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ABSTRACT 

Modern central processing units (CPUs) employ arithmetic logic units (ALUs) that 

support statically defined precisions, often adhering to industry standards. Although CPU 

manufacturers highly optimize their ALUs, industry standard precisions embody 

accuracy and performance compromises for general purpose deployment. Hence, 

optimizing ALU precision holds great potential for improving speed and energy 

efficiency. Previous research on multiple precision ALUs focused on predefined, static 

precisions. Little previous work addressed ALU architectures with customized, 

dynamically defined precision. This dissertation presents approaches for developing 

dynamic precision ALU architectures for both fixed-point and floating-point to enable 

better performance, energy efficiency, and numeric accuracy. These new architectures 

enable dynamically defined precision, including support for vectorization. The new 

architectures also prevent performance and energy loss due to applying unnecessarily 

high precision on computations, which often happens with statically defined standard 

precisions. The new ALU architectures support different precisions through the use of 

configurable sub-blocks, with this dissertation including demonstration implementations 

for floating point adder, multiply, and fused multiply-add (FMA) circuits with 4-bit sub-

blocks. For these circuits, the dynamic precision ALU speed is nearly the same as 

traditional ALU approaches, although the dynamic precision ALU is nearly twice as large. 
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CHAPTER I  

INTRODUCTION 

 

For the past decades, scientific computation has been a popular research tool among 

scientists and engineers from numerous areas, including climate modeling, computational 

chemistry, and bioinformatics [1 - 3]. With the maturing of application algorithms, 

developing high performance computing platforms that satisfy the increasing 

computational demands, search spaces, and data volume have become a huge challenge. 

As predicted by Moore’s law [4], faster and faster computers are built to provide more 

processing power every year. Apparently, speeding-up the computation serially alone is 

no longer enough. In 1967 Amdahl presented a model to estimate the theoretical 

maximum improvement when multiple processing units were available [5]. Inspired by it 

and Gustafson's law [6], engineers started to explore thread parallelism by porting 

applications to multiple homogeneous nodes or multiple cores with the help of parallel 

programing interfaces such as MPI and OpenMP [42, 43]. High performance hardware 

accelerators were also introduced, combining with traditional processors, to construct 

heterogeneous computing platforms, such as the SRC-6 [7] and the Cray XK7 [8]. The 

reconfigurable accelerator of field programmable gate arrays (FPGAs) has “the potential 

to exploit coarse-grained functional parallelism as well as fine-grained instruction-level 

parallelism through direct hardware execution” [10, 46, 56 - 58]. Benefiting from the 

tightly-packed streaming multiprocessors (SMs) and improved programmability, graphics 
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processing units (GPUs) as accelerators offer impressive data-level parallelism and 

computational horsepower [11].  

Increasing the processing speed and concurrency is not the only approach that is 

exploited to improve the performance of large scale scientific computations. Operational 

accuracy, or more precisely the hardware computational precision an arithmetic logic unit 

(ALU) can support, has also been continually improving with the development of 

computer architectures. Arithmetic logic units are the fundamental components within 

processors for performing operations. Ever since the binary system dominated the digital 

computer design, the operand bit-width of an ALU block was commonly used to 

represent its operational precision, for example 8-bit for the popular commercial Intel 

8008 in the 1970s [12] and 256-bit for Intel’s latest CPU Haswell microarchitecture [13]. 

The data format used to represent the numerical value of a particular bit stream has also 

been evolving. Various representation systems were introduced to represent signed 

integer numbers, including signed magnitude, biased, and complement systems [14]. 

Both the signed and unsigned integer representations can be extended to encode 

fractional data by employing an implicit or explicit radix point that denotes the scaling 

factor. These integer-based real number representations are generally called fixed-point 

systems, where the term “fixed-point” implies that the scaling factor is constant during 

the computation without externally reconfigured. As a result, the precision (least 

representable value of the unit in the last place, ulp) for a fixed-point number system 

cannot be improved without sacrificing its representable value range. Floating-point 

representation on the other hand provides not only the ability for wide dynamic range 
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support, but also high precision for small values. A typical floating-point number is 

represented in four components, and its value can be calculated with the equation 

e
x s b= ± × , where s is the significand and e is the biased exponent (with implicit bias). The 

standard precision of floating-point arithmetic units is also improving. In 2008, IEEE 

released a revision [15] for its popular IEEE 754-1985 standard for binary floating-point 

arithmetic, where the new quadruple precision format (binary128) was introduced to 

accommodate increasing precision requirements for high performance scientific 

computing. Recently, a new number format called unum, short for universal number, was 

introduced by Dr. Gustafson [48]. unums are described as a superset of all standard 

integer and floating-point formats, and it is aiming to provide solutions for some of the 

problems in current floating-point systems. By definition, “a unum is a bit string of 

variable length that has six sub-fields: Sign bit, exponent, fraction, uncertainty bit, 

exponent size, and fraction size [48].” Compared to standard floating-point formats, the 

variable size in a unum offers ability to change its representative range and precision, and 

the uncertainty bit (the ubit) indicates the exactness of the value represented. Thus, 

unums use fewer bits, obey algebraic laws, and do not require rounding, overflow, and 

underflow for proper operations. 

Despite the trend of faster processing speed and higher operating precision for the 

past decades, computer processors to continue face barriers due to physical constraints. 

Theoretically, the processor dynamic power consumption increases linearly with 

increasing clock frequency. However, the total power consumption, including dynamic 

and static power, becomes dramatically larger when the silicon density and thermal 
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effects are taken into account [16]. Most advanced processes enable the tighter packing of 

more smaller devices on the same die, which makes it extremely difficult to dissipate the 

enormous heat generated from the leakage current and the fast switching activities, and 

the heat in return will increase the current required for the operation, resulting in 

escalating power consumption. Also, one cannot simply implement more transistors into 

a single chip by shrinking the size of a transistor to the physical limits of atomic structure 

[16]. The trend of building higher precision ALUs demands more transistors, implying a 

more power consumption and a worse critical delay. For example, doubling the bit-width 

of a fixed-point tree multiplier would worsen the critical delay by at least a factor of 2, 

and more importantly quadruple the number of transistors, which results in a huge power 

increase. As power becomes a serious constraint, especially for supercomputers, 

increasing the clock rate of CPUs or the ALU precision becomes expensive and no longer 

practically feasible for both the silicon industry and computing communities. 

Therefore, exploiting parallelism and precision optimization becomes an alternative 

approach, which is independent of process technology, to improve the performance for 

computing architectures. Previous research results [17 - 20] have shown promising 

performance improvement by taking advantage of mixed precisions for iterative 

computing. Most current computing platforms employ general purpose processors that 

are powered by standard precision ALU hardware (e.g., IEEE single and double precision 

floating-point). While the standardization enables a more predictable numeric behavior 

and portability, it offers scientists with limited options when performing deep precision 

optimization for mixed precision algorithms. There are many software solutions that 
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provide arbitrary precision arithmetic support for different programming languages, such 

as GMP, ARPREC, MPFR, and MPACK [23 - 26]. The obvious limitation with software 

solutions is that their performance relies on the hardware ALUs to which their functions 

are mapped. Higher performance is achievable with non-standard custom precision ALUs, 

given that the prescribed solution accuracy is satisfied by manipulating the algorithm 

with least-sufficient-precision ALUs. Generally, a lower precision ALU requires fewer 

transistors to build, so multiple copies of smaller ALUs can be implemented in the same 

area as one higher precision ALU. With this scheme, not only the operational delay for 

each individual ALU is shortened, but also the number of operations per cycle is 

increased. Since power management and scheduling optimization can be applied to ALUs 

individually, energy efficiency can be also improved greatly. 

Reconfigurable computing platforms provide the flexibility in constructing statically 

defined arbitrary precision ALUs on FPGAs, whose performance impact has been shown 

in some applications [20 - 21]. The impact of utilizing arbitrary precision (limited by the 

hardware resources) with FPGAs can be further enhanced by allowing the configuration 

of ALUs with the desired precision dynamically during the computation. Changing the 

ALU precision usually requires the download of a new design file that reflects the new 

precision onto FPGAs, resulting in highly degraded performance due to configuration 

delays. Although the technique of partial reconfiguration (PR) can reduce the re-

programming time with smaller partial bit-streams [22], the performance improvement is 

still limited for designs with relatively small and frequently switching PR modules (ALU 

modules). The small PR modules make the cost of the PR control interface and 
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embedded/external processor even more expensive, frequent reconfiguration makes it 

harder to guarantee the solution accuracy, and the device-specific PR makes it difficult 

for porting the current design to other vendors, and impossible to other technologies.  

It is desired to eliminate the need for reconfiguration, but at the same time offer the 

capability to perform arbitrary precision arithmetic operations according to the user’s 

preference. Here, I propose to develop a dynamic precision ALU architecture to enable 

better computational performance, energy efficiency, and fault tolerance. The proposed 

new architectures do not only support dynamically defined precision with both fixed-

point and floating-point system to allow precision-optimized computations, but also 

support vectorized operations in a SIMD fashion to maximize the shared hardware 

utilization. This new ALU paradigm prevents unnecessary loss of performance and 

energy due to applying unnecessarily high precision on computations (e.g., double 

precision when only single is needed). As the number of SIMD data paths can be 

dynamically adjusted based on the precision requirements (e.g., more concurrent vector 

operations for lower precision operands), high performance for both computation and 

energy efficiency can be effectively achieved by taking advantage of shared hardware 

utilization, precision optimization, and parallelism. With the flexibility of precision 

defining and hardware sharing, a better fault tolerance scheme can be implemented. 

Chapter II discusses previous related work that addresses precision for ALUs. Both 

the software and hardware solutions are covered. The hardware designs are categorized 

as statically defined precision solutions, multiple precision fixed-point solutions, and 

multiple precision floating-point solutions. Chapter III provides a detail discussion on the 
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dynamic precision defining and the dynamic precision architecture for fixed-point ALUs, 

including different adders, multipliers and multiply-accumulators (MACs). Chapter IV is 

focused on the discussion of the dynamic precision floating-point ALU architectures, as 

well as the eight-mode scheme that is designed to better demonstrate how the 

architectures are implemented for floating-point adder, multiplier and fused-multiply-add 

(FMA) units. Chapter V describes the detail implementations of the proposed ALU 

architectures on FPGA and ASIC technologies. Performance analysis in terms of 

hardware and latency requirements is provided in this chapter with comparisons between 

the implementations. And finally, Chapter VI gives a conclusion on this dissertation and 

discusses potential future work. 
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CHAPTER II  

LITERATURE REVIEW 

 

In general, many efforts have been made to optimize arithmetic units for better 

performance from different perspectives. Being one of the most important aspects in 

computer arithmetic, several conventional and unconventional number representation 

systems were implemented serving different purposes [14]. For example, the decimal 

system is understandable for humans, while the binary system and its family (radix-2� 

systems) are favorable for their simple implementation in digital computers; complement 

representations simplify the arithmetic for signed numbers; a redundant system is 

valuable as an intermediate format to eliminate carry propagation [47]. In this research, 

we will be focusing on approaches that employ the commonly used 2’s complement 

system.  

When an implementation platform is considered, solutions can be categorized as 

software and hardware solutions. For both platforms, ALUs can be divided into fixed-

point and floating-point units based on the data format supported. From the functional 

point of view, there are adders/subtractors, multipliers, dividers, and others. From the 

perspective of precision support, implementations can be seen as statically defined 

precision, multi-mode precision, and arbitrary precision. Some designs vectorize a high 

precision processing core to provide simultaneous operations on lower precision sub-

words, while others use multiple instances of lower precision units, or reuse the same unit 
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through a recursive iteration algorithm. In the rest of this section, related work will be 

reviewed and analyzed using these categories.  

A. Software Solutions for Arbitrary Precision 

Many software libraries were developed to facilitate arbitrary precision arithmetic for 

scientific computing. With the flexibility of software, it is possible for the libraries to 

implement a rich set of arithmetic logic functions using the provided hardware. The GNU 

Multiple Precision Arithmetic Library (GMP), a popular library for signed integers, 

rational numbers, and floating-point numbers, supports precision that is only limited by 

the host’s available memory. GMP provides both C interface and C++ class based 

interface to all functions. Its main target is to speedup applications that require higher 

precision than basic C types by using sophisticated algorithms and optimized assembly 

code [23]. The MPFR library, as a supplement to the GMP, offers an efficient and well-

defined semantics for floating-point computations with a rounding and exception scheme 

similar to IEEE 754 [24]. The MPACK library is specialized in providing high accuracy 

for arbitrary precision linear algebra with the help of multiple libraries, such as BLAS, 

LAPACK, and GMP [25]. The ARPREC package is another C++/Fortran-90 library that 

supports flexible computation of arbitrary precision [26]. Given that a higher precision 

operation is performed by these libraries with multiple routines running on the fixed 

hardware ALUs, extra instructions are required for coordination and control. On the other 

hand, since lower precision operations have to be mapped to a higher precision hardware 

unit, their performance is bounded (e.g., half being mapped to single). All the limitations 

suggest that a better hardware solution is the foundation for a better software solution. 
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B. Statically Defined Multiple Precision Solutions 

With the flexibility of reconfigurable computing platforms, performance 

improvement can be achieved directly by implementing ALUs with the exact required 

precision. Wang and Leeser spent years to develop and refine a static variable-precision 

synthesizable library (VFloat), written in parameterized VHDL, which supports floating-

point arithmetic units with standard or non-standard user-defined precision [27]. Besides 

most common arithmetic operators, such as adder, multiplier, and divider, this library 

also includes the format conversion between fixed-point and floating-point numbers, 

allowing a broader design space for precision optimization. As with all the other statically 

defined ALUs, once the units are implemented, any change of the precision requires a full 

time-consuming programming process.  

In [28], authors introduced architectures for adders and multipliers which take 

advantage of the dynamic dual fixed-point format (DDFX) and runtime partial 

reconfiguration. The DDFX number system is just a simplified floating-point with a 1-bit 

exponent, where the binary point position (p0 and p1) is determined by its MSB. The 

dual binary point configurations of a DDFX ALU can be changed with a smaller partial 

reconfiguration bit-stream, thus changing the dynamic range and precision but not the 

total bit-width. In spite of the reduced reconfiguration time, the partial reconfiguration 

cost is still high and impractical for rapidly changing precision requirements, along with 

other problems from partial reconfiguration.  



11 

 

Statically defined solutions allow arbitrary configuration (limited by hardware 

resources) of ALU precision before the hardware realization, but stay unchangeable 

afterwards until another time consuming full/partial reconfiguration.  

C. Multiple Precision Solutions for Fixed-point ALUs 

In order to eliminate the requirement of reconfiguration, it is much better to 

implement multiple precision ALUs with internal precision control mechanisms, which 

can adapt the precision dynamically. In 2004, Perri et al. proposed a FPGA-based 

variable precision fixed-point multiplier that performs one high precision multiplication 

(32x32), one mixed-precision multiplication (32x16), and two SIMD-like parallel 

multiplications on lower precision numbers (two 16x16, or four 8x8) [29]. This 

architecture employs the divide-and-conquer technique described in Eq. (2.1), where a 

high precision operation is done by organizing and processing the results from multiple 

copies of a lower precision unit. An optimized 32x9 multiplier is implemented for this 

purpose. Along with a control unit, adders, and shifters, this multiplier allows operations 

on signed, unsigned, and signed-unsigned operands. One disadvantage of using the 

� × � multiplier, instead of an � × � one, is the underutilization of HW resources for 

certain precision modes.  

 24 16 8

[31:0] [31:0] [31:0] [31:24] [31:0] [23:16] [31:0] [15:8] [31:0] [7:0]
2 [ ] 2 [ ] 2 [ ] [ ]a x a x a x a x a x× = × + × + × + ×   (2.1) 

A twin precision technique for integer tree multiplication is presented in [30], where 

this technique allows the operations of one  � × � or two parallel 
�

�
×

�

�
 to share the same 

HW resources. A simplified shared tree multiplier is illustrated in Fig. 2.1. In order to 
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support two modes of operations, the partial product arrays need to be manipulated 

according to the operational mode. When 
�

�
×

�

�
 multiplications are required, part of the 

partial product array has to be discarded to generate the correct products. 

 

 

Figure 2.1. Shared resource tree multiplication between 8-bit and 4-bit operands. 

 

In 2010, Kuang proposed a power-efficient 16x16 multiple precision multiplier [31]. 

