

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

Efficient Resources Assignment Schemes
for Clustered Multithreaded Processors

Fernando Latorre José González Antonio González
Intel Barcelona Research Center

Intel Labs - UPC
Intel Barcelona Research Center

Intel Labs - UPC
Intel Barcelona Research Center

Intel Labs - UPC
fernando.latorre@intel.com pepe.gonzalez@intel.com antonio.gonzalez@intel.com

Abstract

New feature sizes provide larger number of
transistors per chip that architects could use in order
to further exploit instruction level parallelism.
However, these technologies bring also new challenges
that complicate conventional monolithic processor
designs. On the one hand, exploiting instruction level
parallelism is leading us to diminishing returns and
therefore exploiting other sources of parallelism like
thread level parallelism is needed in order to keep
raising performance with a reasonable hardware
complexity. On the other hand, clustering architectures
have been widely studied in order to reduce the
inherent complexity of current monolithic processors.
This paper studies the synergies and trade-offs between
two concepts, clustering and simultaneous
multithreading (SMT), in order to understand the
reasons why conventional SMT resource assignment
schemes are not so effective in clustered processors.
These trade-offs are used to propose a novel resource
assignment scheme that gets and average speed up of
17.6% versus Icount improving fairness in 24%.

1. Introduction

Every new feature size that industry is
manufacturing provides a larger number of transistors
per chip. This increase in the number of available
transistors allows computer architects to face more
complex hardware designs in order to improve the
processor performance. However, these new feature
sizes also bring new challenges that must be addressed.

Every new feature size transistors become smaller
and therefore faster. Unfortunately, wire delays are not
reduced the same way. Smaller transistors reduce the
area of the chip components and thus the length of the
wires needed to communicate different components

becomes shorter. Even though this reduction on
distance also reduces wire delays, new feature sizes
increase wires resistance making signals to travel
slower. Therefore, designers must meet a trade-off
between wire length and resistance in order not to turn
communications into a bottleneck [8]. In conclusion,
conventional monolithic designs would find in wire
delays one of their main limiting factors when future
technologies are in use.

Other important challenges coming out in the
current processor designs are the thermal and power
budgets at which these designs must operate [10].
Increasing the number of transistors implemented in a
given area makes the activity in this area grow along
with the power consumption. This additional power
consumption turns into heat that must be dissipated
from a tiny area.

Proposals like clustering have been analyzed during
the last decades in order to alleviate the aforementioned
drawbacks. Clustering has been explored in many
individual processor components like issue queues or
register files. Besides, some authors proposed splitting
the processor back-end into multiple clusters where
instructions are steered for execution. These clusters
are small, simple and are able to operate at high
frequencies at the expenses of sometimes
communicating through slow and large connections
incurring in performance penalties [13].

On the other hand, ILP (Instruction Level
Parallelism) is limited and cumbersome to exploit.
Architectural enhancements usually raise ILP
performance at the expenses of important increase on
power consumption. This scenario made researchers to
look for alternative sources of parallelism like TLP
(Thread Level Parallelism). An example of this kind of
parallelism seriously considered by the industry is SMT
(Simultaneous Multithreading) [26]. Processors
enabling this technology are able to execute multiple
applications or threads in parallel augmenting the

probability of finding independent instructions to
execute and therefore keeping the processor busy.
Moreover, current workloads normally comprise
multiple applications and in the future is expected these
parallel workloads grow playing in favor of this
technology.

In conclusion, clustering and SMT are two
important players to be considered in future designs in
order to have powerful processor able to effectively
deal with multithreaded workloads when possible but
being also able to efficiently exploit ILP when the
number of running threads is limited. On the one hand,
clustering will allow designers to deal with wire delays
and keep designs simple in order to exploit ILP while
meeting a given power and thermal budget [4]. On the
other hand, SMT will enable the processor to run
workloads consisting of multiple threads that is
becoming the most common scenario nowadays.
However, few studies have been done regarding the
way these two technologies run together.

In this paper we explore the synergy between SMT
and clustering. Different alternatives proposed in the
literature to distribute resources among threads in SMT
processors are evaluated and the reasons why they are
not adequate for clustering machines have been
studied. Moreover, we take advantage of the study to
propose a novel resource assignment scheme designed
to work on these clustered approaches getting
performance benefits of 17.6% compared to Icount and
improving fairness in 24%.

The paper is organized as follow: first, we present
some related work in section 2 and describe the
baseline architecture in section 3. Then, the simulation
methodology is discussed in section 4 and the
evaluation of the different resource assignment
techniques along with our proposal are shown in
section 5. Finally, conclusions are presented in section
6.

2. Related work

Clustered microarchitectures have been shown as an
effective way to deal with wire delays and complexity
[4]. The importance of these architectures has
motivated numerous proposals for increasing
performance [4][12][13][16][21][22][23] or reducing
power dissipation [7][15]. As an example, some
conventional processors such as the Alpha 21264 [7]
implemented a clustered integer execution core.

Many authors have proposed using the increasing
transistor budget on a chip to exploit TLP (see
[1][2][6][24][25][32] among many others), in addition
to ILP (instruction-level parallelism). However, not

much work has been published based on the idea of
combining both paradigms in a synergistic way:
clustering and multithreading. Krishnan et al. [6]
compares SMT clustered architectures where the
threads are statically assigned to a number of non
clustered execution cores. This design is conceptually
similar to the IBM Power5 [27] where two
Simultaneous Multithreaded cores are implemented. On
the other hand, for Raasch et al. [24] each subset of
threads are executed in a single monolithic execution
core using all its resources where different partition
schemes are evaluated. At the end of the paper they
make a first evaluation of a SMT clustered approach
where instructions from both threads are steered to the
clusters in a round robin fashion. Latorre et al. [28]
also evaluate a clustered architecture but in this case
the clusters are private per thread and they are either
dynamically or statically assigned.

