
FULLY-IMPLANTABLE SELF-CONTAINED DUAL-

CHANNEL ELECTRICAL RECORDING AND 

DIRECTIVITY-ENHANCED OPTICAL STIMULATION 

SYSTEM ON A CHIP 

TAYEBEH YOUSEFI 

A THESIS SUBMITTED TO 

THE FACULTY OF GRADUATE STUDIES 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF  

MASTER OF COMPUTER SCIENCE AND ELECTRICAL ENGINEERING 

GRADUATE PROGRAMME IN COMPUTER SCIENCE AND 

ELECTRICAL ENGINEERING 

YORK UNIVERSITY 

TORONTO, ONTARIO 

AUGUST 2019 

© TAYEBEH YOUSEFI, 2019 
 



 

 ii 

ABSTRACT 

This thesis presents an integrated system-on-a-chip (SoC), designed, fabricated, 

and characterized for conducting simultaneous dual-channel optogenetic stimulation and 

electrophysiological recording. An inductive coil as well as power management circuits 

are also integrated on the chip, enabling wireless power reception, hence, allowing full 

implantation. 

The optical stimulation channels host a novel μLED driver circuit that can generate 

currents up to 10mA with a minimum required headroom voltage reported in the literature, 

resulting in a superior power efficiency compared to the state of the art. The output current 

in each channel can be programmed to have an arbitrary waveform with digitally-

controlled magnitude and timing. The final design is fabricated as a 3×4 mm2 microchip 

using a CMOS 130nm technology and characterized both in terms of electrical and optical 

performance.  

A pair of custom-designed inkjet-printed micro-lenses are also fabricated and 

placed on top of the μLEDs. The lenses are optimized to enhance the light directivity of 

optical stimulation, resulting in significant improvements in terms of spatial resolution, 

power consumption (30.5x reduction), and safety aspects (temperature increase of   <0.1ºc) 

of the device. 
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Chapter 1  

 

Introduction 

 

 

 

 

1.1 Introduction to Optogenetics 

Investigating the brain functions and dysfunctions to better understand and possibly treat 

neurological disorders such as Epilepsy and Parkinson not only requires tools/methods for 

continuous activity monitoring (e.g., electroencephalography), but also needs means for 

manipulating the neurons’ activity. Pharmacological agents, magnetic stimulation and 

electrical stimulation are capable of altering brain neuronal activities [1], [2], [3]. These 

methods generally vary in terms of activation latency, level of invasiveness, spatial and 

temporal precision, etc.  

Optogenetics is a relatively new method for brain electro-physiological activity 

modulation that has received significant attention over the past decade [4], mainly due to 

single-cell-scale spatial resolution and millisecond-scale temporal precision [5]. 

Optogenetic stimulation is performed by first, introducing light-sensitive proteins to the 
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neuron membrane by genetically modifying the target neurons, and next, modulation of the 

neural activities using optical stimulation at a specific wavelength [6], [7]. 

This introductory chapter starts by explaining the mechanism of how introducing 

and optically stimulating such light-sensitive neurons could change inter-neuron signaling 

in the brain, followed by describing and comparing commonly-used types of light-sensitive 

proteins. Next, Optogenetic is compared with electrical stimulation, as one of the most 

commonly used methods of neurological modulation. Next, a conclusive literature review 

of the significant projects in this area is presented along with their advantages and 

shortcomings, which brings us to the objective of this work. The chapter ends with a 

summary of the thesis organization. 

1.2 Action potential generation 

To better describe the mechanism underlying the optogenetic stimulation, the generation 

procedure of a single action potential (the change in cell membrane's potential that plays a 

key role in cell-to-cell communications) should be explained. Action potential generation 

is a result of ion flow through the membrane of excitable cells such as neurons. Ion 

channels and ion pumps are two types of border guards that control the ion movements 

across the cell membrane by allowing specific ion cross passing the neuron membrane [8]. 

When ion channels open, movement of selected ions specific to that channel generates a 

current in the direction of electrical potential and concentration gradient. On the contrary, 

ion pumps consume energy to act against electrical potential and concentration gradient to 
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maintain the resting membrane potential by moving the ions in the opposite direction from 

the ion flow through the channels.  

 When the neuron is in the resting state, there is a voltage difference across the 

membrane due to the different ion concentrations between inside and outside of the cell. 

For a neuron in the resting, the Na+ ion concentration is higher in extracellular fluid, and 

K+ ion concentration is higher in intracellular fluid, resulting in a resting potential of 

approximately -70mV. Figure 1.1 is a simple illustration of the cell membrane, showing 

the ion channels and pumps, as well as sodium and potassium ion concentrations during 

resting. 

 

Figure 1.1: Resting membrane potential and ion concentration. 

The main contributors to the generation of an action potential in a neuron are Na+ 

and K+ channels, both being controllable by membrane voltage (voltage-gated channels).  

These channels will open when the voltage across the neuron membrane reaches a certain 

magnitude, typically due to a triggering event or cross membrane ion movement. Figure 1.2 

shows the “Depolarization” phase where the opening of Na+ channels causes an inward 
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sodium ion flow, resulting in the neuron to be positively charged, hence an increase in the 

membrane potential. 

  

Figure 1.2: Depolarization phase of action potential generation. 

The voltage increase due to the depolarization continues until the membrane 

potential is high enough to trigger the K+ channels to open and the Na+ channels to close. 

As shown in Figure 1.3 this means stopping the inward current of Na+ ions, and 

simultaneously generating an outward flow of K+ ions. “Repolarizing” the membrane 

voltage will continue even below the typical resting potential resulting in 

“hyperpolarization” phase.  

 

Figure 1.3: Repolarization phase of action potential generation. 
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Finally when hyperpolarization pushes the membrance voltage low enough to close 

the K+ channels, the sodium-potassium pumps will start to re-establish the ion 

concentration in intracellular and extracellular region, leading the neurons back to the 

resting state. As presented in Figure 1.4, since pumps are moving the ions against the 

electrical potential and concentration gradient, they need to consume energy in the form of 

adenosine triphosphate (ATP). Therefore, unlike the channels, this ion flow is not 

spontaneous after opening of ion pumps. 

 

Figure 1.4: Ion pumps function to re-establish resting potential. 

1.3 Light-sensitive neurons 

As mentioned earlier, one way to manipulate the brain electrophysiological activity is 

through optogenetics. It involves introducing special proteins to the neuron membrane, 

called opsins that are sensitive to a specific optical wavelength. These proteins either form 

light-sensitive channels or pumps inside the cell membrane, or alter the membrane resting 

potential across the membrane. Light-sensitive ion channels and pumps allow for 

generation and abortion of action potentials, respectively, triggered by an incident light 
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with the right wavelength and sufficient energy. Altering the resting potential of the 

membrane can increase/decrease its excitability  

There has been a great effort on the electrophysiology aspect of optogenetics to 

generate different types of opsins, each sensitive to a specific optical wavelength with 

different reactions (e.g., excitatory or inhibitory) to an incident light. Such variety helps 

with a more precise control of brain signaling mechanism. Table 1.1 lists the three types of 

opsins reported and used in literature, and their properties.  

Table 1.1: Opsin comparison.  

Opsin Effect 
Membrane 

structure 

Activation 

wavelength 

Required 

irradiance 
Deactivation 

ChR2 Excitatory
 

Channel
 

4470 nm 

(Blue)
 

1-10 mW/mm2 Illumination cessation
 

NpHR Inhibitory
 

Pump
 

590 nm 

(Yellow)
 

3.5-10 mW/mm2

 
Illumination cessation

 

SFO Excitatory
 

Resting 

Potential
 

470 nm 

(Blue)
 

0.01-0.1 mW/mm2

 

Green/Yellow light 

(2.4 mW/mm2) 

 

1.4 Optogenetic vs electrical stimulation 

The neural stimulation mechanism described above results in a set of unique features for 

optogenetics compared to other neuro-modulation techniques (e.g., electrical, magnetic, 

etc.) that enable experimental studies that were impossible with conventional methods. As 

presented in Figure 1.5 the first advantage of optogenetics stimulation its cell-type 

specificity, which means unlike electrical stimulation that excites all the neurons in the 
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proximity of the electrode, only the neurons that are genetically-modified will be affected 

by the optical stimulation. The other important difference is, while optogenetics is capable 

of excitatory and inhibitory effects [9], inducing inhibitory effects using electrical 

stimulation is usually an indirect and power inefficient process [10]. Another big advantage 

of optogenetics is the possibility of simultaneous recording and stimulation. This is not the 

case for electrical stimulation as the stimulation pulses generate artifacts that are orders of 

magnitude larger than the signal of interest, causing amplifier saturation [11]. Moreover, 

optical stimulation does not carry the risk of tissue damage due to charge accumulation, 

while electrical stimulation requires charge-balancing auxiliary circuits to avoid such an 

issue. Table 1.2 summarizes the main features of optogenetic versus electrical stimulation.  

 

Figure 1.5: Optical stimulation versus electrical stimulation. 
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Table 1.2: Optogenetic vs electrical stimulation. 

 
Electrical Stimulation Optogenetic Stimulation 

Cell-type Specificity No Yes 

Effects Excitatory Excitatory inhibitory 

Charge Balance Required Not required 

Simultaneous Rec. & Stim. No Yes 

Require Direct Contact No Yes 

Require Genetic Modification No Yes 

 

1.5 Review of state-of-the-art 

The unique advantages of optogenetics have motivated many researchers across various 

fields such as biology (e.g., studying various opsins), medicine (running clinical 

optogenetic experiments), and engineering (development and miniaturization of tools that 

enable optogenetic experiments). The engineering efforts range from efficiency-

optimization of light-generating elements to the design and integration of electronic circuits 

for driving, controlling, and communicating with such light sources.  In the rest of this 

section, a comparative review of the major state-of-the-art research efforts aimed at the 

design and development of optogenetic microsystems is presented. 

A head-mountable device for simultaneous optical stimulation and electrical 

recording with wireless data transmission is presented in [12]. In this design, a mixed-

signal controller is implemented to precisely control optical stimulation light intensity. 

However, this design requires a 3.7V Lithium-ion polymer battery as the power supply 

(16.0mm x 15.0mm x 5.0mm, 1.9gr) and a separate PCB for data transmission. 