Using the slightly different divide-and-conquer technique similar to [29], four small 8x8 

modified Booth multipliers are employed for the generation of partial products for the 

higher and lower portions of the computation. The resulting partial products are re-

organized and fed to a large reduction tree followed by a fast adder for the generation of 

the final results. The basic idea is illustrated in Eq. (2.2), where CV is the correction 

vector required for Booth multiplication. They also investigated the potential of saving 

power when single lower precision operation or operations with truncation were required. 

A dynamic range detector with supplement shutdown circuit was presented to handle 

such power-saving scenarios. 
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/2 /2

/2

(2 ) (2 )

2 2 [ ]

n n

H L H L

n n

H H H L L H L L

a x a a x x

a x a x a x a x CV

× = + × +

= + + + +
  (2.2) 

Danysh and Tan presented a 64-bit multiply-accumulator (MAC) architecture in [32], 

which performs vectorized operations on one 64-bit, two 32-bit, four 16-bit, or eight 8-bit 

unsigned/signed operands using shared segmentation. The underlying technique is similar 

to that in [30], but with more precision modes support and with the advantage of the 

modified booth multiplication to reduce total partial products generated, thus reducing the 

size of the reduction tree approximately in half. However, this comes with the cost of 

multiplexing in the partial product generator and carry handling in the following 

reduction tree and final adder.  

The fixed-point multiple precision designs discussed above employ either divide-and-

conquer or resource sharing techniques to support limited and uniform pre-defined 

options for fixed-point operations. 

D. Multiple Precision Solutions for Floating-point ALUs 

Floating-point representation provides better dynamic range support, thus is more 

useful for scientific computations. In 2008, Akkas presented a technique capable of 

modifying an IEEE adder architecture to a new dual-mode one that allows one operation 

of native precision or two parallel additions on half of the native precision (e.g., one 

double or two single) [33]. The author showed the detail designs for a 5-stage pipelined 

dual-mode double precision adder with improved single-path algorithm, and a 3-stage 

dual-mode quadruple precision adder with the two-path algorithm. Both designs support 
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only normalized numbers. The implementation (0.11 um CMOS) area and latency 

overhead of the dual-mode double precision adder is around 26% and 10%, while those 

for the dual-mode quadruple adder is 13% and 18%.  

Even et al. proposed a dual precision IEEE floating-point multiplier that can compute 

one single-precision result in 2 clock cycles or one double-precision product in 3 cycles, 

supporting all IEEE-compliant rounding modes [34]. The half-size multiplication array 

(e.g., 27×53) is used in the first clock cycle for single precision, or the first two cycles for 

double precision, with the following cycle allocated for the final addition and 

rounding/normalization. Therefore, there will be one stall cycle after a double precision 

operation.  

In [35], the authors presented two architectures, a dual-mode quadruple and a dual-

mode double multiplier, for enabling dual-mode floating-point multiplications with the 

divide-and-conquer technique commonly used in many recursive architectures, as in [29], 

[31], and [34]. As illustrated in Fig. 2.2, by reusing the two low precision multiplier cores 

(57×57 for quadruple and 27×27 for double) in two consequent clock cycles, a high 

precision operation can be performed using only roughly half size of a fully parallel high 

precision multiplier. One of the cores has two more rows in its reduction tree for 

accommodating the partial products in carry-save format from the first cycle if high 

precision operation is required. One extra cycle is required to perform the final addition 

and rounding process, resulting in a two-cycle latency for low precision operations, or a 

three-cycle latency for high precision ones. This multi-cycle design helps saving 

expensive hardware resources and power consumption.  
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Figure 2.2. Simplified block diagram for dual-mode quadruple multiplier in [35]. 

 

Tan et al. also proposed their iterative floating-point multiplier that allows operation 

on three different precisions with a different number of stall cycles and latency [36]. 

There is a 2-cycle latency and 0 stall cycle before subsequent operations for one/two 

(packed) parallel single precision operations, a 4-cycle latency and 1 stall cycle for 

double, or a 5-cycle latency and 2 stall cycles. The architecture is similar to that in [35], 

but with a rectangular multiplier (m×n) as the processing core instead of two half ones 

(
�

�
×
�

�
). Single precision multiplications can be compute directly, while the other two 

require iterations of recursive multiplications. 

Huang et al. presented a 128-bit floating-point fused multiply-add (FMA) unit that 

supports one 128-bit (quadruple) operation, or SIMD operation on two 64-bit (double) 

operands or four 32-bit (single) ones [37]. The core processing units is two special 

designed 57×57 multipliers, which can be used for 64-bit operations directly. On the 



16 

 

other hand, in this design, an iterative recursive algorithm is employed for performing 

128-bit operations similar to that in [35], while vectorization based on shared hardware is 

used for 32-bit operations as in [30].  

Isseven and Akkas presented a design for a dual-mode precision floating-point 

divider that based on radix-4 SRT algorithm, supporting one quadruple or two parallel 

double precision operations [38]. 

E. Literature Overview 

For a clear overview and better understanding, Fig. 2.3 shows all the literature 

reviewed in this chapter as a summary, organized by their corresponding solution 

platforms, functionality, targeted technology, and other properties. 

It is obvious that the fixed-point multiple precision solutions suffer from the same 

limitation: they only support a small set of pre-defined modes, all of whose operand’s bit-

width are of power of two (e.g., 8-, 16-, or 32-bit), not to mention supporting variant 

precisions in one single mode to fully utilize hardware resources. On the other hand, the 

reviewed floating-point architectures were only focused on the IEEE standard precisions, 

such as single and double precision. Although these architectures with regular precision 

configurations make the transition from traditional ALUs easier for users, they miss the 

opportunity to exploit the potential performance improvement with deeper precision 

optimizations: fully custom precisions. 

The potential improvement with highly custom precision is one of the reasons that 

motivate our research on ALU architectures that provide the possibility for dynamic 
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arbitrary precision high performance computing. Since true arbitrariness is not currently 

practical, especially for floating-point ALUs, we are pushing our way towards semi-

arbitrary precision, where both performance and practical implementation constraints can 

be satisfied.  

 

 

Figure 2.3. Previous work addressing precision for ALUs. 

 

In the following two chapters, the detail on the dynamic precision defining, 

vectorized operation, and the general dynamic precision architectures is discussed for 

both fixed-point and floating-point systems, as well as the their corresponding hardware 

implementations. 
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CHAPTER III  

FIXED-POINT ALU ARCHITECTURES 

 

Arithmetic logic units are the fundamental components within a processor to perform 

arithmetic and logical operations on operands. Aside from the computation, ALUs must 

also be able to detect exceptions and generate status flags correspondingly. To simplify 

the design process, we will be choosing the most commonly used binary system as the 

basic number system for our architectures, and using two’s complement representation 

whenever signed values must be represented. 

A. Dynamically Defined Precision 

In contrast to traditional statically defined precision, where once the ALU is 

implemented the operational precision is fixed, ALUs with dynamically defined precision 

allow changing the operational precision according to runtime accuracy requirements. Fig. 

3.1 illustrates the block diagrams of a traditional two-input adder and an adder 

architecture that supports more than one precision. The difference between the two can be 

observed: the bit-width for the control (ctrl) and carry-out (carry) signals has increased 

from 1-bit to multiple bits to support multiple precision. Multiple precision designs 

usually support only certain pre-defined precision modes. For example, the design 

described in [32] can only operate on four different precision modes controlled by a 4-bit 

mode signal, namely 64-, 32-, 16-, and 8-bit modes.    
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Figure 3.1. Adder units. (a) Traditional unit. (b) Multiple precision unit. 

 

An ALU with true arbitrary precision support allows operations with any combination 

of different precisions simultaneously, as long as the total bit-width for the operands is 

not exceeded. To achieve such flexibility, an n-bit operand is partitioned into k sub-

blocks with block size of n/k-bits. Depending on the design requirement on precision 

granularity, the number of blocks, k, can be any value between 1 and n. This bit size 

arrangement can be more aggressive, allowing an optimized non-uniform, asymmetric 

distribution among different blocks. Adjacent sub-blocks can be combined together 

dynamically to form a super-block, allowing independent operations to be performed on 

each super-block pair (one for each operand) without affecting others. This dynamic 

grouping process is controlled by a (k-1)-bit control signal (ctrl). The concept of operand 

segmentation and dynamically defined mechanism is illustrated in Fig. 3.2, where an n-

bit operand is divided into two (n/4)-bit numbers and one (n/2)-bit number. More 

precision modes can be obtained by changing the control signal. It is obvious that the 

proposed mechanism guarantees that the support for arbitrary precision-combinations is 

only limited by the sub-block segmentation.  
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Figure 3.2. Dynamic precision defining mechanism. 

 

Any ALU architecture that is capable of performing operations on these dynamically 

re-grouped super-blocks independently becomes a dynamic precision ALU. In the rest of 

this chapter, we will first discuss the detailed architecture for fixed-point adder and 

multiplier datapaths, as fixed-point arithmetic is the fundamental for fixed-point ALUs, 

as well as the core datapath for handling the actual computation on the significand and 

exponent of a floating-point operation. Then, we will expend the discussion to 

supplement sub-modules for floating-point arithmetic units.  

B. Dynamically Defined Precision Adder Architectures 

The critical path within an adder design is the carry chain that connects separated full-

adders and produces the carries from the lowest position to the output, which makes it the 

key factor for modifying a traditional adder to support dynamically defined operands. 

Though implementation varies, the generation process of carry signals can be classified 

into two categories: (1) carry propagated from previous bits and (2) carry generated using 

operands [14]. 
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1) Carry Extraction and Insertion 

Pure carry propagation is mainly used for slow adder realizations that require less 

area. In such adders, the carry-out for the current bit position cannot be evaluated until 

the carry from the previous position is available. Thus, in order to perform independent 

calculations on the re-grouped super-blocks, the carry propagation between two super-

block neighbors needs to be specially handled. 

First, it is necessary to terminate the carry propagation, so that the computation of one 

super-block will not be affected by the result from the previous one. Then, carry 

extraction and insertion, as described in Eq. (2.3), can be performed to compute the carry-

out (or overflow) and carry-in values for the i-th and (i-1)-th sub-blocks. Given the nature 

of SIMD operations, an identical carry-in, denoted as ��, is shared by all the super-blocks 

as the initial carry-in to identify ADD or SUB operation. But different carry-ins for sub-

blocks can be supported for specific applications. 

 
1 1 1

1 0 1 1

_

_

i i i

i i i i

carry out ctrl c

carry in ctrl c ctrl c

− − −

− − −

= ⋅

= ⋅ + ⋅
  (2.3) 

The hardware implementation is shown in Fig. 3.3. One can see that from both Eq. 

(2.3) and Fig. 3.3 the corresponding ctrl signal bit is used to generate the correct carry-in 

and carry-out signal for that respective sub-block. In fact, this circuit also suggests the 

dynamic construction of super-blocks implicitly, as described in the precious section. 

Thus no extra hardware resources have to be allocated for a dedicated segmentation 

circuit. Note also that for every sub-block, there are 4 extra gates, resulting in two extra 
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gate-levels delay. The latency from every extra block accumulates due to the fact that 

these circuits are cascaded on the critical path. Therefore, the total area and delay 

overhead introduced to a traditional ripple-carry adder can be calculated with Eq. (2.4).  

 
4

2

overhead

overhead

area k

delay k

=

=
  (2.4) 

 

 

Figure 3.3. Carry extraction and insertion circuit. 

 

2) Carry Manipulation 

In contrast to the ripple adders whose worst-case delays increase linearly with the bit-

width, most modern processors employ carry-lookahead adders, where the carries are 

generated from the operands directly or indirectly [14]. This scheme can achieve 

logarithmic time delay at the cost of extra hardware area. Instead of working on the carry 

signals directly as in ripple-carry adders, carry manipulation implements the carry 

processing at the edge between two continuous super-blocks by engineering the MSB’s 
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generate (gi) and propagate (pi) signals from every sub-block. The logic of this process is 

shown in Eq. (2.5). 

 

'

'

0

i i i

i i i i

p ctrl p

g ctrl c ctrl g

= ⋅

= ⋅ + ⋅
  (2.5) 

By comparing Eq. (2.5) with Eq. (2.3), one can see that they are arithmetically similar 

to each other. Thus, the hardware logic for carry manipulation can also be implemented 

with one two-input MUX and one AND gate. However, with this method, the calculation 

of all generate and propagate signals are performed in parallel without having to wait for 

the completion of carry propagation from previous positions. Since the carry generation 

process is modified, the calculation of the final carry-out (overflow) for each super-block 

requires one extra gate-level delay. Therefore, the total latency overhead for adding 

dynamic precision support is only (2+1) gate-levels. For better comparison with the 

ripple-carry adder, the absolute total area and delay overhead introduced is listed in Eq. 

(2.6).  

 
4

3

overhead

overhead

area k

delay

=

=
  (2.6) 

C. Dynamically Defined Precision Multiplier Architectures 

A generic tree multiplier architecture that supports dynamically defined operations is 

illustrated in Fig. 3.4. It consists of three major modules: a partial product generator, a 

partial product reduction tree, and a final fast carry propagate adder. Based on the 
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generation of the partial products, there are two types of multiplier. One is bit-wise 

multipliers and the other is high radix multipliers. 

 

 

Figure 3.4. Dynamic precision multiplier architecture. 

 

1) Dynamic Precision Partial Product Generator 

For a dynamic precision bit-wise multiplier, instead of copying the whole 

multiplicand as the partial product for every ‘1’ in a multiplier bit during the generation 

of partial products, the generator selectively masks the corresponding multiplicand super-

block bits according to the position of multiplier bit, and discards all the others. Fig. 3.5 

shows the hardware for the masking process of super-blocks and the generation of an un-

shifted partial product. The additional area and delay introduced is listed in Eq. (2.7). 
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Figure 3.5. Dynamic precision bit-wise partial product generation. 

 

In a high-radix multiplier, one partial product is generated for every two or more 

multiplier bits, depending on the actual radix. Booth recoding is one of the most popular 

high-radix partial product generator. When Booth recoding is used, additional modules 

are required to generate the proper partial products, responsible for the generation of sign 

extension and hot blocks, as well as their respective placement within the partial product. 

The detailed discussion on a modified Booth-4 partial product generator is covered in 

Chapter IV when presenting the dynamic precision floating-point multiplier architecture. 

2) Reduction Tree and Final Faster Adder 

If a bit-wise partial product generator is employed, the carry will never be generated 

or propagated outside of the super-block (2x the size of the operands) due to the nature of 

unsigned multiplication. Therefore, no additional circuit is required in the reduction tree.  

However, when Booth recoding is used, some of the partial products might become 

negative numbers represented in two’s complement. Summation of two’s complement 

numbers can cause overflow, resulting in unwanted carries propagating through super-
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block boundaries. The ctrl signal is used to filter any unwanted carries at the sub-block 

boundaries. At the sub-block boundaries, one extra AND gate is added to the critical path 

for every level of the reduction tree. In fact, this can be further optimized by reducing the 

number of level that might cause unwanted carries, or integrating the termination circuit 

with the reduction elements. Accordingly, depending on the actual implementation on the 

reduction tree, the final carry propagate adder might be required to support dynamically 

defined super-blocks. A detailed explanation on the dynamic precision reduction tree is 

presented in Chapter IV when discussing the significand multiplier for a floating-point 

multiplier.   

D. Dynamically Defined Precision Multiply-Accumulator Architectures 

It is quite common for a multiplication of two numbers to be immediately followed 

by an addition with another number or an accumulation for some applications, such as 

polynomial evaluation and vector dot product. This essential operation is often referred to 

as a multiply-accumulate operation, and the arithmetic logic unit that performs this 

operation is called a multiply-accumulator or a MAC. A MAC computes p a x b= ⋅ +  , 

where a and x are n-bit operands and b is a 2n-bit number. The additive operand b can be 

from either the product of another multiplier or the output from the MAC itself. 

A MAC can improve the total operation latency and reduce the hardware requirement 

when compared to the two individual ALUs (a multiplier and an adder) required for the 

same operation. In a multiplier implementation, a carry propagate adder is employed to 

generate a final product by adding the reduced partial product in carry-safe format. When 
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combining the two operations, this final adder can be replaced by one extra row in the 

reduction tree, resulting in a smaller and faster MAC. Fig. 3.6 depicts the implementation 

of a MAC that supports dynamically defined precision, which is basically a dynamic 

precision multiplier with one extra 3-to-2 row added to the reduction tree to 

accommodate the additive operand. Thus, the overhead analysis for the dynamic 

precision support discussed for the multiplier and adder also applies to the MAC. Unlike 

the multiplier, the extra row of 3-to-2s must be able to terminate any unwarranted carries 

that are propagated through super-block boundaries with the help of the ctrl signal, no 

matter which of the two discussed partial product generators is employed. This is due to 

the fact that the addition of the product and the additive operand no longer guarantees 

generated carries being valid. In fact, this extra row of reduction tree can be further 

integrated with the original tree rather than an extra physical 3-to-2s row for a faster 

implementation.   

