49 research outputs found

    Design and optimization of piezoelectric MEMS vibration energy harvesters

    Get PDF
    Low-power electronic applications are normally powered by batteries, which have to deal with stringent lifetime and size constraints. To enhance operational autonomy, energy harvesting from ambient vibration by micro-electromechanical systems (MEMS) has been identified as a promising solution to this universal problem. In this thesis, multiple configurations for MEMS-based piezoelectric energy harvesters are studied. To enhance their performances, automated design and optimization methodologies with minimum human efforts are proposed. Firstly, the analytic equations to estimate resonant frequency and amplitude of the harvested voltage for two different configurations of unimorph MEMS piezoelectric harvesters (i.e., with and without integration of a proof mass) are presented with their accuracy validated by using finite element method (FEM) simulation and prototype measurement. Thanks to their high accuracy, we use these analytic equations as fitness functions of genetic algorithm (GA), an evolutionary computation method for optimization problems by mimicking biological evolution. By leveraging the micro-fabrication process, we demonstrate that the GA can optimize the mechanical geometry of the prototyped harvester effectively and efficiently, whose peak harvested voltage increases from 310 mV to 1900 mV at the reduced resonant frequency from 886 Hz to 425 Hz with the highest normalized voltage density of 163.88 among the alternatives. With an intention of promoting uniform stress distribution along the piezoelectric cantilever and providing larger area for placing proof masses, in this thesis a T-shaped cantilever structure with two degrees-of-freedom (DOF) is proposed. Thanks to this special configuration, a considerable amount of stress/strain can be obtained from the tip part of the structure during the vibration, in addition to the anchor region. An analytic model for computing the frequency response of the proposed structure is derived, and the harvester performance is studied analytically, numerically and experimentally. The conventional MEMS energy harvesters can only generate voltage disadvantageously in a narrow bandwidth at higher frequencies. Therefore, in this thesis we further propose a piezoelectric MEMS harvester with the capability of vibrating in multiple DOF, whose operational bandwidth is enhanced by taking advantage of both multimodal and nonlinear mechanisms. The proposed harvester has a symmetric structure with a doubly-clamped configuration enclosing three proof masses in distinct locations. Thanks to the uniform mass distribution, the energy harvesting efficiency can be considerably enhanced. To determine the optimum geometry for the preferred nonlinear behavior, we have also used optimization methodology based on GA. The prototype measurements demonstrate that our proposed piezoelectric MEMS harvester is able to generate voltage at 227 Hz (the first mode), 261.8 Hz (the second mode), and 286 Hz (the third mode). When the device operates at its second mode frequency, nonlinear behavior can be obtained with extremely small magnitude of base excitation (i.e., 0.2 m/s²). Its normalized power density (NPD) of 595.12 (μW·cm⁻³·m⁻²·s⁴) is found to be superior to any previously reported piezoelectric MEMS harvesters in the literature. In this dissertation, we also propose a piezoelectric MEMS vibration energy harvester with the capability of oscillating at ultralow (i.e., less than 200 Hz) resonant frequency. The mechanical structure of the proposed harvester is comprised of a doubly clamped cantilever with a serpentine pattern associated with several discrete masses. In order to obtain the optimal physical aspects of the harvester and speed up the design process, we have utilized a deep neural network, as an artificial intelligence (AI) method. Firstly, the deep neural network was trained, and then this trained network was integrated with the GA to optimize the harvester geometry to enhance its performance in terms of both resonant frequency and generated voltage. Our numerical results confirm that the accuracy of the network in prediction is above 90%. As a result, by taking advantage of this efficient AI-based performance estimator, the GA is able to reduce the device resonant frequency from 169Hz to 110.5Hz and increase its efficiency on harvested voltage from 2.5V to 3.4V under 0.25g excitation. To improve both durability and energy conversion efficiency of the piezoelectric MEMS harvesters, we further propose a curve-shaped anchoring scheme in this thesis. A doubly clamped curve beam with a mass at its center is considered as an anchor, while a straight beam with proof mass is integrated to the center of this anchor. To assess the fatigue damage, which is actually critical to the micro-sized silicon-based piezoelectric harvesters, we have utilized the Coffin-Manson method and FEM to study the fatigue lifetime of the proposed geometry comprehensively. Our proposed piezoelectric harvester has been fabricated and its capability in harnessing the vibration energy has been examined numerically and experimentally. It is found that the harvested energy can be enlarged by a factor of 2.66, while this improvement is gained by the resonant frequency reduction and failure force magnitude enlargement, in comparison with the conventional geometry of the piezoelectric MEMS harvesters