Furthermore, since this system should be placed on the head it needs to use an optical fiber 
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going through the skull bone to deliver the light to the target tissue. As presented Figure 1.6, 

using the battery, discrete components for wireless data transmission and the optrode 

significantly limits the degree to which this device can be miniaturized. The LED-driver in 

this design uses a current mirror structure presented in [13] which is capable of generating 

a linearly controllable current to drive the LED. 

 

Figure 1.6: (Left) Die micrograph plus system level concept of the optogenetic device; (Right) 

Assembled version of the presented design in [12]. 

Figure 1.7 and Figure 1.8 present two miniaturized fully-implantable wireless 

optogenetic stimulation systems reported in [14] and [15], respectively. Both systems are 

wirelessly powered and use µLEDs as their light source with off-the-shelf electronic 

components to implement the driving circuit. The discrete design prevents system scaling 

(in terms of channel count), and none of the two provides control on the light intensity. 
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Furthermore, both systems are stimulation only, and recording must be done with other 

equipment. In both of these designs, the LED optical power is solely controlled by the 

amount of delivered power from the inductive link.   

 

Figure 1.7: Thin, flexible wireless optoelectronic implant using discrete off-the-shelf components [14]. 

 

Figure 1.8: A mm-sized hand-made wirelessly-powered optical stimulator [15]. 

In [16], authors presented two different configurations for optical stimulation of 

surface brain tissue (Figure 1.9- left) and deep brain stimulation (Figure 1.9- right). Both 

of these designs use off-the-shelf discrete components for electrical recording, optical 

stimulation, and data transmission. They both also utilize a microcontroller to control the 
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optical stimulation lighting pattern. The device designed for surface brain stimulation uses 

an addressable array of µLEDs as the light source and a discrete coil to receive inductive 

power. The amount of harvested power is enough to selectively illuminate one of the LEDs 

through the LED array. On the contrary, the prototype suitable for deep brain stimulation 

uses optical fibers to deliver the light to the target tissue. Due to the inefficient coupling 

between the LED and the optical fiber, this version needs a high power LED (30mW) to 

deliver enough power to the target tissue. As a result, inductive power is not enough to 

supply the required power for this design and a miniaturized Lithium polymer battery is 

used in this version.  Same as the previous designs, use of discrete components does not 

allow scaling the fabrication process for these devices. In order to maintain a stable optical 

power over a period of time, the LED is operating using a constant current regulator 

(NSI50010YT1G, On Semiconductor) and a MOSFET switch.  

 

Figure 1.9: (Left) Optogenetic device designed for surface monitoring. (Right) Optogenetic device 

designed for deep brain optogenetic stimulation (both from [16]). 

An on-probe electrical recording and optogenetic stimulation is presented in [17] 

(Figure 1.10 (left)). A custom microfabrication process is used to fabricate the optrode, 
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which is compatible with both commercial LEDs and built-in LEDs. A standard CMOS IC 

will be then flip-chip bonded on this passive structure. This design is also capable of 

controlling output light intensity. However, the LED driver circuit used in this design is 

only capable of providing current in range of 0-1.1 mA, which is an order of magnitude 

less the common standard in the optogenetics studies [18]. Moreover, for implanting this 

device inside the scalp either a battery or inductive coil should be used to deliver the 

required power to the chip, both resulting in significant increase in the device physical size 

and/or weight. In this design, in order to minimize the net electric field across the 

implantable components, an H-bridge configuration is adopted (Figure 1.10 (right)), which 

allows for a biphasic electric field.  

 

Figure 1.10: Left: Conceptual view of the optrode manufactured for electrical recording and 

optogenetics stimulation presented in [17]. Right: The H-bridge LED-driver circuit in forward and 

revere biasing configurations. 
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Recently, a free-floating wirelessly-powered 16-channels implantable optical 

stimulation system on a chip (SoC) was presented in [19] (Figure 1.11). This design uses 

an array of µLEDs as the light source, but due to the limited amount of the inductively-

delivered power, only one LED can be selected and turned on at any time.  

In this work the LED driver circuitry is designed under the presumption that a 

decaying exponential waveform is the most efficient way of optical stimulation due to 

previous experimental results for electrical stimulation with different patterns [20]. 

However, this assumption has not been proved for optical stimulation and due to the 

fundamentally different procedure underlying optical and electrical stimulation, this may 

be a false conclusion.  

As a result of this speculation, the stimulation pulse pattern in this design is always 

a decaying exponential waveform mainly due to the fact that instead of a current-mode 

driver, the LEDs are turned on by discharging the resonance capacitors of the inductive 

power link into the LED. Removal of driving circuits results in saving area and power 

consumption at the cost of losing control on the stimulation pulse waveform magnitude 

and shape (e.g. pulse, ramp, etc). The other problem of a decaying exponential waveform 

is that once we get away from the initial peak, and for a large part of each pulse, the current 

magnitude supplied to the LED is not enough to generate sufficient irradiance power 

required for any optogenetic stimulation. This means that some portion of the current 

consumed is not used for tissue stimulation, hence, wasted. 
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 An important issue that is taken into account in this design is the fact that the 

radiation angle of µLEDs is almost 180 degrees; therefore, a large portion of the generated 

light is shone on non-target cells. In other words, enhancing the light directivity will avoid 

wasting a large portion of the wirelessly-received energy. To do this, an array of custom-

designed micro-lenses were separately fabricated (details in [21] ) and bonded to the main 

system, which includes the microchip as well as the discrete components required for the 

inductive power reception.  

 

Figure 1.11: A conceptual view of the FF-WIOS system wirelessly powered with a 4×4 LED array on 

a 3.3×1.2cm2 PCB presented in [19]. 
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1.6 Conclusion 

Reviewing the state of the art shows that the direction in the design and development of 

tools for optogenetic studies is toward the realization of a fully-implantable device. To 

evaluate the efficacy of the experiment, such a device is preferred to be capable of neural 

signal recording. It should also be able to precisely control the stimulation pulse waveform 

parameters (e.g., magnitude, width, etc.) required for different types of experiments and 

implantation scenarios [22].  

In terms of power supply, earlier reported prototypes relied on battery as their 

source of energy [16], [12] to make the system fully tetherless. However, recent works are 

moving toward providing the power through a wireless link (e.g., magnetic induction) to 

allow for long-term animal experiments and long-term human implantations [16], [19]. 

While the wireless powering link is certainly beneficial, some important considerations 

should be taken into account: 

- The size constraints of a brain-implantable device as well as the SAR (specific 

absorption rate) limits set by the FDA (Food and Drug Administration) [23] enforce a very 

tight limit on the maximum power transferred to the device continuously. This is an order 

of magnitude smaller than the power required to turn the most efficient LEDs on for an 

effective optogenetic stimulation. Therefore, in addition to the wireless powering need, 

there is a need for a temporary power storage element (e.g., a super capacitor or a 

rechargeable battery) on the device to accumulate the received power and release it in a 

controlled manner during the stimulation.  



 

 16 

- The temporary storage element is also limited by the physical size constraints of 

the device. This sets an upper limit for the number of LEDs that can be active at the same 

time. Otherwise, increasing the number of LEDs available on the system without being 

able to activate them simultaneously comes at a very small benefit.  

Based on the above, in addition to all the features that should be included in the 

optogenetic device, perhaps the most important goal in development of these devices is 

improving power efficiency. This could be done through fabrication of a novel LED with 

better power conversion efficiency (i.e., optical power / electrical power), or through better 

circuit and system design, such as deigning a LED driving circuits with adaptive voltage 

compliance. Another approach to achieve a better power efficiency is through light 

directivity enhancement techniques, such as implementing a dome-shape micro-lens on top 

of the LED to converge the light. Converging the light not only can increase the power 

efficiency by focusing all the output light to the target point, but also can increase the 

spatial resolution of the optical stimulation by narrowing the ray trajectory of the LED 

output light.  

1.7 Objective and Organization 

The main objective of this work is to design, fabrication, and experimental validation of a 

power-efficient wirelessly-powered implantable microsystem for simultaneous 

optogenetic stimulation and electrical recording.  

Figure 1.12 depicts the envisaged approach for implanting this free-floating micro-

systems on the brain cortex, where each device that is comprised of a 3×4 mm2 SoC with 
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two 270×220 um2 µLEDs, each coupled with an optical micro-lens, assembled on top of it 

(full system description in Chapter 2). The fabricated chip also include two differential 

recording channel and the conductive pads on the chip play the role of the electrodes.   

 

 

Figure 1.12: Proposed implantable device for simultaneous optical stimulation and electrical recording 

with on-chip coil, equipped with micro-lenses on top of the µLEDs. 

The SoC hosts electronic circuits for both optical stimulation and electrical 

recording (i.e., amplification and digitization). The stimulation circuitry allows for full 

control of magnitude and timing of pulses for each channel individually. It also integrates 

a 2×2 mm2 inductive coil as well as rectifiers and regulators for inductive power reception.  

A novel current driver circuit (described in Chapter 3) is employed to minimize the 

required voltage supply for driving the µLEDs, therefore maximizing the power efficiency. 

To further improve the energy efficiency of the device, an optical dome-shape micro-lens 
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is designed, optimized, and fabricated to be placed on top of each LED in order to enhance 

its light directivity. The entire process of design, optimization, and fabrication of the lenses 

through additive manufacturing is presented in Chapter 4.  
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Chapter 2  

 

System-Level Design  

Considerations and Optimization 

 

 

 

This chapter presents the system-level design considerations and components optimization 

of the targeted optogenetic implantable medical device. First, the system-level design 

requirements are described and our approach to address each challenge is explained. Then 

different design techniques used for optimizing the device performance in terms of light 

directivity and energy efficiency, together with supporting COMSOL Multiphysics 

simulation results are presented.  

2.1 Optical stimulation requirements 

The first step to design an optogenetic stimulation device is to define the required 

specifications such as light source type, number of channels, stimulation light pattern, 

physical size, power budget, etc. 
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2.1.1 Light Source and light delivery choices for optical stimulation 

The most common choices for light generation in an optical stimulation device are LEDs 

(Light Emitting Diode) and LDs (Laser Diode), and the main delivery methods are using 

an optical fiber, optrode, or implanting the µLED in close proximity of the target tissue.  

Using optical fiber results in a tethered connection, prevents the full implantation 

of the system and increases the possibility of an infection due to the length of the fiber. 