 

 

Figure 3.6. Dynamic precision multiply-accumulator architecture. 
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In this chapter, two different schemes for handling carry chain for adders of different 

architectures are presented in detail with their theoretical overheads in area and latency. 

Each of the schemes has its unique characteristics and is effective for certain type of 

adder architectures. The approaches for designing key components for both bit-wise and 

modified Booth-4 multipliers with dynamic precision support are also introduced in 

general. And a brief discussion is given on how a dynamic precision multiply-

accumulator can be constructed using the techniques presented for the adder and 

multiplier architectures. All the fundamental designs can be extended and incorporated 

into the designs of floating-point ALUs, which is discussed in detail in the next chapter.  
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CHAPTER IV  

FLOATING-POINT ALU ARCHITECTURES 

 

A typical floating-point representation usually consists of four parts (the sign, the 

exponent, the implicit exponent base, and the significand), making the dynamic precision 

defining process more complicated than that of a fixed-point system due to the increasing 

design space. Changing the accuracy in the floating-point system can be achieved by 

changing the size of the significand (i.e., mantissa), the size of the exponent, the exponent 

base, or any combination of the above. It is true that we have more potential flexibility 

with floating-point systems in terms of re-defining precision. However, the more 

flexibility we exploit, the more complicated the architecture is, implying a larger and 

slower implementation. Besides, we also need to address programmability concerns for 

the end users. Thus, we make a few assumptions when designing floating-point 

architectures. First, uniform sizes for both exponent and significand will be used, 

meaning that all re-defined sub-operands (similar to super-blocks in the fixed-point 

system described in Chapter III) are of the same size. The floating-point ALU can be 

treated as a vectorized processing unit performing operations in a SIMD fashion. Second, 

the exponent bias should always follow Eq. (4.1).   

 12 1e
bias

−
= −   where e is the exponent bit-with (4.1) 

To better demonstrate the proposed arithmetic logic unit architectures supporting 

dynamically defined multiple precision operations, an eight-mode scheme is employed 
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throughout the dissertation to help visualize the general multiple precision architectures 

with a more specific and practical scenario. In this scheme, an ALU allows operations in 

eight different preset precision modes. According to a 3-bit select signal, mode, the ALU 

design can perform one or multiple parallel operation(s) on operands with a selectable 

precision configuration. Table 4.1 shows the vector and precision configurations for each 

mode, in which k is the number of concurrent operations supported, e is the size of the 

exponent for each operand, and s is the size of the significand for each operand. These 

configurations for the specific eight mode scheme are decided after a considerable 

tradeoff between maximizing utilizing/sharing of fixed hardware resources, simplifying 

architectures, and providing approximate support for IEEE standard precisions. For 

instance, an ALU operating in mode ‘000’ can perform 5 concurrent corresponding 

computations on IEEE single-precision numbers.  

 

Table 4.1. Configurations of the eight-mode scheme. 

Mode 
Number of Element Precision Configurations 

k e s 

000 10 8 11 

001 8 8 15 

010 6 8 19 

011 5 8 23 

100 4 11 31 

101 3 11 39 

110 2 15 63 

111 1 15 127 

 

 



31 

 

A. Data Organization 

An arithmetic logic unit is required to exchange data with the external registers/bus 

before and after computations, so the external interface vector format for data exchange is 

crucial in terms of programmability and efficiency for multiple precision ALUs. For 

example, the performance of the computation will definitely suffer from resource 

overhead when the return data from an ALU requests complicated post-processing by 

either hardware or software before use by another part of the computation.  

First of all, let’s look at the bit-width boundary for an operand vector in a multiple 

precision ALU. Suppose an arithmetic logic unit supports m different floating-point 

precision modes, and the bit arrangement for the vector element for mode i is 1 bit for the 

sign, 
i

e  bits for the exponent, and 
i

s  bits for the significand. Then the total bit-width n for 

the input port for one operand vector is constrained by Eq. (4.2), where 
i

k  represents the 

number of vector elements (i.e., sub-words).  

 ( )max (1 )
i i i

n k e s≥ ⋅ + +  where i m∈   (4.2) 

Unlike fixed-point numbers, floating-point numbers consists of three explicit distinct 

parts (except the implicit exponent base), providing more options when defining the 

exchange format. However, in order to minimize the complexity for applications to adopt 

our ALU architecture, the external interfacing data format is simply designed as 

concatenating multiple sub-operands into one long vector and padding with zeros if the 

total bit-width is less than n, as shown in Fig. 4.1. Doing this helps to minimize the extra 
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burden on the external hardware or software responsible for the construction of operand 

vectors, but relies on the ALU itself to interpret the information during data exchange.  

 

  

Figure 4.1. Examples of external data arrangement. 

 

Before being further process by the ALU, the data in external format must be 

converted to internal format. This conversion involves extracting the three floating-point 

components for each vector element from the input, and reorganizing them into three 

smaller sub-vectors accordingly, namely a sign vector, an exponent vector, and a 

significand vector. The detailed element arrangements of the three sub-vectors for the 

eight modes are illustrated in Fig. 4.2. It is straightforward for the 10-bit sign vector, 

where all the signs are concatenated together. However, instead of simply combining all 

exponent elements together as with the sign vector, the 80-bit exponent vector is 

organized in a way that all the elements are aligned to 8-bit sub-blocks by padding with 

zeros as necessary. In this way, we can take advantage of the dynamically defining 

process described above when processing exponent addition and increment. For example,  
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Figure 4.2. Internal data arrangement for the eight-mode scheme.  

(a) Sign vector; (b) Exponent vector; (c) Significand vector. 
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for mode ‘101’, 5 zeros are inserted before the 11-bit exponent making it so each element 

occupies two 8-bit sub-blocks. The same strategy is also applied to the 128-bit 

significand vector.  The precision configuration for significand elements is designed such 

that, after adding the hidden ‘1’ for normalized numbers, those elements are already 

aligned to 4-bit sub-blocks, thus simplifying the exception detector and the significand 

datapath design, and at the same time maximize hardware utilization to certain degree. 

B. Floating-point Multiplier Architectures 

The block diagram of the proposed multiple precision multiplier is illustrated in Fig. 

4.3. It does not look too much different from that of a traditional floating-point multiplier 

other than the highlighted mode signal, where the operating precision requirement is 

encoded as described in Table 4.1. This mode signal is the key for enabling multiple 

precision support. The diagram also shows three datapaths responsible for the vectorized 

processing on the three internal operand sub-vector pairs, as well as a dedicated exception 

detecting and handling module. 

Note that the sign logic module represents the only exception that the mode signal is 

not required for its operations. Given the fact that this module is only one level of relative 

small XOR gates in order to generate the final signs, and the fact that it is not on the 

critical path, it would be wise to fully implement the logic on the sign vector rather than 

designing a complicated mode-dependent mechanism. This means the XOR operation is 

performed on all the vector elements regardless of current operational mode, as described 

in Eq. (4.3).  
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− − −

= ⊗ ⊗ ⊗  (4.3)  

In fact, the correctness of the sign generation is guaranteed by zero-padding the sign 

vector during the unpacking process, which will be discussed later. To simplify the 

design and avoid unnecessary delay overheads, this strategy is applied to logic 

throughout the whole design, whenever the resulting extra hardware cost is considered 

negligible when compared to the gain in speed.  

The rest of the discussion in this section will be focused on the indispensable data 

format conversions, exception handling, and how the vectorized processing is realized for 

the two major operation datapaths, especially the exponent and significand, making it 

possible for multiple precision support. 

 

 

Figure 4.3. Block diagram for a dynamic precision floating-point multiplier. 
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1) Vectorized Unpacking and Packing 

The unpacking and packing modules are the interfaces between the multiplier and the 

outside circuit responsible for the internal/external data format conversions. Once the 

mode and precision configurations are determined, the vectorized operand unpacker is 

just a set of hardwired multiple-input multiplexers (one for each bit in the resulting 

vector), the size of whose inputs is decided by the number of modes supported. The 

unpack module for our eight-mode multiplier is shown in Fig. 4.4, where only the 

connections for the exponent vector are listed. Vectorized significand unpacking shares 

the same idea. The hidden ‘1’ for the significand segment is inserted accordingly during 

the unpacking process to generate the internal significand vector. On the other hand, the 

functionality for the final product packer is just a reverse of the unpacking process with 

exception-controlled zeros/ones injections to handle the IEEE standard defined special 

cases (e.g., ±0 and INF) [39]. Therefore, the structure is similar to that of the unpacker 

with one extra gate delay for the injections. 

 

 

Figure 4.4. Vectorized unpacker. 
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2) Vectorized Exception Handling 

In order to support exceptions and special values defined by the IEEE 754 standard, 

the vectorized exception detector must be able to distinguish the all-zeros or all-ones 

scenarios in all exponent and significand elements. For example, if both the exponent and 

significand of one of the operands are all zeros, then the numerical value of this operand 

is 0, suggesting no further operation is necessary since the final product is 0. A halt signal 

is generated accordingly to stop the significand and exponent processing circuit 

responsible for that particular sub-word(s) from unnecessary switching, resulting in 

dynamic power reduction. The final product for that multiplication should be set to 0. 

However, if the other operand sub-word is determined to be INF (all-ones for the 

exponent and all-zeros for the significand), the result should be set as NaN, and the 

INVALID register should be flagged [39]. 

From the data arrangement for the exponent vector shown in Fig. 4.2(b), it is obvious 

that each element consists of one or two sub-blocks, and their structure is relatively 

regular. The detection of all-zeros/ones for the exponent vector is straightforward. A 

three-level OR/AND binary tree is designed for the all-zeros/ones detection for each sub-

block, and one extra OR/AND gate is used to combine the tree outputs from two adjacent 

sub-blocks if required. Note that the padded zeros for the exponent element should be 

handled (e.g., inverted) when detecting all-ones exponents. 

However, due to the relatively irregular arrangement of the significand vector, its 

detector circuit is slightly more complicated than that of the exponent vector. Fig. 4.5 

describes a five-level OR tree that is used to generate the intermediate or final 
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block_allzeros signals for any sub-word structure. Those numbered blocks represent the 

components (4-input OR gates) for generating allzeros signals for the basic 4-bit sub-

blocks. Two examples are highlighted to explain in detail how the sub-word detectors are 

constructed. The significand’s allzeros detection can be directly extracted from the OR 

tree, when the number of sub-blocks used to construct a significand is a power of two, 

and their locations are aligned to those used to generate one of the OR tree nodes. 

Example 1 highlighted in black shows the output of the allzeros detector for significand 

element 6 in mode ‘001’ is the output of the 7th node of the 2nd level OR tree. On the 

other hand, when the sub-blocks are not aligned, the detection can be realized by 

combining outputs of multiple OR tree nodes from the same or different levels. As 

illustrated in example 2 highlighted in grey, the outputs of two 2nd level nodes and one 

1st level node are combined with two extra OR gates to generate the final allzeros signal 

for element 1 in mode ‘101’.  It can also be seen from Fig. 4.5 that the extra gates only 

increase the area but not the total latency (2+2 levels). In fact, for our eight-mode 

multiplier, the latency for generating allzeros for all significand elements is equal to or 

less than that for a 128-bit significand (5 levels). This mechanism is also applied to the 

vectorized sticky logic in the rounding module. 

3) Vectorized Exponent Processing 

The exponent of a floating-point number is represented in a biased format, as in 

exp exponent bias= + . Therefore the biased exponent output must be calculated by adding 

two exponents and then subtracting the bias as described in Eq. (4.4).  
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 exp exp1 exp 2
out

bias= + −   (4.4) 

However, subtracting bias, represented in (e-1)-bit ones, requires the borrow to be 

propagated through the whole carry chain, resulting in a longer calculation time. By re-

arranging Eq. (4.4) into Eq. (4.5), the slow subtraction can be transformed into a simple 

act of flipping one single bit [14]. 

 exp (exp1 exp 2 1) ( 1)
out

bias= + + − +   (4.5) 

To compensate for the extra ‘1’ required for the flipping, an adder with a fixed ‘1’ as 

carry-in is employed to implement the first part of Eq. (4.5).  

 

 

Figure 4.5. Two examples of 5-level OR tree sharing for a 128-bit significand vector. 

 

A special dual mode 16-bit exponent adder, illustrated in Fig. 4.6, is designed to 

perform addition on two adjacent 8-bit sub-blocks in the exponent vector. A total of five 
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copies of this special adder are required to cover the 80-bit exponent vector for the eight-

mode multiplier. According to the description in Fig. 4.2(b), an adder should perform two 

individual 8-bit additions in mode ‘000’, ‘001’, or ‘010’, or one 16-bit addition in all the 

other modes. The same dual mode structure is used for the exponent increment used for 

vectorized normalizations. In order not to aggravate latency for the critical path, the 

vectorized exponent increments are performed in advance, and then final exponent 

outputs are selected by the inc signals from the normalizers. Combined with the flipped 

bit and increment requirement from the significand normalizers, the carry-out bits from 

the special adders are used to determine exceptions of overflow and underflow. 

 

 

Figure 4.6. Dual mode 16-bit adder with a fixed carry-in of ‘1’. 

 

4) Vectorized Significand Multiplication 

As shown in Fig. 4.3, significand processing circuitry, being the most important part 

within the critical path, majorly determines the latency and size of the design. The 

significand processing modules include a full significand multiplier and post-processing 

for the generated intermediate product vector, such as normalization and rounding.  
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Fig. 4.7(a) depicts the operation of a generic bit-wise significand multiplier, where at 

first a partial product is generated for each of the multiplier bits. These partial products 

are then shifted to the left respectively based on the position of the multiplier bit, and 

finally are added together to form the final product. However, for vectorized 

multiplication, operations on one of the vector elements must be separable from the 

others. The separation can be handled by performing special operand eliminations during 

the addition stage, or it can be achieved earlier during the generation of partial products, 

where each generated partial product contains only its effective multiplicand element. 

Obviously, the latter approach is a better choice in terms of circuit complexity and 

dynamic power consumption, by preventing irrelevant partial product bits from being 

generated and traveling through the following addition stage. A vectorized significand 

multiplier using this approach is illustrated in Fig. 4.7(b), and the mechanism of 

multiplicand selection is explained in Eq. (4.6), where sel equals ‘1’ when the 

multiplicand part and the multiplier bit are from the same vector element, otherwise sel 

equals ‘0’. 
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  (4.6) 

The block diagram of a vectorized partial product generator responsible for the 

selection of the corresponding element is presented in Fig. 4.8. Each of the sub-blocks in 

a partial product is determined by the multiplier bit and the corresponding bit of a block 

select signal, called block_sel, which rules whether the current sub-block index belongs 

to the same vector element as the multiplier bit or not.  The  block_sel  signal is generated  
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Figure 4.7. Bit-wise significand multipliers. (a) Generic; (b) Vectorized. 

 

 

 

Figure 4.8. Bit-wise vectorized partial product generator. 
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by a series of OR trees from another set of control signals, ctrl, which is used to identify 

the boundaries between vector elements. 

Specific to the eight-mode multiplier design, the deterministic nature of the mode 

configurations allows the generation of the block select signal for each modes to be 

directly hardwired, resulting in a much faster and simplified block_sel generating block 

consisting of only multiple parallel copies of 8-to-1 multiplexors selected by the mode 

signal. 

The fact that the significand elements are represented in binary format and are always 

non-negative guarantees the multiplication between two n-bit operands will never 

generate or propagate a carry outside of the 2n-bit product element boundary as shown in 

Eq. (4.7).  

 2 1

max max max
(2 1) (2 1) 2 2 1n n n nproduct a x +

= × = − × − = − +   (4.7) 

Thus, a traditional reduction tree is sufficient to generate the vectorized intermediate 

product in carry-save format without worrying about carries between element boundaries. 

