852 research outputs found

    Algorithms and architectures for decimal transcendental function computation

    Get PDF
    Nowadays, there are many commercial demands for decimal floating-point (DFP) arithmetic operations such as financial analysis, tax calculation, currency conversion, Internet based applications, and e-commerce. This trend gives rise to further development on DFP arithmetic units which can perform accurate computations with exact decimal operands. Due to the significance of DFP arithmetic, the IEEE 754-2008 standard for floating-point arithmetic includes it in its specifications. The basic decimal arithmetic unit, such as decimal adder, subtracter, multiplier, divider or square-root unit, as a main part of a decimal microprocessor, is attracting more and more researchers' attentions. Recently, the decimal-encoded formats and DFP arithmetic units have been implemented in IBM's system z900, POWER6, and z10 microprocessors. Increasing chip densities and transistor count provide more room for designers to add more essential functions on application domains into upcoming microprocessors. Decimal transcendental functions, such as DFP logarithm, antilogarithm, exponential, reciprocal and trigonometric, etc, as useful arithmetic operations in many areas of science and engineering, has been specified as the recommended arithmetic in the IEEE 754-2008 standard. Thus, virtually all the computing systems that are compliant with the IEEE 754-2008 standard could include a DFP mathematical library providing transcendental function computation. Based on the development of basic decimal arithmetic units, more complex DFP transcendental arithmetic will be the next building blocks in microprocessors. In this dissertation, we researched and developed several new decimal algorithms and architectures for the DFP transcendental function computation. These designs are composed of several different methods: 1) the decimal transcendental function computation based on the table-based first-order polynomial approximation method; 2) DFP logarithmic and antilogarithmic converters based on the decimal digit-recurrence algorithm with selection by rounding; 3) a decimal reciprocal unit using the efficient table look-up based on Newton-Raphson iterations; and 4) a first radix-100 division unit based on the non-restoring algorithm with pre-scaling method. Most decimal algorithms and architectures for the DFP transcendental function computation developed in this dissertation have been the first attempt to analyze and implement the DFP transcendental arithmetic in order to achieve faithful results of DFP operands, specified in IEEE 754-2008. To help researchers evaluate the hardware performance of DFP transcendental arithmetic units, the proposed architectures based on the different methods are modeled, verified and synthesized using FPGAs or with CMOS standard cells libraries in ASIC. Some of implementation results are compared with those of the binary radix-16 logarithmic and exponential converters; recent developed high performance decimal CORDIC based architecture; and Intel's DFP transcendental function computation software library. The comparison results show that the proposed architectures have significant speed-up in contrast to the above designs in terms of the latency. The algorithms and architectures developed in this dissertation provide a useful starting point for future hardware-oriented DFP transcendental function computation researches

    ARITHMETIC LOGIC UNIT ARCHITECTURES WITH DYNAMICALLY DEFINED PRECISION

    Get PDF
    Modern central processing units (CPUs) employ arithmetic logic units (ALUs) that support statically defined precisions, often adhering to industry standards. Although CPU manufacturers highly optimize their ALUs, industry standard precisions embody accuracy and performance compromises for general purpose deployment. Hence, optimizing ALU precision holds great potential for improving speed and energy efficiency. Previous research on multiple precision ALUs focused on predefined, static precisions. Little previous work addressed ALU architectures with customized, dynamically defined precision. This dissertation presents approaches for developing dynamic precision ALU architectures for both fixed-point and floating-point to enable better performance, energy efficiency, and numeric accuracy. These new architectures enable dynamically defined precision, including support for vectorization. The new architectures also prevent performance and energy loss due to applying unnecessarily high precision on computations, which often happens with statically defined standard precisions. The new ALU architectures support different precisions through the use of configurable sub-blocks, with this dissertation including demonstration implementations for floating point adder, multiply, and fused multiply-add (FMA) circuits with 4-bit sub-blocks. For these circuits, the dynamic precision ALU speed is nearly the same as traditional ALU approaches, although the dynamic precision ALU is nearly twice as large

    Multiple-precision fixed-point vector multiply-accumulator using shared segmentation