However, placing the light source outside the body would relax the design constraints in 

terms of power consumption, which directly affects temperature increase, compared to a 

fully implanted solution. For this type of light delivery both LEDs and LDs are viable 

choices, but, since LDs generate a coherent light (i.e., no abrupt phase changes), it is a 

better choice for coupling light into the optical fiber as it yields a better coupling efficiency 

(i.e., smaller loss of power at the interface). Using an LED as a light source for an optical 

fiber connection results a coupling efficiency as low as 2 percent [5]. The only reason that 

some optical-fiber-based systems still use the LEDs is their lower cost compared to the 

LDs and the fact that since the light source is outside the body we may be able to increase 

the generated power as much as needed to deliver the targeted optical power to the brain 

tissue.  

The next choice is using optrodes or opto-probes. These are micro-fabricated 

semiconductor structures that are small enough to be fully implantable. The light source in 

this method is usually LEDs located at the tip of the optrode. These LEDs can be a built-

in component of the optrode or commercial LEDs placed on a standard, typically silicon-
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based, structure. Various examples of such designs are presented in [17], [24], [25]. Since 

all the LEDs on the optrodes are controlled by the same back-end circuitry, stimulating 

different cells in a relatively large area of the brain (e.g., a few cm2) results in optrodes 

with physical sizes that are not acceptable for implantation due to safety issues. In addition, 

a big issue with this method is the requirement of a custom microfabrication process that 

is different from the standard CMOS process used for implementation of stimulation and 

possible neural recording circuits. Therefore, the final device might require complex 

packaging schemes that make its production in large quantities financially 

impractical/infeasible. 

The third method is using mm-scale free-floating devices that host LEDs and are 

designed to be implanted intracranially and deliver the light directly to the target cells. 

These self-contained devices integrate the LEDs on the same substrate that the driving 

circuits are implemented on and include necessary components for wireless and battery-

less operation. Similar to the optrode method, adjacency of the light-generating component 

(LEDs) and the brain cells sets strict power dissipation constrains to avoid tissue damage. 

However, the distributed paradigm used in the implantation of these free-floating implants 

(unlike the centralized paradigm used for optrodes where all the circuits were integrated 

on a single chip) makes these constraints more feasible to achieve, especially as the number 

of required LEDs increases. 
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Based on the above discussion, and toward the goal of a many-channel optogenetic 

stimulation system, we opted for a free-floating SoC that uses commercial high-efficiency 

µLEDs as the light source.  

Following a comprehensive review of commercially-available µLEDs, and comparing 

them in terms of their physical size, wall-plug efficiency, threshold voltage, etc., CREE 

TR 2227 was selected. It is available in two wavelengths of 450nm and 527nm. This LED 

has a footprint of 220×270 µm2, which takes close to 1.5% of the 2x2 mm2 overall planned 

area of the free-floating SoC. Figure 2.1 illustrates the I-V characterization of this LED for 

its two wavelengths. As shown, for both cases, the LED current reaches to the commonly-

accepted maximum required for optogenetic stimulation (i.e., 10mA) with a driving voltage 

of less than 3V. As it will be more discussed in Chapter 3, this is of critical importance for 

implementation using a standard (non-high-voltage) CMOS technology, and consequently, 

avoiding substantial energy loss. 
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Figure 2.1: Measurement results for I-V characterization of the target LED (Cree TR2227)  

2.1.2 Number of channels 

Given the typically-high driving currents for optogenetic stimulator LEDs (1 to 10mA, 

drawn from a supply voltage of >3.3V), simultaneous stimulation using an array of LEDs 

is not quite practical yet. Additionally, given the small size of the entire device (appx 3×4 

mm2), achieving high spatial resolution does not seem feasible as the light radiated from 
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different LEDs will shine to significantly overlapping area, unless an extremely high light 

directivity could be achieved. Considering the above, we decided to only integrate two 

LEDs on our device. Of course, if the above-mentioned constraints are addressed in the 

future (e.g., low-threshold highly-directive LEDs) the presented system has no obstacles 

to host a µLED array. One channel (i.e., the µLED and its driving circuitry) is assigned to 

the blue light and the other one is for emitting green/yellow light. With this channel 

assignment, we can trigger various neural behavior for different experiments. The blue 

LED has excitatory effect on the ChR2 opsin family the green/yellow LED has inhibitory 

effect on the NpHR opsin family.  

One example of medical application in this regard is seizure suppression in epilepsy 

patients. As presented in Fig 2.4, one of the main known reasons for epilepsy seizure is the 

positive feedback generated between Cortiothalamic (CT) neurons and Thalamocortical 

(TC) Neurons [26]. One method to break the link of this positive feedback is directly 

inhibiting the TC neurons and the other method is exciting the thalamic reticular nucleus 

(nRT) neurons, which are proved to have inhibitory effects on the TC neurons. This simple 

example evidently shows the superiority of optogenetic stimulation over electrical 

stimulation since the direct inhibitory effect is only applicable in optogenetic stimulation. 

Moreover, [27] suggests direct inhibition is more effective than indirect inhibition to 

successfully suppress epilepsy seizures.  
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Figure 2.2: One example of CT-TC-nRT network during normal state (left) and seizure (left) (Picture 

modified from [27]) 

These two LED colors are also required for activating and deactivating the step 

function opsins and therefore are useful to modulate complicated neuronal behaviours. [28] 

suggests possibility of ultimate control of neurons with spatial resolution of sub-diffraction 

area like a single dendritic spine using these two colors to modulate SFO integrated 

neurons.  

2.1.3 Stimulation patterns 

Optogenetic stimulation is a novel area of research and there are many research questions 

awaiting investigation with the suitable stimulation devices. For instance, from 

electrophysiology point of view, it is crucial to explore specific response of various types 

of opsins to optogenetic stimulation with different light intensities and lighting patterns 

such as ramp vs pulse-light stimulation [22]. With this in mind, we tried to design an 

optogenetic stimulation device capable of generating different lighting patterns such as 
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ramp and pulse with controllable lighting frequency and duty cycle as well as possibility 

of controlling the output light intensity.  

2.2 Directivity enhancement 

Directivity enhancement of the LED radiation is the other goal of this project. The radiation 

pattern of the regular LEDs is around 180° wide. Figure 2.3 illustrate the radiation pattern 

of the CREE TR 2227 LED [picture used is taken from the LED datasheet]. 

 

Figure 2.3: Radiation pattern for Cree TR 2227 [Cree TR 2227 datasheet]. 

This wide illumination pattern has two obvious drawbacks. First issue is that, this 

pattern of radiation limits the spatial resolution of the optical stimulator. This means that 

even if sufficient power is delivered to the mm-scale implantable device, turning n µLEDs 

in an array will have a very similar effect to turning one of those µLEDs with n times more 

current, simply because the area illuminated by all the LEDs in the array are, more or less, 

the same. In this work, we fabricate and integrate a dome-shaped micro-lens, which directs 

the output light of the LED, hence, yielding a higher spatial resolution.   

The second issue originates from the fact that the optical power intensity of the 

LED decreases by getting further from the center of the radiation pattern. Due to the fact 
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that the opsins require a minimum light intensity to show any reaction, some portion of the 

output optical power is wasted, since it does not have enough energy to stimulate the 

opsins. Our solution of using a micro-lens encompassing the LED solves this problem by 

directing all the output light to one target point. As presented in Figure 2.4, using a micro-

lens will fundamentally increase the efficiency and reduce the power consumption of the 

optical stimulation design by not just reducing light dissipation but using all the LED 

output optical power to increase light intensity at the target.  

 

Figure 2.4: Light directivity and spatial resolution with and without the micro-lens. 

Since the targeted focus of optical stimulation might vary from a single point to an 

area of certain shape (e.g., a circle or a ring), it is ideal to be able to fabricate custom micro-

lenses of various shapes. Toward this goal, we proposed to fabricate our micro-lens using 

an inkjet printer. Inkjet printing is a versatile technique for fabricating custom designed 

micro-lenses for various applications [29]. Figure 2.5 depicts some of reported 

configurations for custom designed micro-lenses using inkjet printing. Beside the 

possibility of fabrication of custom-designed micro-lenses for specific applications, inkjet 
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printing allows for quick and low-cost fabrication of such lenses in large quantities, making 

the commercialization of the presented device financially feasible. 

 

Figure 2.5: Representation of custom-designed micro-lenses for different applications [29].  

As mentioned in chapter 1, there has been another report of using micro-lens in an 

optical stimulator device. The light-directing structure presented in [21] consists of a 

frontside micro-lens and a backside reflector to gather all the output light of the LED. 

However, this micro-lens require custom microfabrication process, which makes it 

unsuitable as a scalable solution. Additionally, unlike the inkjet printing, the presented 

process in [21] is specific to a dome-shaped lens and cannot be used for other shapes 

without substantial changes. However, in first step of this project we decided to implement 

a dome-shape micro-lens since it can converge the LED light very efficiently, while having 

a straightforward fabrication process. 

2.3 Micro-lens optimization 

Design and optimization of the micro-lens is done using COMSOL Multiphysics v5.4. 

Among the various shapes possible, a dome-shaped micro-lens was decided to be designed 

and optimized for this device. Through the course of optimization, different structural 
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parameters of the dome were determined. Micro-lens optimization in this work emphasises 

on focusing the light on a specific target tissue, which is located in a perpendicular known 

arbitrary distance from the implant. 

Figure 2.6 outlines the micro-lens+µLED spherical-planar geometry. The 

optimization process mainly depends on the placement of the implant with respect to the 

target tissue. This model is developed based on the assumption of locating the implant 

inside the cerebrospinal fluid (CSF) with an optical refractive index n2. Additionally, the 

target point is at a known distance inside the brain tissue with a refractive index n3 and the 

target area is assumed to be 10×10µm2, which is in order of a single neuron size [30]. This 

model can be simply adjusted for different scenarios, for example, placing the implant in 

the same medium as the target tissue or defining different layers between the implant and 

target tissue or for a different target area.  
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Figure 2.6: Spherical-planar geometry of micro-lens + µLED. 

 The main parameters that defines the micro-lens geometry are lens radius, radius 

of curvature, and the focal length. However, in our model, the contact angle of the lens is 

a process-related parameter and is calculated to be 60°. Therefore, given the radius of 

curvature (Rc) and the contact angle (θ) of the lens, the lens radius is given by Equation 

(2.1).  