Each slice of the reduction tree, which is either a half adder, a full adder, or a 4-to-2 tree 

[40] depending on the slice position, is responsible for adding all the partial product bits 

within the same column. An example of an 8-bit reducer slice constructed with 4-to-2 

blocks is illustrated in Fig. 4.9(a), with the implementation detail of a regular 4-to-2 

block shown in Fig. 4.9(b). Similarly, it is not necessary to specially design the final 

adder for vectorized significand multiplication, avoiding extra latency and area costs over 

a traditional single-precision multiplier. Hence, a total of 256 slices of a 4-to-2 tree of up 
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to log2(128) levels is required in order to reduce the 128 partial products generated by the 

eight-mode multiplier into 256-bit vectorized s and c components to be added by a 256-

bit fast adder to form the final product.  

 

 

 

Figure 4.9. (a) 8-to-2 reduction tree; (b) Regular 4-to-2 implementation. 

 

Compared to the bit-wise partial product generator, a high-radix generator, as shown 

in Fig, 4.10(a) could reduce the number of partial products by half by generating one 

partial product for every two multiplier bits, resulting in the un-shifted partial product 

being 0X, 1X, 2X, or 3X of the multiplicand. With modified Booth-4 recoding [44], the 

generator avoids the time-consuming 3X multiplication with the cost of possible negative 

partial products represented as 2’s complement number. Fig. 4.10(b) illustrated a 

modified Booth-4 multiplier with simplified sign extension scheme. Note that an extra 
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partial product is required due to the fact that the MSB of a normalized significand in a 

floating-point number is always one (the hidden one), making the number of partial 

product being n/2+1.  

 

 

Figure 4.10. (a) Radix-4 multiplication; (b) Modified Booth-4 multiplication. 

 

An example of a vectorized 16-bit significand multiplier operating on multiple 

precision mode, depicted in Fig. 4.11, shows the details on how this recoding and sign 

extension scheme is adapted in the proposed architecture. First of all, for this multiplier 

the possible selections for a partial product sub-block increase from two to seven. A bit-

wise generated partial product sub-block could be either zeros or a copy of its 

corresponding multiplicand sub-block. When the modified Booth-4 recording is applied, 

the content of a partial product sub-block is determined by Eq. (4.8), where 
4Booth

x   

represents the effective multiplier for current generation. Note that two new selections, 

EXT and HOT, are introduced to handle the negative partial product generated from a 

negative effective multiplier.  
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  (4.8) 

Secondly, the fact that none of the partial products for any significand element ever 

reaches beyond the product element boundary, making it possible to use a similar 

reduction structure as the one for the bit-wise multiplier described above. And lastly, the 

extra partial product for each element can be packed into one single row for all the 

possible precision combinations, without affecting the computation. This leads to a 

constant one extra row in the reduction module regardless of the number of elements, 

which offers a huge flexibility during implementation.  

 

 

Figure 4.11. Significand multiplier with modified Booth-4 recoding. 
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The architecture of a vectorized partial product generator empowered with modified 

Booth-4 recoding and simplified sign extension is illustrated in Fig. 4.12. The ctrl signal 

is used to generate the block_sel signal, and two edge flags to indicate the most and least 

significant sub-blocks for an element, named block_left, and block_right respectively. 

The block_sel signal not only serves as the selection signal for the final multiplexor to 

generate the partial product block as in its bit-wise counterpart, but also helps to identify 

the locations of special extra blocks for the 4-bit EXT and 2-bit HOT. Based on the 3-bit 

multiplier input, a specially designed Booth-4 encoder produces three indicators, namely 

x2, non0 and neg, to facilitate the generation of intermediate sub-block contents. The 

block_right flag is used by the encoder to prevent the MSB from previous one being 

grouped and processed for the current element. Depending on the relative sub-block 

location to the product element, the two edge flags and three Booth-4 indicators are then 

used to generate either the EXT or HOT block to be connected to the final multiplexor as 

one of selections.  

 

 

Figure 4.12. Modified Booth-4 vectorized partial product generator. 
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On the other hand, each multiplicand sub-block goes through the vectorized shifter 

and inverter controlled by the x2 and neg indicator respectively, and is then connected to 

the final multiplexor as the other selection (number blocks as opposed to extra blocks like 

EXT or HOT). These multiplexors are selected by the block_sel signal, and only enabled 

when their corresponding block_sel, block_ext, and non0 signals are all high. Otherwise, 

the outputs are all zeros. With the similar techniques, one extra partial product is 

generated for every operand pair, but consists only the number block and HOT. Then the 

extra partial products from all the elements are grouped as one single partial product row 

to be reduced by the reduction tree. 

Unlike those created by the bit-wise generator, the partial products generated with 

Booth-4 recoding can be either positive or negative numbers. Therefore, there will be 

invalid carries generated or propagated beyond the product element boundaries when 

performing reduction with 4-to-2 trees and the final addition. These unwarranted carries 

must be eliminated in order to ensure the correctness of the vectorized significand 

multiplication. Fig. 4.13 depicts a specially designed 4-to-2e reducer that performs 

controllable carry elimination. The output of the two carries generated within the 4-to-2e 

block is controlled by the ctrl signal using two extra AND gates. In a reduction tree 

designed for Booth-4 multiplier, the slice of 4-to-2 tree is replaced with 4-to-2e tree at all 

possible element boundaries. Other than this, there is no difference between the two 

reduction trees. A multiple precision adder discussed in the previous section is required to 

calculate the final significand product. 
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Figure 4.13. Special 4-to-2e block with carry elimination. 

 

5) Vectorized Significand Normalization and Rounding 

Post-processing of normalization and rounding are required to generate the final 

significand product that complies with the floating-point representation standard and 

operation rules.  

For multiplication of normalized significands, each of the product elements needs to 

be shifted one bit to the right at most. The hardware for both the first and second 

normalizer is similar, except for the size definition of sub-block. In order to support 

vectorized normalization on the intermediate product vector, two challenges must be 

addressed. One is to ensure the shift does not happen between different sub-words, and 

this is achieved with the help of the ctrl signal generated from the mode signal to identify 

the sub-word boundaries. As illustrated in Fig. 4.14, bits of the ctrl signal are connected 

to the sel ports of a series of multiplexors at the edge of each sub-block to prevent the 

shifts between sub-words. The product sub-block size is increased to 8-bits for the first 
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normalizer to preserve the relative position among sub-blocks with the intension of 

sharing the same ctrl signal and applying a unified sub-block management. 

 

 

Figure 4.14. Shift between sub-blocks for the first vectorized normalizer. 

 

Another challenge for the vectorized normalizer is to shift only the sub-words that are 

required. Due to the relative irregularity of the significand vector arrangement, it is 

difficult to perform such operations directly on the product vector. We use a shift-first-

select-later strategy to perform shifting on all the sub-words, and then select the 

corresponding output (shifted/unshifted) for each sub-word according to the shift_sel 

signal generated from the mode signal and the MSB of the corresponding sub-word. An 

example for our eight-mode multiplier is shown in Fig. 4.15 to illustrate the idea of a 

vectorized normalizer. 

 

 

Figure 4.15. Vectorized normalizer for multipliers. 
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A block diagram of the vectorized rounding module is illustrated in Fig. 4.16. The 

shifted intermediate vector is partitioned into two vectors, high_vector and low_vector. 

During the partitioning, block_ulp and block_r, which represent the unit in the last place 

(ulp) and the rounding bit for sub-blocks respectively, are also extracted with the help of 

the ctrl signals. The low_vector is used to generate the sub-block sticky bits block_s 

using a vectorized sticky logic, which applies the same shared OR tree method as 

discussed before. Based on the block_ulp, block_r, and block_s signals, IEEE rounding 

modes (e.g., round to nearest even) can be performed in the rounding decision module 

controlled by the round_mode requirement. A dynamic precision INC/ADD, which is 

similar to the dual mode adder in the exponent processing datapath, but with a better 

flexibility, is used to compute the rounded product vector.  

 

 

Figure 4.16. Block diagram for a vectorized rounding module. 
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C. Floating-point Adder Architectures 

Contrary to the daily life experience, the operation of adding two numbers together is 

more complicated than the multiplication when it comes to floating-point system. Recall 

from the floating-point multiplier structure shown in Fig. 4.3, there are three distinctly 

separated datapaths for the processing of the signs, the exponents and the significands. It 

allows a much simplified implementation, especially when tackling the critical path, 

which being solely the significand path. For example, for a traditional multiplication, the 

significand of the final product can be calculated with only the information of the 

significands of the input operands themselves, regardless of the signs and exponents. Yet 

this no longer applies to a floating-point addition. The generation of both the final sign 

and significand relies on values of all three components from both operands, meaning 

that in a design there should be either duplicated processing units for each datapath, or 

shared intermediate data between the three datapaths. Obviously, the latter is preferred. 

A simplified block diagram for a traditional floating-point adder using shared 

resources is depicted in Fig. 4.17. By comparing this with the diagram for a floating-point 

multiplier shown in Fig. 4.3, there is clearly more information exchanged among the 

three main datapaths in order to generate the final output. The basic procedure of 

performing an addition between two floating-point numbers involves serval steps that 

will be discussed using the three datapaths.  

First of all, effective operation for current inputs must be determined based on the op 

input and the signs. This effective operation decides whether an addition or a subtraction 
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should be actually performed on the significands. Yet this alone is not enough to 

determine the final sign, because the output of the significand adder could be either 

positive or negative depending on which operands input has the larger absolute value. 

Therefore, to generate the final sign, the sign logic block requires the comparison results 

from both the exponent and significand datapaths, which combined represent the 

comparison of operand magnitudes. 

 

 

Figure 4.17. Simplified block diagram for a floating-point adder. 

 

On the other hand, the difference between the two exponents should be calculated. 

The exponent in a floating-point number represents the actual position of the radix point 

in the number’s significand, so the difference determines the direction and the number of 
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positions a radix point should be shifted before proper computation can be performed. 

The larger exponent becomes the shared exponent for the aligned significands, assuming 

only right shift is implemented for the smaller significand. This shared exponent is then 

updated, either increased or decreased during the two normalization stages in the 

significand datapath, depending on the sum value.  

Before a fixed-point adder can be employed to perform the significand addition, it is 

necessary to pre-process the significand inputs. One of the pre-processing involves 

shifting the significand from the number with a smaller absolute value to the right such 

that radix point of the shifted significand is aligned with that of the other, then a proper 

fixed-point operation can be performed. The implementation of an arbitrary position 

shifter for this purpose is relatively huge in size. Thus, instead of one arbitrary shifter for 

each significand, it is preferred to only implement one instance of a single-directional 

shifter in a fix input position (e.g., left). To facilitate this area saving scheme, a swapper 

must be employed to make sure the significand to be shifted is always placed in that exact 

position. For example, only the significand with the smaller exponent is to be shifted to 

the right to aligned with the one with a larger exponent, as described in Eq. (4.9).  

 
exp exp

exp sig exp sig

exp (sig sig 2 )a b
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a a b

a b

−

+ = ⋅ + ⋅

= ⋅ + ⋅
  where  exp exp

a b
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Also, a selectable inversion for each significand is a part of the pre-processing to prepare 

the significands for the following addition or subtraction that is depending on the 

effective operation. Employing two copies of selectable invertor instead of one makes it 

possible to generate positive significand sum for all possible scenarios, avoiding the slow 
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plus one operation when converting a negative significand to a positive one. The post-

processing after the fixed-point adder is quite similar to that for a multiplier, except that 

the significand shift during the first normalization could be towards either direction. The 

number of bits that is to be shifted is no longer limited to 0 or 1, but any number from 0 

to (n+2). 

1) Overview of Dynamic Precision Adders 

When looking at the block diagram, one of the most significant differences between 

the floating-point multiplier and adder architectures is the elaborated interconnections 

among the three main datapaths. This not only makes the critical path of the adder 

architecture more complicated, but also posts a great challenge for the design of a 

dynamic precision adder. The interconnection aspect is briefly discussed in the previous 

section, yet the design complexity caused by this issue does not seem to pose a big 

problem for the traditional floating-point adder. It is because that there is only one sign, 

one exponent, and one significand to be processed with each datapath, so it is 

deterministic when the information is transferred between datapaths.  

However, this no longer holds when vectorization is introduced to support dynamic 

precision. Given the fact that there is more than one element in an operand vector for a 

dynamic precision adder, it is important that the information exchange between two 

datapaths is within the range of an element pair. Unless the element arrangements for all 

three vectors are identical, which is rarely practical in scientific computation, a mapping 

mechanism must be implemented in between the two interrelated vector formats. Take 

significand pre-shift under mode “100” of the eight-mode scheme as an example, whose 
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mapping details between vector formats is illustrated in Fig. 4.18. For the shift of 

significand element 0, the sub-block 0 and sub-block 1 of the difference vector, which is 

derived from the exponent vector and thus saved in the same format, should be mapped to 

the sub-block 0 to sub-block 7 of the significand vector as the exponent difference input. 

Although they are going to put negative impacts on the design in terms of delay and area, 

these additional mapping blocks are unavoidable as the cost of supporting extra precision 

modes. Once the precision configurations are determined, these mapping blocks can be 

implemented as series of hardwired interconnections followed by a multiplexer, just like 

the previous discussed packer/unpacker, thus limiting the impacts on the critical path of a 

design. Several versions of mapping blocks are required for the proposed dynamic 

precision floating-point adder under the eight-mode vector arrangement scheme, whose 

block diagram is shown in Fig. 4.19. These blocks include those mappings from each of 

the three vector formats to the other two formats, except the ones from sign to exponent 

format.  

 

 

Figure 4.18. Example of mapping between vector formats. 
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If the mapping blocks were to be removed from the block diagram for a dynamic 

precision adder, the remaining structure is quite similar to that of a traditional floating-

point adder, except that all the processing blocks are vectorized and provide parallel 

operations on multiple elements. A few intermediate control signals derived from the 

signal mode are generated during the unpacking stage to facilitate the vectorized 

operations. These control signals are generated, either with hardwired multiplexers or 

with combinational logics, every time the operation mode is changed, and are shared by 

many of the vectorized processing blocks throughout the operation. One of the control 

signals is the signal ctrl, which indicates the valid element boundaries among all the 

vector sub-block. For example, this signal helps to terminate the carry chain between two 

significand sub-words during the fixed-point addition. Another important control signal is 

the block selection signal (i.e., bsel or block_sel), which identifies the relationship of a 

sub-block to a specified vector elements.  

Besides producing the final sign vector for the vectorized floating-point addition, the 

sign datapath is also responsible for determining the effective operation vector that is 

required by the vectorized significand addition. Similarly, in addition to calculate the 

final exponent vector, the exponent datapath also provides the vectorized significand 

barrel shifter with the number of bits that are required to be shifted in order for the radix 

point for both significand vectors aligned, along with a few signals that are critical to 

other modules. Keep in mind that the larger exponent is used for the following updating 

for the generation of the final result.  
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Figure 4.19. Block diagram for a dynamic precision floating-point adder. 
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The significand datapath, on the other hand, is a bit more complicated, compared to 

that for a dynamic precision floating-point multiplier. First of all, whenever necessary, 

the significand element pair must be swapped such that the significand sub-word with a 

smaller exponent is shifted a certain bits to the right by the vectorized barrel shifter. None 

of these special mode control signals is needed, because the swap signal after being 

mapped from exponent vector format has already contained requisite information. A 

vectorized significand comparator is implemented for testing which one in the significand 

sub-word pair is larger. Combined with the effective operation sub form the sign datapath 

and the non-equal vector from the exponent datapath, it is then able to obtain the enable 

vectors for the selectable inversion module. The generation of the enable vectors can be 

explained in Eq. (4.10).  
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  (4.10) 

Note that after the barrel shifter, a new GRS vector is introduced to accommodate the 

guard bit, round bit and sticky bit for each possible significand sub-words. This new 

vector shares the same structure as the significand one, but with a sub-block size of 3-bit. 

Next the significand and GRS vectors from the same operand as a whole are treated as 

one of the inputs for the specially designed dynamic precision fixed-point adder. Once 

the sum and sum_grs vectors are obtained, a vectorized leading zero detector (LZD) is 

employed to prepare the required number of left shift during the first normalization phase. 

This left shift only happens to sub-words whose carry-out bit is ‘0’, otherwise, a 1-bit 
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right shift is necessary. Note that, the GRS vector is required up to the rounding phase, 

thus can be removed thereafter.  

Similar to a multiplier, the exceptions and special values defined in IEEE standards 

are handled by the exception block, which will not be discussed again in detail. 