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book

    Design and analysis of SRAMs for energy harvesting systems

    Get PDF
    PhD ThesisAt present, the battery is employed as a power source for wide varieties of microelectronic systems ranging from biomedical implants and sensor net-works to portable devices. However, the battery has several limitations and incurs many challenges for the majority of these systems. For instance, the design considerations of implantable devices concern about the battery from two aspects, the toxic materials it contains and its lifetime since replacing the battery means a surgical operation. Another challenge appears in wire-less sensor networks, where hundreds or thousands of nodes are scattered around the monitored environment and the battery of each node should be maintained and replaced regularly, nonetheless, the batteries in these nodes do not all run out at the same time. Since the introduction of portable systems, the area of low power designs has witnessed extensive research, driven by the industrial needs, towards the aim of extending the lives of batteries. Coincidentally, the continuing innovations in the field of micro-generators made their outputs in the same range of several portable applications. This overlap creates a clear oppor-tunity to develop new generations of electronic systems that can be powered, or at least augmented, by energy harvesters. Such self-powered systems benefit applications where maintaining and replacing batteries are impossi-ble, inconvenient, costly, or hazardous, in addition to decreasing the adverse effects the battery has on the environment. The main goal of this research study is to investigate energy harvesting aware design techniques for computational logic in order to enable the capa- II bility of working under non-deterministic energy sources. As a case study, the research concentrates on a vital part of all computational loads, SRAM, which occupies more than 90% of the chip area according to the ITRS re-ports. Essentially, this research conducted experiments to find out the design met-ric of an SRAM that is the most vulnerable to unpredictable energy sources, which has been confirmed to be the timing. Accordingly, the study proposed a truly self-timed SRAM that is realized based on complete handshaking protocols in the 6T bit-cell regulated by a fully Speed Independent (SI) tim-ing circuitry. The study proved the functionality of the proposed design in real silicon. Finally, the project enhanced other performance metrics of the self-timed SRAM concentrating on the bit-line length and the minimum operational voltage by employing several additional design techniques.Umm Al-Qura University, the Ministry of Higher Education in the Kingdom of Saudi Arabia, and the Saudi Cultural Burea

    Contributing Towards Improved Communication Systems for Future Cellular Networks

    Get PDF
    The rapid growth of wireless communications and upcoming requirements of 5G networks are driving interest in the areas from wireless transceivers to sensor nodes. One of the most vital components of the wireless transmitter is the radio frequency power amplifier. A large-signal device model of the transistor is an essential part of the power amplifier design process. Despite the significant developments in large-signal modelling, the models for commercially available devices from the manufacturers are still under continuous development and often lack accuracy. One of the main objectives of this thesis is the validation and extension of an analytic approach as an alternative to conventional large-signal modelling for power amplifier designing. The first contribution is the derivation of new analytical expressions based on the equivalent circuit model, including the extrinsic parasitic elements introduced by the package, to calculate the optimum source and load impedances and to predict the performance of a radio frequency power amplifier. These expressions allow to evaluate the effects of a package on the optimum impedance values and performance. The second contribution is establishing the accuracy of the analytic approach. Harmonic balance simulation is used as the first benchmark to evaluate the method at various bias points and frequencies. The validity of the analytic approach is demonstrated at a frequency of 3.25 GHz for gallium nitride based high power devices with measurement of prototype radio frequency power amplifier designed for the impedance values obtained from the analytic expressions. The third contribution is extending the analytic approach to determine the optimum impedance values for different criteria of maximum gain, linearity and efficiency. The analytic expressions are utilized to gain an understanding of the relationship among the device performance, the elements of devices and package models and I-V characteristics. The wireless sensor networks are essential elements for the realization of the Internet of Things. Sensor nodes, which are the fundamental building blocks of these networks, have to be energy efficient and able to produce energy to reduce the maintenance cost and to prolong their lifetime. The second main aim of the thesis is designing and implementing an ultra-low power autonomous wireless sensor node that harvests the indoor light energy. The forth contribution of this thesis includes a comprehensive comparison of six different solar cell technologies under a controlled light intensity, carried out to determine the best option for indoor light energy harvesting. The power consumption of the node is reduced by selecting the appropriate hardware and implementing a wake-up receiver to reduce the active and idle mode currents. The low power consumption coupled with light energy harvesting significantly prolong the operating lifetime of the node