 𝑟 = 𝑅𝐶 sin 𝜃 (2.1) 

The radius of curvature itself is a function of effective focal length based on 

Equation (2.2).  
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1

𝑓𝑒𝑓𝑓
=

(𝑛1 − 𝑛2)

𝑛2
×

1

𝑅𝐶
 (2.2) 

where n1 is the refractive index of the lens materials (InkEpo in this case) and n2 is the 

refractive index of surrounding medium.  

Figure 2.7 presents our model of implant location inside the CSF and the target 

tissue. Based on our developed model in order to count for the interface between the CSF 

and the brain tissue, we have to calculate the effective focal length (feff) based on the target 

distance. (Equation (2.3)) 

 𝑓𝑒𝑓𝑓 = 𝑑𝑖𝑚𝑝𝑙𝑎𝑛𝑡 +
𝑛2

𝑛3
(𝑑𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑑𝑖𝑚𝑝𝑙𝑎𝑛𝑡) (2.3) 

 

Figure 2.7: Implant loaction in respect to the target tissue. 

The optimization simulation has been done for different LED wavelengths to 

optimize the micro-lenses for each of the LEDs. Different refractive indexes for different 



 

 32 

wavelengths result in slight difference in final configuration for optimal lenses for different 

LEDs.  

Figure 2.8 illustrates the isometric view of the developed COMSOL model for the 

micro-lens and µLED combination. The LED shape has been presicely modeled based on 

the information in the datasheet. The placement of the LED-lens combination in the CSF 

with respect to the target point located inside the brain tissue is presented in Figure 2.9.  

 

Figure 2.8: Isometric view of the micro-lens and µLED. 

 

Figure 2.9: The developed COMSOL model for the µLED and micro-lens inside the CSF and the 

target inside the brain tissue. 
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COMSOL simulation of the ray trajectory of the LED inside the model cylinder 

including the CSF and the brain tissue display the effect of the micro-lens in converging 

the output light. The optimization is done such that the target tissue is placed at the focal 

point of the micro-lens. Figure 2.10  illustrates the ray trajectory of the LED light with and 

without the presence of the micro-lens.  

 

Figure 2.10: LED output ray trajectory with (left) and without (right) the lens. 

As presented in Figure 2.11, COMSOL simulation is done for temperature 

distribution to ensure the operation is done within the safely limits. Our simulation reveals 

that although converging the light will increase the heat dissipation at the target point, 
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existence of the micro-lens will block part of the heat and therefore, result in less 

temperature increase inside the tissue. This simulation shows the micro-lens results in 

focusing the heat in close proximity of the LED, while for further points than the target, 

the temperature increase is actually less that the model without the micro-lens.  

 

Figure 2.11: Temperature simulation with (left) and without (right) the lens. 

Table 2.1 reports the optical power and maximum temperature inside the CSF and brain 

tissue for blue and green LED with and without presence of the micro-lens. Clearly, it can 

be seen that introducing a lens in all cases increases the received optical power (and hence 

irradiance) at the target. The temperature distribution simulation also confirms that 

placement of the µLED will not break the boundaries of safe amount of temperature 

increase around the implant.  
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Table 2.1: Optical power and maximum temperature inside the CSF and brain tissue. 

Blue LED 
LED type Power (W) Max. Temp in BT (K) Max. Temp in CSF (K) 

With Lens Blue LED 8.53E-05 310.73 311.32 

Without Lens Blue LED 2.79E-06 310.78 311.67 

With Lens Green LED 9.62E-05 310.70 311.20 

Without Lens Green LED 3.16E-06 310.74 311.51 
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Chapter 3  

 

 

Fully Implantable Optogenetic Stimulator 

and Electrophysiological Recording 

 

This chapter presents transistor-level circuit design and characterization of the 

fully-implantable self-contained dual-channel neural recording and power-efficient optical 

stimulation SoC. Figure 3.1 shows the top-level block diagram of the presented SoC. As 

shown, two stimulation and two recording channels are integrated on the chip. The 

stimulation channels are controlled digitally and can generate currents in the range of 1 to 

10mA with a resolution of 3 bits. Each recording channel includes a two-stage capacitively-

coupled amplifier followed by an 8-bit successive approximation register (SAR) analog to 

digital converter (ADC). The recording channels are included to study the brain response 

to various optical stimulation parameters such as current magnitude, waveform type and 

shape, frequency of stimulation, etc. The SoC also includes an on-chip inductive coil 
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connected to rectifiers and regulators that generate supply and bias voltages required for 

its operation. 

 

Figure 3.1: Top-level block diagram of the presented SoC. 

In this chapter, we will describe the detailed circuit implementation of each of the 

above-mentioned blocks, with a particular attention to the stimulator circuit and the novel 

design we have proposed for its current driver. Prior to the circuit-level design descriptions, 
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a brief, yet important discussion on the major bottlenecks in terms of energy efficiency of 

an optogenetic stimulator is provided to emphasize on the critical role of a power-efficient 

driver circuit for the stimulation channels. The chapter ends with characterization results 

of he presented SoC and comparison to the state of the art.  

3.1 Energy efficiency in optogenetic stimulators 

 Power efficiency is one of the main constraints in designing any implantable SoC. For 

optogenetics stimulation, it is required to deliver a wide range of optical power to the target 

tissue to investigate the behaviour of a specific opsin under different circumstances [22]. 

For the majority of commercial or custom µLEDs used in the literature, an electrical current 

up to 10 mA by the LED driver is sufficient to implement various optical stimulation 

scenarios [18]. On the other hand, a minimum magnitude of 1mA is typically required to 

generate the sufficient irradiance to trigger a neural response. With such a stimulation 

current range drawn from a minimum 3.3V supply voltage, and considering that the power 

consumption of all the other blocks included in the recording or stimulation channels of 

the system shown in Figure 3.1 is in order of micro-Watts, the LED-driver will dominate 

the system power consumption. Therefore, any attempt in decreasing the power 

consumption of the LED driver will directly affect the power efficiency of the whole 

system.   

Power efficiency consideration in an implantable optical stimulator can be divided into 

four different categories.  



 

 39 

1) Power efficiency of the inductive link: which means what percentage of the 

transmitted power is actually received, rectified and regulated and is available to 

the SoC blocks for their operation. While we do have an inductive powering module 

implemented on this SoC, we will not discuss the details of its implementation and 

operation in this thesis as it is done by another team member.  

2) Power efficiency of the optical driver circuitry: which means what percentage of 

the overall power used to generate the required current for the LED is consumed in 

the LED, and what percentage was dissipated in the driver circuit. In this work, a 

power efficient LED-driver circuit is designed, which is explained in details in 

Section 3.2. 

3) Wall-plug efficiency (radiant efficiency) of the LED: Wall-plug efficiency (WPE) 

is the LED efficiency in converting the electrical power to optical power. In this 

work, we used a Cree TR2227 LED as the light source, which is claimed to have 

the best WPE between the LEDs with similar size.  

4) Light delivery method efficiency: which means what percentage of the generated 

optical power is indeed delivered to the targeted point(s) on the brain cell. Locating 

the LED in proximity of the target tissue for direct light delivery and placing a 

micro-lens encompassing the µLED to focus the output light to the target tissue, are 

our solutions to have a power efficient light delivery method. 
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3.2 Optical stimulation circuit design 

Figure 3.2 shows a simplified diagram of an LED driver circuit. There are many variations 

of this circuit reported in the literature, but they all include a current driving circuit that has 

at least one component (e.g., a transistor) in series with the LED to control its current.  

Ideally, the channel should be designed in a way that all branches except for the LED 

branch draw µW-level currents from the supply, making them negligible to the mA-level 

LED current. As a result, power consumption of the optical stimulation is roughly equal to 

VDDLED×ILED. Therefore, to minimize the power consumption we either have to minimize 

ILED or VDDLED. The required current through the LED (ILED) is determined by the 

neurological application and what light intensity it requires. In addition, the voltage across 

the LED (VLED) for any specific current is determined based on the LED I-V characteristics. 

This leaves the voltage across the LED driver (VLED-Driver) as the parameter that should be 

minimized to realize an efficient implementation. The power dissipated in this component 

(i.e., VLED-Driver × ILED) could be quite significant, given the high typical values of ILED. 

 

Figure 3.2: Simplified circuit diagram of the digitally-controlled LED driver. 
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For the LED used in this design (Cree TR2227), a current range of 1 to 10 mA 

translates into a voltage range 2.5 to 3V across the LED.  As for the available supply 

voltage, we had to first look into different options for CMOS integrated circuit fabrication 

technology nodes. For the described SoC, we needed a technology that provides both high 

frequency transistors for wireless power telemetry circuits as well as a relatively-high (e.g. 

>5) number of metal layers that allow for integration of a large system on a chip. On the 

other hand, going to more advanced nodes (e.g., beyond 90nm) had the problems of (a) 

high leakage currents, a big problem for ultra-low-power implantable devices, (b) 

significantly higher cost, and (c) most importantly limited supply voltage of 1.2V that could 

not drive the LEDs. considering all of the above, CMOS 180nm and 130nm technology 

nodes seemed to be optimal as they allow a high level of integration (8 metal layers), 

integration of RF circuits (3 thick metal layers), driving the µLED (max VDD of 3.3V if 

thick oxide transistors are used) and relatively low leakage currents. 

Reviewing several optogenetic stimulation systems reported in the literature that 

use commercial or custom-designed µLEDs, the driving circuit requires a voltage 

headroom of bigger than 300mV, making the minimum required supply voltage higher than 

3.3V [12], [16], [19], [31]. In these designs, generating the required voltage for the LED 

driver circuitry and LED is done by either using a charge pump circuit (e.g., in [31]) or 

using a higher supply VDD (e.g., in [12]). Using charge pumps to generate a supply voltage 

higher than the nominal maximum voltage of the CMOS technology comes with the risk 

of junction breakdown and permanent damage to the chip, which is also a safety issue for 
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a brain implantable device. On the other hand, use of a high-voltage (HV) technology 

means the use of transistors with significantly higher threshold voltage, hence, an undesired 

significant increase in the required supply voltage that directly increases the power 

consumption.  

 Figure 3.3 presents a simple LED driver, which consists of a current DAC (digital 

to analog converter) and a simple current mirror. The main problem with this design is that 

for Transistors M1 and M2 to operate as a current mirror with a reasonable precision and 

linearity, they should be operating in the saturation mode so that the current is solely 

controlled by their common VGS. However, the required voltage across the LED for large 

currents (Approximately 3V) leaves a voltage headroom of around 300mV for the thick-

oxide M1's VDS, which is not enough to bias it in the saturation region. It should be noted 

that although 300mV might be enough to keep the device in the saturation region when it 

drives a small current, for a large current, the significantly-high overdrive voltage of the 

MOSFET (e.g. 1.5V for 10mA) will force it to the triode region. Being in the triode region 

means the failure of the current driving circuit as it cannot provide a current magnitude that 

is proportional to the digital control command that it receives. 