2) Vectorized Sign Processing 

The sign vector is constructed in a fairly straightforward manner, where one bit is 

reserved for the sign from each operand element. Due to the simple vector format, it does 

not require extra control signals to manage the vectorized processing on the sign datapath, 

not even the mode signal. All the bits in a vector are processed no matter what mode the 

adder is operated under. The correctness of the logic is guaranteed by the zero-padding 

and filtering during the unpacking and packing stage respectively. In fact, doing 

unnecessary work is more desirable than introducing mode control mechanism to a 

relatively effortless logic, which costs more than it can gains. Since all the latency 

introduced by the sign datapath can be perfectly hided from the critical path, keeping the 

circuit as small as possible is the goal when designing this path.  

First step of the sign datapath is to determine the effective operations for each sub-

word. The effective operation for an adder that supports both addition and subtraction 

operations with signed operands can be obtained by feeding both signs and the op for an 

operator pair to a three-input XOR gate, as in 1 2
n n n n

sub op sign sign= ⊗ ⊗ . Fig. 4.20 shows 

how this is performed in parallel for multiple sub-words (bits in this case). Totally n 

copies of XORs are needed for a n-bit sign vector. 
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The next step is to find the final sign for the sum of each sub-word pair. As discussed 

in the previous section, the generation of the final sign requires information from the 

original signs as well as the magnitude comparison between two operands. Since the 

latter is also used to determine which one of the significands has to be inverted before 

performing the fixed-point addition, two derived signals, inv1 and inv2 that control the 

selectable invertor for significands, are used for generating the final sign. The generation 

process is described as in Eq. (4.11), where swapn is a signal that indicates whether a 

significand pair is swapped in position or not. 

 
1 2 when '1'

1 1 when '0 '

n n n

n

n n n

sign inv swap
sign

sign inv swap

⋅ =
= 

⋅ =
  (4.11) 

The implementation for the final sign generation is similar to that for the effective 

operation, where the XOR gates are replaced with the logic described in Eq. (4.11).  

 

 

 

Figure 4.20. Vectorized effective operation detector. 
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3) Vectorized Exponent Processing 

Before the significand could be shifted and aligned for further processing, the 

difference between the exponents of the two floating-point numbers must be provided. 

Hence the first task for the exponent datapath is to obtain the exponent difference. Unlike 

the exponent addition for a multiplier, the subtraction for an adder requires no special 

handling to cope with the biased format. 

Since the exponent sub-word can occupy one or two exponent sub-blocks depending 

on the operation mode, a dual mode adder is designed to perform the subtraction. This 

dual mode adder is similar to the exponent dual mode adder used in the dynamic 

precision floating-point multiplier shown in Fig. 4.6, except that for this application one 

of the exponents is inverted. As there is no certainty of which of the exponent holds the 

larger value, it is possible that the output is negative that requires conversion before used 

by the shifter. This conversion is basically a slow and expensive process of adding one to 

the bit-wise inverted input. Instead of doing this, two individual dual mode adders are 

implemented, providing subtraction for exp1-exp2 and exp2-exp1 respectively. Then the 

positive output is selected as the difference between the exponents, and at the same time 

signal swap required for the significand swapper can be also obtained. A slice of the 

vectorized exponent difference module is shown in Fig. 4.21. One slice of this 

implementation is required for every two exponent sub-blocks. Thus the exponent mode 

signal (exp_mode) used for the dual mode adder is also used to construct the final outputs 

of several signals, such as the swap and diff.  
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Figure 4.21. Vectorized exponent difference module. 

 

Moreover, in order to facilitate the magnitude comparison for significands, a non-

equal signal is also generated, by examining all the diff bits with OR trees. Depending on 

how the bit-width for significand is setup, a signal that indicates the exponent difference 

is out of the shifter range might become necessary. For example, the maximum number 

of bits the shifter supports is 202 for mode “111” under the eight-mode scheme. Only the 

lower 8-bit of the exponent difference is necessary for the shifter to operate properly. 

Any difference represented in more than 8-bit will result in incorrect shift. Therefore, a 

signal named osr (out-of-shifter-range) is used to monitor if any of the higher bits is non-

zero, and is then use by the shifter to produce correct result.  

The shared exponent vector needs to be update twice at most during the two 

normalization stages. For the purpose of not putting more negative impact on the critical 
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path, the updating processes are always performed in advance, and then the required one 

is selected once the decision is made. By doing this, it is possible to hide the extract 

latency injected into the critical path as much as possible. For example during the first 

normalization, both the exponent increment and decrement modules start calculating as 

long as their depending inputs are ready. These operations are in parallel with those 

shifters but faster, avoiding worsening the critical path. A specially designed dual mode 

increment module utilizing the carry-select technique, shown in Fig. 4.22, is implemented 

to improve the speed for the final vectorized exponent increment during the second 

normalization. Combined with the mapping block, this module is expected to introduce 

latency to the critical path. Hence, an improved version of the vectorized increment 

module becomes significantly desired. 

 

 

Figure 4.22. Dual mode exponent increment module. 
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4) Vectorized Significand Comparator and LZD 

A vectorized significand comparator is developed to compare the magnitude of sub-

words from two significand vectors. A detail diagram is depicted in Fig. 4.23, showing 

how a multi-level comparator tree is constructed to enable the possibility of finding the 

corresponding comparison result for any possible element within a vector format. This 

structure shares the same basic idea of the generation of allzeros signal for the exception 

processing that is illustrated in Fig. 4.5, replacing the OR gates with two different 

modules accordingly.  

 

 

Figure 4.23. Vectorized significand comparator. 

 

At first, a sub-block comparator is employed for each of the significand sub-block 

pairs responsible for generating the eq and lt signals. The value of the eq signal indicates 

whether the two inputs are identical or not, while the value of lt signal being ‘1’ suggests 
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that the first input is less than the second one. Once the sub-block comparisons are 

established, a multi-level block-wise comparison tree is built on top of that. The key 

processing unit for this tree is a block comparator that takes in the comparison results 

from two consecutive blocks from the previous level and generates the result for this new 

combined block. The structure for this block comparator is illustrated in Fig. 4.24. 

Similar to that for the allzeros tree, exact results for some regularly constructed sub-

words can be obtained directly, while intermediate comparisons used to produce the final 

comparison for those irregularly constructed significand sub-words can be extracted from 

nodes on the tree and combined. Thus a complete vectorized significand comparison can 

be performed. 

 

 

Figure 4.24. Block comparator module. 

 

The vectorized leading zeros detector required for the first normalization stage is 

quite similar to the comparator in terms of the tree structure. It has a series of basic LZD 

blocks on the first level to determine the number of leading zeros in a sub-block, then a 

level of block-wise LZD modules are employed to generate the leading zeros information 
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for the corresponding consecutive block pairs from the previous level. This tree continues 

until it reached the final level, where the number of leading zeros of the whole vector is 

found. A complete diagram of the proposed vectorized LZD is illustrated in Fig. 4.25. 

 

 

Figure 4.25. A complete vectorized LZD module for adders. 

 

A LZD tree similar to the comparator tree is employed to process the significand 

vector, but this time none of the nodes could produce direct results due to the introduce of 

a separated GRS vector. A complete sub-word to be processed by the LZD consists of 

sub-blocks from the significand vector plus one from the GRS vector. Therefore, one 

level of basic 3-bit LZDs is enough for the GRS vector. The basic concept of leading zero 

detection is discussed in detail by the author in [45]. An implementation of the basic LZD 

for 4-bit sub-block size under the eight-mode scheme is depicted in Fig 4.26(a), and a 3-

bit LZD specially designed for the GRS sub-blocks is illustrated in Fig 4.26(b). A LZD 
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counts the leading zeros in an input bit stream, and then outputs the counter using an lz 

signal. At the same time a 1-bit validating signal called lzv is generated as long as the 

input is not all zeros. With these two signals from the previous level, a block-wise LZD 

module can produce the lz and lzv for current level. The underling logic for the block-

wise LZD can be explained in Eq. 4.12.  
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  (4.12) 

Note that the bit-width for the lz signal will grow by one bit for each level, which is 

different than all the other trees discussed.  

Once the intermediate data are obtained, a super-block grouping process is then 

performed to collect the corresponding segments for a complete sub-word from the 

significand LZD tree and the GRS LZD blocks. And then multiple copies of a smaller 

block-level LZD tree (up to 3-level for eight-mode scheme) are employed to generate the 

output candidates for different operational modes, the correct one of which is then 

selected, validated and mapped to the exponent vector format for the updating of 

exponent vector. 

 

 

Figure 4.26. Sub-block LZD modules. (a) 4-bit LZD module; (b) 3-bit LZD module. 
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5) Vectorized Barrel Shifter 

A vectorized barrel shifter is able to shift all the sub-words within a significand vector 

according to their individually specified shift requirement under different operational 

modes, such that the radix points for the sub-word pair are aligned for further processing. 

A typical barrel shifter is constructed with multi-level cascaded row shifters, each of 

which is responsible for shifting 2	 bits, where the k is usually the index of the level. For 

example, the first level row shifter shifts the input by one bit, and the second level shifter 

shifts the output of the first level by two bits, assuming both shifter are enabled. The 

number of row shifter levels is determined by 
���(�)�, where n is the width of the input. 

The block diagram for a vectorized barrel shifter is shown in Fig. 4.27. First of all, the 

exponent difference vector is mapped to significand format in order to be used by the row 

shifters. Then, the difference bits are regrouped into several smaller vectors, each of 

which is distributed to its corresponding vectorized row shifter as the level select vector. 

Furthermore, the out of shifter range vector (osr) also generated by the exponent 

difference module is used to prevent incorrectly shifted data being produced. For the 

purpose of preserving precision during the addition, a GRS vector is first introduced in 

the significand datapath. Each of the sub-word has a 3-bit GRS extension block to hold 

the information of the out-shifted bits. The first two bits serve as a regular 2-bit extension 

to the significand, while the last bit named sticky is used to indicate the existence of any 

shifted-out information. And the vectorized processing of the row shifter is controlled by 

the block select signal. 
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Figure 4.27. Vectorized barrel shifter. 

 

Two variants of the vectorized barrel shifter are implemented for different purposes. 

A right barrel shifter is responsible for the pre-shift that aligns the radix point for the 

addition, and a left barrel shifter is implemented during the first normalization to remove 

all the leading zeros from all the sum sub-words. The only difference between the two 

variants is the row shifters that in charge of the actual shifting. These row shifters must 

be able to provide complicated vectorized shift that involves two interrelated vectors. Fig. 

4.28(a)  and (b) depict the shift traffic traveling between the two vectors, for right shift 

and left shift respectively. Take the left shift as an example. The source for a significand 

sub-block is either its previous sub-block when they are from the same sub-word, or 

zeros if the supposed shifted bits are from another sub-word or out of the vector range. 

And there are also two possible sources for the GRS sub-block, specially a previous 
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significand sub-block and zeros. The same idea applied to the left shift, except that it is 

reversed. 

 

  

Figure 4.28. Vectorized row shift. (a) Right shift; (b) Left shift. 

 

Now, it becomes clear that this complicated shift could be treated as two independent 

generating processes, one for the significand sub-blocks and the other for the GRS sub-

blocks. Fig. 4.29 depicts the implementation detail for the significand vector. First, the 

significand vector is logically shifted by a specified position. Zeros are inserted to the 

most significant bits. Then the bsel signal is employed to validate the shift-in bits through 

a multiplexer for each sub-block. Only the shift-in bits from the same significand element 

will be selected. And finally, another series of multiplexers are employed to select the 

valid shifted significand or the origin, controlled by the select signal derived from the 

exponent difference vector. 
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Figure 4.29. Vectorized row shifter for significand sub-blocks. 

 

Within a GRS sub-block, the generation of the new guard and round bits are quite 

similar to that for a significand sub-block, except that the original GRS sub-block must 

be taken into account when performing the first unconditional shift. However, the 

implementation for the generation of the sticky bits does not follow the same steps due to 

the nonlinear nature of sticky bits. A sticky bit will be set as long as there is any valid 

data shifted out the extended significand range (significand plus GRS). A general 

implementation of the row shifter for sticky bits is illustrated in Fig. 4.30. First of all, OR 

trees are employed to test all the significand sub-blocks for allzeros, followed by the 

validation via multiplexers controlled by the block select signal just like the cases 

discussed above. Then, the allzeros signal for all the significand bits that are supposed to 

be shifted out of the extended range is produced through another OR tree. By combining 

it with the allzeros from the GRS sub-block, the new sticky bit is obtained. When the 

required number of shift is less than 4, the left portion of the diagram can be omitted, 

resulting in a smaller design. 
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Figure 4.30. General implementation of a vectorized row shift for sticky bits. 

 

6) Vectorized Significand Adder 

A specially designed dynamic precision adder is the core component that actually 

performs the addition on the pre-processed significand vectors and the newly introduced 

GRS vectors. In fact, there are several advantages when separating the GRS blocks from 

the regular significand blocks. By doing this, not only the original structure of the 

significand vector is preserved, but also the newly established GRS vector is able to be 

constructed in an identical manner with a different sub-block size. Any complicated 

operation involving the two vectors can be handled relatively easy by using divide and 

conquer technique.  Also, it allows the same strategies for tackling dynamic precision 

from the previous designs to be applied to the two vectors individually. And finally, the 

ctrl signal that indicates the sub-word foundries can be used to link the separated 

processes to generate the final results. 
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The basic idea of a dynamic precision adder is illustrated in Fig. 4.31. It is worth to 

point out that this basic idea can be applied using any of the dynamic precision adder 

architectures discussed in the previous chapter for a faster implementation. The serially 

connected multiplexers shown in the figure are provided only to simplify the general 

demonstration.  

 

 

Figure 4.31. Dynamic precision adder for significand and grs vectors. 

 

On one hand, the sub-blocks from the significand vectors are added using larger fast 

adder. On the other hand, a series of fast adders are employed to calculate the sub-block 

sum for the GRS vectors. No carry between these sub-blocks are required, as there is only 

one GRS sub-block for each significand sub-word. The effective operation signal is used 

to provide the carry-in for the adders if necessary. Then the carry-outs from the GRS 
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adders are injected into the significand carry chain through multiplexers controlled by the 

ctrl signal. This guarantees no carries are carried across sub-word boundaries, and the 

correct carries from the corresponding GRS sub-blocks are transferred to the right 

significand segments. The outputs are saved in the same two-vector format, thus allowing 

further processing follows the same strategies. The final sub-word carry-outs, which are 

used for the normalization, are determined by the mapped effective operation and the 

enable vectors for the significand inversions. Note that this process is not shown in the 

diagram.  

D. Floating-point Fused-Multiply-Add Architectures 

A fused-multiply-add is the hardware implementation that performs the computation 

of p a x b= ⋅ +  on floating-point numbers, which is essential to several computation 

applications, including vector dot product and polynomial evaluation [14]. Although this 

operation can be carried out by performing floating-point multiplication followed by an 

addition via two independent ALUs, a fused implementation of the two serial units 

required only one operation is desirable in many ways. First of all, just like its fixed-point 

counterpart (MAC), a fused-multiply-add unit can significantly reduce the timing and 

area requirements for the FMA operation by simplifying, merging, and parallelizing parts 

of the independent multiplication and addition processes. Another advantage of a fused-

multiply-add is that it preserves the precision lost by combining the two rounding 

processes into one. Besides, a fused-multiply-add can also be employed to perform 

standardized floating-point multiplication or addition if necessary, providing more 

flexibility for processor designers when specifying the microarchitecture. That means a 
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FMA unit can be treated as a duplicated multiplier or adder for many purposes like fault 

tolerance or data parallelism. It can also be used to replace the multiplier and adder 

completely for some specific fields. Finally, a fused unit generally helps to reduce the 

program size due to the fact that only one instruction is required for a series of 

consecutive operations. Especially for applications that involve repeated operations of the 

fused operation, the memory access for instruction fetches can also be significantly 

reduced, thus leaving doors opened for many performance improving opportunities.  

The block diagram of a dynamic precision fused-multiply-add unit is illustrated in Fig. 

