114 research outputs found

    Wireless integrated circuit for 100-channel charge-balanced neural stimulation

    Get PDF
    Journal ArticleThe authors present the design of an integrated circuit for wireless neural stimulation, along with benchtop and in-vivo experimental results. The chip has the ability to drive 100 individual stimulation electrodes with constant-current pulses of varying amplitude, duration, interphasic delay, and repetition rate. The stimulation is performed by using a biphasic (cathodic and anodic) current source, injecting and retracting charge from the nervous system. Wireless communication and power are delivered over a 2.765-MHz inductive link. Only three off-chip components are needed to operate the stimulator: a 10-nF capacitor to aid in power-supply regulation, a small capacitor (100 pF) for tuning the coil to resonance, and a coil for power and command reception. The chip was fabricated in a commercially available 0.6- m 2P3M BiCMOS process. The chip was able to activate motor fibers to produce muscle twitches via a Utah Slanted Electrode Array implanted in cat sciatic nerve, and to activate sensory fibers to recruit evoked potentials in somatosensory cortex

    An efficient telemetry system for restoring sight

    Get PDF
    PhD ThesisThe human nervous system can be damaged as a result of disease or trauma, causing conditions such as Parkinson’s disease. Most people try pharmaceuticals as a primary method of treatment. However, drugs cannot restore some cases, such as visual disorder. Alternatively, this impairment can be treated with electronic neural prostheses. A retinal prosthesis is an example of that for restoring sight, but it is not efficient and only people with retinal pigmentosa benefit from it. In such treatments, stimulation of the nervous system can be achieved by electrical or optical means. In the latter case, the nerves need to be rendered light sensitive via genetic means (optogenetics). High radiance photonic devices are then required to deliver light to the target tissue. Such optical approaches hold the potential to be more effective while causing less harm to the brain tissue. As these devices are implanted in tissue, wireless means need to be used to communicate with them. For this, IEEE 802.15.6 or Bluetooth protocols at 2.4GHz are potentially compatible with most advanced electronic devices, and are also safe and secure. Also, wireless power delivery can operate the implanted device. In this thesis, a fully wireless and efficient visual cortical stimulator was designed to restore the sight of the blind. This system is likely to address 40% of the causes of blindness. In general, the system can be divided into two parts, hardware and software. Hardware parts include a wireless power transfer design, the communication device, power management, a processor and the control unit, and the 3D design for assembly. The software part contains the image simplification, image compression, data encoding, pulse modulation, and the control system. Real-time video streaming is processed and sent over Bluetooth, and data are received by the LPC4330 six layer implanted board. After retrieving the compressed data, the processed data are again sent to the implanted electrode/optrode to stimulate the brain’s nerve cells