 

Figure 3.3: Conventional LED driver circuit. 
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The circuit in Figure 3.4 proposed in [13] provides a solution that allows for precise 

current mirroring even in the triode region, however, at the cost of having a LED driver 

headroom voltage higher than 300mV. This design can provide accurate mirroring 

conditions for M1 and M2 by matching VGS and VDS of these transistors. As a result, the 

voltage across the LED is equal to VDD-VDSM1-VDSM3. In this design, the minimum 

possible headroom across the LED-driving elements, which are M1 and M3, happens when 

the M1 transistor is biased at the edge of saturation and the M3 transistor is pushed to the 

triode region. This design is also strongly dependent on bias voltage of M4 transistor, since 

it has a direct effect on the drain voltage of M1 and M2.  

 

Figure 3.4: current-mode stimulator controllable with a 3-bit current DAC. 

 A variation of the previous design, which only use one transistor in the LED-driving 

branch, is presented in Figure 3.5 [32]. This design has one negative feedback loop 

consisted of the OTA and transistor M3 and a positive feedback loop consisted of the OTA, 
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M3, and M1. Therefore, to avoid instability, the positive feedback loop should be designed 

with a loop gain smaller than unity. [33] defines this loop gain as 
𝑔𝑚1𝑟𝑜1

𝑔𝑚2𝑟𝑜2+
𝑟𝑜2

𝑅𝑂

 , which implies 

that the stability can be achieved by ensuring similar size for M1 and M2 . However, making 

M1 and M2 of similar size results in them having the same current, which effectively means 

doubling the channel power consumption, as we need two copies of the LED current now. 

To avoid this, transistor M1 is always sized to be significantly larger than M2 (e.g., 1000:1). 

Therefore, this design is prone to instability for our application.  

 

Figure 3.5: Stimulator circuit with one transistor in load branch. 

3.3 Proposed optical stimulator design 

Figure 3.6 illustrates the stimulator circuit with one transistor in the LED branch 

with the current DAC connecting to the main circuit using a source to sink topology. In 

order to break the positive feedback in this design, drain of M2 should be disconnected 
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from gate of M1 and MD. On the other hand, for M3 and M4 to form a perfect current mirror, 

they require to have similar VDS as well as similar VGS.  

 

Figure 3.6: Stimulator circuit with one transistor in load branch and a current DAC in source 

structure.  

As presented in Figure 3.7, in our proposed design OTA2 generates the control 

signal for gate of M1 and MD, while making sure that M3 and M4 are forming a perfect 

current mirror. Table 3.1 lists the sizing information for transistors in the LED-Driver.  
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Figure 3.7: Proposed design for a power efficient LED-driver. 

Table 3.1: Sizing information for transistors in the LED-Driver circuit. 

Transistor DM M1 M2 M3 M4 

W/L 800µ/500n 800n/500n 2µ/500n 700n/350n 700n/350n 

 

Therefore, in this design the reason for having OTA1 is supplying large currents 

through the LED leaves very small headroom for the MD transistor, which will push the 

transistor to triode mode. Therefore, while transistor M1 and MD has similar VGS, it is 

important for them to have similar VDS to have an accurate mirroring in triode region as 

well as the saturation region. On the other hand, OTA2 not only make sure of the mirroring 

condition between M3 and M4, but also it is required to generate the control signal for the 

gate of transistors M1 and MD. This design is also capable of bringing the gate voltage of 
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MD and M1 down to 0 if it is required to generate the required current through the LED 

which is not possible in any other design.  

In this design, there is no constraint on the required voltage across transistor MD 

and it can be pushed to the triode region. Figure 3.8 shows that the proposed design has a 

linear performance for the entire range of interest irrespective of operating region of the 

LED-driver transistor. This is unlike the conventional design, where the LED current has 

linear relation to the DAC current, only if the MD transistor is saturation region.  

 

Figure 3.8: Circuit performance comparison with respect to the LED-driver transistor operating 

range  
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 For stability analysis in this design, the stability analysis for the three loops in this 

design are done using cadence simulation. Figure 3.9 illustrate the three available loops in 

this design. The stability analysis has all the loops ensure the stability of the design.  

 

Figure 3.9: Illustration of the loops in the proposed design 

Figure 3.10 shows the phase and magnitude of stability analysis for loop 1 by 

breaking the loop at the output of OTA1 (gate of M2). This loop has the phase margin of 

74.8° at frequency of 83.55 kHz, which ensures the stability of this loop.  

Figure 3.11 shows the phase and magnitude of stability analysis for loop 2 and 3 

by breaking the loop at the output of OTA1 (gate of MD and M1). This analysis results in 

phase margin of 46.6° at frequency of 1.34 MHz, which ensures the stability of these loops. 

Figure 3.12 illustrates the simulated LED current for input current in range of 1-

10µA, which results in LED current in range of 1-10mA in different corners of process 

variation and ensures that the process variation would not affect the circuit performance.  
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Figure 3.10: Magnitude and phase of stability analysis for loop1. 

 

Figure 3.11: Magnitude and phase of stability analysis for loops 2&3. 
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Figure 3.12: Simulated LED current for different corners of process model.  

Figure 3.13 shows the schematic of the OTAs that were used in the presented LED 

driver circuit. As shown a folded cascode architecture is employed. The sizing of the 

transistors is provided in Table 3.2. Both magnitude and phase Bode diagrams of the OTA 

shown in Figure 3.13 are shown in Figure 3.15. The high open-loop voltage gain of the 

OTA ensures that the two input terminals are sufficiently close to each other, and phase 

margin of 90° ensures stability. Using a compensation capacitor at the output of the OTA 

lead to phase margin of around 90° to ensure stability. Figure 3.14 presents the bias 

generation circuit for this OTA and the transistor sizes are provided in Table 3.3.  
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Figure 3.13: Circuit schematic of the high-voltage OTA. 

 

Figure 3.14: Circuit schematic of the bias generator for the high voltage OTA. 

Table 3.2: Sizing of the transistors in the OTA used in the optical stimulator. 

Transistor Mp Mn M1 M2 M3 M4 M5 M6 M7 M8 M9 

W/L 
500𝑛

500𝑛
 

500𝑛

500𝑛
 

1.2µ

500𝑛
 

1.2µ

500𝑛
 

4µ

500𝑛
 

4µ

500𝑛
 

5µ

500𝑛
 

5µ

500𝑛
 

20µ

500𝑛
 

20µ

500𝑛
 

400𝑛

350𝑛
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Table 3.3: Sizing of the transistors in bias generation circuit. 

Transistor M1 M2 M3 M4 M5 M6 M7 

W/L 
1.2µ

500𝑛
 

1.2µ

500𝑛
 

4µ

500𝑛
 

4µ

500𝑛
 

5µ

500𝑛
 

5µ

500𝑛
 

20µ

500𝑛
 

Transistor M8 M9 M10 M11 M12 M13 M14 

W/L 
20µ

500𝑛
 

2.4µ

350𝑛
 

2.4µ

350𝑛
 

500𝑛

500𝑛
 

500𝑛

500𝑛
 

400𝑛

350𝑛
 

600𝑛

500𝑛
 

 

Figure 3.15: Magnitude and phase bode plots of the OTA used in the presented optical stimulator. 

The presented stimulation circuit is characterized and the measurement results are 

presented in the following. In terms of power consumptions, each of the OTAs in this 

design draw 20µA current from the 3.3 supply voltage and for any desired current through 
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the LED there are two branches that drawing 0.001 of that current from the supply voltage. 

To validate the functionality of the 3-bit current steering DAC, Figure 3.16 presents the 

post layout simulation. Figure 3.17 and Figure 3.18 shows the measurement results for 

generated LED current for each value of the DAC current for blue and green LEDs 

respectively.  

 

Figure 3.16: Post-layout simulation results showing the functionality of the 3-bit current steering 

DAC. 
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Figure 3.17: Experimentally measured LED current in response to different DAC currents for Blue 

LED. 

 

Figure 3.18: Experimentally measured LED current in response to different DAC currents for Green 

LED. 

Figure 3.19 presents the percentage of current mirror error as a function of 

measured LED current for currents in range of 1 to 10mA for blue and green LEDs. 
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Figure 3.19: Error percentage of the experimentally measured LED current for currents up to 

10mA. 

Figure 3.20 shows that the current mirror can tolerate as low as 0.2V headroom 

across the LED-driver element to provide LED current, which has linear ratio with the 

input DAC current. In this experiment to eliminate the risk of feeding very high currents 

to the chip, instead of increasing the LED current, we decrease the supply voltage, down 

to the point that it can generate the maximum current of 10mA with linear ratio with the 

input DAC current. It should be noted that in our initial simulations, size of MD transistor 

has been decided to generate maximum current of 10mA.  Our measurements illustrate that 

the supply voltage can be brought down to 3V, which leaves 0.2V headroom across the 

LED-driver element for supplying maximum current of 10mA (The measurement is done 

for the green LED). As presented in Figure 3.21, the minimum required headroom is 

defined based on size of the LED-driver transistor and can be scaled to allow for smaller 

required headroom voltages.  
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Figure 3.20: Experimental measurement results showing the minimum possible headroom for the 

LED-driving element.  

 

Figure 3.21: Required headroom for max current of 10mA vs size of the driver transistor. 
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3.4 Electrophysiological recording and digitization 

Monitoring the neurological activity of the light-sensitive neurons after optical stimulation 

is an inseparable part of any optogenetic study and a mandatory requirement if a close-loop 

control on the optical stimulation pattern and intensity is desired. Therefore, each channel 

in this system is equipped with an electrical potential recording circuitry to monitor the 

electrophysiological activities of the neurons. The recording channel used in this work has 

a conventional two-stage capacitively-coupled architecture inspired by works presented in 

[34], [35] . Figure 3.22 presents the schematic of this recording channel and Figure 3.23 

illustrate the simulated frequency response of the recording channel for different corners 

of process variation, which confirm that the process variation would not affect the designed 

gain and bandwidth. The analog output of this recording channel is then digitized using a 

conventional 8-bit SAR ADC with binary weighted capacitors (cunit=100fF), and measurement 

results acquire SNDR of 40.15 and ENOB of 6.39 bits for sampling frequency of 8.77kHz 

and input frequency of 200Hz. Figure 3.28 illustrate the PSD (power spectral density) of 

the SAR ADC output (number of FFT points =8192). Figure 3.24 presents the schematic 

of the strong-arm comparator and Table 3.4 reports the sizing of the transistors of the 

comparator. As presented in Figure 1.12 this device is supposed to be placed on the brain 

cortex and therefore, the device sizing, passive element selection, and biasing of the 

amplifier and the ADC are chosen to ensure that it can record local field potential (LFP) 

signals in the range of 10uV to 1mV, with an integrated input-referred noise smaller than 
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10uVrms, and a bandwidth of few Hz to 500Hz [36]. All of the above are met while trying 

to minimize the power consumption and silicon area usage of the channel.  

