2,059 research outputs found

    A 10-bit Charge-Redistribution ADC Consuming 1.9 μW at 1 MS/s

    Get PDF
    This paper presents a 10 bit successive approximation ADC in 65 nm CMOS that benefits from technology scaling. It meets extremely low power requirements by using a charge-redistribution DAC that uses step-wise charging, a dynamic two-stage comparator and a delay-line-based controller. The ADC requires no external reference current and uses only one external supply voltage of 1.0 V to 1.3 V. Its supply current is proportional to the sample rate (only dynamic power consumption). The ADC uses a chip area of approximately 115--225 μm2. At a sample rate of 1 MS/s and a supply voltage of 1.0 V, the 10 bit ADC consumes 1.9 μW and achieves an energy efficiency of 4.4 fJ/conversion-step

    Analogue and digital linear modulation techniques for mobile satellite

    Get PDF
    The choice of modulation format for a mobile satellite service is complex. The subjective performance is summarized of candidate schemes and voice coder technologies. It is shown that good performance can be achieved with both analogue and digital voice systems, although the analogue system gives superior performance in fading. The results highlight the need for flexibility in the choice of signaling format. Linear transceiver technology capable of using many forms of narrowband modulation is described

    A Low Power Current Sensing Scheme for CMOS SRAM

    Get PDF
    A low power current sensing scheme for CMOS SRAM is presented in this paper. The proposed scheme includes a modified current conveyor as the column selector, and a new designed low power current sense amplifier to sense the small differential current signals in data lines. The output of the sense amplifier is fed to a clock control RS latch both for power reduction and longer output valid time. This current sensing scheme is clocked asynchronously and the timing control circuits are also discussed. Simulation results show that a sensing speed with 3ns less is achieved by this scheme and the sensing speed is insensitive to both bit line and data line capacitances

    High Gain Amplifier with Enhanced Cascoded Compensation

    Get PDF
    A two-stage CMOS operational amplifier with both, gain-boosting and indirect current feedback frequency compensation performed by means of regulated cascode amplifiers, is presented. By using quasi-floating-gate transistors (QFGT) the supply requirements, the number of capacitors and the size of the compensation capacitors respect to other Miller schemes are reduced. A prototype was fabricated using a 0.5 μm technology, resulting, for a load of 45 pF and supply voltage of 1.65 V, in open-loop-gain of 129 dB, 23 MHz of gain-bandwidth product, 60o phase margin, 675 μW power consumption and 1% settling time of 28 ns

    A CMOS low pass filter for soc lock-in-based measurement devices

    Get PDF
    This paper presents a fully integrated Gm–C low pass ¿lter (LPF) based on a current ¿steering Gm reduction-tuning technique, specifically designed to operate as the output stage of a SoC lock-in amplifier. To validate this proposal, a first-order and a second-order single-ended topology were integrated into a 1.8 V to 0.18 µm CMOS (Complementary Metal-Oxide-Semiconductor) process, showing experimentally a tuneable cutoff frequency that spanned five orders of magnitude, from tens of mHz to kHz, with a constant current consumption (below 3 µA/pole), compact size (<0.0140 mm2 /pole), and a dynamic range better than 70 dB. Compared to state-of-the-art solutions, the proposed approach exhibited very competitive performances while simultaneously fully satisfying the demanding requirements of on-chip portable measurement systems in terms of highly efficient area and power. This is of special relevance, taking into account the current trend towards multichannel instruments to process sensor arrays, as the total area and power consumption will be proportional to the number of channels

    Reducing MOSFET 1/f Noise and Power Consumption by "Switched Biasing"

    Get PDF
    Switched biasing is proposed as a technique for reducing the 1/f noise in MOSFET's. Conventional techniques, such as chopping or correlated double sampling, reduce the effect of 1/f noise in electronic circuits, whereas the switched biasing technique reduces the 1/f noise itself. Whereas noise reduction techniques generally lead to more power consumption, switched biasing can reduce the power consumption. It exploits an intriguing physical effect: cycling a MOS transistor from strong inversion to accumulation reduces its intrinsic 1/f noise. As the 1/f noise is reduced at its physical roots, high frequency circuits, in which 1/f noise is being upconverted, can also benefit. This is demonstrated by applying switched biasing in a 0.8 ¿m CMOS sawtooth oscillator. By periodically switching off the bias currents, during time intervals that they are not contributing to the circuit operation, a reduction of the 1/f noise induced phase noise by more than 8 dB is achieved, while the power consumption is also reduced by 30

    High Performance Current Amplifier [TK7871.58.P4 G896 2006 f rb] [Microfiche 8561].

    Get PDF
    A high bandwidth class AB current amplifier by using few compensation resistor technique and current mirrors is presented and analyzed. The simulation results are obtained using TSpice tool using 0.35μm CMOS TSMC process, at 2.5V power supply. The amplifier utilizes Class AB amplifier topology to achieve high bandwidth. Sebuah penguat arus kelas AB berjalur lebar tinggi yang menggunakan teknik “compensation” resistor dibentang dan dianalisis dalam tesis ini. Keputusan penyelakuan ini didapati dengan mengunakan Teknology TSMC 0.35μm CMOS bekalan kuasa 2.5V melalui alat penyelakuan TSPice. Penguat Kelas AB diimplementasikan untuk mencapai jalur lebar yang tinggi
    corecore