    Implantable Micro-Device for Epilepsy Seizure Detection and Subsequent Treatment

    Get PDF
    RÉSUMÉ L’émergence des micro-dispositifs implantables est une voie prometteuse pour le traitement de troubles neurologiques. Ces systèmes biomédicaux ont été exploités comme traitements non-conventionnels sur des patients chez qui les remèdes habituels sont inefficaces. Les récents progrès qui ont été faits sur les interfaces neuronales directes ont permis aux chercheurs d’analyser l’activité EEG intracérébrale (icEEG) en temps réel pour des fins de traitements. Cette thèse présente un dispositif implantable à base de microsystèmes pouvant capter efficacement des signaux neuronaux, détecter des crises d’épilepsie et y apporter un traitement afin de l’arrêter. Les contributions principales présentées ici ont été rapportées dans cinq articles scientifiques, publiés ou acceptés pour publication dans les revues IEEE, et plusieurs autres tels que «Low Power Electronics» et «Emerging Technologies in Computing». Le microsystème proposé inclus un circuit intégré (CI) à faible consommation énergétique permettant la détection de crises d’épilepsie en temps réel. Cet CI comporte une pré-amplification initiale et un détecteur de crises d’épilepsie. Le pré-amplificateur est constitué d’une nouvelle topologie de stabilisateur d’hacheur réduisant le bruit et la puissance dissipée. Les CI fabriqués ont été testés sur des enregistrements d’icEEG provenant de sept patients épileptiques réfractaires au traitement antiépileptique. Le délai moyen de la détection d’une crise est de 13,5 secondes, soit avant le début des manifestations cliniques évidentes. La consommation totale d’énergie mesurée de cette puce est de 51 μW. Un neurostimulateur à boucle fermée (NSBF), quant à lui, détecte automatiquement les crises en se basant sur les signaux icEEG captés par des électrodes intracrâniennes et permet une rétroaction par une stimulation électrique au même endroit afin d’interrompre ces crises. La puce de détection de crises et le stimulateur électrique à base sur FPGA ont été assemblés à des électrodes afin de compléter la prothèse proposée. Ce NSBF a été validé en utilisant des enregistrements d’icEEG de dix patients souffrant d’épilepsie réfractaire. Les résultats révèlent une performance excellente pour la détection précoce de crises et pour l’auto-déclenchement subséquent d’une stimulation électrique. La consommation énergétique totale du NSBF est de 16 mW. Une autre alternative à la stimulation électrique est l’injection locale de médicaments, un traitement prometteur de l’épilepsie. Un système local de livraison de médicament basé sur un nouveau détecteur asynchrone des crises est présenté.----------ABSTRACT Emerging implantable microdevices hold great promise for the treatment of patients with neurological conditions. These biomedical systems have been exploited as unconventional treatment for the conventionally untreatable patients. Recent progress in brain-machine-interface activities has led the researchers to analyze the intracerebral EEG (icEEG) recording in real-time and deliver subsequent treatments. We present in this thesis a long-term safe and reliable low-power microsystem-based implantable device to perform efficient neural signal recording, seizure detection and subsequent treatment for epilepsy. The main contributions presented in this thesis are reported in five journal manuscripts, published or accepted for publication in IEEE Journals, and many others such as Low Power Electronics, and Emerging Technologies in Computing. The proposed microsystem includes a low-power integrated circuit (IC) intended for real-time epileptic seizure detection. This IC integrates a front-end preamplifier and epileptic seizure detector. The preamplifier is based on a new chopper stabilizer topology that reduces noise and power dissipation. The fabricated IC was tested using icEEG recordings from seven patients with drug-resistant epilepsy. The average seizure detection delay was 13.5 sec, well before the onset of clinical manifestations. The measured total power consumption of this chip is 51 µW. A closed-loop neurostimulator (CLNS) is next introduced, which is dedicated to automatically detect seizure based on icEEG recordings from intracranial electrode contacts and provide an electrical stimulation feedback to the same contacts in order to disrupt these seizures. The seizure detector chip and a dedicated FPGA-based electrical stimulator were assembled together with common recording electrodes to complete the proposed prosthesis. This CLNS was validated offline using recording from ten patients with refractory epilepsy, and showed excellent performance for early detection of seizures and subsequent self-triggering electrical stimulation. Total power consumption of the CLNS is 16 mW. Alternatively, focal drug injection is the promising treatment for epilepsy. A responsive focal drug delivery system based on a new asynchronous seizure detector is also presented. The later system with data-dependent computation reduces up to 49% power consumption compared to the previous synchronous neurostimulator

    System architecture for an intelligent implantable bio-telemetry device

    Full text link
    Biotelemetry has long been used for environmental and life science research to study animal populations and behavior. The use of implantable bio-telemetric techniques makes it possible to record and study physiological variables during long-term experiments with a minimum disturbance to the animal. Fully implantable telemetric techniques greatly reduce the risk of infection associated with leads and catheters protruding from the skin. In this research the design and implementation of a completely programmable bio-implantable digital system which can measure two physiological signals extended over a period of time is considered. The proposed system consists of a standalone implantable transmitter unit and a receiving base station unit. The transmitter unit measures the physiological parameter converts it to an 8-bit digital data, sends it to the inbuilt Bluetooth transceiver which then wirelessly transmits the digital data to the base station. The system utilizes the power intelligently by turning on only when needed, the rest of the time it goes to sleep mode. The biotelemetry system proposed is simple, flexible and reliable, provides accurate, continuous measurement of physiological parameters of small freely moving laboratory animals such as mice, rats or rabbits. The absence of restraints during the collection of physiological data allows studying animals with minimal stress during a long period of time in their normal housing

