can execute only s wavefront
steps.

This forms the basis for a new k-blocking policy, as depicted
in Figure 8, which sees each processor running only kblock
wavefront steps upon receipt of a message. The end result of
this policy is that the compute efficiency on each processor is
maximised, at the expense of an increased pipeline fill time.

We present in Table V a comparison between the original
k-blocking policy and an early implementation of the new
policy for a Class C problem executed on 4, 8 and 16 Tesla
C1060 GPUs. In each case, the code was run with a kblock
of 1 (the best expected value for pipeline fill time) and
min(Nx/Px, Ny/Py) (the value used under the old policy).

The results in this table demonstrate that the performance of
the new policy is significantly better than that of the original
policy for low values of kblock, yet slightly worse for high
values. This is a direct result of the increased pipeline time.

In spite of this, our initial results show promise. That
the performance of runs with low kblock values has been
improved to such a degree demonstrates that the new policy
will allow the value of kblock to be chosen based solely on
PCIe and network latencies. We will investigate improvements
to our new implementation and its effect upon the performance
of large-scale runs in future work.

X. CONCLUSIONS

The porting and optimisation of parallel codes for
accelerator-based architectures is a topic of intense current
interest within the high performance computing community.
This is in part due to the high levels of theoretical performance
on offer from accelerator devices, as well as competitive levels
of spatial and power efficiency.

We present optimised implementations of the NAS LU
benchmark for distributed clusters of CPUs and GPUs. Bench-
mark results are provided for commodity-grade GPU cards
as well as for flagship HPC products from NVIDIA, with
comparisons provided for processors from Intel, AMD and
IBM. We then use these benchmarks, together with two
performance models of LU, to assess the performance of
the codes at scale. This paper is the most comprehensive

assessment of LU’s performance on novel architectures to be
published to date and provides insight into the performance of
the code on alternative petascale-capable computing hardware.

These results demonstrate that while distributed GPU clus-
ters can deliver substantial levels of theoretical peak perfor-
mance, achieving sustained application performance at scale
is still a challenge. Like-for-like comparisons to existing
technologies such as IBM’s BlueGene platform help also to
show that the power-efficiency of GPU-solutions – a much
cited reason for their adoption – is in fact comparable for this
class of application.

These findings therefore raise interesting questions about
the future direction of HPC architectures. On the one hand, we
might expect to see smaller clusters of accelerator-based nodes
which will favour kernels of highly vectorisable code; on the
other, we might expect highly parallel solutions typified by the
BlueGene/P, where “many-core” will mean massively parallel
quantities of independently operating cores. Therefore, the
choice that application programmers will be faced with is one
of focusing on low-level code design (to exploit instruction-
level and thread-level parallelism) or higher-level, distributed
scalability.

This paper suggests that, for wavefront codes at least, both
routes currently offer comparable levels of performance in
spite of large differences in theoretical peak. The techniques
employed in this work demonstrate a low-cost and accurate
method of assessing application performance on contempo-
rary and future high-performance computing systems – and
emphasise the importance of considering scale in application
and machine design, in contrast to benchmarking on single
nodes or small clusters.

ACKNOWLEDGEMENTS

This work is supported in part by The Royal Society
through their Industry Fellowship Scheme (IF090020/AM).
We are grateful to Scott Futral, Jan Nunes and the Livermore
Computing Team for access to, and help in using, the Dawn-
Dev BlueGene/P and Hera machines located at the Lawrence
Livermore National Laboratory. Access to the LLNL Open
Computing Facility is made possible through collaboration
with the UK Atomic Weapons Establishment under grants
CDK0660 (The Production of Predictive Models for Future
Computing Requirements) and CDK0724 (AWE Technical
Outreach Programme). The performance modelling research
is also supported jointly by AWE and the TSB Knowledge
Transfer Partnership grant number KTP006740. The authors
would also like to thank the High Performance Computing
team at the Daresbury Laboratory (UK) for access to the
Daresbury multi-card GPU-cluster.

