

 Copyright © 2003 IEEE. Reprinted from
 IEEE Symposium on Computer Arithmetic (16th : 2003 : Santiago de

Compostela, Spain)

This material is posted here with permission of the IEEE. Such
permission of the IEEE does not in any way imply IEEE endorsement of

any of the University of Adelaide's products or services. Internal or
personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution must be
obtained from the IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the

copyright laws protecting it.

http://digital.library.adelaide.edu.au/dspace/items-by-author?author=IEEE+Symposium+on+Computer+Arithmetic.+%2816th%3A+2003%3A+Santiago+de+Compostela%2C+Spain%29
http://digital.library.adelaide.edu.au/dspace/items-by-author?author=IEEE+Symposium+on+Computer+Arithmetic.+%2816th%3A+2003%3A+Santiago+de+Compostela%2C+Spain%29
http://digital.library.adelaide.edu.au/dspace/items-by-author?author=IEEE+Symposium+on+Computer+Arithmetic.+%2816th%3A+2003%3A+Santiago+de+Compostela%2C+Spain%29
http://digital.library.adelaide.edu.au/dspace/items-by-author?author=IEEE+Symposium+on+Computer+Arithmetic.+%2816th%3A+2003%3A+Santiago+de+Compostela%2C+Spain%29

Multiple-Precision Fixed-Point Vector Multiply-Accumulator using
Shared Segmentation
Dimitri Tan1, Albert Danysh2, Michael Liebelt3
Motorola Inc.1,2, University of Adelaide, Australia1,3

Dimitri.Tan@motorola.com1, Albert.Danysh@motorola.com2, Michael.Liebelt@adelaide.edu.au3
Abstract
This paper presents a 64-bit fixed-point vector multiply-accu-

mulator (MAC) architecture capable of supporting multiple pre-
cisions. The vector MAC can perform one 64x64, two 32x32,
four 16x16 or eight 8x8 bit signed/unsigned multiply-accumu-
lates using essentially the same hardware as a scalar 64-bit
MAC and with only a small increase in delay. The scalar MAC
architecture is “vectorized” by inserting mode-dependent multi-
plexing into the partial product generation and by inserting
mode-dependent kills in the carry chain of the reduction tree
and the final carry-propagate adder. This is an example of
"shared segmentation" in which the existing scalar structure is
segmented and then shared between vector modes. The vector
MAC is area efficient and can be fully pipelined which makes it
suitable for high-performance processors and possibly dynami-
cally reconfigurable processors.

I. INTRODUCTION

The addition of vector capabilites to a processor archi-
tecture can provide a significant boost in performance for
multimedia type applications [1]. However, the addition of
vector capabilities is typically expensive in terms of area.
This paper presents a 64-bit fixed-point vector multiply-
accumulator (MAC) architecture capable of supporting
multiple precisions using essentially the same hardware as
a 64-bit scalar MAC with only a small increase in delay.
The vector MAC can perform one 64x64, two 32x32, four
16x16 or eight 8x8 signed/unsigned multiply-accumulates.
The multiplier is based on a radix-4 Booth encoder and a
Wallace carry-save adder (CSA) reduction tree. The final
128-bit carry propagate adder is a modified carry-looka-
head (CLA) adder. The scalar MAC architecture is “vec-
torized” by inserting mode-dependent multiplexing into the
partial product generation and by inserting mode-depen-
dent kills in the carry chain of the reduction tree and the
final carry-propagate adder. This is an example of "shared
segmentation" in which the existing scalar structure is seg-
mented and then shared between vector modes. This
method can also be applied to other arithmetic algorithms.

The remainder of this paper is organized as follows.
First the basic architecture of the 64-bit vector MAC is pre-
sented. Then the details of each part of the scalar 64-bit
MAC are presented along with the required modifications

necessary to support the vector functionality. Next some
existing alternative implementations are discussed for the
purposes of comparison. Following that, a VLSI imple-
mentation of the vector MAC is presented with a delay and
area comparison against the scalar version of the MAC.

II. MULTIPLY-ACCUMULATE (MAC) ARCHI-
TECTURE

II.I. Overview
The block diagram of the vector MAC unit is shown in

Fig. 1. The vector MAC unit consists of a modified Booth
[2] recoder partial product generator, a Wallace [4] carry-
save adder (CSA) reduction tree and a final carry-propagate
adder (CPA). The CPA is implemented using a carry-look-
head adder (CLA) consisting of 4-bit carry-lookahead
blocks. The accumulator is fed into the Wallace tree and
only adds one extra stage of CSA delay. This is a fairly typ-
ical MAC design. The mode[3:0] control signals determine
which of the vector modes the MAC is to operate in. The
unsigned control signal selects unsigned multiplication.
The details of the implementation which facilitate the vec-
tor functionality will be covered in the proceeding sections.