Collins et al. explores multiple ways of processor
partitioning in [29]. In this paper the authors propose a
thread assignment scheme where the occupancy of the
issue queue is considered. We analyze the advantages
and disadvantages of this technique among other
alternatives and demonstrate that the register file is
sometimes an important source of thread starvation that
must also be taken into account in clustered
architectures.

The goal of this paper is to have a better
understanding of the trade-offs between clustering and
multithreading while defining a resource assignment
scheme for this scenario. For this reason, simple SMT
resource assignment policies have been chosen as a
first step. Then, adapting more sophisticated schemes
like [20][30] and [32] to make them fit in a clustered
processor by using the conclusions of this study is part
of our future work.

3. Description of the architecture

The baseline architecture is like the one proposed in
[12]. A block diagram is shown in Figure 1. It consists

Figure 1. Baseline architecture.

In
terco

n
n

ectio
n

 N
etw

o
rk

Issu
e

Reg
File

DL0
LDQ

STQ

Issu
e

Reg
File

UL1

TC MITE MROM

Rename & Steer

ROB

BP

Thread Selection

In
terco

n
n

ectio
n

 N
etw

o
rk

Issu
e

Reg
File

Issu
e

Reg
File

Issu
e

Reg
File

DL0
LDQ

STQ
DL0

LDQ

STQ

Issu
e

Reg
File

Issu
e

Reg
File

Issu
e

Reg
File

UL1

TC MITE MROM

Rename & Steer

ROB

BP

Thread Selection

of a monolithic front-end in charge of fetching,
decoding and renaming instructions and a clustered
back-end. This front-end fetches x86 macro-
instructions and translates them into micro-operations
that are stored in the trace cache. The main components
in the front-end are the trace cache (TC) where micro-
operations are stored, the instruction TLB (not shown
in the figure), the branch predictor (BP), and the Macro
Instruction Translation Engine (MITE) that translates
macro-instructions into micro-operations before storing
them into the TC. It also implements the instruction
decoding, steering and renaming logic. Another
important component in the front-end is a MROM in
charge of decoding complex macro-operations like
string moves. A detailed description of these
components can be found in [14]. The front-end is able
to fetch instructions from multiple threads in SMT
mode. All main structures in the front-end are shared
among the running threads except the global history
register of the g-share branch predictor, the renaming
tables (there is one per thread) and the ROB. This latter
component is split into as many sections as threads are
running in parallel as also described in [26]. However,
instructions can only be fetched from one thread at a
time and renamed from only one thread too. The
resource assignment logic is in charge of deciding the
thread to be fetched and the one to be renamed every
cycle. The former selection policy is called fetch
selection policy whereas the latter is called rename

selection policy. Fetched instructions from every thread
are stored into private queues residing inside the thread
selection component. Hence, the rename selection
policy chooses a thread from those which queue is not
empty. In order to guarantee that the rename selection
policy can choose any thread the fetch selection policy
always fetches instructions from the thread with the
lowest number of instructions in its queue. On the other
hand, the rename selection policy is in charge of
deciding from which thread instructions must be
renamed and therefore steered to the back-ends. Thus,
this selection scheme is the main responsible of fairly
distributing the processor resources among the threads.

Decoded instructions are steered to one of the two
clusters for execution following the dependence- and
workload-based algorithm described in [12] (section
3.8). Inter-cluster communication is performed via
copy instructions that are generated on-demand by the
rename logic. Every cluster includes an issue queue
where instructions wait until all their dependences have
been computed and are eligible to be executed. It also
includes two register files (integer, and floating
point/SSE) where both speculative and architectural
values are stored. Once an instruction leaves the issue
queue, it reads its source operands either from the
register files or the bypass logic and executes in one of
the functional units of the cluster. Finally, a shared
memory order buffer and memory hierarchy is used to
process store and load operations.

Parameter Value Parameter Value

Fetch width 6 Commit width 6

Misprediction pipeline 14 ROB size 128 per thread

Indirect branch 4096 Gshare entries 32K

ITLB entries 1024 ITLB assoc. 8

Trace Cache size 32K uops Issue rate per cluster Port0:int,fp,simd
 Port1:int,fp,simd
 Port2: int, mem

Issue queue size per 32-64 MOB 128

Int. physical registers 64-128 FP physical registers per 64-128

SSE physical registers 64-128 DTLB entries 1024

DTLB assoc 8 L1 ports 2 read/ 2 write

L1 assoc 2 L1 size 32KBytes

L1 hit latency 1 cycle L2 assoc 8

L2 size 4MB L2 hit latency 12 cycles

Point to Point Links 2 Point to Point latency 1 cycle

Data buses (L1 to L2) 2 Memory Latency 60 cycles

Table 1. Baseline processor configuration.

4. Experimental methodology

The goal of a resource assignment scheme is to

improve the resource utilization maximizing a certain
metric defined beforehand. Determining the most
adequate metric for SMT is still a great source of
discussion and many metrics have been proposed
during the last years like in [19][25][33]. In this study
we will use two metrics in order to quantify the benefits
of the techniques. On the one hand conventional
throughput will be used to compare the amount of
useful work (number of committed instructions) each
technique is able to do per time unit. On the other hand,
we consider that a system is fair if all the threads
experience an equal slowdown compared to the
performance they have when executed alone [17].
Hence, the fairness metric can be defined as the
minimum ratio between the slowdowns of any two
threads running in the system compared to its
performance when running alone as shown in [33].
Note that a proposal with good fairness could have very
bad throughput and the other way around (i.e. a fair
technique could run two threads in parallel where both
are slowed down in 90% but its throughput would be
much less than running the two threads one after the
other). Therefore, a novel SMT resource assignment
scheme must improve the processor throughput but
keeping fairness either at the same level or enhanced
compared to the baseline.