4.32. The architecture of the dynamic precision FMA is generally similar to that of an 

adder, especially for the sign and exponent datapaths, but with substantial modifications 

underneath modules within the significand datapath. The fundamental difference between 

a FMA and an adder is how the significands are handled before the actual addition, which 

in fact is the root cause responsible for most of the block modifications. This time only 

the significand form the additive operand is to be shifted for the radix point alignment, 

and/or to be inverted for the effective subtracting operation. Therefore, significand 

swapping and comparing modules are no longer necessary, simplifying the sign logic and 

the significand pre-processing steps. By designating the pre-processing only to the 

additive significand and decoupling it from the multiplication, it is possible for both paths 

being implemented in a parallel manner, thus minimizing the impact on the critical path 

when fusing the two operators. Note the partial product generator and reduction tree from 

the dynamic precision multiplier can be reused without any changes. 
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However, nothing comes without a cost. First of all, designating the pre-processing to 

a specific significand complicates the shifting process. For an adder, the difference used 

for the shifter is always positive, meaning that the shifter only needs to shift the 

significand with smaller exponent to the right. In contrast, a FMA must support shifting 

the radix point to both directions for the alignment due to the fact that the difference 

between the additive significand and the product significands can be positive or negative. 

A problem of the dual-directional shifting scheme is that it makes the LZD and 

normalization way more complicated. A common practice is to initially pre-shift the 

additive significand a certain bits to the left before proceeding the radix alignment. By 

doing this, most of the rest processing remains the same but with a wider bit-width. In 

order to preserve the precision before the final rounding, a (3n+2)-bit shifter (instead of 

(n+3)-bit one are now required for an n-bit additive significand. Adapting the same 

strategy as in the adder, a completed shifted significand is separated in to three sections, 

each of which is allocated in its designated vector in the original significand format, 

namely, an n-bit high vector, a (2 # _ )sub block⋅ -bit save vector, and a 2n-bit low vector. 

By doing this, the addition with the product can be directly applied for the low vector and 

the s and c product vectors. Moreover, a complement operation is necessary after the 

significand addition, because it is possible for the sum to be a negative number, which 

must be converted before the post-processing. The LZD module must also be modified to 

handle the 3-segment scheme, while the post-processing modules after the first 

normalization remain the same. 

 



78 

 

 

Operand Unpack
Operand 1 Operand 2

s1 s2 m3 m1e1 e2s3

\

Result Pack

Sign SignificandExponent Exceptions

Vectorized Sum Output

\ \

modeop

Vectorized Operand Input
\

Exc.

s e m

mode
\

Sub Det.

\\\

Exponent Diff.
\\\

exp_mode

Significand 

Pre-processing
PP Reduction 

Tree

PP Gen.

m2

\ \\

map

exp_diff

osr
\ \

mode

\ \\

FMA Significand 

Adder

mm

\ \

\

c

sub

map
sub

\

s

Complement

bsel

mode

\

LZD

Barrel Shifter L.

mode

\ bsel

\

high safe low

lz
Exponent Dec.

mode

\
lz

exp

\

exp_mode

\

Exponent Inc.

\ \ \

\

Round

ctrl

\

m0

\ \

grs

R. Shifter 

1-bit S. 1

ctrl

\

m0

\\

map
inc

\

\

s3 s12

\

cout

\map

Sign 

Logic

\

\

exp_mode

\

Operand 3

e3

 

Figure 4.32. Block diagram for a dynamic precision FMA unit. 

 



79 

 

1) Vectorized Radix Alignment for FMA Units 

The pre-shift process is illustrated in Fig. 4.33 to better understand how the radix 

alignment is realized for a FMA via a (3n+2)-bit shifter, where the sticky bit is not 

included. Suppose that the exponents for the multiplication operands are ���� and ���� 

respectively, and the exponent for the additive operand is ����. All exponents are in 

biased format. Then the exponent of the multiplication product is ���1 + ���2 − �����, 

where �����  is the bias of the exponent format. On the other hand, the additive 

significand is initially pre-shifted iBias-bit to the left, where ����� = � + 3.  

 

 

Figure 4.33. Radix point alignment process for FMA operations. 

 

In that case, the number of positions that the additive significand is required to shift to 

the right to align its radix point with the product is determined by Eq. (4.13).  

 [ ]
1 2 3

1 2 3

1 2 3

(exp exp ) (exp )

(exp exp ) exp ( )

(exp exp ) (exp )

diff eBias iBias

eBias iBias

preBias

= + − − −

= + − + −

= + − +

  (4.13) 
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Since both the eBias and iBias are known and fixed, they can be combined into one 

constant, preBias. By re-arranging the computation of difference as shown in Eq. (4.13), 

the whole calculation can be performed through two levels of additions instead three, thus 

avoiding worsening latency of the critical path. The right-shift only happens when the 

difference are positive value. Otherwise, there is no necessary for any shifting for the 

additive significand, and this is guaranteed by the 2-bit safe block, placed in between the 

un-shifted significands as a buffer zone. And the exponent for the aligned radix point is 

determined by Eq. (4.14).  

 
1 2

exp exp exp preBias= + −   (4.14) 

Therefore totally four adders are required for the exponent difference module.  

A slice of the vectorized exponent difference module is depicted in Fig. 4.34, 

showing how four dual mode adders are employed for the calculation of the difference 

and shared exponent vector. The preBias values are determined once the precision 

configurations are defined, thus they are implemented as constants. The first two dual 

mode adders are responsible for the computation of ���� + ���� and ���� + ������� 

respectively. And two dual mode adders in the second level are employed to calculate the 

temporary difference and shared exponent vector. Whenever a sub-word difference is 

positive, the temporary diff and exp element are valid. Otherwise, this diff is set to zeros 

meaning no shift is necessary, and ����  becomes the shared exponent for the 

corresponding sub-word. Therefore, a final selection and construction of these two 

vectors is required for the outputs. Similar to the dynamic precision adder, the osr signal 
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that indicates the required shift being out of shifter’s range is generated using OR trees. 

Because the shifter supports up to 386 bits instead of 202 for mode “111” under the eight-

mode scheme, only the lower 9 bits of the exponent difference are considered valid for a 

FMA. Any number expressed with more than 9 bits will be treated as out of range. 

 

 

Figure 4.34. Vectorized exponent difference module for FMA units. 

 

Once the exponent difference is determined and mapped to the significand vector 

format, the right shift can be performed with a vectorized barrel right shifter. The 

challenge posted by the fact that the input is represented in three vectors, is the 

uncertainty of the source for a particular low sub-block. Four examples of the right-shift 

for a simplified dynamic precision FMA is shown in Fig. 4.35. It is observable that the 

source of the shift-in data for the most significant “low” sub-block changes according to 
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the operation mode. In example (a), the most significant “high” sub-block is shifted to the 

most significant “low” sub-block via the most significant “safe” sub-block. But it is the 

least significant “high” sub-block shifted via the least significant “safe” sub-block to the 

same location in example (d).  

 

 

Figure 4.35. Examples of vectorized right-shift for FMA operations. 

 

The mode dependent behavior of the shifter complicates the design of the vectorized 

row shifter, although the structure of the barrel shifter remains unchanged but with 9-

level of row shifters. The basic idea of a vectorized row right shifter is presented in Fig. 

4.36. The major difference between this version and that for the adder is the mapping 

process between the two versions of “safe” sub-blocks. By doing this, the source of a 

certain “safe A” sub-block are always determined as the “high” sub-block with the same 

index. And the same idea applies to the “low” vector. The mapping module is responsible 

for connecting a “safe B” sub-block with its corresponding “safe A” sub-block according 

to the operation mode, just like the mapping blocks of the dynamic precision adder 

discussed above. The left-shifter used for the first normalization shares the exact idea. 
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Nonetheless, for a FMA design with smaller number of precision modes, the row shifters 

can be implemented with pre-determined hardwired multiplexers to simplify the shifter’s 

structure.  

 

 

Figure 4.36. Vectorized row right-shifter for FMA operations. 

 

2) Vectorized Significand Addition for FMA Units 

The vectorized significand addition includes several steps. First of all, the three 

vectors representing the shifted significand are inverted if the effective operation is 

determined to be subtraction. In fact, the way the shifted additive significand separated 

into three vectors in the same format allows a fairly simple and fast implementation for 

following addition operations. The lower portion of the sum can be obtained by adding 

the “low” vector to the two product vectors (in carry-save form) with a row of 3-to-2 

blocks followed by a 2n-bit dynamic precision adder. Due to the possibility of carries 

generated or propagated between sub-word boundaries, the row of 3-to-2 blocks must be 

able to terminate the invalid carries controlled by the ctrl signal. At the same time, an 
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unconditional increment operation is performed on both the “high” and “safe” vectors. 

Note that only the valid “safe” sub-blocks are processed within the module to prevent 

unnecessary circuit switching. Then, with the help of the ctrl signal, the carries generated 

from the “low” and “safe” operations are used to select the correct outputs for the 

construction of the sum’s “safe” and “high” vectors respectively. The mechanism of 

transferring carries between the three vectors is the same as discussed for the dynamic 

precision adder. Given the fact that the sum can be negative and the significand output 

must be positive, it must go through the conditional complement block before it can be 

outputted. The implementation of the vectorized complement module is similar to the top 

half shown in Fig. 4.37, except that the dynamic precision adder for the “low” vector is 

replaced with a dynamic precision increment module. 
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Figure 4.37. Vectorized significand adder for FMA units. 
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3) Vectorized LZD for FMA Units 

The block diagram of a vectorized LZD for FMA units is illustrated in Fig. 4.38. The 

process of finding leading zeros for the combined “high” and “safe” vectors, shown in the 

upper-left of Fig. 4.38, is almost the same as that for the dynamic precision adder, except 

that the “safe” vector consists of 2-bit sub-blocks. On the other hand, a large vectorized 

LZD tree is employed to calculate the leading zeros for the “low” vector. As the sticky is 

not necessary for the lz_low generation, the structure is slightly simpler.  

 

 

Figure 4.38. Vectorized LZD for FMA units. 

 

By the time both LZD threes are finished, the leading zeros vectors are grouped, 

selected, and then mapped to the exponent vector format for the final addition. Because 

the bit-with of the lz_high is smaller than that of the lz_low , the final lead zero can only 

be obtained with a dual mode adder instead of the block-wise LZD module. The process 

of the second step for generating the final outputs is explained in Eq. (4.15), 
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where i is the sub-word index. The fixed carry-in of “1” for the dual mode addition is to 

accommodate the extra one zero that is not representable in the lz_high when the two 

parts are supposed to be combined. 

In Chapter III and Chapter IV, we present several proposed design techniques and 

architectures for adder, multiplier, and fused-multiply-add (MAC and FMA) units 

supporting dynamically defined precision for both fixe-point and floating-point 

operations. These approaches are examined and evaluated through actual hardware 

implementation, and the analysis result will be presented in the next chapter. 
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CHAPTER V  

IMPLEMENTATION AND ANALYSIS 

 

The proposed mechanism for supporting dynamically defined precision demands 

additional hardware resources and introduces extra latency in the critical path of ALU 

architectures. In order to investigate the area and latency impact imposed by our dynamic 

precision architecture on the hardware implementations of variant architectures, two 

implementations were developed for the popular fixed-point and floating-point ALUs, the 

results from both versions were later compared and analyzed. A golden version created 

with the traditional architecture that only supports operations with one precision was used 

as the baseline design, then another version based on the same algorithm was developed 

using our proposed architecture to support dynamically defined precision. For fair 

comparison, both versions were implemented with the same level of effort and 

optimization.  

All the implementations were created using VHDL with parameterizable bit-width for 

operands and sub-blocks. All the designs were extensively simulated with uniformly 

distributed random number operands, and the accuracy was verified by comparing the 

results with those generated by the MATLAB fixed-point toolbox and Perl programs. The 

same set of stimuli was also used for the verification of the post-synthesis and post-layout 

netlists.  
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A. Fixed-point Adders 

We have implemented two versions of the following fixed-point adders: (1) ripple-

carry adder (RCA) with small footprint and linear delay; (2) single-level carry-lookahead 

adder (CLA); (3) multiple-level carry-lookahead adder (CLA_net); (4) Brent-Kung prefix 

adder; (5) Kogge-Stone prefix adder; and (6) Hybrid prefix adder with a moderate 

latency-area tradeoff. All the adder designs were synthesized with Xilinx ISE 13.4 for the 

Xilinx Virtex-5 XC5VLX110T FPGAs.  

Table 5.1 and Table 5.2 show the area and latency information for the traditional 

version of all the adder implementations. The results for highly optimized Xilinx 

proprietary adder macros are also listed for reference. It is obvious that our 

implementations cannot outperform the highly optimized Xilinx IP cores.  As the results 

suggested, the Kogge-Stone adder has the lowest delay, while the ripple-carry adder uses 

the least FPGA LUTs, which is expected given that it has the simplest structure. 

The latency and area results, normalized to that of the traditional version, for certain 

adder implementations are listed in Table 5.3 and Table 5.4 to illustrate the impact 

imposed by the dynamic precision supporting circuits. The maximum latency and area 

overheads range from 10% to 24%, depending on the actual adder architecture. It can be 

observed that the prefix adders suffer less in terms of both latency and area in general. 

Please note that our implementations were designed with gate-level optimizations. 

Therefore, our design could not take fully advantage of the Xilinx’s highly optimized 

primitive of fast carry-lookahead logic, and more importantly the enhanced DSP48E hard 
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Table 5.1. Latency for fixed-point adder implementations (FPGA). 

Adder 

Data Width     Delay: ns 

4 8 16 32 64 128 

Xilinx_IP 1.92 2.03 2.23 2.65 3.48 5.15 

RCA 3.02 5.33 9.97 19.23 37.76 74.81 

CLA 3.19 3.79 4.41 6.45 11.70 17.27 

CLA_net 3.22 5.04 5.63 7.52 8.20 10.10 

B-K Prefix 3.69 4.96 6.24 7.49 8.77 10.05 

K-S Prefix 3.69 4.47 5.15 5.83 6.51 7.20 

Hybrid 3.69 4.94 5.72 6.40 7.08 7.76 

 

Table 5.2. Area for fixed-point adder implementations (FPGA). 

Adder 

Data Width     Area: LUTs 

4 8 16 32 64 128 

Xilinx_IP 4 8 16 32 64 128 

RCA 8 16 32 64 128 256 

CLA 16 39 88 154 300 707 

CLA_net 20 48 107 227 470 958 

B-K Prefix 24 54 116 242 496 1006 

K-S Prefix 26 66 162 386 898 2050 

Hybrid 24 56 128 288 640 1408 

 

Table 5.3. Normalized latency for fixed-point adder implementations (FPGA). 

Adder Block Size 
Data Width Normalized Latency % 

8 16 32 64 128 

RCA 

4 1.11 1.17 1.21 1.23 1.24 

8 1.06 1.09 1.11 1.12 

16 1.03 1.05 1.05 

32 1.02 1.02 

64         1.01 

CLA_NET 

4 1.08 1.17 1.14 1.13 1.10 

8 1.07 1.11 1.10 1.08 

16 1.00 1.06 1.06 

32 1.00 1.06 

64         1.00 

Hybrid 

4 1.07 1.15 1.15 1.14 1.13 

8 1.03 1.12 1.12 1.11 

16 1.03 1.10 1.10 

32 1.01 1.08 

64         1.00 

 



90 

 

Table 5.4. Normalized area for fixed-point adder implementations (FPGA). 

Adder 
Block 

Size 

Data Width Normalized Area % 

8 16 32 64 128 

RCA 

4 1.13 1.19 1.22 1.23 1.24 

8 1.06 1.09 1.11 1.12 

16 1.03 1.05 1.05 

32 1.02 1.02 

64 1.01 

CLA_NET 

4 1.08 1.11 1.12 1.13 1.13 

8 1.04 1.05 1.06 1.06 

16 1.02 1.03 1.03 

32 1.01 1.01 

64         1.00 

Hybrid 

4 1.07 1.09 1.10 1.09 1.09 

8 1.03 1.04 1.04 1.04 

16 1.01 1.02 1.02 

32 1.01 1.01 

64         1.00 

 

 

macros that enable even higher performance for additions and multiplications [41]. So, to 

better investigate the actual impacts when gate-level implementations are applied (e.g., 

ASIC design), we also synthesize our designs with Synopsys Design Compiler for the 

FreePDK standard cell library of 45 nm CMOS technology. Fig. 5.1 and Fig. 5.2 give an 

overview on the latency and area information from the ASIC implementations of all the 

fixed-point adders we designed. The lower numbers in the X-axis are the bit-widths for 

the operands, and the upper numbers are the size of the sub-blocks that enables the 

dynamic precision operations as described in the previous chapter. For better comparison, 

the results for traditional designs are listed as designs using the operand bit-width as the 

sub-block bit-width. The results shown are used for showing the relative performance 

between different architectures and different precision configurations, thus none of the 

synthesis optimizations were activated. 



91 

 

 

 

Figure 5.1. Latency for ASIC implementation of fixed-point adders. 