Fig. 1. Multiply-Accumulate (MAC) Architecture Block Diagram

II.II. Scalar Partial Product Generator (PPG)
The Scalar Partial Product Generator (PPG) uses radix-

4 Booth recoding which reduces the number of partial
products from n to (n/2+1) for an n x n bit multiplication.
The extra partial product is for handling signed/unsigned

Partial Product Generator (PPG)

Partial Product Reduction Tree
 (PPRT)

Final Carry-Propagate Adder (CPA)

un
si

gn
ed

m
od

e[
3:

0]

result (R)

multiplicand (A) multiplier (B)

accumulator (C)

multiplication and is generated when the multiplier is sign
extended. The partial products use sign encoding instead of
sign extension for handling the negatively weighted most
significant bit [3],[6]. This avoids having to sign extend the
partial products to the full width of the 128-bit result. The
radix-4 Booth algorithm encodes groups of three multiplier
bits overlapping by one bit into five possibilities - selze
(“zero”), selp1 (“+1”), selp2 (“+2)”, seln1 (“-1”) and seln2
(“-2).

As mentioned previously, the last partial product is used
to handle signed and unsigned numbers. Note that each
partial product is appended with two bits, one of which
may be a “1” if the previous partial product is being twos-
complemented. Hence these extra two bits are the seln2
and seln1 Booth selects from the previous partial product
and are known as “hot ones” [3].

II.III. Vector Partial Product Generator (VPPG)
The block diagram for the Vector PPG is shown in

Fig. 2 and is identical to a scalar PPG except for some
additional multiplexing of the multiplicand and some
masking applied to the multiplier.

Fig. 2. Vectorized Partial Product Generator Block Diagram

The Vector Partial Product Generator (VPPG) must be
able to generate the correct partial products for each of the
supported vector modes. Each of the vector modes has a
corresponding array of partial products. Each of these
arrays of partial products can be overlayed on top of the
array of partial products required for the 64-bit scalar mode
as shown in Fig. 3, Fig. 4 and Fig. 5. A more detailed
example of the partial product array for the 8x8 vector
mode is shown in Fig. 6. In this example, each subgroup of
partial products corresponds to an 8x8 bit vector element
multiplication. Note that the fourth partial product of each

subgroup has been truncated by one bit since it overlaps by
one bit with the first partial product of the next subgroup.
Furthermore, take special note of the last partial product
which is used to support unsigned mode for all vector ele-
ments instead of having an extra partial product for each
vector element.

Fig. 3. Simplified Vector Booth Partial Product Array for 64x64 bit
multiplication in 8 bit-mode

Fig. 4. Simplified Vector Booth Partial Product Array for 64x64 bit
multiplication in 16 bit-mode

Fig. 5. Simplified Vector Booth Partial Product Array for 64x64 bit
multiplication in 32 bit-mode

We will next examine what needs to be done to enable
these partial product arrays to be merged. First we will con-
sider changes to the multiplier (B) operand path through
the Booth recoder and then the multiplicand (A) operand
path through the Booth muxes.

Booth Mux Selects

Radix-4 Booth
Recoder

selze[32:0]
selp1[32:0]

selp2[32:0]
seln1[32:0]

seln2[32:0]

Booth Muxes

Partial Products

PP0[68:0]

PP32[68:0]

Multiplicand

A[63:0]

Multiplier

B[63:0]

* Vector Masking (zero insert)
* Vector Sign Extension

un
si

gn
ed

m
od

e[
3:

0]

* Vector Masking and Muxing
* Vector Sign Extension
* Vector Sign Encoding
* Vector Twos Complement
Increment

"vectorized" multiplier

"vectorized" multiplicand

Extra logic to
support
vector modes

seln1[32:0]

seln2[32:0]

(unbuffered)

(buffered)

("hot ones")

0's

0's

vector0
8 x 8

vector1
8 x 8

vector2
8 x 8

vector3
8 x 8

vector4
8 x 8

vector5
8 x 8

vector6
8 x 8

vector7
8 x 8

0's

0's

16 x 16
vector0

16 x 16
vector1

16 x 16
vector2

16 x 16
vector3

0's

0's

vector0
8 x 8

vector1
8 x 8

vector2
8 x 8

vector3
8 x 8

vector4
8 x 8

vector5
8 x 8

vector6
8 x 8

vector7
8 x 8

Fig. 6. Vector Booth Partial Product Array for 64x64-bit multiplica-
tion in 8-bit vector mode.

II.IV.I. Vector Booth Recoder

In the vector MAC, the Booth recoder is the same as
that used for the scalar MAC except that the multiplier
operand (B) input changes depending on the vector mode.
This is illustrated in Fig. 7 which shows the Booth recoder
multiplier input for each vector mode.

In the scalar PPG, the first partial product is generated
by assuming B[-1] = 0. In the vector Booth Recoder, this
“0” must be inserted at vector element boundaries for the
first partial product of each subgroup. These are the extra
“0” bits in Fig. 7. For example, in the 8-bit vector mode,
the fifth partial product uses bit triplet {B[9],B[8],”0”}
instead of {B[9],B[8],B[7]} as used in the scalar PPG. The

zero insertion is implemented by masking the multiplier
operand bits with a signal that is a function of the mode and
bit position. Hence an extra two-input nand gate is added to
the critical path.

Fig. 7. Vector Booth Recoder Inputs

To support unsigned numbers, the scalar PPG generates
an additional partial product since the multiplier operand is
extended by two bits to form the bit triplet. Similarly, each
vector element of the multiplier operand B must be
extended by two bits. This is indicated in Fig. 7 by the
additional “sign” bits that are denoted by si where i is the
vector element index.