    From Wearable Sensors to Smart Implants – Towards Pervasive and Personalised Healthcare

    No full text
    <p>Objective: This article discusses the evolution of pervasive healthcare from its inception for activity recognition using wearable sensors to the future of sensing implant deployment and data processing. Methods: We provide an overview of some of the past milestones and recent developments, categorised into different generations of pervasive sensing applications for health monitoring. This is followed by a review on recent technological advances that have allowed unobtrusive continuous sensing combined with diverse technologies to reshape the clinical workflow for both acute and chronic disease management. We discuss the opportunities of pervasive health monitoring through data linkages with other health informatics systems including the mining of health records, clinical trial databases, multi-omics data integration and social media. Conclusion: Technical advances have supported the evolution of the pervasive health paradigm towards preventative, predictive, personalised and participatory medicine. Significance: The sensing technologies discussed in this paper and their future evolution will play a key role in realising the goal of sustainable healthcare systems.</p> <p> </p

    Fully-Implantable Self-Contained Dual-Channel Electrical Recording and Directivity-Enhanced Optical Stimulation System on a Chip

    Get PDF
    This thesis presents an integrated system-on-a-chip (SoC), designed, fabricated, and characterized for conducting simultaneous dual-channel optogenetic stimulation and electrophysiological recording. An inductive coil as well as power management circuits are also integrated on the chip, enabling wireless power reception, hence, allowing full implantation. The optical stimulation channels host a novel LED driver circuit that can generate currents up to 10mA with a minimum required headroom voltage reported in the literature, resulting in a superior power efficiency compared to the state of the art. The output current in each channel can be programmed to have an arbitrary waveform with digitally-controlled magnitude and timing. The final design is fabricated as a 34 mm2 microchip using a CMOS 130nm technology and characterized both in terms of electrical and optical performance. A pair of custom-designed inkjet-printed micro-lenses are also fabricated and placed on top of the LEDs. The lenses are optimized to enhance the light directivity of optical stimulation, resulting in significant improvements in terms of spatial resolution, power consumption (30.5x reduction), and safety aspects (temperature increase of <0.1c) of the device

    Removal of electromyography noise from ECG for high performance biomedical systems

    Get PDF
    This paper presents the review of the biomedical system which consists of an energy source, signal processing, signal conditioning and signal transmission. These blocks are designed by various optimization techniques to achieve high operating speed, compressed area and minimum energy consumption. These techniques are mainly divided in to four aspects: (a) increasing the longevity of device using energy harvesting approaches; (b) reducing the delay to enhance the operating frequency; (c) reducing the data storage using data compression; (d) increasing the data rate transmission with reduced power consumption. This review paper briefly summarizes the various techniques and device performance achieved by these techniques. To attain these high performance systems input played a vital role. This paper also presents the different low pass IIR filter approximation method techniques to remove Electromyography noise from ECG input signal. For this purpose, we have taken MIT-BIH Arrhythmia database. We have calculated signal to noise ratio and power spectral density. On comparing their performance parameters of different low pass IIR filters, Elliptic filter has found best suited to remove this type of noise