 

 

Figure 5.2. Area for ASIC implementation of fixed-point adders. 
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From both figures, it appears that Brent-Kung prefix adders have the best results in 

terms of latency, hardware requirement, and adapting the mechanism for dynamic 

precision support for ASIC implementation. On the other hand, a hybrid prefix adder 

should be used for FPGA designs when dynamic precision operation is required 

according to the analysis above. 

B. Fixed-point Multipliers 

This section shows the implementation results for two of the key components that are 

used in fixed-point datapath for both the bit-wise and modified Booth-4 multipliers, 

namely the partial product generator (PPGen) and the reduction tree. Just as in the 

previous section, two versions of each module are developed and synthesized with 

Synopsys Design Compiler for the FreePDK standard cell library of 45 nm CMOS 

technology.  

The latency and area information for bit-wise PPGen modules with different 

configurations are shown in Fig. 5.3. The latency for a 128-bit dynamic precision design 

with 4-bit sub-blocks is around 10 times of that for a traditional 128-bit design. Yet, the 

PPGen delay has little effect on the overall performance compared to the large and slow 

reduction tree. As discussed in Chapter III, a generic reduction tree constructed with 

regular 4-to-2 blocks is sufficient for a bit-wise dynamic precision PPGen, thus no extra 

latency will be introduced in the reduction stage. Fig. 5.4 illustrates the synthesis results 

for generic reduction trees with different product bit-widths. As a result, there is no 

requirement for any specially designed final adder for a bit-wise multiplier. 
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Figure 5.3. Latency and area for bit-wise PPGen implementations. 

 

 

Figure 5.4. Latency and area for generic reduction tree implementations. 
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On the other hand, a modified Booth-4 PPGen can reduce the number of partial 

products almost in haft with the price of a more complicated generating process. Fig. 5.5 

illustrates the detailed synthesis results for Booth-4 PPGens with different configurations. 

For a 128-bit PPGen with 4-bit sub-blocks, the latency is about 31% more than that for a 

traditional Booth-4 PPGen, and the size is 36% larger. It is 10% slower when compared 

to its bit-wise counterpart. As seen from the results shown in Fig. 5.6, the latency impact 

from changing the sub-block size is not significant, suggesting that the overhead 

introduced by the extra carry manipulating circuit is negligible compared to the total 

latency. A dynamic precision adder previously discussed is required for this type of 

multipliers. 

To examine the performance of a complete dynamic precision multiplier, the 

synthesis results for both versions of a 128-bit traditional multiplier and a 128-bit 

dynamic precision multiplier with 4-bit sub-blocks are listed in Table 5.5. The bit-wise 

dynamic precision multiplier is only 3% slower and 9% larger than its traditional 

counterpart, while the modified Booth-4 multiplier is 19% slower and 33% larger.  

 

Table 5.5. Synthesis results for traditional and dynamic precision multipliers. 

Result 
128-bit Traditional 128-bit with 4-bit sub-blocks 

bit-wise Booth-4 Bit-wise Booth-4 

Latency (ps) 2,050 1,870 2,120 2,220 

Area (µm
2
) 327,573 259,284 355,644 345,437 

Ratio (Dynamic precision over Traditional) 
103.41% 118.72% 

108.57% 133.23% 
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Figure 5.5. Latency and area for modified Booth-4 PPGen implementations. 

 

 

Figure 5.6. Latency and area for dynamic precision reduction tree implementations. 
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C. Eight-mode Floating-point ALUs 

Three common floating-point ALUs are implemented with the proposed dynamic 

precision architectures discussed in Chapter IV, including the multiplier, adder and fused 

multiply-add. Although the complete ALUs are developed using the more practical 128-

bit eight-mode scheme, most of the modules supporting dynamic precision are 

implemented with parameterized VHDL hardware description language, allowing the key 

parameters such as sub-block size and vector width to be statically re-defined when 

targeting a different mode scheme. Few modules require sophisticated hardwiring 

specifically for the mode scheme, such as the packing/unpacking modules and those 

variant mapping modules. Once the designs are verified against golden results through 

simulations, Synopsys Design Compiler is then used to synthesize the design with a 

standard cell library for IBM 8RF 0.13 µm CMOS technology. And finally, Cadence 

Encounter Digital Implementation System is employed to perform placement and routing 

to generate the final layout. Verification is performed throughout the different stages of 

the design flow. 

1) 128-bit Eight-mode Floating-point Multipliers 

Two eight-mode customized multiple precision floating-point multipliers with slight 

variations are implemented. One is built with a dynamic precision bit-wise significand 

multiplier and the other is powered by a dynamic precision multiplier with modified 

Booth-4 encoding technique. 
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For the bit-wise multiplier, the eight key modules form Fig. 4.3, can be divided into 

three zones based on their dependency on the multiplier datapaths, and each of these 

modules is initially synthesized with medium optimization effort only for latency or area 

respectively. The synthesis results for the eight key modules of a bit-wise multiplier are 

listed in detail in Table 5.6.  

 

Table 5.6. Synthesis results for key modules of a bit-wise multiplier. 

Module 
Target for Latency Target for Area 

Latency (ps) Area (µm
2
) Latency (ps) Area (µm

2
) 

Zone 1 Exc. Detector 418 14,536 1,623 8,279 

Zone 2 Exp. Operation 799 41,223 4,242 11,971 

Zone 3 

PP Generator 437 541,613 4,061 464,598 

Reduction Tree* 2,286 4,098,596 5,941 1,754,319 

Final Adder* 848 73,065 50,294 13,390 

1st Normalizer 502 18,323 3,325 12,787 

Rounding 941 70,478 5,832 29,279 

2nd Normalizer 477 12,726 2,557 7,674 

 

As discussed in the previous section, a modified Booth-4 multiplier shares the same 

design for the five floating-point support modules with a bit-wise multiplier, but with a 

different significand partial product generator, reduction tree, and final adder. Table 5.7 

shows the synthesis results for these three modules specific to a modified Booth-4 

multiplier. The partial product generator in a Booth-4 multiplier is around 45% slower 

and 56% larger than that in a bit-wise multiplier, which is expected due to the great 

complexity of generating partial products with modified Booth-4 recoding. Obviously, 

the dynamic precision final adder required for a Booth-4 multiplier is a bit slower than 

the traditional final adder used for a bit-wise multiplier. However, these negative impacts 
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on the Booth-4 multiplier are compensated by the gains from a smaller and faster 

reduction tree. As a reward with the high-radix recoding, the number of partial products 

required for reduction is reduced from n to n/2+1 for the modified Booth-4 multiplier, 

resulting in a reduction tree that is 46% smaller and 8% faster. The reason that the speed 

is not increased dramatically is because of the carry elimination circuits added to the 

critical path in the reduction tree. Note that the reduction tree and the final adder, which 

represent the majority of a bit-wise multiple-precision multiplier, are exactly the same as 

those in a 128-bit traditional multiplier. Therefore the latency and area overheads 

introduced to the relatively smaller modules by the proposed bit-wise architecture can be 

regarded as not significant when the whole design is considered.  

 

Table 5.7. Synthesis results for specific modules of a modified Booth-4 multiplier. 

Module 
Target for Latency Target for Area 

Latency (ps) Area (µm
2
) Latency (ps) Area (µm

2
) 

Zone 3 

PP Generator 632 842,793 10,320 805,918 

Reduction Tree 2,115 2,213,254 8,894 822,729 

Final Adder 987 66,019 51,864 14,301 

 

From the data shown in Table 5.6 and Table 5.7, not only are we able to characterize 

the timing and resource requirements for each individual module, but also gain an 

understanding on how the total latency is distributed among the modules on the critical 

path (Zone 3). Characterizing the requirements allows us to tradeoff optimization goals 

between latency and area for non-critical modules in the following phases of synthesis 

and layout. For example, according to Table 5.6, the latency for the exception detector is 
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relatively small compared to that for the significand datapath, so it would be wise to set a 

higher priority to area optimization for that particular module.  

By carefully examining the timing data shown in the tables, it becomes obvious that 

the best option for pipelining the critical path is a two-stage design with the partial 

product generator and the reduction tree being in the first stage and the rest of the 

modules in Zone 3 in the second stage. After multiple synthesis runs with different 

optimization settings on the two-stage pipeline design for both multipliers, we are able to 

achieve a clock rate of 2.79 ns for the bit-wise multiplier, and 2.68 ns for the Booth-4 

multiplier. The detailed latency and area information for both multiplier implementations 

are listed in Table 5.8. For the first stage, the Booth-4 multiplier is about 4% faster and 

12% smaller than the bit-wise one. For comparison, the synthesis results for 128-bit 

traditional multipliers with two different generators using the same pipeline strategy are 

also listed in Table 5.8. The only differences between the two traditional multipliers are 

the partial product generator and the reduction tree, which happen to be in the first stage. 

Therefore, their second stage is exactly the same. The achieved clock rate of our bit-wise 

multiplier is 15% slower than its traditional counterpart. But the total area requirement is 

slightly smaller, which we believe is caused by the synthesizer optimization algorithm. 

Thus, the achievable clock rate could have been faster if the synthesizer treats both 

multipliers with the exact strategy. For the Booth-4 multiplier, our dynamic precision 

implementation is 8% slower and 3% larger (total size) compared to a traditional 

multiplier. 
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Table 5.8. Synthesis results for pipeline stages of both multipliers. 

Pipeline 
Latency 

(ps) 

Area (µm2) 

Logic Interconnect Total 

Traditional 

First Stage (Bit-wise) 2,431 1,583,540 944,329 2,527,868 

First Stage (Booth-4) 2,476 1,376,215 736,973 2,113,188 

Second Stage 1,669 65,782 41,521 107,303 

Eight-mode 

Bit-wise 
First Stage 2,787 1,568,842 851,914 2,420,756 

Second Stage 2,144 91,433 57,542 148,975 

Booth-4 
First Stage 2,681 1,409,376 717,208 2,126,583 

Second Stage 2,182 102,128 58,397 160,525 

Ratio (Eight-mode over Traditional) 

Bit-wise 

114.67% 99.07% 90.21% 95.76% 

128.47% 138.99% 138.59% 138.84% 

Ratio (Eight-mode over Traditional) 

Booth-4 

108.26% 102.41% 97.32% 100.63% 

130.74% 155.25% 140.64% 149.60% 

 

After verifying the correctness of the synthesized netlist, design placement and 

routing are performed for both multipliers with Cadence EDI. Table 5.9 lists the detailed 

layout reports on latency, chip area, and design density. Both multipliers become slower 

as expected due to the massive design and the resulting complicated interconnection after 

layout and routing, and their respective layouts (stage 1) are presented in Fig. 5.7. An 

eight-mode multiplier implementation using the proposed bit-wise multiple-precision 

architecture can achieve a clock rate of 3.56 ns, while the one with proposed modified 

Booth-4 architecture is 11% faster and 9% smaller, resulting in a 3.18 ns clock period. 

Further latency optimization can be performed by reduce the pre-set density during 

placement with the cost of increasing area. Yet, a faster ALU clock rate is not always the 

only goal for most modern processor designs, given that more cores and memory are 

packed into a single area-limited chip. For the high-precision multiplier designs presented 

in this paper, design tradeoffs between speed and silicon area must be taken into serious 

consideration.  
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Table 5.9. Place-and-Route results for pipeline stages of both multipliers. 

Pipeline Latency (ps) Density 
Pre-route Area (µm2) 

StdCell Total 

Bit-wise 
First Stage 3,557 72.12% 1,532,022 2,166,519 

Second Stage 2,319 68.07% 87,686 130,581 

Booth-4 
First Stage 3,180 74.41% 1,376,304 1,942,332 

Second Stage 2,411 68.50% 97,993 145,850 

 

       

Figure 5.7. Design layouts for both multipliers (Stage 1). 

 

2) 128-bit Eight-mode Floating-point Adder 

A 128-bit dynamic precision floating-point adder with the eight-mode scheme is 

implemented. The synthesis results of the key modules from this adder are listed in Table 

5.10. Both the latency and area information from two synthesis targeting different 

objectives are listed. The numbers from synthesis targeting latency are more important as 

an adder is expected to run as fast as possible for most applications. By revisiting the 

block diagram for the adder illustrated in Fig 4.19, we can briefly identify the critical 

path for the design, which goes from the exponent difference module through the whole 

significand datapath back to the exponent increment for the second normalization. The 

modules that contribute to the total delay are highlighted in Table 5.10.  
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Table 5.10. Synthesis results for key modules of a dynamic precision adder. 

Module 
Target for Latency Target for Area 

Latency (ps) Area (µm
2
) Latency (ps) Area (µm

2
) 

Stage 1 

Exp. Difference 668 51,774 4,556 16,005 

Sig. Comp. 706 24,214 2,637 10,739 

Barrel Shift R. 1,082 177,223 4,817 103,563 

Sig. Adder 909 52,762 30,557 15,364 

Stage 2 

LZD 574 32,853 3,134 16,468 

Barrel Shift L. 1,083 144,980 5,029 64,362 

Shift R. 1b1 97 16,043 267 9,090 

Round Adder 715 23,844 25,041 8,131 

Shift R. 1b1 Simple 97 9,334 203 5,336 

Exp. Dec 473 26,591 3,246 5,688 

Exp. Inc 280 12,214 2,665 3,588 

Exp. Inc Cin 308 11,675 2,727 3,885 

 

It is noticeable that the largest and slowest modules are the two barrel shifter variants. 

The latencies for both modules are almost identical, but the left barrel shifter is roughly 

20% smaller than the right shifter. This size difference is contributed by the sticky logic 

that is required for the right barrel shifter but not the left shifter. Yet the latency impacts 

introduced by the extra sticky logic for each row shifter are completely removed by 

simply reversing the order of the row shifters, allowing the slower sticky logic having 

more time to settle. A design optimization has also been made to replace the 

unconditional exponent increment (plus the following multiplexers) with a controllable 

one during the final exponent updating processing. This reduces the resource 

requirements without increasing the clock period for a pipelined implementation.  

For comparison purpose, a 128-bit traditional floating-point adder is also 

implemented using the same level of optimization effort. The timing and area 

requirements for the key modules that define the critical path are listed in Table 5.11. Our 
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vectorized version of the exponent processing modules, such as the exponent increment 

and the difference module, are about 6 times the size of their scalar counterparts, which is 

expected because of the exponent vector format and supporting circuits. It can also be 

observed that the vectorized barrel shifters are 50% slower compared to the ones for a 

traditional 128-bit adder. This comes from the extra gates that are responsible for the 

block selections to ensure proper vectorized shifts for both the significand and GRS 

vectors. Approximately 20% of delay overhead is applied to the significand adder and the 

rounding adder after adding dynamic precision support, and our vectorized LZD is only 7% 

slower.   

 

Table 5.11. Synthesis results for key modules of a traditional adder. 

Module 
Target for Latency Target for Area 

Latency (ps) Area (µm
2
) Latency (ps) Area (µm

2
) 

Stage 1 

Exp. Difference 643 7,590 3,323 3,041 

Barrel Shift R. 720 60,532 3,673 3,673 

Sig. Adder 770 41,721 26,128 6,934 

Stage 2 

LZD 536 9,828 3,494 4,567 

Barrel Shift L. 692 60,565 3,226 30,588 

Round Adder 587 24,713 10,489 7,418 

Exp. Inc Cin 296 2,002 2,620 697 

 

Characterizing the timing and resource requirements for the key components helps to 

establish different optimization strategies for critical and non-critical modules for the 

following phases of synthesis. It can also provide insightful guidance for determining the 

pipeline stages. After carefully reviewing the synthesis results, we came to the conclusion 

that a 2-stage pipeline design is best for the eight-mode adder. The first stage includes 
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components along the critical path up to the significand adder, while the rest belongs to 

the second stage. The details of the stage partitioning are also presented in Table 5.10 and 

Table 5.11. Both a 128-bit traditional adder and an eight-mode design are synthesized 

using the same two-stage pipelining strategy, and the detailed synthesis results for both 

designs are shown in Table 5.12. The two-stage eight-mode adder is able to achieve a 

clock rate of 2.72 ns, while the traditional adder is rated at 2.32 ns. The first stage of the 

dynamic precision adder is about 17% slower, and the second stage is around 20% slower. 

However, the silicon area for the dynamic precision adder is increased more than 100% 

for both stages. 

 

Table 5.12. Synthesis results for pipeline stages of adders. 