Figure 3.25 presents the schematic of the OTA in the first stage, which is a fully differential 

amplifier. Figure 3.26 presents the second-stage OTA that is a single-ended amplifier. 

Table 3.5 and Table 3.6 report the transistor sizing for both of these OTAs. Figure 3.27 

shows the measurement results of the recording channel characterization for input referred 

noise, gain and bandwidth, which result in gain of 48.5dB over bandwidth of 3Hz to 1kHz 

and integrated input referred noise of 9.98µVRMS over the same frequency band.   

 

Figure 3.22: Schematic of the recording channel. 
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Figure 3.23: Simulated gain of the recording channel for different corners of process model. 

 

Figure 3.24: Schematic of the strong-arm comparator. 

Table 3.4: Sizing of the transistors in the strong-arm comparator. 

Transistor M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 

W/L 
250𝑛

250𝑛
 

250𝑛

250𝑛
 

250𝑛

250𝑛
 

250𝑛

250𝑛
 

750𝑛

250𝑛
 

750𝑛

250𝑛
 

1.25µ

250𝑛
 

1.25µ

250𝑛
 

2.5µ

250𝑛
 

2.5µ

250𝑛
 

500𝑛

250𝑛
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Figure 3.25: Schematic of the fully differential OTA and common mode feedback in the first stage of 

the recording channel. 

 

Figure 3.26: Schematic of the single-ended OTA in the second stage of the recording channel. 

Table 3.5: Sizing of the transistors in the fully diffrential OTA. 

Transistor Mn Mp M1 M2 M3 M4 M5 

W/L 
4.2µ

900𝑛
 

4.2µ

900𝑛
 

1.8µ

900𝑛
 

1.8µ

900𝑛
 

1.8µ

900𝑛
 

1.8µ

900𝑛
 

4µ

900𝑛
 

Transistor M6 M7 M8 M9 M10 M11 M12 
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W/L 
4µ

900𝑛
 

2.4µ

900𝑛
 

2.4µ

900𝑛
 

2.4µ

900𝑛
 

2.4µ

900𝑛
 

4.8µ

900𝑛
 

4.8µ

900𝑛
 

Table 3.6: Sizing of the transistors in single-ended OTA. 

Transistor Mp Mn M1 M2 M3 M4 M5 M6 M7 M8 M9 

W/L 
4.2µ

900𝑛
 

4.2µ

900𝑛
 

1.8µ

900𝑛
 

1.8µ

900𝑛
 

1.8µ

900𝑛
 

1.8µ

900𝑛
 

4µ

900𝑛
 

4µ

900𝑛
 

2.4µ

900𝑛
 

2.4µ

900𝑛
 

4.8µ

900𝑛
 

 

Figure 3.27: Experimentally measured frequency response of the recording channel. 
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Figure 3.28: Measurement results showing the output PSD of the 8-bit SAR ADC. 

3.5 Power management 

Brain neural stimulation happens quite infrequently (e.g., at the onset of an epileptic seizure 

that happens once or a few times a day), which means that for the majority of the time that 

the device is being used, it is only consuming µW-level power. However, during the optical 

stimulation, an instantaneous power of up to 33mW (3.3V×10mA) is required. Based on 

the above, and given the limitation of the inductive power link in terms of the maximum 

possible (and safe) transfer of energy to the on-chip coil at any moment, an energy storage 

unit (e.g. a super capacitor) is planned to be integrated with the microchip and μLEDs. 

Details of this implementation are outside of the scope of this thesis as it is done by another 

team member. Additionally, while the presented system is capable of generating different 

lighting patterns with various magnitude and duty cycles, there are other limitations in 

deciding practical patterns for optical stimulation. The first issue is that each opsin has a 

special time constant of its own, which means it cannot respond to optical stimulation with 
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frequencies higher than a certain amount. It has been suggested [37] in that the maximum 

frequency for an effective optogenetic stimulation is 100Hz.   

 On the other hand, high power consumption of the LEDs results in a considerable 

amount of heat dissipation, which can easily harm the brain tissue. This introduces a limit 

on the duty cycle of the lighting pattern in order to make sure the temperature variation 

does not exceed the safe border, which is an increase of 1°C for brain tissue [7], [38]. 

Figure 3.29 shows the micrograph of the presented 3×4 mm2 microchip designed and 

fabricated in TSMC 130nm CMOS technology. The recording and stimulation channels 

are highlighted and their corresponding dimensions are annotated. The figure also shows 

the placement of the coil on the implantable chip. Finally,  

Table 3.7 summarize the overall specification of the optical stimulation and recording 

channel. Finally, in Table 3.8 the proposed design is compared with the state of the art.  
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Figure 3.29: The presented SoC micrograph with major blocks on the chip annotated. 

Table 3.7: Optical stimulation and electrical recording specification summary. 

Overall System 

ASIC area 12mm2 

Power with Stimulation ILED×3.3 

Power w/o Stimulation 160µW 

Optical Stimulation Parameters 

Spatial Resolution 100 µm2 

Irradiance improvement x30.46 

# of channels 2 

DAC resolution 3-bits 

Gain 850 

Stim pattern Arbitrary 

Recording and Digitization Parameters 

# of channels 2 

Gain 48.5dB 

Bandwidth 3Hz – 1kHz 

IRN (1Hz – 1kHz) 9.98µVRMS 

ADC resolution 8 bits 

ADC ENOB 6.39 
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Table 3.8: Comparison with state of the art. 

Publication [15] [12] [19] This Work 

Technology COTS 0.13µm 0.35µm 0.13µm 

LED Branch Supply NA 3.7 5 3.3 

Wireless Power Yes No Yes Yes 

Electrical Recording (# of Channels) No Yes (10)  No Yes (2) 

ADC No Ʃ∆ (14-bits) No SAR (8-bits) 

# of Stimulation Channels 1 4 16 2 

Light Directivity Enhancement No No Yes Yes 

Optical 

Stimulation 

Max Current NA 35mA 10mA 15mA 

Current Control No Yes (1-bit) Yes (2-bit) Yes (3-bit) 

Pattern Control No No No Yes 

Size (mm3) 10-25 3000 12 6 

Weight (mg) 20-50 4900 24 9.5 

3.6 Measurement setup 

Figure 3.30 illustrate the PCB boards that has been used to characterize the described chip. 

Both board has been design using the Altium Designer software. Different modes of 

operation for the PCB can be realized via FPGA codes and changing the positions of the 

jumpers.  

  The optical stimulation test was conducted using the packaged version of the CREE 

TR2227 LED (CLM3A-BKW-CTBVA463 for blue LED and CLM3A-GKW-

CWAXA793 for green LED). All the electrical measurements has been conducted based 

on the measurement setups described in [39].  
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Figure 3.30: Measurement setup used for SoC prototype electrical characterization. 

3.7 In Vitro experiments 

Figure 3.31 shows the setup of the in vitro experiment, which was design to validate the 

functionality of the optical stimulator circuitry. We used dynamic Ca2+ Imaging method to 

investigate the channel rhodopsin (hChR2) activity in  response to the optical stimulation.  

In this experiment, transfected Neuro2a cells were incubated in DMEM(-)phenol red with 

Ca2+ indicators Oregon Green 488 BAPTA-AM Cell Permeant (OGB) (Thermo Fisher 
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Inc., Mississauga, ON, Canada) for 15 minutes on MekTek plates. Cells were washed with 

PBS+/+before fresh DMEM(-)phenol red was added.  

Cells were imaged using a Zeiss Observer Z1 Spinning Disk Confocal Microscope 

equipped with live-cell imaging chamber set to 37°C and 5% CO2. Evolve TIRF camera 

with a Plan-Apochromat 40x/1.3 Oil DIC M27 objective was used to measure the 

Ca2+signal changes from OGB-BAPTA. The 488nm laser at 10% power intensity was 

used to monitor OGB-BAPTA channel, while the 568nm laser at 10% power intensity to 

confirm the expression of channel rhodopsin.  

Control (CTRL) plate was used to establish the baseline without the influence of 

channel rhodopsin, while the test plate was used to determine the change of intracellular 

calcium levels post stimulation. Cells patches expressing channel rhodopsin were selected 

using the 568nm laser at 10% power intensity to confirm the expression of channel 

rhodopsin and monitored over 30 seconds (10s baseline, 10s stimulation, 10s post-

stimulation) captured at 200ms intervals. Fluorescence change during baseline was 

compared to post-stimulated between CTRL cells and channel rhodopsin positive cells 

were analyzed using the ImageJ plugin time series analyzer V2. Graphs were generated 

using GraphPad Prism and statistics were generated with IBM SPSS statistics 24. 
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Figure 3.31:In vitro experment setup.  

Figure 3.32 illustrate the test result of channel rhodopsin (hChR2) activation in response 

to optical stimulation, which increase the intracellular calcium levels. Mouse Neuro2a cells 

were transfected with pAAV-CaMKIIa-hChR2(H134R)-mCherry (red). Figure 3.32 (Top) 

images from left to right show both channels merged before and after stimulation. The 

pseudocolour scale indicates the amount of intracellular calcium (blue=min; red=max) 

(scalebar= 20μm). Figure 3.32 (Bottom, Left) shows the calcium fluorescence changes 

from the average baseline of Neuro2a cells monitored before and after hChR2 stimulation. 