4.1 Simulation methodology

The experiments have been conducted by using an
in-house simulator that models the micro-architecture
described in Section 3. The simulator is trace-driven
but traces hold enough information to faithfully

simulate wrong path execution. Our pool of
benchmarks comprises of 120 2-threaded traces
classified in 11 categories based on their
characteristics. Moreover, for every category we have
classified the traces in highly parallel traces and
memory-bounded traces like in [19] in order to create
workloads that cover as many different scenarios as
possible. This classification is shown in Table 2. The
processor baseline configuration is described in Table
1.

5. Managing shared resources

In order to design an effective resource assignment

scheme, it is important to first identify the processor
components that may cause thread starvation. These
hardware components are those that are shared among
threads and a thread allocates for long periods of time.
For instance, functional units are typically shared
among threads but they are used and released very fast
so that starvation is infrequent. By contrast, other
resources like issue queue slots or physical registers are
allocated for very long periods of time and therefore
thread starvation could be very common if they are not
properly managed.

In this section we evaluate the impact different
resource assignment schemes have on these two shared
resources. This evaluation is done separately for each
of the resources to better understand the way the
resource assignment schemes manage every individual
resource.

5.1 Issue queue entries

Our first study will address the management of the

issue queue. Once an instruction is renamed it is
steered to one of the clusters for execution. Previous

Table 2. Benchmarks.

Category Description Types #wkloads

DH Digital Home algorithms ILP/MEM/MIX 3/3/2

FSPEC00 Floating Point benchmarks from SPEC2K ILP/MEM/MIX 3/3/2

ISPEC00 Integer benchmarks from SPEC2K ILP/MEM/MIX 3/3/2

Multimedia Mpeg, speech recognition ILP/MEM/MIX 3/3/2

Office Power Point, Excel ILP/MEM/MIX 3/3/2

Productivity Sysmarks2K ILP/MEM/MIX 3/3/2

Server TPC traces ILP/MEM/MIX 3/3/2

Workstation CAD, rendering ILP/MEM/MIX 3/3/2

Miscellanea Games and matrix algorithms ILP/MEM/MIX 3/3/2

ISPEC-FSPEC Mixes of traces from ISPEC00 and FSPEC00 ILP/MEM/MIX 3/3/2

mixes Mixes of traces from all categories MIX 32

studies for single threaded processors demonstrated
that instructions must be steered to a cluster (and thus
to an issue queue) in such a way that inter-cluster
communication is minimized but also workload is

balanced among the different clusters [12]. Moreover,
previous work on SMT for monolithic processors have
also demonstrated that balancing under certain
conditions the available issue queue entries among the
running threads is crucial to reach good multi-threaded
performance [3]. Therefore, it would seem that a good
resource assignment scheme must deal with three main
factors in order to properly handle the issue queues on
a clustered machine: workload balance, inter-cluster
communication and distribution of issue queue slots
among threads. The resource assignment schemes
described in Table 3 are evaluated in order to better
understand the trade-off among these three factors.

While the former four schemes are obtained from
the literature, we propose the latter three in order to
understand the impact the three factors (inter-thread
communications, issue queue occupancy and workload
balance) have on performance. All these schemes are
implemented on top of the state-of-the-art steering
mechanism proposed in [12] that steers instructions to
the thread where most of their source operands reside
in order to minimize communications and also controls
workload balance.

Figure 2 shows the performance (in throughput)
obtained by the different evaluated techniques using 32
and 64 issue queue entries per cluster. The physical
register file and the reorder buffer are unbounded for
this study in order to avoid side effects on these
components. Therefore, the differences in performance
are coming only from the way issue queue entries,
workload balance and inter-cluster communications are
managed by the schemes shown in Table 3.

As it can be seen in Figure 2 Flush+ and Stall are

usually helpful in order to increase performance when
the number of IQ entries is an important bottleneck.

Technique Description/Reason
Icount Very effective and simple technique proposed in

[1] where the thread with the lowest number of
instructions between renaming stage and issue is
selected.

Stall It is implemented on top of Icount but stalls a
thread that misses in L2 cache until the cache
miss resolves. It was proposed in [19].

Flush+ This is a scheme proposed in [25] that improves
the original Flush in [19]. It forces a thread with a
L2 cache miss pending to release all allocated
processor resources until the miss is solved.
Flush+ improves the original when there are two
threads with pending L2 misses. In Flush+ the
one that missed the first is allowed to continue.
This technique was also enhanced (Flush++) for
the cases where the number of threads was higher
than 2. However, since our workloads are two
threaded we implemented Flush+.

Cluster-
insensitive
Static
Partitioned
(CISP):

This technique allows a thread to use 50% of the
issue queue entries regardless the cluster where
these entries are located and it has been proposed
in papers like [31] to distribute the resources
among clusters shared by multiple threads.

Cluster-
sensitive Static
Partitioned
(CSSP):

This technique allows a thread to use 50% of the
issue queue entries implemented per cluster.

Cluster-
sensitive
Partial Static
Partitioned
CSPSP):

It is like the previous one but only 25% of the
entries of each cluster are guaranteed per thread.
Threads compete for the rest of the issue queue
entries.

Private
clusters (PC):

It assigns a cluster to every thread and steers all
instructions from a thread to the assigned cluster.

Table 3. Resource assigment schemes evaluated
to control the issue queue.