REFERENCES

[1] RNR-94-007 (1994) The NAS Parallel Benchmarks. NASA Ames
Research Center. Moffet Field, CA.

[2] Mudalige, G. R., Vernon, M. K., and Jarvis, S. A. (2008) A Plug-
and-Play Model for Evaluating Wavefront Computations on Parallel
Architectures. Proceedings of the IEEE International Parallel and
Distributed Processing Symposium, Miami, FL, 14-18 April. IEEE
Computer Society, Los Alamitos, CA.

[3] Hammond, S. D., Mudalige, G. R., Smith, J. A., Jarvis, S. A., Herdman,
J. A., and Vadgama, A. (2009) WARPP: A Toolkit for Simulating High-
Performance Parallel Scientific Codes. Proceedings of the International
Conference on Simulation Tools and Techniques, Rome, Italy, 2-6 March,
pp. 19:1–19:10. Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering, Brussels, Belgium.

[4] Hoisie, A., Lubeck, O., Wasserman, H., Petrini, F., and Alme, H. (2000)
A General Predictive Performance Model for Wavefront Algorithms on
Clusters of SMPs. Proceedings of the International Conference on
Parallel Processing, Toronto, Canada, 21-24 August, pp. 219–228. IEEE
Computer Society, Los Alamitos, CA.

[5] TR-08-24 (2008) Accelerating Data-Serial Applications on GPGPUs: A
Systems Approach. Computer Science, Virginia Tech. Blacksburg, VA.

[6] Munekawa, Y., Ino, F., and Hagihara, K. (2008) Design and Implementa-
tion of the Smith-Waterman Algorithm on the CUDA-Compatible GPU.
Proceedings of the IEEE International Conference on Bioinformatics
and Bioengineering, Athens, Greece, 8-10 October, pp. 1–6. IEEE
Computer Society, Los Alamitos, CA.

[7] Manavski, S. and Valle, G. (2008) CUDA Compatible GPU Cards as
Efficient Hardware Accelerators for Smith-Waterman Sequence Align-
ment. BMC Bioinformatics, 9, S10.

[8] Petrini, F., Fossum, G., Fernandez, J., Varbanescu, A. L., Kistler, N.,
and Perrone, M. (2007) Multicore Surprises: Lessons Learned from
Optimizing Sweep3D on the Cell Broadband Engine. Proceedings of
the IEEE International Parallel and Distributed Processing Symposium,
Long Beach, CA, 26-30 March. IEEE Computer Society, Los Alamitos,
CA.

[9] Gong, C., Liu, J., Gong, Z., Qin, J., and Xie, J. (2010) Optimizing
Sweep3D for Graphic Processor Unit. Proceedings of the International
Conference on Algorithms and Architectures for Parallel Processing,
Busan, Korea, 21-23 May, pp. 416–426. Springer-Verlag, Berlin.

[10] (1995) ‘The ASCI Sweep3D Benchmark’. Los Alamos National Lab-
oratory. http://www.c3.lanl.gov/pal/software/sweep3d/sweep3d readme.
html (12 May 2011).

[11] Boyer, M., Tarjan, D., Acton, S. T., and Skadron, K. (2009) Accel-
erating Leukocyte Tracking using CUDA: A Case Study in Leveraging
Manycore Coprocessors. Proceedings of the IEEE International Parallel
and Distributed Processing Symposium, Rome, Italy, 23-29 May. IEEE
Computer Society, Los Alamitos, CA.

[12] Govindaraju, N. K., Lloyd, B., Dotsenko, Y., Smith, B., and Manferdelli,
J. (2008) High Performance Discrete Fourier Transforms on Graphics
Processors. Proceedings of the ACM/IEEE Conference on Supercomput-
ing, Austin, TX, 15-21 November, pp. 2:1–2:12. IEEE Press Piscataway,
NJ.