Hence the vector Booth PPG must generate an addi-
tional partial product for every vector element. The sign
bits are different for each vector element and are formed
according to equation (1).

si = MSB . ~unsigned (1)

where MSB is the most significant bit of the vector element i.

The sign bits are used to generate the extra partial prod-
uct for each vector element which are then combined into a
single partial product that is twice the width of the oper-
ands i.e. 128-bits. This combination can be done because

pp
 0

pp
 1

pp
 2

pp
 3

pp
 4

pp
 5

pp
 6

pp
 7

pp
 8

pp
 9

pp
 1

0
pp

 1
1

pp
 1

2
pp

 1
3

pp
 1

4
pp

 1
5

pp
 1

6
pp

 1
7

pp
 1

8
pp

 1
9

pp
 2

0
pp

 2
1

pp
 2

2
pp

 2
3

pp
 2

4
pp

 2
5

pp
 2

6
pp

 2
7

pp
 2

8
pp

 2
9

pp
 3

0
pp

 3
1

pp
 3

2

p
1

p
1

p
1

p

p
n

n
p

1
p

1

p
n

n
p

1
p

1
p

ve
ct

or
 6

ve
ct

or
 6

ve
ct

or
 6

ve
ct

or
 6

ve
ct

or
 7

ve
ct

or
 7

ve
ct

or
 7

ve
ct

or
 7

ve
ct

or
 7

ve
ct

or
 6

h1
 =

 A
dd

iti
on

al
 +

1
fo

r
2'

s
co

m
pl

em
en

t i
f s

el
ec

tin
g

ne
ga

tiv
e2

 fo
r

pr
ev

io
us

 p
ar

tia
l p

ro
du

ct
 (

i.e
. "

ho
t o

ne
")

n
=

 V
al

ue
 o

f n
eg

at
iv

el
y

w
ei

gh
te

d
si

gn
 b

it
an

d
p

=
 ~

n

pp
 =

 P
ar

tia
l P

ro
du

ct
h2

 =
 A

dd
iti

on
al

 +
1

fo
r

2'
s

co
m

pl
em

en
t i

f s
el

ec
tin

g
ne

ga
tiv

e1
 fo

r
pr

ev
io

us
 p

ar
tia

l p
ro

du
ct

 (
i.e

. "
ho

t o
ne

")
N

ot
e

1:
 L

as
t P

P
 d

oe
s

no
t n

ee
d

ho
t o

ne
s

si
nc

e
it

is
 a

lw
ay

s
0,

 p
os

1
or

 p
os

2
si

nc
e

pr
ep

en
d

0
to

 fo
rm

 la
st

 P
P

 b
it

gr
ou

p

N
ot

e
2:

 p
nn

 a
nd

 1
p

pr
ep

en
ds

 a
re

 s
ig

n
ec

od
in

g
to

 a
vo

id
 s

ig
n

ex
te

ns
io

n

L
E

G
E

N
D

p p

p
n

n
p

1
p

1

p
n

n
p

1
p

1

ve
ct

or
 0

ve
ct

or
 0

ve
ct

or
 0

ve
ct

or
 0

ve
ct

or
 1

ve
ct

or
 1

ve
ct

or
 1

ve
ct

or
 1

pp
 0

pp
 1

pp
 2

pp
 3

pp
 4

pp
 5

pp
 6

pp
 7

pp
 8

pp
 9

pp
 1

0
pp

 1
1

pp
 1

2
pp

 1
3

pp
 1

4
pp

 1
5

pp
 1

6
pp

 1
7

pp
 1

8
pp

 1
9

pp
 2

0
pp

 2
1

pp
 2

2
pp

 2
3

pp
 2

4
pp

 2
5

pp
 2

6
pp

 2
7

pp
 2

8
pp

 2
9

pp
 3

0
pp

 3
1

pp
 3

2
ve

ct
or

 0
ve

ct
or

 1

p

p

95
10

3
11

1
11

9
12

7
0

7
15

23
31

h1
h2

h1
h2

h1
h2

h1
h2

h1
h2

h1
h2

h1
h2

h1
h2

h1
h2

h1
h2

h1
h2

h1
h2

h1
h2

h1
h2

h1
h2

h1
h2

64
-b

it
 m

o
d

e

B
[6

3:
0]

0

32
-b

it
 m

o
d

e

16
-b

it
 m

o
d

e

8-
b

it
 m

o
d

e

S
0

S
0

B
[6

3:
56

]
S

S
0

B
[5

5:
48

]
S

S
0

B
[4

7:
40

]
0

S
S

B
[3

9:
32

]
S

S
0

B
[3

1:
24

]
S

S
0

B
[2

3:
16

]
0

S
S

0
B

[1
5:

8]
S

S

B
[7

:0
]

0
S

S

ve
ct

o
r

1

ve
ct

o
r

0

ve
ct

o
r

3

ve
ct

o
r

2
ve

ct
o

r
4

ve
ct

o
r

5

ve
ct

o
r

6

ve
ct

o
r

7

B
[1

5:
0]

0
S

0
S

0
S

2
S

2
0

B
[4

7:
32

]

0
B

[3
1:

16
]

S
2

S
2

B
[6

3:
48

]
0

S
3

S
3

ve
ct

o
r

0

ve
ct

o
r

1

ve
ct

o
r

2

ve
ct

o
r

3

ve
ct

o
r

0

ve
ct

o
r

1

0
S

0
S

0
B

[3
1:

0]

B
[6

3:
32

]
S

1
S

1
0

the extra partial products for each vector element do not
overlap. They do however cross the vector element bound-
aries and need to be truncated by 3 bits i.e. the sign encod-
ing bits are truncated at the MSB end. Note that the Booth
select for the last partial product is either selze (“select
zero”) or selp1 (“select plus one”) and therefore does not
need the “hot ones” bits.