Throughput Analysis

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

32 64 32 64 32 64 32 64 32 64 32 64 32 64 32 64 32 64 32 64 32 64 32 64

DH FSPEC00 ISPEC00 ISPEC-FSPEC multimedia office productivity server miscellanea w orkstation mixes AVG

sp
ee

d
u

p

Icount Stall Flush+ CISP CSSP CSPSP PC

Figure 2. Throughput for the different IQ techniques using 32 and 64 issue queue entries per cluster.
Performance is normalized to the obtained with 32 issue queue entries and Icount.

However, for situations where starvation in the IQ is
not high like when the number of IQ entries is
increased these techniques not only loose effectiveness
but also degrade performance (for instance,
miscellanea with 64 entries). The reason is that these
techniques (especially Flush+) overreacts penalizing
threads with cache misses and the other thread is not
able to get enough performance benefits to compensate
the penalties. On the other hand, techniques that
statically partition the issue queue have a more stable
behavior. It can be seen that the cluster-sensitive
scheme (CSSP) usually outperforms the cluster-
insensitive scheme (CISP) and the private assignment
(PC).

For the sake of simplicity from now on we will
focus our study on a configuration with 32 IQ entries
per cluster. However, we have observed that the trend
remains for configurations with 64 entries even though
benefits are reduced because increasing the amount of
resources available alleviates thread starvation.
 Inter-cluster communication

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

DH

FSPEC00

IS
PEC00

IS
PEC-F

SPEC

mixe
s

multim
edia

offic
e

pro
du

cti
vit

y

se
rve

r

misc
ell

an
ea

wor
ks

tat
ion

AVG

#c
o

p
ie

s/
#r

et
ir

ed
_i

n
st

ru
ct

io
n

s

Icount Stall Flush+ CISP CSSP CSPSP PC

Inter-cluster communication

In this section we analyze the relation between the

number of values communicated among clusters by
using each technique and the performance observed.
Figure 3 shows the number of copies (inter-cluster
communications) produced per retired instruction. On
the one hand it can be seen that configurations like PC
do not reach good performance (Figure 2) even though
communications are avoided by sending instructions
from the same thread to the same cluster. In this case
performance is affected by workload imbalance as we
will discuss in the next sections. By contrast, CSSP
achieves the best performance having one of the
highest amounts of copies per instruction (0.26 in
average). Note that although CISP is the policy with
the lowest amount of copies among those that allow
instructions from a thread to go to both clusters; it does

not reach as good performance as CSSP. The reason is
that CISP does not allow a thread to occupy more than
half of the total IQ entries but it does not specify the
cluster where these entries must be located. Therefore,
a steering logic based on dependences like the one
being used in this study makes most of the instructions
from the same thread to go to the same cluster. Overall,
we have observed that CISP behaves almost like PC
but it sometimes allows instructions from a thread to
use the other cluster improving workload balance and
then performance. However, although the same effect
should be expected in other cluster-insensitive schemes
like Icount, Flush+ or Stall, they do not follow this
trend as shown in Figure 3.

The main difference between CISP and the other
cluster-insensitive approaches is that the former forbids
a thread to occupy more than 50% of the total IQ
entries. Then, in CISP a thread occupies most of a
cluster and a little bit of the other before it is stalled.
However, the other cluster-insensitive techniques do
not have any additional constraint that prevents a
thread from occupying both IQs. Therefore, in Flush+,
Stall and Icount as soon as a thread is either stalled or
flushed because of cache misses or branch
mispredictions the other thread can invade both issue
queues. Once the flushed/stalled thread resumes it is
not guaranteed that it can steer its instructions to the
cluster where their dependents reside. Since there are
not a minimum number of entries reserved per cluster,
the other thread may have populated the preferred
cluster. Then, instructions are steered to the non
preferred cluster instead. This situation makes that even
though the steering logic favors instructions from the
same thread to go to the same cluster as in CISP,
threads are forced to ping pong within time between the
two clusters increasing the number of copy instructions.

Finally, since CSSP splits the issue queue of each
cluster into two, it produces a high number of copies.
The steering logic favors instructions from the same
thread to go to the same cluster; but as soon as the
number of instructions from the same thread exceeds
50% of the issue queue of a cluster, CSSP forces this
thread to go to the other cluster.

In conclusion, the ratio of inter-cluster
communications is not crucial in clustered SMT
architectures (conversely to what happen in single
threaded ones) due to the fact that having two
simultaneous threads partially hides the communication
penalties.

Figure 3. Analysis of inter-cluster
communication.

Issue queue stalls

Figure 4 shows the number of renaming stalls

because of lack of issue queue entries per number of
retired instructions. Note that we consider stall when an
instruction is not able to go to the preferred cluster
because the issue queue is either full or exceeds the
limit defined by the resource assignment scheme for
that cluster. As it can be seen in Figure 4 resource
assignment schemes like Flush+ and Stall are very
effective dealing with the issue queue entries. However,
they are so conservative avoiding threads to eagerly
allocate issue queue entries that performance
sometimes drops apparently because of underutilization
of the issue queue slots as shown in Figure 2.
Interestingly, cluster-sensitive resource assignment
schemes incur in the highest ratio of issue queue stalls.
The reason is not that its management of issue queue
slots is worse than the other techniques but a side effect
of the cluster-sensitive policies. Actually, the
management of the issue queue by CISP and CSSP
should have similar efficiency in terms of renaming
stalls. However, CSSP shows a higher ratio of stalls
because it forces a thread to steer instructions to the
non-preferred cluster (a cluster different than the
chosen by the steering logic) when it exceeds 50% of
the issue queue occupancy of the cluster. By contrast,
CISP would still steer instructions to the preferred
cluster showing a lower number of issue queue stalls
than CSSP. Note though that the additional stalls CSSP
has over CISP do not block the renaming logic but
instructions are steered to the non-preferred cluster
instead. Therefore, these additional stalls only incur in
extra copies whose latency is typically hidden. Indeed,
the number of stalls that make the renaming logic to
stall is similar to CSSP and lower than Icount.