    Embedded platform for electrical neural stimulation

    Get PDF
    Tese de mestrado integrado em Engenharia Biomédica e Biofísica, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2015Atualmente, o número de tecnologias baseadas em neuro-estimulação está em crescimento, crescimento este que é promovido pelo facto de a neuro-estimulação ser uma área de investigação de elevado interesse devido às várias áreas de possível aplicação, tais como a terapia e tratamento, reabilitação e próteses. Na área da terapia e tratamentos, a possível aplicação da neuro-estimulação está relacionada com a neuro-regulação de órgãos do corpo humano, aplicação que tem sido vista já no campo dos distúrbios do sistema nervoso, tais como a doença de Parkinson e a epilepsia, no tratamento de dor crónica, no controlo do funcionamento cardíaco {no qual se insere uma das tecnologias mais conhecidas, o pacemaker { e está ainda a ser investigada para o controlo da libertação de insulina e a absorção renal de sais. Na área da reabilitação, a aplicação da neuro-estimulação tem sido vista em casos de lesões na medula espinal onde a utilização da técnica de estimulação eléctrica funcional, ou FES de Funcional Electrical Stimulation, resultou na recuperação de algumas funções motoras e de controlo de certos órgãos. Relativamente à área das próteses, a neuro-estimulação tem um papel muito importante principalmente no desenvolvimento de próteses funcionais, permitindo que estas próteses não só reajam a informação vinda do sistema de nervoso, realizando os movimentos desejados pelo utilizador, como também forneçam informação ao mesmo, permitindo assim que haja um mecanismo de feedback da prótese, aumentando assim a restituição que esta pode dar ao seu utilizador, tanto a nível funcional como emocional. Uma das mais conhecidas próteses que recorrem à neuro-estimulação é o implante coclear que permite uma recuperação parcial da capacidade auditiva recorrendo para isso a um conjunto de microfones no ouvido externo que deteta o som e o transmite à unidade de processamento que por sua vez transforma o som em impulsos eléctricos que são direccionados para eléctrodos no interior da cóclea e que irão estimular os nervos auditivos. A neuro-estimulação é então um procedimento baseado na estimulação de células excitáveis, como os neurónios, recorrendo para isso à utilização de eléctrodos, com o objectivo de iniciar ou inibir um potencial de acção. Esta possibilidade de iniciar um estímulo nervoso através de estímulos externos deve-se ao facto da activação e propagação de um sinal neural ser um fenómeno eletroquímico. Este fator torna possível o desenvolvimento de tecnologias que resultem numa maior, ou menor, recetividade da célula a um estímulo através da promoção de alterações do meio em que estão inseridas as células excitáveis ou de propriedades da membrana das mesmas. O desenvolvimento de tecnologias que recorram à neuro-estimulação está dependente de um estudo profundo dos tipos e estratégias de estimulação de forma a obter a estratégia que seja mais eficaz, segura e eficiente, sendo que esta varia de situação para situação, dependendo de fatores como o local de aplicação e mesmo o resultado que se espera do estímulo. Por estes motivos têm de ser realizados estudos comparativos válidos entre estratégias de estimulação e, para um estudo deste tipo ser valido, os vários estudos devem ser feitos nas mesmas condições com distâncias temporais preferencialmente curtas. Assim sendo, no âmbito da neuro-estimulação recorrendo a estímulos eléctricos, criou-se a necessidade de desenvolver sistemas que permitissem uma mais rápida variação dos parâmetros de estimulação comparativamente à montagem experimental clássica. De forma a cumprir estes requisitos, vários sistemas de rápida configuração de parâmetros tem vindo a ser propostos. O projeto relatado nesta Tese de Mestrado, desenvolvido durante um estágio de seis meses no Centre for Bio-Inspired Technologies, Imperial College London, apresenta-se então como uma plataforma de neuro-estimulação eléctrica para a realização de estudos comparativos tendo em vista a optimização da estratégia de estimulação, com o objectivo de ser uma versão melhorada dos sistemas já disponíveis. Esta plataforma é composta por três principais componentes: uma interface utilizador-sistema, que permite ao utilizador configurar a estimulação como pretende controlando características como o tipo de onda, a amplitude, a duração, a frequência, entre outros; um microcontrolador e uma placa de estimulação, em que o primeiro controla o segundo de acordo com o que foi configurado pelo utilizador sendo que a placa têm a responsabilidade de gerar e aplicar um estímulo eléctrico. O principal objetivo deste projeto era então desenvolver uma plataforma de neuro-estimulação eléctrica capaz de gerar e aplicar uma estimulação eléctrica bipolar com capacidade de equilíbrio de cargas, podendo fazê-lo através de quatro canais de estimulação. Ao mesmo tempo era objetivo que esta fosse pequena, de