Pipeline Latency (ps) 
Area (µm2) 

Logic Interconnect Total 

Traditional 
First Stage 2,322 97,234 55,552 152,786 

Second Stage 1,849 63,056 43,550 106,606 

Eight-mode 
First Stage 2,718 191,964 131,859 323,823 

Second Stage 2,216 128,171 88,211 216,381 

Ratio (Eight-mode over 

Traditional) 

117.05% 197.42% 237.36% 211.94% 

119.83% 203.27% 202.55% 202.97% 

 

After necessary verification of the synthesized netlist, design placement and routing 

are performed. The detail layout reports on latency, chip area, and design density for both 

adders are listed in Table 5.13. An eight-mode adder implementation can achieve a clock 

rate of 3.01 ns, while a traditional adder requires a clock rate of 2.98 ns. After design 

place-and-route, the clock rate difference between the two designs is significantly 

reduced from 17% to 1%, but the area ratio between the two remains in the same 200% 
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range. The actual design layouts for both stages from an eight-mode adder are depicted in 

Fig. 5.8. 

3) 128-bit Eight-mode Floating-point FMA Unit 

Two 128-bit dynamic precision floating-point FMA units with the eight-mode scheme 

are implemented. One of the FMA units has a bit-wise partial product generator and 

traditional reduction tree, and the other is powered with a modified Booth-4 partial 

product generator and a vectorized reduction tree. The synthesis results of the key 

modules for the FMA are listed in Table 5.14. Although both the latency and area 

information from synthesis targeting two different objectives are listed, the numbers from 

latency-optimized synthesis are treated with more attention. Since many of the modules 

are identical to those in a dynamic precision adder or multiplier, they are reused for the 

FMA designs. Design reusability is one of the merits to evaluate how well a sub-module 

is designed. The modules listed with a * in the module name are the ones that are reused.  

 

Table 5.13. Place-and-Route results for pipeline stages of adders. 

Pipeline Latency (ps) Density 
Pre-route Area (µm2) 

StdCell Total 

Traditional 
First Stage 2,978 64.81% 90,634 135,717 

Second Stage 1,966 67.12% 58,160 87,606 

Eight-mode 
First Stage 3,011 69.11% 182,656 265,664 

Second Stage 2,262 70.78% 122,359 175,773 

Ratio (Eight-mode over 

Traditional) 

101.11% 106.63% 201.53% 195.75% 

115.06% 105.45% 210.38% 200.64% 
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Figure 5.8. Design layouts for both stages of the eight-mode adder. 

 

 

Table 5.14. Synthesis results for key modules of FMA units. 

Module 
Target for Latency Target for Area 

Latency (ps) Area (µm
2
) Latency (ps) Area (µm

2
) 

Stage 

1 

Exp. Difference 1,486 52,442 5,685 17,672 

Barrel Shift R. 1,435 295,605 6,695 217,303 

op.1 
PP Gen * 437 541,613 4,061 464,598 

Tree * 2,286 4,098,596 5,941 1,754,319 

op.2 
PP Gen (Booth4) * 632 842,793 10,320 805,918 

Tree (Booth4) * 2,115 2,213,254 8,894 822,729 

Stage 

2 

Sig. Adder 1,559 158,107 56,123 59,003 

Sig. Complement 1,139 80,106 30,123 36,936 

LZD stage 1 686 64,257 3,589 36,815 

Stage 

3 

LZD stage 2 574 22,501 3,761 8,670 

Barrel Shift L. 1,496 302,539 8,091 212,628 

Exp. Dec * 473 26,591 3,246 5,688 

Round Adder * 715 23,844 25,041 8,131 

Shift R. 1b1 Simple * 97 9,334 203 5,336 

Exp. Inc Cin * 308 11,675 2,727 3,885 
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In Table 5.14, the latencies for the modules on the critical path are highlighted for a 

better overview on how the total latency is distributed among the critical path. Except the 

reused modules, the dominating modules in terms of latency are the significand adder, 

barrel shifters, and the exponent difference module. It is understandable that the 

significand add is slow considering its bit-width is 256. The exponent difference module, 

where there are two levels of dual mode adders inside, is about 122% slower when 

compared to that for an adder, where there is only one level of the same adders. After 

evaluating the netlist, the significantly increased delay for the barrel shifter comes from 

the 8-to-1 multiplexers. After analyzing the data and performing multiple trials, we 

decided to implement the FMAs as 3-stage pipeline designs with a target for the clock 

rate for the FMAs close to that for the dynamic precision multipliers and adder. The 

detailed pipeline strategy is also presented in Table 5.14. The first stage consists of a 

reused significand multipliers and the pre-processing module for the additive operand. To 

be able to have a better latency distribution between the second and third stage, the LZD 

module is divided into two portions, with the two LZD trees in the second stage and the 

final adder in the last stage. Both FMAs are implemented with the same pipeline strategy, 

and the detail synthesis reports are listed in Table 5.15. The only difference between the 

two FMA implementations is the significand multiplier in the first stage, and the rest are 

all identical. After synthesis, it is observed that the pre-processing operations require less 

time (~2,353 ps) than any of the significand multipliers. Thus, the latency listed for the 

first stage for both implementations are directly copied from Table 5.8, and the area 

numbers are the sum of the two sub-paths. A FMA with Booth-4 multiplier is around 4% 

faster and 11% smaller than a FMA design with a bit-wise multiplier. When compared to 
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a 128-bit traditional FMA unit, the bit-wise implementation is 15% slower and 12% 

larger, while the modified Booth-4 design is 8% slower and 18% larger. 

Table 5.15. Synthesis results for pipeline stages of FMA units. 

Pipeline Latency (ps) 
Area (µm

2
) 

Logic Interconnect total 

with bit-

wise 

MULT 

First Stage 2,787 1,776,110 1,025,662 2,801,772 

Second Stage 2,864 208,535 120,764 329,299 

Third Stage 2,723 189,546 171,185 360,731 

with 

Booth4 

MULT 

First Stage 2,681 1,616,643 890,956 2,507,599 

Second Stage 2,864 208,535 120,764 329,299 

Third Stage 2,723 189,546 171,185 360,731 

Ratio  

(Stage1: Booth4 over Bit-wise) 96.18% 91.02% 86.87% 89.50% 

 

The detailed layout reports for latency, density, and chip area for both FMAs are 

listed in Table 5.16. Again, since the time required by the pre-processing (~2,560 ps) is 

smaller than that of the multiplication, the first stage latency for both implementations is 

copied. After place-and-layout, the pipeline bit-wise FMA can achieve a clock rate of 

3.56 ns, while the Booth-4 one has a clock rate of 3.18 ns (10% faster and 9% smaller). 

The actual layouts for the tree stages from the eight-mode FMA with modified Booth-4 

multiplier are depicted in Fig. 5.9. 

 

             

Figure 5.9. Design layouts for the three stages of an eight-mode FMA unit. 
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Table 5.16. Place-and-Route results for pipeline stages of FMA units. 

Pipeline Latency (ps) Density 
Pre-route Area (µm

2
) 

StdCell Total 

with bit-

wise 

MULT 

First Stage 3,557 72.14% 1,730,848 2,456,169 

Second Stage 3,145 71.09% 202,608 288,841 

Third Stage 3,108 72.67% 182,211 262,177 

with 

Booth4 

MULT 

First Stage 3,180 74.13% 1,575,130 2,231,982 

Second Stage 3,145 71.09% 202,608 288,841 

Third Stage 3,108 72.67% 182,211 262,177 

Ratio  

(Stage1: Booth4 over Bit-wise) 89.40% 102.77% 91.00% 90.87% 

 

In this chapter, we present the implementation results on FPGA or ASIC for many 

ALU architectures that support dynamically defined precision. These ALUs include 

fixed-point adders and multipliers, as well as floating-point adders, multipliers, and 

fused-multiply-add units. For ASIC implementations, synthesis results for each key 

component are presented and analyzed for the potential pipeline strategy. And the results 

from both the synthesized netlist and layout are also presented and analyzed. By 

comparing the results from dynamic precision implementation to those from the 

traditional implementations, we are able to obtain an understanding on the performance 

impacts when dynamic precision and vectorized operations are supported. 

 

 

 

 



110 

 

CHAPTER VI  

CONCLUSIONS AND FUTURE WORK 

 

Scientific computing has been a popular and effective research tool for scientists and 

engineers from different research areas for many years. In order to face the challenge of 

increasing computational demands, efforts have been spent on computing platforms with 

faster processing units, better parallelism, and hardware accelerators. On the other hand, 

the computational precision of arithmetic units in physical processors is also improving 

over the years. Yet, it is impossible to keep the trend of increasing processor frequency or 

operational precision without finally hitting the barriers imposed by physical constraints.  

Besides, the energy consumption has become a serious problem for computer centers 

powered by variant high performance computing platforms. Therefore, exploiting 

precision and parallelism optimization that is independent of process technology becomes 

an alternative approach to improve the overall performance. Custom precision (standard 

and non-standard) computing enables better fine-grained mixed-precision operations for 

iterative algorithms, taking advantage of least-sufficient-precision arithmetic units [49 - 

55].  ALU-level parallelism allows better fault tolerance and performance per operation 

by dynamically sharing hardware resources. 

 We reviewed several software libraries that support arbitrary precision arithmetic 

through sophisticated software algorithms. Yet, all of them are heavily relied on the 

provided hardware ALUs, which inspires us with the idea that a better hardware ALU 

implementation is the foundation for a potential better software solution. We also 
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reviewed many hardware ALU solutions for both fixed-point and floating-point systems 

targeting FPGA and ASIC technologies. However, all the discussed related work 

addressing multiple precision hardware architectures mainly focuses on standard 

precision formats, neglecting the potential benefit from fully customized precision, which 

is another reason that motivates our research on ALU architectures supporting 

dynamically defined precision computing. 

In this dissertation, we presented the details on developing dynamic precision ALU 

architectures to enable better computational performance, energy efficiency, and fault 

tolerance. First, the mechanism of dynamically defined precision that is the foundation of 

the proposed ALU architectures is presented. Next, the detailed discussions are provided 

on the vectorized dynamic precision architectures for fixed-point adders, multipliers, and 

multiply-accumulators, which also serve as the core datapath for their respective floating-

point processing counterparts. Furthermore, we also spent a chapter focusing on the 

proposed dynamic precision floating-point ALU architectures, including adder, multiplier, 

and fused-multiply-add units. An eight-mode dynamic precision scheme is applied during 

the discussion to simplify the demonstration of the general vectorized architectures with a 

more specific configuration.   

All the presented architectures are implemented for Xilinx FPGAs or ASIC standard 

cell libraries (45 nm FreePDK and 0.13 µm IBM8RF) in order to evaluate the 

performance impacts imposed by the vectorized dynamic precision processing 

mechanism. All the designs are developed with parameterized VHDL hardware 

description language, and verified using extensive simulations with randomly generated 
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operands. The correctness is demonstrated by comparing results with the outputs from 

trusted software, such as MATLAB and Perl programs. Synthesis results of latency and 

area are provided for fixed-point ALUs, while a more detailed report, including both 

synthesis and layout results for pipelined designs, is presented and analyzed for each of 

the floating-point architectures. When evaluating the presented ALUs, we used the results 

from their respective traditional design with similar implementation efforts as the 

baseline. In general, a 128-bit dynamic precision fixed-point adder (except RCA adder) 

with 4-bit sub-blocks is 10%~15% slower and 10%~20% larger, depending on the actual 

adder structure. Similarly, a 128-bit bit-wise multiplier is 3% slower and 9% larger, and a 

128-bit modified Booth-4 multiplier is 19% slower and 33% larger than a traditional 

multiplier. From the implementation results of our floating-point multipliers, the eight-

mode bit-wise multiplier is 15% slower but with a similar hardware requirement, and the 

Booth-4 multiplier is 8% slower and 3% larger. After place and route, the latency 

performance of the eight-mode adder is on par with a traditional adder, but with a 

doubled size. Compared to a 128-bit traditional FMA unit, the presented bit-wise 

implementation is 15% slower and 12% larger, while the modified Booth-4 design is 8% 

slower and 18% larger. From the implementations and analysis, it can be concluded that 

it is promising to enable dynamically defined precision support and vectorized operations 

for common ALUs with reasonable extra costs of processing speed and silicon area, even 

for a high precision 128-bit ALU with relatively small sub-block size.  

We performed a broad design space exploration before developing the ALU 

architectures with dynamically defined precision, and considered many options that are 
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not presented in this dissertation. Take the most fundamental number representation 

system for an example. We also considered several conventional and unconventional 

representations, such as decimal, biased, redundant, and residue number systems [14]. 

Decimal representation, although the best option for human understanding, is not suitable 

for digital system where data are encoded with binary bits, resulting in a redundant 

representation and complicated arithmetic. A redundant system enables speedup 

operations by removing possible carry propagation, but faces problems due to the 

requirement of conversions between the internal and external format when interfaced 

with outside systems. Although a residue system might speedup certain operations with 

true parallelism, it is determined to be not suitable for general applications due to the 

difficulty of some basic arithmetic operations [14]. In terms of actual operator 

architecture, we also investigate many other options. Some of these options can be 

considered equivalent in some degree to the implementations presented, while some are 

only suitable for specific applications. For example, a carry-select adder requires extra 

hardware for each option offered, thus the hardware requirement increases with the 

increasing selection options (e.g., very high precision adders). Nevertheless, we were able 

to incorporate the underlying idea into our floating-point ALU implementation. For 

instance, the addition of the three significand vectors in a FMA unit takes advantage of 

the carry-select method to reduce latency and hardware requirements. Although a 

floating-point adder with dual-path algorithm is not presented, it can be easily 

implemented using the modules from our single-path adder with slight modifications. 

Combining the presented dynamic precision multiplier and the divide-and-conquer 

technique, higher precision hybrid iterative multipliers can be implemented. When 



114 

 

designing the eight-mode scheme to demonstrate the general dynamic precision floating-

point architectures, we decided to employ uniform exponent and significand size for all 

elements. This scheme can be expanded to handle more complicated configurations, such 

as higher total bit-width, variable sub-block sizes, more operational modes (standard and 

non-standard), and non-uniform sizes for exponents and significands. 

Arithmetic logic units with dynamically defined precision have great potential for 

improving scientific computation, by allowing lower-level precision optimization for 

applications. Applications that currently seek dynamic precision support from software 

libraries can be ported to run directly on the hardware ALUs. The performance can be 

improved greatly thanks to direct hardware support and the removal of library overhead. 

More importantly, the dynamic precision ALU implementations can become the 

foundation for even more sophisticated software solutions that is temporary impractical 

in the hardware domain, resulting in broader powerful options for scientific researchers 

and engineers. Vectorized processing is an indispensable capability for efficient dynamic 

precision architectures, because of the desire for better performance by maximizing 

hardware utilization and parallelism in hardware units throughout the whole computation, 

regardless of the operating precision.  The realization of this dynamic precision approach 

for scientific computing involves significant changes in many aspects of the computing 

infrastructure, including but not limited to the arithmetic units (the ultimate goal of this 

research), the processor microarchitectures, the memory, the compilers, the applications, 

and more importantly the users. There is a dilemma for the dynamic precision approach: 

people do not develop dynamic precision algorithms because there is no general-purpose 
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hardware to support them, and people do not implement general-purpose dynamic 

precision ALUs because there are no applications to run on them. The changes are 

difficult, but sometimes we must make a first step and exploit other promising options, 

especially when some of the current directions are not sustainable. We made our first 

small step, and we believe it will be a solid stepping-stone to a better scientific computing 

era. 

This dissertation laid out a framework for ALU architectures with dynamically 

defined precision, on which many architectural and implemental improvements can be 

built in the future. For example, more effort should be spent on the optimization of the 

presented dynamic precision architectures and sub-modules for better performances, as 

well as on the optimization tuning during the synthesis and automatic place-and-rout 

(APR) stages for better implementations. We can also further expand our exploration of 

potential architectures for the implementation of dynamic precision operators. It will be 

interesting to see how our presented architectures can be adapted for the hardware 

implementation of the new unum system [48]. Because the unum system uses variable 

exponent and significand sizes, it is a perfect candidate for adapting our presented 

dynamic precision architectures. Last but not least, we can try to implement the presented 

architectures with fully custom design flows, which is the industry standard for 

commercial processors, for a more realistic performance comparison to arithmetic units 

in modern CPUs. Custom design can generate the most optimized implementation in 

terms of latency, area, and power requirement, and therefore reveal the true potential of 

the presented dynamic precision architectures for future scientific computation. 
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