It has been seen in Figure 4 that Flush+ and Stall
are very effective preventing issue queue stalls.
However, issue queue entries in clustered architectures
are more abundant than in monolithic designs and
therefore the benefits they get by preventing issue
queue stalls is not enough to compensate the penalties
incurred by stalling/flushing threads. On the other
hand, CISP and PC also show a reduction on issue
queue stalls compared to Icount and they make a good
job minimizing inter-cluster communications as shown
in Figure 3. Nevertheless, CSSP and CSPSP are the
schemes that obtain the best performance. Even though
issue queue occupancy and inter-cluster communication
are important, workload balance is the main player a
resource assignment scheme should consider.

Workload balance

The previous section has shown the reasons why
conventional Stall and Flush+ schemes are not
adequate for clustered architectures. In this section we
give some insights regarding the reasons why CSSP is
better than CISP and PC by evaluating the impact of
these techniques in the workload balance.

Issue Queue stalls

0

1

2

3

4

5

6

7

DH

FSPEC00

IS
PEC00

IS
PEC-F

SPEC

m
ixe

s

m
ul

tim
edia

of
fic

e

pr
od

uc
tiv

ity

se
rv

er

m
isc

ell
an

ea

wor
ks

ta
tio

n

AVG
#I

Q
_s

ta
lls

/#
re

ti
re

d
_i

n
st

ru
ct

io
n

s

Icount Stall Flush+ CISP CSSP CSPSP PC

Figure 5 measures the workload imbalance between
clusters for Icount, CISP, CSSP and PC. Workload
imbalance stands for the number of ready instructions
that could not be executed in one cluster because of
lack of issue slots but they could have been executed in
the other cluster. For example, a workload imbalance
of 1 for an integer instruction means that the instruction
could not be executed because all issue slots in its
cluster were busy but there were at least one free issue
slot in the other cluster.

Although the steering logic implemented tries to
minimize the workload imbalance among clusters, the
resource assignment scheme sometimes decides to steer
instructions to the non preferred cluster to reduce
starvation and therefore affects the final workload
balance.

Figure 5 shows the average workload imbalance for
every category classified per type of instruction.
Remember that every cluster has 3 execution ports for
integer where two of them can also execute Fp/Simd
operations and the other can also execute memory
operations. Hence, 0 Integer for instance stands for the
percentage of cycles where integer ready instructions in
one cluster could not have been executed in any of the
two clusters. On the other hand, 1 Fp/Simd stands for
the percentage of cycles where a Fp/Simd instruction
could not be executed in one cluster but the other had
available execution ports. Thus, perfect workload
balance would make sections 0 Integer, 0 Fp/Simd and
0 Mem to sum 100%.

Figure 4. Analysis of stalls due to lack of
issue queue entries.

Figure 5 shows CSSP has better workload balance
than PC and CISP. PC statically partitions the issue
bandwidth among threads by statically binding threads
to clusters. However, splitting the issue bandwidth
among threads degrades performance as demonstrated
for monolithic designs by Raasch et al. in [24]. Figure
5 shows that in clustered architectures, even though
statically binding clusters among threads is good in
terms of inter-cluster communication, workload
balance is dramatically reduced (for instance in mixes
category). On the other hand, CISP does not statically
split the issue bandwidth but the dependence based
steering algorithm usually makes CISP to behave as
PC. As commented before, CISP makes most of the
instructions from a thread to go to the same cluster and
just few of them to the other. Therefore, every cluster
becomes eventually full of instructions from the same
thread preventing the other thread from using it
splitting the issue bandwidth. By contrast, CSSP
guarantees issue queue slots for all threads in every
cluster avoiding the partition of the issue bandwidth
and then improving workload balance.

From this study we conclude that what matters in
SMT clustered architectures is not only the number of
issue queue entries available per thread as in
monolithic designs but also the cluster where these
entries reside. Therefore, the resource assignment
scheme should be able to guarantee certain amount of
issue queue entries per thread and cluster.

CSSP will be used from now on in the evaluations
because it showed the best behavior controlling the
allocation of issue queue entries.

5.2 Physical register file

 The other main shared resource where thread
starvation occurs is the physical register file. Our
proposed architecture has two register files per cluster;
one for integer values and the other for Fp/Simd data.
The goal of the next experiment is to find out the best
approach to handle the physical register files. For this
experiment the configuration shown in Table 1 is used
with 32 issue queue entries per cluster.

 Figure 6 shows the throughput of the techniques
shown in Table 4 with 64 and 128 registers per cluster
normalized to the performance obtained by
implementing Icount with 64 physical registers per
cluster. As it can be seen, performance differences
between having 64 and 128 registers is small so that the
physical register file is not a big source of thread
starvation for this size. However, even though the
number of physical registers is in general enough to
satisfy the demand of all workloads, some categories
like ISPEC00 incur in very high pressure on the integer

Table 4. Techniques evaluated to control the
register file.

Technique Description/Reason
Icount Baseline.
CSSP it is the technique that better managed the

issue queues in the previous section.
Cluster-Sensitive
Static Partioned
Register File
(CSSPRF)

CSSP handles the issue queue but a thread
is only able to use half of the register file
of each kind on each cluster.

Cluster-Insensitive
Static Partitioned
Register File
(CISPRF)

CSSP handles the issue queue but a thread
is only able to use half of the total register
file of each kind no matter the cluster
where registers are allocated.