II.V.II. Vector Booth Muxes

The MSB of each partial product generated by the PPG
is negatively weighted. Consequently, the partial products
must be either sign extended out to the full width of the
result or sign encoded as mentioned earlier. In sign encod-
ing, the negatively weighted MSB is replaced by {p,n,n}
for the first partial product or {1,p} for the remaining par-
tial products where n is the MSB or sign-bit of the multipli-
cand operand and p=~n [6]. In the Vector PPG, the sign
encoding must be performed at each vector element bound-
ary using the appropriate sign-bit for that vector element.
The sign-bit is dependent on the vector mode, the vector
element in question and whether signed or unsigned mode
is selected.

The final complication in the Vector PPG involves han-
dling the two’s complement of the multiplicand when one
the Booth selects seln1 (“select -1”) or seln2 (“select -2”)
are asserted. The two’s complement requires inverting the
multiplicand and then adding one to the LSB. To avoid
adding extra partial products for the sole purpose of per-
forming the increment, the extra ones are simply appended
to the next partial product. Thus the extra bits appended are
{seln2,seln1} for the previous partial product. This is a
standard practice [3]. However, in the vector PPG, these
extra “hot one” bits must be inserted at vector element
boundaries which vary depending on the mode.

It appears that each vector mode has a unique set of par-
tial products. The naive or non-optimal approach to merg-
ing these partial products would be to form the partial
products for each mode and select the correct partial prod-
uct based on the vector mode as shown in Fig. 8. This
requires an additional five 64-bit 4:1 multiplexers for each
partial product. The Booth recoder is usually the critical
path so adding the extra 4:1 mux delay prior to the Booth
muxes does not add to the critical path except for the
appending of the “hot one” bits {seln2,seln1}. These bits
are the Booth selects for the previous partial product.

The naive approach can be improved by observing that
at most bit positions there are less than four unique data to
select from. Infact, at some bit positions there is no addi-
tional logic required at all compared to the scalar Booth
PPG. This is illustrated in Fig. 9 which shows a selection of
partial products and how they overlap for each mode. In the
worst case a 4-input mux is required, such as for the sign
encoding bits in partial product 30. The remaining bits

require either a 3-input mux, a 2-input mux, a 2-input
“and” gate or no extra logic at all depending on signifi-
cance. The mux selects are a function of the mode control
signals, significance and partial product number. Similarly,
one input to the “and” gate is a function of the mode con-
trol signals, significance and partial product number. This
“and” gate input simply masks the other input which is the
multiplicand. The 2-input and 3-input mux inputs are either
tied to ground, the multiplicand, the sign encoding bits, or
the seln1 and seln2 Booth selects for the previous partial
products. A more detailed example of the partial product
overlap is given in Fig. 10.

Fig. 8. Naive Vector Partial Product Generation

Note that the last partial product cannot be generated
this way and requires full multiplexing as in Fig. 8. This is
because the Booth selects for the last partial product are
different for each vector element and each mode. The last
partial product is also the full width of the result (128 bits)
and thus enters the Wallace tree in one of the last two
stages.

The theoretical critical path is from the multiplier B,
through the vector masking, the Booth Recoder, the vector-
mode muxes and finally the booth mux. The extra 2-input
“nand” gate used for the masking of the multiplier occurs
in parallel with part of the Booth recoder logic and there-
fore does not add delay to the critical path. It is assumed
the mask is precalculated to avoid adding to the critical
path. The vector mode muxing is designed to allow for the
late “seln1” or “seln2” Booth select and inserts the delay of
a 2-input mux. The delay of the 2-input mux will occur in
parallel to the significant buffering of the Booth selects

0's
0's
0's

mode[3:0]
0: 8-bit mode
1: 16-bit mode
2: 32-bit mode
3: 64-bit mode

0 1 2 3

0: selze i.e. "select 0"
1: selp1 i.e. "select +a"
2: selp2 i.e. "select +2a"
3: seln1 i.e. "select -a"
4: seln2 i.e. "select-2a"

Partial Product i

5:1

4:1

unsigned

Sign Extend

Multiplicand

0 1 2 3 4

Booth selects
{seln2,seln1} from
previous PP
("hot ones")

Booth Mux

Vector
Mode
Muxes

Intermediate
partial products

Invert, shift, zero

mode[3:0]

0's
0's
0's

Sign
Encoding

0 1 2 3
4:1

before
they

reach
the

B
ooth

m
uxes.A

ssum
ing

these
delays

are
about

equal
the

extra
logic

does
not

add
an

significant
delay

to
the

theoreticalcriticalpath.T
he

realcriticalpath
is

of
course

dependent
on

the
technology

and
the

im
plem

en-
tation details.