The trace shows fluorescence changes (%) over thirty seconds (10s before stimulation, 10s 

stimulation and 10s post-stimulation). Figure 3.32 (Bottom, right) shows the calcium 

fluorescence change, which was monitored over a 30s period for control (CTRL) cells (no 

hChR2; shades of gray) and cells transfected with pAAV-CaMKIIa-hChR2(H134R)-
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mCherry (shades of green) (mean±SEM; Mann-Whitney U significance N=5-7; ** p<0.05, 

NS= not significant). 

 

Figure 3.32: Dynamic Ca2+ test results. 
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Chapter 4  

 

 

Fabrication Process of an Inkjet-Printed 

SU-8 Polymer-Based Micro-Lens 

 

This chapter presents the fabrication process of the proposed inkjet-printable micro-lens 

described in chapter 2. Figure 4.1 illustrates the fabrication steps for the micro-lens inkjet-

printing process. Substrate preparation is a crucial step prior to the inkjet printing and soft-

bake, UV curing and hard-bake are the required steps for solidifying the ink. Details of 

each step is discussed in details in the rest of this chapter. 

 

Figure 4.1: Fabrication process of inkjet-printed micro-lenses 
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4.1 Ink selection for micro-lens fabrication 

The first step toward micro-lens fabrication is to choose a proper ink that has the suitable 

characteristics for the targeted application. The first obvious required feature is high 

transparency to visible light. Beside this, the ink is required to have a high level of thermal, 

mechanical, and chemical stability. Biocompatibility is the other important requirement for 

the proper ink, which is posed by the packaging consideration, since the micro-lens should 

be in direct contact with the body tissue without any further packaging layers. It should 

also be compatible with standard inkjet printing equipment or in other words, be jettable. 

Based on our comparative review of different types of inks suggested in the 

literature [40] for micro-lens fabrication, we chose an SU-8-based polymer called InkEpo 

that meets all the above-mentioned requirements. Table 4.1 summarizes the main physical 

properties of this material. This information is taken from InkEpo datasheet. 

Table 4.1: physical properties of the selected Ink (InkEpo). 

 Dyn.Viscosity 
Refractive 

Index 
Density 

Solvent 

free 

Photo curing spectral 

sensitivity 

InkEpo 
8.0±0.5 

(mPas) 
1.47±0.002 

1.155±0.002 

(gr/cm3) 
No 300-390 (nm) 

4.2 Substrate preparation 

It is crucial to prepare the substrate prior to the inkjet printing process. Our goal in this 

project is to print a dome-shape-pattern of the liquid ink on the substrate and solidify it 

later to fabricate our target micro-lens. Therefore, we require a high contact angle (e.g., > 

90 degrees) between the ink and the substrate. To increase the contact angle of our ink on 
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the surface, we have to make the substrate hydrophobic. Silanization is a general method 

to change the hydrophobicity of the surface [41]. Silanization forms a densely packed self-

assembled monolayer (SAM) of the silane molecules covalently bonded to the target 

surface [42]. In this work, Trichloro (1H,1H,2H,2H-perfluorooctyl) silane (PFOCTS) is 

used to decrease the substrate wettability.   

4.2.1 Substrate cleaning 

Having a clean substrate is a crucial preliminary condition for the silane molecules to form 

a covalent bond with the surface molecular structure for instance the SiO2 Lattice in case 

of a glass substrate. Substrate cleaning is done by washing and sonicating in Isopropanol 

(IPA) for 20 minutes followed by washing and sonicating with deionized (DI) water for 

the same amount of time.  

It should be noted that all the beakers and tweezers have also undergone the same cleaning 

process.  

4.2.2 Plasma treatment 

Plasma treatment is the next surface modification technique to remove impurities and 

contaminants. This method also functionalizes the target surface for better acceptance of a 

secondary material to form a coating layer, which is the SAM layer in our case. This step 

also allows the fabricated and solid micro-lens to be easily removed from the surface, 

which is a crucial point in our fabrication process. In this recipe, the surface is exposed to 

oxygen plasma for 1 minute.  
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4.2.3 Preparation of silane solution 

In this recipe, we submerge the target substrate inside a SAM solution. Our required 

Solution is a 1mM SAM solution with Toluene being the solvent. To achieve this 

concentration we need 0.04605 gr of the PFOTS in 100 mL of Toluene.  

4.2.4 Coating procedure 

Exposure to the silane is happening through solution deposition, which involves 

submerging the clean substrate into the freshly prepared silane solution. For this recipe, the 

substrate should be submerged inside the solution for 3 hours. During this time, the 

container should be tightly caped and can be placed in a cabinet. After this time by taking 

out the substrate and 20 minutes sonication in acetone, our substrate is ready. Figure 4.2 

compares the contact angle of our ink on a glass substrate before and after the silanization 

treatment. Based on the our measurements using side view camera a contact angle of 90° 

is reliably achieved following this preparation process.  

 

Figure 4.2: Contact angle comparison before (left) and after (right) SAM coating. 
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4.3 Inkjet printing process 

Inkjet printer is a type of digitally-controlled printer suitable for dispensing micro-size 

droplets to deliver a precise amount of material to the target substrate [43]. Inkjet printers 

are divided into thermal and piezoelectric [44]. In a thermal inkjet printer, a large current 

passes through a tiny resistor, which leads to dissipating a considerable amount of heat. 

The heat vaporizes the ink to create a bubble, and the expansion of this bubble will force 

some of the ink out of the nozzle. On the other hand, in a piezoelectric inkjet-printer, the 

vibrations of a piezo crystal, controlled by a voltage signal, push a small amount of ink out 

of the nozzle.  

In this project, we are using a piezo-actuated inkjet printer (MicroFab Technology, 

USA) with nozzle aperture of 57µm. During the ink selection process, we ensured the 

jettability of our desired ink by choosing an inkjet compatible ink. We also investigated 

the jettability of our ink by checking the guideline window presented in [44]. This guideline 

window presents a systematic approach to investigate ink jettability using capillary number 

and weber number, which are introduced in Equations (4.1) and (4.2) respectively. In these 

equations, η, ρ, and σ are the viscosity, density, and surface tension of the ink and d and ν 

are the nozzle diameter and the droplet velocity, respectively. Based on the information 

provided in the ink datasheet, these dimensionless numbers are calculated as 11 for the 

weber number and 0.4 for the capillary number, both within the jettable window.  

 𝑊𝑒𝑏𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟, 𝑊𝑒 =
𝐼𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑡𝑒𝑛𝑠𝑖𝑜𝑛
=

𝜌𝜈2𝑑

𝜎
 (4.1) 
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 𝐶𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦 𝑛𝑢𝑚𝑏𝑒𝑟, 𝐶𝑎 =
𝑉𝑖𝑠𝑐𝑜𝑠𝑒 𝑓𝑜𝑟𝑐𝑒

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑡𝑒𝑛𝑠𝑖𝑜𝑛
=

𝜂𝜈

𝜎
 (4.2) 

To experimentally validate the jettability and generate the micro-drops, the ink 

reservoir in the inkjet-printer setup is filled with InkEpo. In order to start the printing 

process, we have to define the voltage waveform sent to the piezoelectric material. As 

presented in Figure 4.3, to fully control the shape of this voltage waveform we have to set 

the values for initial rise time, final rise time, fall time, echo time, dwell time, echo voltage, 

and dwell voltage. These parameters are determined based on a trial and error procedure to 

reach a stable jetting condition. For a jetted drop to be considered stable, one single droplet 

should be formed and it should maintain its physical shape (sphere) for a long time. The 

satellite drops (any drop other than the main drop) will not affect the jettability as long as 

their absorption by the main drop during the flight [44]. Table 4.2 reports the optimal 

parameter for the voltage waveform associated to the stable jetting condition.  

 

Figure 4.3: Voltage waveform controlling the piezo-actuator. 
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Table 4.2: Optimized parametrs for the voltage waveform controlling the piezo actuator. 

Vdwell Vecho Initial trise tdwell tfall techo Final trise 

20 V -20 V 5µs 44µs 5µs 22µs 5µs 

 

Generation of a stable drop is a complicated process as it is not possible to identify 

the exact problem in case of an unstable drop. However, some experimentally-validated 

guidelines could be useful during the trial and error process. First thing to know is that the 

drop generation occurs during the echo time and the residual oscillation are eliminated 

during the dwell time [44]. If the voltage waveform parameters are not defined accurately 

different problems may occur. The first possible problem is that the printer may not be able 

to generate any drop and since drop generation is the role of the echo time increasing the 

echo voltage may solve the problem. The other typical problem is generation of stable or 

unstable satellite drops which is typically related to the dwell time parameters. It is 

commonly accepted that defining tdwell as 2×techo can optimally prevent the satellite drops 

generation. Figure 4.4 illustrates some cases of satellite generation for non-accurate 

parameters for the control voltage waveform during my experiments.  

 

Figure 4.4: Some examples of unstable jetting. 
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Another crucial element that should not be overlooked during the jetting process is 

cleanliness of the nozzle. Any tiny particle inside the nozzle may jeopardize the printing 

process completely. Therefore, nozzle cleaning is an essential step before and after each 

printing experiment.  

The properties of the utilized ink dictates the cleaning process. In case of our ink, 

the cleaning process, include back flush and then flushing the nozzle with first acetone and 

then IPA. One simple test to make sure the nozzle is fully clean is by checking the output 

flow of acetone and IPA. The first test to check the cleanness of the nozzle is that the flow 

should have a straight path outside the nozzle and any deviation from a straight path is an 

indication of impurity inside the nozzle. The second test is that the flow of the liquid should 

continue for a short time after releasing the pressure on the syringe. Figure 4.5 presents the 

generation and flight of the stable drop under the optimal voltage parameters condition.  
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Figure 4.5: Time lapse pictures of stable jet formation and flight. 

4.3.1 Ink solidifying process 

Being able to generate a stable jet, we can now print a micro-lens by continuous printing 

on the same spot. Therefore, before attempting to print the optimal lens designed in 

COMSOL simulation (chapter 2) we tried printing different random-sized lenses to find 

the effective solidifying process. Solidification process for this ink include three main 

steps: 
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1) Soft-bake: placing the sample on a hot plate with temperature of 100ᵒC for 15 

minutes.  

2) UV exposure: curing under a 400W UV lamp for 4 minutes. 

3) Hard-bake: placing the sample on a hot plate with temperature of 100ᵒC for another 

15 minutes. 

Figure 4.6 shows the fabricated micro-lenses before and after solidification. After the 

solidification process, the micro-lens color slightly changes and the micro-lenses can be 

easily detached from the substrate.  