    Get PDF
    Copyright © 2003 IEEEThis paper presents a 64-bit fixed-point vector multiply-accumulator (MAC) architecture capable of supporting multiple precisions. The vector MAC can perform one 64x64, two 32x32, four 16x16 or eight 8x8 bit signed/unsigned multiply-accumulates using essentially the same hardware as a scalar 64-bit MAC and with only a small increase in delay. The scalar MAC architecture is "vectorized" by inserting mode-dependent multiplexing into the partial product generation and by inserting mode-dependent kills in the carry chain of the reduction tree and the final carry-propagate adder. This is an example of "shared segmentation" in which the existing scalar structure is segmented and then shared between vector modes. The vector MAC is area efficient and can be fully pipelined which makes it suitable for high-performance processors and possibly dynamically reconfigurable processors.Dimitri Tan, Albert Danysh and Michael Liebel

    Domain-Specific Computing Architectures and Paradigms

    Full text link
    We live in an exciting era where artificial intelligence (AI) is fundamentally shifting the dynamics of industries and businesses around the world. AI algorithms such as deep learning (DL) have drastically advanced the state-of-the-art cognition and learning capabilities. However, the power of modern AI algorithms can only be enabled if the underlying domain-specific computing hardware can deliver orders of magnitude more performance and energy efficiency. This work focuses on this goal and explores three parts of the domain-specific computing acceleration problem; encapsulating specialized hardware and software architectures and paradigms that support the ever-growing processing demand of modern AI applications from the edge to the cloud. This first part of this work investigates the optimizations of a sparse spatio-temporal (ST) cognitive system-on-a-chip (SoC). This design extracts ST features from videos and leverages sparse inference and kernel compression to efficiently perform action classification and motion tracking. The second part of this work explores the significance of dataflows and reduction mechanisms for sparse deep neural network (DNN) acceleration. This design features a dynamic, look-ahead index matching unit in hardware to efficiently discover fine-grained parallelism, achieving high energy efficiency and low control complexity for a wide variety of DNN layers. Lastly, this work expands the scope to real-time machine learning (RTML) acceleration. A new high-level architecture modeling framework is proposed. Specifically, this framework consists of a set of high-performance RTML-specific architecture design templates, and a Python-based high-level modeling and compiler tool chain for efficient cross-stack architecture design and exploration.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162870/1/lchingen_1.pd

    Design for Implementation of Image Processing Algorithms

    Get PDF
    Color image processing algorithms are first developed using a high-level mathematical modeling language. Current integrated development environments offer libraries of intrinsic functions, which on one hand enable faster development, but on the other hand hide the use of fundamental operations. The latter have to be detailed for an efficient hardware and/or software physical implementation. Based on the experience accumulated in the process of implementing a segmentation algorithm, this thesis outlines a design for implementation methodology comprised of a development flow and associated guidelines. The methodology enables algorithm developers to iteratively optimize their algorithms while maintaining the level of image integrity required by their application. Furthermore, it does not require algorithm developers to change their current development process. Rather, the design for implementation methodology is best suited for optimizing a functionally correct algorithm, thus appending to an algorithm developer\u27s design process of choice. The application of this methodology to four segmentation algorithm steps produced measured results with 2-D correlation coefficients (CORR2) better than 0.99, peak-signal-to-noise-ratio (PSNR) better than 70 dB, and structural-similarity-index (SSIM) better than 0.98, for a majority of test cases

    Dynamically reconfigurable architecture for embedded computer vision systems

    Get PDF
    The objective of this research work is to design, develop and implement a new architecture which integrates on the same chip all the processing levels of a complete Computer Vision system, so that the execution is efficient without compromising the power consumption while keeping a reduced cost. For this purpose, an analysis and classification of different mathematical operations and algorithms commonly used in Computer Vision are carried out, as well as a in-depth review of the image processing capabilities of current-generation hardware devices. This permits to determine the requirements and the key aspects for an efficient architecture. A representative set of algorithms is employed as benchmark to evaluate the proposed architecture, which is implemented on an FPGA-based system-on-chip. Finally, the prototype is compared to other related approaches in order to determine its advantages and weaknesses
    corecore