F

 11
 65 87 0

..........eeexxxxxxxxhh

..eeexxxxxxxxxxxxxxxxhh
xxxxxxxxxxxxxxxxxxxxxhh
xxxxxxxxxxxxxxxxxxxxxhh

.......................

.......................
xxxxxhh................
xxxxxhh................

.......................

.......................

.......................

.......................

.......................

.......................

.......................

.......................

0715

h2 h1

h2 h1

h2 h1

h2 h1

a2a3a4a5a6a7a8a9a10a11a12a13

a2a3a4a5a6 01 P

0

0

0

a1 a0

a0a11 P

a7

a14a15

a13a14a15

a13a14a15

a2a3a4a5a6a7a8a9a10a11a12 a0a1

a2a3a4a5a6a7a8a9a10a11a12 a0a1a16a17

a16a17

in different bit positions.

0a2a3a4a5a6a7 a0a1

mux2

a13a14a15 a10a12 a11

mux3
ig. 9.
E

xam
ple of partial product overlap betw

een vector m
odes

F
ig. 10.

E
xam

ple of P
artial P

roduct 1 assum
ing B

ooth select
“ selp2” (“select positive tw

o”) asserted

II.V
I. Scalar P

artial P
roduct R

eduction T
ree

(P
P

R
T

)
T

he
Scalar

Partial
Product

R
eduction

T
ree

(PPR
T

)
reduces

the
setof

partialproducts
dow

n
to

tw
o

for
the

final
carry-propagate

addition.
A

W
allace

C
SA

T
ree

consisting
of

3:2
com

pressors
or

full-adders
(FA

s)
is

used
to

im
ple-

m
ent

the
scalar

PPR
T

[4].
T

he
accum

ulator
is

also
added

 1 11 11 11
 2 21 11 00 99 88 87 77 66 55 44 43 33 22
 7 09 21 42 65 87 09 21 43 65 87 09 21 43
Partial Product 1
 8-bit mode ...
16-bit mode ...
32-bit mode ...eeexxxxxxxxxxx
64-bit mode ...eeexxx

Partial Product 9
 8-bit mode ...eeexxxxxxxxhh.........
16-bit mode ...eeexxxxxxxxxxxxxxxxhh.........
32-bit mode ...eeexxxxxxxxxxxxxxxxxxxxxxxxxxx
64-bit mode ...eeexxx

Partial Product 26
 8-bit modeeeexxxxxxxxhh...
16-bit modeeeexxxxxxxxxxxxxxxxhh...
32-bit modeeeexxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxhh...
64-bit modeeeexxhh...........................

Partial Product 30
 8-bit mode .eeexxxxxxxxhh...
16-bit mode .eeexxxxxxxxxxxxxxxxhh...
32-bit mode .eeexxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxhh...
64-bit mode .eeexxhh...................................

LEGEND
h = two's complement increment bits i.e. "hot ones" i.e. Booth selects {seln2,seln1} x = multiplicand bit

e = sign encoding - 3 bits since {1,p} and possibly shifted by 1 bit . = zero

PP1 in 8–bit mode

PP1

23315563 3947

PP1 in 16–bit mode

PP1 in 32–bit mode

PP1 in 64–bit mode

1 P

1 P a32a33a63a62a61

LEGEND

PP

= Sign encoding. This is different for every mode and may also be in different bit positions.
1 P

h2 h1
= Two's complement increment from previous partial product. ("hot ones"). This is the same for every mode but may be

ai = Multiplicand bit of significance "i" where i = 0 to 63

= Partial Product

and2mux3and2Logic required

into the Wallace tree to avoid an extra carry-propagate
addition. The number of 3:2 levels in the Wallace tree is
given by equation .

Levels = (2)

where N = total number of partial products
For the MAC the number of partial products is

. One of the two additional partial prod-
ucts is for supporting signed/unsigned numbers and the
other is the accumulator. Hence the Wallace tree has

. The total number
of full adders required is 3088.

II.VII. Vector Partial Product Reduction Tree
(PPRT)

There are two methods for vectorizing the scalar PPRT.
The first method observes that the 16-bit vector mode
reduction trees can be created from the 8-bit vector mode
reduction trees with the two’s complement partial product
and accumulator excluded. An additional 4:2 stage is used
to reduce these partial products and produce the result for
each of the 8-bit vector elements. The vector result for the
8-bit mode is formed by concatenating the vector element
results. This is then applied recursively until the reduction
tree for the 64-bit mode is created. The vector results for
each mode must then be multiplexed together to form the
final two partial products. The first method is illustrated in
Fig. 11. Note for each mode only one branch of the vector
reduction tree is shown fully.