Figure 5. Workload-imbalance analysis.

Workload imbalance

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ic
ou

nt

C
IS

P

C
S

S
P

P
C

Ic
ou

nt

C
IS

P

C
S

S
P

P
C

Ic
ou

nt

C
IS

P

C
S

S
P

P
C

Ic
ou

nt

C
IS

P

C
S

S
P

P
C

Ic
ou

nt

C
IS

P

C
S

S
P

P
C

Ic
ou

nt

C
IS

P

C
S

S
P

P
C

Ic
ou

nt

C
IS

P

C
S

S
P

P
C

Ic
ou

nt

C
IS

P

C
S

S
P

P
C

Ic
ou

nt

C
IS

P

C
S

S
P

P
C

Ic
ou

nt

C
IS

P

C
S

S
P

P
C

Ic
ou

nt

C
IS

P

C
S

S
P

P
C

Ic
ou

nt

C
IS

P

C
S

S
P

P
C

DH FSPEC00 ISPEC00 ISPEC-FSPEC mixes multimedia off ice productivity server miscellanea w orkstation AVG

%
 c

yc
le

s
w

it
h

 i
ss

u
ed

 u
o

p
s

0 Integer 0 Fp/Simd 0 Mem 1 Integer 1 Fp/Simd 1 Mem

register file getting performance benefits of up to 14%
(4% in average) when the register file is partitioned. By
contrast, other categories like ISPEC-FSPEC or mixes
show performance drops when partitioning the register
file. The main difference between ISPEC00 and
ISPEC-FSPEC is that whereas the former only uses the
integer register file and therefore it becomes a
bottleneck, the latter executes a benchmark with high
integer activity in parallel with another with low integer
activity and high FP/Simd activity. Therefore, the
required resources by the two workloads are almost
disjoint reducing thread starvation. While resource
partitioning reduces starvation when both threads use a
resource, it also incurs in hardware underutilization
when resources are barely shared as it happens in
ISPEC-FSPEC. In conclusion, a dynamic mechanism
that makes the partition depending on the pressure over
the hardware resources is needed in order to avoid
outliers due to either thread starvation or hardware
underutilization.

It is important to determine whether this adaptive
scheme should be implemented in a clustered-sensitive
way or not. As it can be seen in Figure 6, CSSPRF
always performs worse than CISPRF. The reason is
that CSSPRF sometimes changes the decision taken by
the steering logic and CSSP, degrading performance in
the following situations:
• When the source operands reside in one cluster and

CSSP allows the instruction to go to any of the two
clusters; the register file control logic could make
the instruction to go to a cluster different to where
the source operands reside if the preferred one has
its register file partition full. Therefore, the number
of copies is increased while workload balance is not
improved.

• When a thread has its issue queue partition full in
one cluster and its register file partition full in the

other cluster CSSP avoids the instruction to go to
one cluster while CSSPRF avoids it to go to the
other so that the instruction is stalled incurring in
resource underutilization.

Therefore, conflicting decisions between the
management scheme for the issue queue and the
physical register file could be avoided by handling one
resource in a cluster-sensitive way while the other is
handled in a cluster-insensitive fashion. Hence, since
building a cluster-insensitive scheme for the issue
queue has been demonstrated to be inadequate to keep
the workload balance; we decided to make the
management of the physical register file cluster-
insensitive.

Dynamic Register File Scheme

In this section we propose a scheme that
dynamically identifies the minimum number of
registers of each type a thread needs and partitions the

Figure 7. Update the RFOC and Starvation
Counters every cycle.

Figure 8. Update of thresholds per thread and
type of register file at the end of the interval.

Figure 6. Throughput normalized to Icount for configurations with 64 and 128 physical register per
cluster.

Throughput normalized to ICount

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

64 128 64 128 64 128 64 128 64 128 64 128 64 128 64 128 64 128 64 128 64 128 64 128

DH FSPEC00 ISPEC00 ISPEC-FSPEC mixes multimedia of fice productivity server miscellanea w orkstation AVG

sp
ee

d
u
p

CSSP CSSPRF CISPRF

register files accordingly. As it has been shown in the
previous section this technique should be cluster-
insensitive and it assumes a register file of each kind
with as many registers as the sum of the registers
implemented per cluster. Hence, the average number of
registers a thread uses is computed in order to
guarantee at least this amount for the execution of the
thread. Once this requirement is satisfied for all
threads; the rest of the registers in the register file can
be allocated by any thread. This computation is done
for the two types of register files (integer and Fp/Simd)
independently. The average number of registers
required per thread is computed by using a counter per
thread and type of register file named RFOC (Register
File Occupancy). This counter accumulates the number
of registers each thread is using per cycle. Then,
RFOCs are periodically checked in order to measure
the average register requirements per register file and
thread. This number of registers (up to half of the
register file) will be guaranteed during the next period.
The scheme does not allow private regions greater than
half of the register file because it would not be fair for
the other thread. This reservation of registers is done by
using a threshold per thread and type of register file.
When a thread exceeds its threshold it can only allocate
registers as long as the register file can satisfy the
reserved number of registers of the other thread.
However, the average occupancy per thread is
sometimes not properly quantified because a thread is
starved by the other. This situation is handled by
including an additional counter per thread and type of
register file named Starvation. Whenever a thread is
stalled because of lack of physical registers its
appropriate Starvation counter is increased by one or
reset otherwise. Hence, RFOC is incremented every
cycle by the number of allocated registers plus the
Starvation counter of the register file. This mechanism
makes the threshold grow very fast when starvation
occurs and therefore it gives a big private region to the
starved thread to properly measure its average
occupancy during the next period. Figure 7 shows the
flow diagram of the computation to be done per cycle
while Figure 8 shows the required computation to
define the thresholds for the next interval. In our
experiments we found that 128K cycles was a
reasonable interval. We chose this value because it is a
power of 2 so that dividing the RFOC by the interval is
a simple shift operation.