[13] Shimokawabe, T., Aoki, T., Muroi, C., Ishida, J., Kawano, K., Endo,
T., Nukada, A., Maruyama, N., and Matsuoka, S. (2010) An 80-
Fold Speedup, 15.0 TFlops Full GPU Acceleration of Non-Hydrostatic
Weather Model ASUCA Production Code. Proceedings of the
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, New Orleans, LA, 13-19 November.
IEEE Computer Society Washington, DC.

[14] Jacobsen, D. A., Thibault, J. C., and Senocak, I. (2010) An MPI-CUDA
Implementation for Massively Parallel Incompressible Flow Computa-
tions on Multi-GPU Clusters. Proceedings of the 48th AIAA Aerospace
Sciences Meeting, Orlando, FL, 4-7 January. American Institute of
Aeronautics and Astronautics, Reston, VA.

[15] Lee, V. W. et al. (2010) Debunking the 100X GPU vs. CPU Myth: An
Evaluation of Throughput Computing on CPU and GPU. Proceedings
of the ACM/IEEE International Symposium on Computer Architecture,
Saint-Malo, France, 21-23 June, pp. 451–460. ACM New York, NY.

[16] Vuduc, R., Chandramowlishwaran, A., Choi, J., Guney, M. E., and
Shringarpure, A. (2010) On the Limits of GPU Acceleration. Proceed-
ings of the USENIX Workshop on Hot Topics in Parallelism, Berkeley,
CA, 14-15 June. USENIX Association, Berkeley, CA.

[17] RC24982 (2010) Believe it or Not! Multi-core CPUs Can Match GPU
Performance for FLOP-intensive Application! IBM Research Division,
Thomas J. Watson Research Center. Yorktown Heights, NY.

[18] RC25033 (2010) Can CPUs Match GPUs on Performance with Produc-
tivity?: Experiences with Optimizing a FLOP-intensive Application on
CPUs and GPU. IBM Research Division, Thomas J. Watson Research
Center. Yorktown Heights, NY.

[19] Pennycook, S. J., Hammond, S. D., Mudalige, G. R., and Jarvis, S. A.
(2011) Performance Analysis of a Hybrid MPI/CUDA Implementation

of the NAS-LU Benchmark. SIGMETRICS Performance Evaluation
Review, 38, 23–29.

[20] Lazou, C. (2010) ‘Should I Buy GPGPUs or Blue Gene?’.
HPC Wire. http://www.hpcwire.com/hpcwire/2010-11-04/should i
buy gpgpus or blue gene.html (04 November 2010).

[21] NAS-96-18 (1996) NAS Parallel Benchmark (Version 1.0) Results 11-96.
NASA Ames Research Center. Moffet Field, CA.

[22] Ryoo, S., Rodrigues, C. I., Baghsorkhi, S. S., Stone, S. S., Kirk, D. B.,
and mei W. Hwu, W. (2008) Optimization Principles and Application
Performance Evaluation of a Multithreaded GPU Using CUDA. Pro-
ceedings of the ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, Salt Lake City, UT, 20-23 February, pp. 73–
82. ACM New York, NY.

[23] Lamport, L. (1974) The Parallel Execution of DO Loops. Communica-
tions of the ACM, 17, 83–93.

[24] Gharaibeh, A. and Ripeanu, M. (2010) Size Matters: Space/Time Trade-
offs to Improve GPGPU Applications Performance. Proceedings of the
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, New Orleans, LA, 13-19 November.
IEEE Computer Society Washington, DC.

[25] Reussner, R., Sanders, P., Prechelt, L., and Müller, M. (1998) SKaMPI:
A Detailed, Accurate MPI Benchmark. Recent Advances in Parallel
Virtual Machine and Message Passing Interface, 1497, 52–59.

[26] (2010) ‘Livermore Computing Systems Summary’. Lawrence Livermore
National Laboratory. https://computing.llnl.gov/resources/systems
summary.pdf (12 May 2011).

[27] Kerbyson, D. J., Hoisie, A., and Wasserman, H. (2005) A Performance
Comparison Between the Earth Simulator and Other Terascale Systems
on a Characteristic ASCI Workload. Concurrency and Computation:
Practice and Experience, 17(10), 1219–1238.