Fig. 11. Vector Partial Product Reduction Tree - Method 1

The second method involves killing the carries which
cross the vector element boundaries at every level of the
CSA tree. The bit positions of the vector boundaries
depend on the vector mode. The second method could be
applied equally well to a Wallace tree or a Dadda [5] tree
and will be elaborated below. The killing of carries in the
second method can be achieved by inserting a 2-input
“and” gate at each vector element boundary to mask the
carry-in input of each corresponding full-adder. Since a
CSA does not have a carry-propagate path, the carry-kill
“and” gate can be incorporated into the full-adder design
such that it does not add any additional delay through the
CSA tree as shown in equation (3).

 (3)

A possible realization of the full-adder is illustrated in
equation Fig. 12. which clearly shows that the addition of
the kill signal will not significantly increase delay since the
extra gate is in parallel with other terms.

Fig. 12. Full-adder with carry-in kill for Vector PPRT - Method 2

The second method was chosen for the vector MAC
because it does not add delay to the critical path and does
not require much extra hardware. The first method adds a
4-input mux to the critical path and requires several extra
rows of CSAs.

II.VIII. Scalar Final Carry Propagate Adder
(CPA)

The final CPA sums the two remaining partial products
generated by the Wallace Tree. The scalar MAC uses a
standard 128-bit carry-lookahead (CLA) adder comprised
of 4-bit CLA blocks. This adder was chosen because it is a
fast adder and can easily be modified to create a vector
adder. It should be noted that CLA adders comprised of 4-
bit CLA blocks are most efficient for data widths that are
powers of 4. Thus there are probably better choices for a
fast 128-bit adder. For the purposes of this paper this can be
overlooked.

Nlog() 1.5log()⁄

64 2⁄ 1 1+ + 34=

34〈 〉 1.5()log⁄log 8.7 9= levels=

pp
0

pp
1

pp
2

pp
3

pp
4

pp
5

pp
6

pp
7

pp
8

pp
9

pp
10

pp
11

pp
12

4:2

4:2

4:24:2

pp
14

pp
15

pp
13

4:2

4:2

4:2

ac
c_

8_
0

pp
_8

_0

4:2

4:2

0123

4:1

0: 8-bit mode

1: 16-bit-mode

2: 32-bit mode

3: 64-bit mode

Final PPs

4:2 4:2

ac
c_

16
_0

pp
_1

6_
0

16-bit mode

Element 0

8-bit mode

Element 0
Final PP pair

4:2

ac
c_

32
_0

pp
_3

2_
0

From other half

of CSA tree

4:2

ac
c_

32
_0

pp
_3

2_
0

32-bit mode

Element 0

64-bit mode

LEGEND:

pp_i_j = Two's complement PP for mode i

 vector element j

4:2

acc_i_j = Acumulator for mode i

 vector element j

Final PP pair

Final PP pair

Final PP pair

sum a b⊕()= cin kill¬⋅()⊕
cout a b⋅()= a b+() cin kill¬⋅()⋅[]+

a

b

kill

sum

a

b

a

b

cin

kill

oai21

cin

cout

II.IX. Vector Final carry Propagate Adder (CPA)
There are essentially two methods for vectorizing the

final CPA. The first method involves extending the width of
the adder by one bit at every potential vector element
boundary and conditionally inserting zeros in order to kill
the carries. Hence this requires that the adder is extended
by the number of vector elements supported by the lowest
granularity vector mode. In the case of the 64-bit vector
MAC we require an extra 8 bits since for 8-bit mode there
are 8 vector elements. The total width of the adder would
thus be 136 bits. For each extra significance, there is a pair
of inputs. Both inputs are set to zero if a carry kill is
required. Alternatively, one of the inputs is set to a one and
the other to zero if a carry propagate (no carry kill) is
required. The extra bits are then dropped when forming the
final result.

The second method involves killing the carries which
cross the vector element boundaries that are determined by
the vector mode selected. This is the same method used in
the Vector Wallace tree. The extra 2-input “and” gate can
be combined into the 4-bit CLA blocks without adding
additional delay to the critical path. The 4-bit CLA equa-
tions with the carry-in kill term are given in equation (4).

 (4)

In the scalar 4-bit CLA block, the critical path is from
the carry-in cin and the group generate inputs since the
group propagates are available much earlier. Therefore the
cin and the group generate inputs are typically placed close
to the output in the circuit topology. This means that there
is less capacitance to discharge when the critical signals
finally change. In the vector CLA block the extra kill term
is also available early. Consequently, it does not add addi-
tional capacitance to discharge provided the critical inputs
remain closest to the output. The vector MAC was imple-
mented using the second method since it does not add extra
delay to the critical path.

III. EXISTING IMPLEMENTATION SCHEMES

There are essentially two existing schemes for imple-
menting a vector multiply-accumulator [6], [7], [8], [9],
[10], [11], [12], [13]. The first scheme involves having sep-
arate hardware for each vector element of each mode and

then muxing the result at the end. Hence to achieve the
equivalent of the MAC presented in this paper, the first
scheme requires one 64-bit MAC, two 32-bit MACs, four
16-bit MACs and eight 8-bit MACs. This is a brute force
scheme and wastes a great deal of area. In addition, the
delay of the final 4:1 result mux is inserted into the critical
path. Such a design can be fully-pipelined without causing
pipeline stalls.