Figure 9 shows the behavior of this dynamic scheme
(CDPRF) for the workloads in the ISPEC-FSPEC
category. We chose this category because this is where
we found the main slowdowns for the static
partitioning. As it can be seen, this simple dynamic

approach minimizes the slowdowns of the static
partitions and indeed turns them into speedups in some
cases. In average CDPRF gets an additional 5%
performance improvement on top of the 5% already
obtained by CSSP in this category. However, since the
categories where benchmarks have very similar register
type requirements do not take advantage of this
adaptation (the dynamic scheme ends up statically
partition the register files) and the physical register file
is not a bottleneck as important as the issue queue, this
technique provides a modest 1.6% on top of the 16%
already provided by CSSP for all the categories (AVG
All). Nevertheless, it is very effective to fix those
workloads that were losing performance because of
register underutilization.

ISPEC-FSPEC Throughput

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

ilp
.2.1

ilp
.2.2

ilp
.2.3

ilp
.2.4

mem.2.1

mem.2.2

mem.2.3

mem.2.4

mix.
2.1

mix.
2.2

mix.
2.3

mix.
2.4

m ix.
2.5

m ix.
2.6

mix.
2.7

mix.
2.8

AVG

AVG A
ll

CSSP CSSPRF CISPRF CIDPRF

Figure 9. CDPRF performance for ISPEC-
FSPEC category.

Finally, our last evaluation compares the fairness of
all techniques by using the metric proposed in [17] in
order to understand whether this performance
improvement is equally distributed among the running
threads.

Figure 10 shows the fairness speedup reached by the
most representative techniques studied in this paper
compared to Icount. Fairness can be defined as the
minimum ratio between the slowdowns of any two
threads running in the system compared to their single
threaded execution as defined in [33]. Then, a fairness
speedup close to 1 shows that the additional
performance is equally distributed among the running
threads. By contrast, when fairness speedup is lower
than 1 it shows fairness degradation compared to the
baseline (not all threads in the workload are taking
advantage of the performance improvement). Finally, a
speedup greater than 1 represents an overall fairness
improvement.

As it can be seen, categories that execute different
kinds of applications like mixes show fairness
improvement. This is reasonable because unfair

situations can be reached with ease especially in the
issue queues when the running applications have very
different characteristics. Note also that all techniques
outperform Icount fairness in 13%, 14% and 24% for
Stall, Flush+ and CDPRF respectively. However, even
though Flush+ has fairness improvement compared to
Icount, flushing the threads that miss in cache
extremely penalizes a thread in favor of the other
negatively affecting the fairness equation. By contrast,
CDPRF is very careful penalizing threads and therefore
it gets stable performance improvements and also
reaches a fair situation 24% better than Icount.

Fairness improvement

0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

DH

FSPEC00

ISPEC00

ISPEC-FSPEC mixes

multim
edia

offic
e

productiv
ity

serve
r

misce
llanea

worksta
tio

n

Ave
rage

Stall Flush+ CSSP CDPRF
Figure 10. Fairness improvement compared to

Icount.

6. Conclusion

Resource assignment schemes designed for
monolithic processors are not adequate for clustered
machines because they do not take into account
important factors like inter-cluster communication or
workload balance. The importance of considering these
additional factors when designing a clustered SMT
processor has been evaluated. Workload balance has
been shown as the main factor to be considered by the
resource assigment policy while inter-cluster
communication has shown a poor impact because it is
hidden by the multithreaded execution. Finally, we
have motivated that resource assignment schemes that
control the issue queue should be clustered sensitive in
order to avoid a thread to take control of a whole
cluster. By contrast, our results show that physical
register files should be handled in a cluster-insensitive
fashion in order to avoid conflicting decisions with the
issue queue control logic. Hence, while statically
partition the issue queues is a reasonable simple
solution, using the same technique for the register file
incurs in performance slowdown for some workloads
because of resource underutilization. Therefore, an
enhanced version that dynamically partitions the

register files has been proposed in order to maximize
its utilization. The final proposal reached a 17.6%
average performance speedup compared to Icount and
up to 40% average speedup for certain categories.
Finally, we have observed that CDPRF is not only
effective by improving performance but also do it
equally among threads outperforming Icount fairness in
24%. Hence, using these conclusions in order to adapt
more sophisticated schemes like [20][30] and [32] to
make them fit in a clustered processor is part of our
future work.

7. Acknowledgments

This work has been partially supported by the

Spanish Ministry of Education and Science under
grants TIN2004-03702 and TIN2007-61763 and Feder
Funds.

8. References

[1] D. Tullsen, S.J. Eggers, and H.M. Levy, “Simultaneous
Multithreading: Maximizing On-Chip Parallelism”, In
Proceedings of the22th Annual International Symposium on
Computer Architecture, 1995.

[2] W. Yamamoto, and M. Nemirovsky,“Increasing
superscalar performance through multistreaming”, In
Proceedings of PACT, Jun, 1995.

[3] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R.
Stamm,“Exploiting Choice: Instruction Fetch and Issue on an
Implementable Simultaneous Multithreading Processor”, In
proc. of 23nd Annual International Symposium on Computer
Architecture, 1996.

[4] K. Farkas, P. Chow, N. Jouppi, and Z. Vranesic,“The
Multicluster Architecture: Reducing Cycle Time through
Partitioning”, In Proceedings of MICRO-30. 1997.

[5] S. Palacharla, “Complexity-Effective Superscalar
Processors”, Ph.D. thesis, Univ. of Winsconsin-Madison,
1998.