(a)

(b)

(c) (d)

 

Figure 4.6: Random-size micro lenses (a) before and (b) after solidification.  

(c) An example of domeshape micro-lens. (d) An example of micro-lens with coffee-ring effect. 
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After the UV exposure process, it was visibly noticeable that the larger lenses suffer 

from the coffee-ring effect. The coffee-ring phenomenon originates from the capillary flow 

due to the differential evaporation rates across the drop. This force generates a liquid flow 

from the interior part to the border to substitutes the evaporated liquid at the edges [45]. As 

presented in Figure 4.7, because of this phenomenon, after the UV exposure, the large 

micro-lenses have lost their dome-shape and a hole is generated in the middle of the lenses.  

 

Figure 4.7: Solidification process for small and large micro-lenses. 

 Occurrence of coffee-ring effect is a function of different factors such as 

temperature, evaporation time, and the ink material, and therefore, the possibility of coffee-

ring effect occurrence is different for each drop. In our experiment, for different sizes of 

the micro-lens the coffee-ring problem only occurred for drops with a diameter larger than 

2mm. Since our optimal lens diameter, based on COMSOL simulation, is in the sub-mm 

range, there is a very small chance that would suffer from the coffee-ring effect. However, 

occurrence of coffee-ring effect even in very small scale can be catastrophic for the optical 
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characterization of the lens. To make sure that it has not caused any deformation in the 

shape of the small micro-lenses, the post printing profiles are precisely acquired using the 

profilometer machine, and as presented in Figure 4.8, it is confirmed that the micro-lenses 

are perfectly dome-shaped. 

 

Figure 4.8: Random size lenses profile extracted using the profilometer. 

4.3.2 Printing the optimal micro-lens 

The first step for printing the optimal lens is to align the tip of the nozzle with our LED to 

be able to print the lens on top of the LED. Our target micro-lens profile in this stage is a 

simple dome-shape lens and the inkjet pattern to generate this shape is to eject the drops 

successively on the center of the µLED.  

[46] investigates a chip encapsulation method, such that the chip is placed on a 

substrate and material suitable for encapsulation is printed on top of the chip in a way that 

it embraces the chip. We are using the same concept here to print our lens on top of the 

µLED. This way the micro-lens covers the LED completely and we can accumulate the 

light emitted from the side-walls of the µLED as well as the top plate. As a result, the only 
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required parameter in question to generate the pattern for printing our micro-lens is the 

number of drops.  

Therefore, for printing the optimal micro-lens, first the tip of the nozzle should be 

aligned with the center of the LED and then the optimal number of drops required to 

generate the optimal micro-lens structure should be calculated.  

4.3.2.1 Nozzle alignment with the center of the LED 

Alignment process is usually a significant step in any microfabrication procedures. In this 

project, we need to align the tip of the nozzle with the center of the LED to make sure that 

a fully symmetrical micro-lens is shaped around the LED.  

This type of alignment requires a perpendicular view to the LED, which means 

placing the camera on top of the substrate with the nozzle in the path. However, the 

components of the inkjet printer and the nozzle holder itself will block the top view sight 

of the camera.  

Therefore, the alignment process was decided to be done using the side-view 

camera, simply due to being more practical. The camera should be adjusted in a way that 

we can get a sight of the nozzle tip and the LED. Then just by adjusting the Y-axis of the 

chuck, we try to place the LED and the nozzle tip, on the same line. To align the LED and 

nozzle tip the X-axis should be considered as well. To do so, we can turn the chuck by 

exactly 90ᵒ and adjust the Y-axis in a similar fashion. These two steps will precisely align 

the tip of the nozzle with the LED center.  
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4.3.2.2 Calculation of required number of drops 

To print any special structure, we have to generate a code for the inkjet-printer, which 

defines the relative X and Y position of the nozzle tip to the substrate and the number of 

drops in each position. For our micro-lens which has a dome-shape structure the pattern is 

only successive drops on the same spot and the spot is defined in the alignment stage which 

means the relative X and Y position would not change. Therefore, we only need to define 

the required number of drops. This number is calculated by dividing the volume of the 

micro-lens in the liquid phase by the volume of a single drop.  

 As presented in Figure 4.9 defining the volume of a single drop can be done by 

comparing it with the nozzle tip diameter. In our case, the nozzle tip diameter is 57μm, and 

the nozzle holder diameter is 625 μm, which results in diameter of 58.76µm for the drop; 

therefore, the volume of the drop is 106175.364 μm3. 

 

Figure 4.9: Drop diameter calculation in comparison with nozzle diameter. 

 Finding the initial volume of the micro-lens right after the printing process is not 

as straight forward as finding the micro-drop volume. The initial volume of the lens is 

actually a function of the optimal micro-lens geometry. The COMSOL simulation results 

for the optimal micro-lens geometry are applicable to the micro-lens in the final state, 
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which means after solidification. Therefore, by having the final micro-lens volume 

information we have to calculate the initial volume of the micro-lens in liquid phase. 

Solvent evaporation during the solidification process is the underlying reason for the 

difference in the micro-lens volume before and after the solidification process.  

The solvent evaporation percentage is a constant parameter for different micro-lens 

sizes and is dependent the initial ratio of ink and solvent. Since evaporation percentage is 

a constant parameter for the ink, it can be calculated for a test micro-lens and then we use 

the acquired information to find the optimal number of drops. Printing a known number of 

drops provides a fairly precise calculation of the initial volume and the final volume is 

measured using the profilometer. Next, the evaporation percentage is calculated based on 

the equation (4.3). It should be noted that the volume of the LED should be subtracted from 

volume of the target geometry of LED + micro-lens to find the volume of the printed ink 

before and after solidification. 

 𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑙𝑒𝑛𝑠 − 𝑉𝑓𝑖𝑛𝑎𝑙 𝑙𝑒𝑛𝑠

𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑙𝑒𝑛𝑠 − 𝑉𝐿𝐸𝐷
× 100 (4.3) 

Having the Evaporation percentage and volume of the optimal micro-lens in final 

state, optimal micro-lens volume in liquid phase is calculated. Following this process the 

required number of drops is 2562 drops and the fabrication process would be printing this 

many drops on the same position to from a dome-shape micro-lens.  
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4.4 Optical measurements 

Figure 4.10 shows our optical measurement setup, where we used a photo-detector 

(S121C, Thorlabs) in addition to an optical power meter (PM100D, Thorlabs) to measure 

the amount of optical power delivered to the photo-detector which is placed in front of the 

µLED+micro-lens configuration. In order to investigate the micro-lens capability in 

converging the µLED light, the power meter aperture should be adjustable. Therefore, we 

used a mountable iris diaphragm (ID25, Thorlabs) between the µLED and the photo-

detector to be able to adjust the aperture.  

 

Figure 4.10: Optical measurements setup. 

Figure 4.11 presents the measurement result for optical power versus µLED current 

in range of 1 to 10mA. This measurement is done at a fixed aperture with diameter of 1mm 

and the LED is placed at 0.5cm distance from the photo detector. The measurements show 

average improvement of 99.68% in the optical power delivered to the photodetector. 

Figure 4.12 shows the percentage of improvement in the optical power delivered to the 
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photo-detector, which stands for the target in our measurement setup, versus the aperture 

diameter and it shows how the improvement percentage increase with shrinking the 

aperture area which shows that the micro-lens is successfully converging the LED light. 

For this measurement, the photodetector is placed at 4cm distance from the µLED.  

 

Figure 4.11: Experimentally measured optical power using with and without the micro-lens 
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Figure 4.12: Optical power improvement percentage vs aperture diameter. 
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Chapter 5  

 

Conclusions and Future Directions 

 

 

5.1 Conclusion 

In this work, an integrated SoC for conducting simultaneous dual-channel electrical 

recording and optical stimulation is presented. Wireless power receiving through an on-

chip coil allow the SoC to be fully implantable.  

 A novel LED driver is presented that can provide currents in range of 1 to 10mA 

and it exhibits linear performance with headroom voltage as low as 150mV, which is the 

smallest headroom voltage reported yet. Therefore, we could achieve the highest power 

efficiency in terms of what percentage of the power drawn from the supply voltage is 

actually used in the LED. The final design is fabricated as a 3×4 mm2 microchip using a 

CMOS 130nm technology.  

The proposed method for fabricating a micro-lens on top of the µLED using inkjet-

printer for directivity enhancement results in significant improvements in terms of spatial 

resolution and power efficiency. Optimization process to find optimal configuration for the 

micro-lenses significantly reduces the required source power (30.5x reduction) to deliver 
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a specific light intensity to a target tissue, also ensures safety aspects (temperature increase 

of   <0.1ºc) of the device. 

5.2 Future work  

5.2.1 SoC improvements 

The proposed design should be experimentally validated to insure the functionality 

of the different blocks. After validating the performance of each of the blocks separately, 

the next step is to investigate the functionality of the whole system.  

For the next generation of this design, since temperature variation is one of the main 

concerns in optogenetic devices, the next design will be equipped with an on-chip 

temperature sensor. Besides, in order to wirelessly transmit the data from the recording 

channels and temperature sensor and receive the controlling signal for the optical 

stimulation channel, a data transceiver will be implemented on the chip.  

5.2.2 Micro-lens improvements 

In terms of the micro-lens optimization, various shapes of micro-lenses for different 

applications can be optimized and implemented. For example, developing a specific 

structure for our micro-lens, which can direct the output light from both LEDs (Blue and 

Green) on the same point. This structure would be really useful for experiments that involve 

step function opsins, since they are responsive to both green and blue LEDs.  

 



 

 90 

5.2.3 Biological experiments 

In order to validate the functionality of the design from a neurological perspective, an in 

vitro experiment is a necessary step. With the proposed LED driver circuit, we can generate 

various pattern and light intensity for optical stimulation. Therefore, we can experiment 

the opsins reaction to many different scenarios. The next step after in vitro experiments is 

to conduct in vivo experiment with freely moving animals, which allows for different types 

of behavioural studies.  

5.2.4 Encapsulation and packaging 

Encapsulation and packaging is an important step prior to any in vivo experiment to ensure 

the safety of placing the device inside the body. The barrier layer should be able to first, 

protect the device against the chemical material inside the body like the ions and fluids and 

second, protect the body tissue against the possible toxic components and electrical 

voltages. It should be noted that the implemented micro-lens is fabricated using a 

biocompatible ink, since it should be in direct contact with the body tissue and should not 

be covered with any further encapsulation layers.  
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