The second scheme involves building wider vector ele-
ments out of several of the narrower vector elements and
then adding the multiple results together. This can be done
consecutively or by recirculating the data back through the
unit over more than one cycle. For instance, a 2Nx2N mul-
tiplier can be built out of four NxN multipliers by generat-
ing four 2N products which can then be added to form the
4N product. This scheme is not suited to supporting more
than two vector modes. Furthermore, if the data is recircu-
lated back through the MAC unit, then the pipeline feeding
the MAC must stall. This is unsuitable for high perfor-
mance processors since it complicates the instruction
scheduling. Typically a vector MAC will use a combination
of the above schemes.

IV. IMPLEMENTATION

The vector MAC presented in this paper was imple-
mented in Verilog HDL at a structural level and then syn-
thesized, placed and routed in a 0.13 um bulk-silicon
technology. Synopsys Physical Compiler was used for syn-
thesis and initial placement. Cadence QPlace/Warp was
used for final placement and routing. A “SPICE-accurate”
in-house static timing tool was used to determine propaga-
tion delays. In addition, the scalar MAC design was also
implemented for direct comparison. The results are shown
in Table 1 for both MAC designs with no pipeline registers.
There was a 8% increase in delay and a 2% increase in area
over the scalar 64-bit MAC.

TABLE 1. IMPLEMENTATION SUMMARY

The vector MAC was tested by cycling through all pos-
sible combinations of inputs in which the two most-signifi-
cant bits and two least significant-bits for each vector
element were varied while the intermediate bits were all
ones or all zeros. In addition, some random pattern genera-
tion was used.

cout0 g0 cin p0 kill¬()

cout1 g1 g0 p⋅
1

cin p0 p1 kill¬()⋅ ⋅ ⋅

cout2 g2 g1 p2 g0 p1 p2 cin p0 p1 p2 kill¬()

g3
0

g3 g2 p3 g1 p2 p3 g0 p1 p2 p3

p3
0

p0 p1 p2 p3

where g3
0

is the block generate from bit 0 to bit 3

and p3
0

is the block propagate from bit 0 to bit 3

⋅ ⋅ ⋅=

⋅ ⋅ ⋅+⋅ ⋅+⋅+=

⋅ ⋅ ⋅ ⋅+⋅ ⋅+⋅+=

++=

⋅ ⋅+=

Design Delay (ps) Area (µm2)

Scalar MAC 2282.45 187 553

Vector MAC 2470.44 191 301

V. CONCLUSIONS

In this paper, we presented the design and implementa-
tion of a vector multiplier-accumulate (MAC) unit that can
perform one 64x64, two 32x32 bit, four 16x16 or eight 8x8
signed/unsigned multiply-accumulates using essentially
the hardware as a 64-bit multiplier-accumulator and with-
out significantly more delay. The concept of "shared seg-
mentation" is introduced in which the existing scalar
hardware structure is segmented and then shared between
vector modes. In the case of the MAC, the scalar architec-
ture is “vectorized” by inserting mode-dependent masking
into the partial product generation and by inserting mode-
dependent kills in the carry chain of the reduction tree and
final carry-propagate adder. The "shared segmentation"
concept can be applied to other arithmetic units such as
floating-point addition or multiplication.

FUTURE WORK

We are in the process of designing and implementing
other vector arithmetic units by applying the "shared seg-
mentation" concept with particular focus on floating-point
addition and multiplication. We are also evaluating differ-
ent interconnection strategies in which an array of such
“vectorized” execution units are connected together to
form a powerful execution engine suitable for computa-
tionally intensive applications such as multimedia and digi-
tal signal processing.

REFERENCES

[1] Lee, C.G.; Stoodley, M.G. “Simple vector micropro-
cessors for multimedia applications” Microarch.,
1998. MICRO-31. Proc. 31st Annual ACM/IEEE Int.
Symp. on , pp. 25-36, 1998.

[2] Booth, “A Signed Binary Multiplication Algorithm”,
Qt. J. Mech. Appl. Math., vol. 4, pp. 236-240, 1951.

[3] S. Vassiliadis; E.M. Schwarz; B.M. Sung, “Hard-
wired multipliers with encoded partial prod-
ucts”, IEEE Trans. on Computers, Vol. 40,
Issue 11 , Nov 1991, pp. 1181 -1197.

[4] C.S.Wallace, “A suggestion for a fast multiplier”,
IEEE Trans. Electron. Comput., vol. EC-13, pp. 14-
17, 1964.

[5] L. Dadda, “Some Schemes For Parallel Multipliers”,
Alta Freq., 34, pp. 349-356, 1965.

[6] Behrooz Parhami, “Computer Arithmetic - Algo-
rithms and Hardware Designs”, pp. 178-180, 191-195,
ISBN 0-19-512583-5, 2000.

[7] M.S. Schmookler et al, “A Low-power, High-speed
Implementation of a PowerPC Microprocessor Vec-
tor Extension’, Comp. Arith., 1999. Proc. 14th IEEE
Symp., 1999.

[8] A.A. Farooqui; V.G. Oklobdzija, “General Data-Path
Organization of a MAC unit for VLSI Implementation
of DSP Processors”, Circ. & Sys., ISCAS ’98. Proc.
IEEE Int. Symp., Vol. 2, pp. 260 -263, 1998.