[6] V. Krishnan, and J. Torrellas, “A Clustered Approach to
Multithreaded Processors”, In International Parallel
Processing Symposium, 1998.

[7] D. Albonesi, “Dynamic IPC/clock rate optimization”,
Proceedings of ISCA-25, June 1998.

[8] R. Kessler, “The Alpha 21264 Microprocessor”, IEEE
Micro, 19(2):24-36, March/April 1999.

[9] M.J. Flynn, P. Hung, and K. Rudd,”Deep-Submicron
Microprocessor Design Issues”, IEEE Micro, 19(4): 11-22,
July/August 1999.

[10] V.V. Zyuban, ”Low-Power High-Performance
Superscalar Architectures”, PhD Thesis, Dept. of Computer
Science and Engineering, University of Notre Dame, Jan.
2000.

[11] A. Snavely, and D. Tullsen,”Symbiotic Jobscheduling
for a Simultaneous Multithreading Processor”, In proceedings
of Architectural Support for Programming Languages and
Operating Systems, 2000.

[12] R. Canal, J.M. Parcerisa, and A. González, “Dynamic
Cluster Assignment Mechanisms”, In proceedings of
International Symposium on High Performance Computer
Architectures, 2000.

[13] A. Baniasadi, and A. Moshovos, “Instruction
Distribution Heuristics for Quad-Cluster, Dynamically-
Scheduled, Superscalar Processors”, In Proc. of the 33rd.
Ann. Intl. Symp. On Microarchitecture, pp. 337-347,
December 2000.

[14] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean,
A. Kyker, and P. Roussel, “The Microarchitecture of the
Pentium® 4 Processor”, Intel Technology Journal, February
2001.

[15] R. Iris Bahar, and S. Manne, “Power and Energy
Reduction Via Pipeline Balancing”, In Proceedings of ISCA-
28, July 2001.

[16] A. Aggarwal, and M. Franklin,”An Empirical Study of
the Scalability Aspects of Instruction Distribution Algorithms
for Clustered Processors”, In Proceedings of ISPASS, 2001.

[17] K. Luo, J. Gummaraju, and M. Franklin, “Balancing
throughput and fairness in SMT processors”, In Proc. of the
International Symposium on Performance Analysis of
Systems and Software, pages 164–171, 2001.

[18] Y. Sazeides, and T. Juan, ”How to Compare the
Performance of Two SMT Microarchitectures”, In Proc. of
ISPASS 2001.

[19] Dean M. Tullsen, and Jeffery A. Brown, “Handling
long-latency loads in a simultaneous multithreading
processor”, In Proc. of the 34th Annual International
Symposium on Microarchitecture, Austin, Texas, USA,
December 1-5, 2001.

[20] A. El-Moursy, and D. H. Albonesi, “Front-End Policies
for Improved Issue Efficiency in SMT Processors”, In
Proceedings of the 9th International Conference on High
Performance Computer Architecture, February 2003.

[21] R. Balasubramonian, S. Dwarkadas, and D. Albonesi,
“Dynamically Managing the Communication-Parallelism

Trade-off in Future Clustered Processors”, In Proceedings of
the ISCA-30, June 2003.

[22] R. Bhargava, and L. John Friendly, “Improving dynamic
cluster assignment for clustered trace cache processors”, In
Proceedings of the ISCA-30, June 2003.

[23] P. Racunas, and Yale N. Patt, “Partitioned First-Level
Cache Design for Clustered Microarchitectures”, In
proceedings of ICS, 2003.

[24] S. E. Raasch, and S. K. Reinhardt, ”The impact of
resource partitioning on SMT processors”, In Proceedings of
the 12th International Conference on Parallel Architectures
and Compilation Techniques, Sept. 2003.

[25] F. Cazorla, E. Fernandez, A. Ramirez, and M. Valero,
“Improving Memory Latency Aware Fetch Policies for SMT
Processors”, Proc. Fifth Int'l Symp. High Performance
Computing (ISHPC), Oct. 2003.

[26] D. Koufati, and D.T. Marr, “Hyperthreading technology
in the netburst microarchitecture”, Appears in IEEE Micro,
Vol. 23 Issue 2 page(s) 56-65; March-April 2003.

[27] B. Sinharoy, “POWER5 Architecture and Systems”,
Keynote presentation, International Symposium on High
Performance Computer Architecture, Feb. 2004.

[28] F. Latorre, J. González, and A. González, “Back-end
Assignment Schemes for Clustered Multithreaded
Processors”, In Proceedings of ICS, 2004.

[29] J. D. Collins, and D. M. Tullsen, “Clustered
Multithreaded Architectures -- Pursuing Both IPC and Cycle
Time”, In proc. of 18th IPDPS, April, 2004.

[30] F. J. Cazorla, A. Ramirez, M. Valero, and E. Fernandez,
“Dynamically Controlled Resource Allocation in SMT
Processors”, In Proceedings of the 37th International
Symposium on Microarchitecture, pages 171–182. IEEE
Computer Society, December 2004.

[31] A. El-Moursy, R. Garg, D. H. Albonesi, and S.
Dwarkadas, “Partitioning Multi-Threaded Processors with a
Large Number of Threads”, In proc. of ISPASS 2005.

[32] S. Choi, and D. Yeung, “Learning-Based SMT Processor
Resource Distribution via Hill-Climbing”, In proc. of the
33rd. International Symposium on Computer Architecture,
June 2006.

[33] R. Gabor, S. Weiss, and A. Mendelson, “Fairness and
Throughput in Switch on Event Multithreading”, In proc. of
the 39th International Symposium on Micro-architecture.
Dec, 2006.