baixo custo, eficaz, eficiente, de fácil utilização proporcionando um maior leque de possibilidades de configuração comparativamente aos sistemas já desenvolvidos e que pudesse também ser facilmente recriado, alterado e, eventualmente, melhorado. Os resultados obtidos de testes realizados demonstraram que esta plataforma opera corretamente nos dois principais aspetos do seu funcionamento, nomeadamente a capacidade de gerar uma estimulação de acordo com todos os parâmetros tal como configurados pelo utilizador e a capacidade de cumprir os propósitos de equilíbrio de cargas após estimulação, em todos os tipos de ondas definidos. Existem no entanto ainda algumas limitações no funcionamento da plataforma. Estas limitações estão relacionadas com a amplitude máxima de estimulação que o sistema é capaz de aplicar, mais especialmente a amplitude máxima do output do DAC utilizado e também a amplitude máxima que o amplificador operacional escolhido consegue por no seu output; com a existência de algumas imprecisões temporais na aplicação do estímulo, resultantes do tempo de execução de algumas funções por parte do microcontrolador; com o consumo energético e ainda o facto de a ligação entre o computador e o microcontrolador ser feita através de um cabo USB, o que limita a mobilidade que se pode ter durante o trabalho experimental. Comparativamente a plataformas de estimulação eléctrica configuráveis existentes, o sistema aqui desenvolvido apresenta diversas vantagens. Para além de vantagens como baixo custo e facilidade de recriação, esta plataforma tem também um maior número de parâmetros da estimulação que o utilizador pode configurar e também permite uma estimulação através de quatro canais, de três formas diferentes: utilizando apenas um canal, utilizando mais do que um canal ao mesmo tempo ou ainda mais do que um canal de forma sequencial. No entanto, alguns dos sistemas já existentes não apresentam as limitações acima referidas e como tal os desafios futuros desta placa passam por ultrapassar essas limitações.Nowadays, neuro stimulation technologies have grown to reach a wide range of applications including therapy and treatment, rehabilitation and prosthetics and its range continues to grow as it still represents an interesting area of research. Neurostimulation is based on stimulation of excitable cells, such as nerve cells, through the use of electrodes, with the purpose of achieving initiation or inhibition of an action potential. This interaction is possible due to the electrophysiological base of activation and propagation of a neural signal. This neural signal characteristic makes it possible to use external technologies to promote changes in the nerve cell membrane voltage potential or the environment surrounding it, which can lead to the initiation of a neural signal in the cell or simply to a higher, or lower, receptivity of the cell to a stimulus. The use of neuro stimulation technologies in referred areas and future possibility of use in other applications depends on research developments. An important point of this research is the stimulation strategy, more specifically, the characteristics that a stimulation pulse should have to optimize results towards the intended objective and minimize safety risks. The present thesis reports a project developed during an internship at the Centre for Bio-Inspired Technologies, Imperial College London which consists in designing and building a full system for the study of stimulation strategies. This full system includes a user interface in a computer, so that the user can choose the stimulus characteristics, such as waveform and amplitude, and define the intended strategy, such as repetition rate and inter-stimulus increasing or decreasing rate; and a microcontroller for control of stimulus application through a front-end stimulation-output circuit, which will be responsible for generation of programmed current-controlled stimulus. The measurement results verify that the main objectives of this project were accomplished, namely, the capacity to generate a stimulation that meets the parameters as configured by the user and the capacity to carry a charge-balanced stimulation in all the preset waveforms. However, some limitations were also found related namely with the maximum stimulation amplitude, the small time inaccuracy during stimulation, the power consumption and the fact that connection between the computer and microcontroller is done via USB, limiting the mobility of an experimental procedure using this system. The system developed here presents some advantages compared to existing systems, such as low cost, easy to build, higher number of parameters that can be configured and can apply stimulation through four channels and do it either with only one, with two or more at the same time or with two or more sequentially. However some of these existing systems do not present some of the limitations mentioned and the challenge on the future of this platform is to overcome these limitations
    corecore