[9] W.F. Wong; E. Goto, “Division and Square-Rooting
using a split multiplier”, Electr. Letters, Vol. 28 No.
18, pp. 1758-1759, Aug 1992.

[10] Y. Liao; D.B. Roberts ,“A High-Performance and
Low-Power 32-bit Multiply-Accumulate Unit with
Single-Instruction-Multiple-Data (SIMD) Feature”,
IEEE J. of Solid-State Cir., Vol. 37, No. 7, July 2002.

[11] R.B. Lee, “Multimedia Extensions for General-Pur-
pose Processors”, Sig. Proc. Sys., SIPS 97, Nov 1997,
pp. 9 -23.

[12] Tang, K.C.; Wu, A.K.M.; Fong, A.S.; Pao, D.C.W.,
“Integrated partition integer execution unit for multi-
media and conventional applications“, IEEE Int. Conf.
on Electr., Circ. and Sys., 1998, Vol. 2, pp. 103 -107.

[13] Rong Lin, “Trading bitwidth for array size: a unified
reconfigurable arithmetic processor design”, Int.
Symp. on Qality Elec. Design, 2001, pp. 325-330.

	33679
	hdl_33679
	Multiple-Precision Fixed-Point Vector Multiply-Accumulator using Shared Segmentation
	Dimitri Tan1 , Albert Danysh2, Michael Liebelt3
	Motorola Inc.1,2, University of Adelaide, Australia1,3
	Dimitri.Tan@motorola.com1, Albert.Danysh@motorola.com2, Michael.Liebelt@adelaide.edu.au3

	Abstract
	I. Introduction
	II. Multiply-Accumulate (MAC) Architecture
	II.I. Overview
	Fig. 1. Multiply-Accumulate (MAC) Architecture Block Diagram

	II.II. Scalar Partial Product Generator (PPG)
	II.III. Vector Partial Product Generator (VPPG)
	Fig. 2. Vectorized Partial Product Generator Block Diagram
	Fig. 3. Simplified Vector Booth Partial Product Array for 64x64 bit multiplication in 8 bit-mode
	Fig. 4. Simplified Vector Booth Partial Product Array for 64x64 bit multiplication in 16 bit-mode
	Fig. 5. Simplified Vector Booth Partial Product Array for 64x64 bit multiplication in 32 bit-mode
	Fig. 6. Vector Booth Partial Product Array for 64x64-bit multiplication in 8-bit vector mode.
	II.IV.I. Vector Booth Recoder
	Fig. 7. Vector Booth Recoder Inputs
	si = MSB . ~unsigned (1)

	II.V.II. Vector Booth Muxes
	Fig. 8. Naive Vector Partial Product Generation
	Fig. 9. Example of partial product overlap between vector modes
	Fig. 10. Example of Partial Product 1 assuming Booth select “selp2” (“select positive two”) asserted

	II.VI. Scalar Partial Product Reduction Tree (PPRT)
	Levels = (2)

	II.VII. Vector Partial Product Reduction Tree (PPRT)
	Fig. 11. Vector Partial Product Reduction Tree - Method 1
	(3)
	Fig. 12. Full-adder with carry-in kill for Vector PPRT - Method 2

	II.VIII. Scalar Final Carry Propagate Adder (CPA)
	II.IX. Vector Final carry Propagate Adder (CPA)
	(4)

	III. Existing Implementation Schemes
	IV. Implementation
	Table 1. Implementation Summary

	V. Conclusions
	Future Work
	References
	[1] Lee, C.G.; Stoodley, M.G. “Simple vector microprocessors for multimedia applications” Microar...
	[2] Booth, “A Signed Binary Multiplication Algorithm”, Qt. J. Mech. Appl. Math., vol. 4, pp. 236-...
	[3] S. Vassiliadis; E.M. Schwarz; B.M. Sung, “Hard- wired multipliers with encoded partial produc...
	[4] C.S.Wallace, “A suggestion for a fast multiplier”, IEEE Trans. Electron. Comput., vol. EC-13,...
	[5] L. Dadda, “Some Schemes For Parallel Multipliers”, Alta Freq., 34, pp. 349-356, 1965.
	[6] Behrooz Parhami, “Computer Arithmetic - Algorithms and Hardware Designs”, pp. 178-180, 191-19...
	[7] M.S. Schmookler et al, “A Low-power, High-speed Implementation of a PowerPC‘ Microprocessor V...
	[8] A.A. Farooqui; V.G. Oklobdzija, “General Data-Path Organization of a MAC unit for VLSI Implem...
	[9] W.F. Wong; E. Goto, “Division and Square-Rooting using a split multiplier”, Electr. Letters, ...
	[10] Y. Liao; D.B. Roberts ,“A High-Performance and Low-Power 32-bit Multiply-Accumulate Unit wit...
	[11] R.B. Lee, “Multimedia Extensions for General-Purpose Processors”, Sig. Proc. Sys., SIPS 97, ...
	[12] Tang, K.C.; Wu, A.K.M.; Fong, A.S.; Pao, D.C.W., “Integrated partition integer execution uni...
	[13] Rong Lin, “Trading bitwidth for array size: a unified reconfigurable arithmetic processor de...