    Proof-of-concept of a single-point Time-of-Flight LiDAR system and guidelines towards integrated high-accuracy timing, advanced polarization sensing and scanning with a MEMS micromirror

    Get PDF
    Dissertação de mestrado integrado em Engenharia Física (área de especialização em Dispositivos, Microssistemas e Nanotecnologias)The core focus of the work reported herein is the fulfillment of a functional Light Detection and Ranging (LiDAR) sensor to validate the direct Time-of-Flight (ToF) ranging concept and the acquisition of critical knowledge regarding pivotal aspects jeopardizing the sensor’s performance, for forthcoming improvements aiming a realistic sensor targeted towards automotive applications. Hereupon, the ToF LiDAR system is implemented through an architecture encompassing both optical and electronical functions and is subsequently characterized under a sequence of test procedures usually applied in benchmarking of LiDAR sensors. The design employs a hybrid edge-emitting laser diode (pulsed at 6kHz, 46ns temporal FWHM, 7ns rise-time; 919nm wavelength with 5nm FWHM), a PIN photodiode to detect the back-reflected radiation, a transamplification stage and two Time-to-Digital Converters (TDCs), with leading-edge discrimination electronics to mark the transit time between emission and detection events. Furthermore, a flexible modular design is adopted using two separate Printed Circuit Boards (PCBs), comprising the transmitter (TX) and the receiver (RX), i.e. detection and signal processing. The overall output beam divergence is 0.4º×1º and an optical peak power of 60W (87% overall throughput) is realized. The sensor is tested indoors from 0.56 to 4.42 meters, and the distance is directly estimated from the pulses transit time. The precision within these working distances ranges from 4cm to 7cm, reflected in a Signal-to-Noise Ratio (SNR) between 12dB and 18dB. The design requires a calibration procedure to correct systematic errors in the range measurements, induced by two sources: the timing offset due to architecture-inherent differences in the optoelectronic paths and a supplementary bias resulting from the design, which renders an intensity dependence and is denoted time-walk. The calibrated system achieves a mean accuracy of 1cm. Two distinct target materials are used for characterization and performance evaluation: a metallic automotive paint and a diffuse material. This selection is representative of two extremes of actual LiDAR applications. The optical and electronic characterization is thoroughly detailed, including the recognition of a good agreement between empirical observations and simulations in ZEMAX, for optical design, and in a SPICE software, for the electrical subsystem. The foremost meaningful limitation of the implemented design is identified as an outcome of the leading-edge discrimination. A proposal for a Constant Fraction Discriminator addressing sub-millimetric accuracy is provided to replace the previous signal processing element. This modification is mandatory to virtually eliminate the aforementioned systematic bias in range sensing due to the intensity dependency. A further crucial addition is a scanning mechanism to supply the required Field-of-View (FOV) for automotive usage. The opto-electromechanical guidelines to interface a MEMS micromirror scanner, achieving a 46º×17º FOV, with the LiDAR sensor are furnished. Ultimately, a proof-of-principle to the use of polarization in material classification for advanced processing is carried out, aiming to complement the ToF measurements. The original design is modified to include a variable wave retarder, allowing the simultaneous detection of orthogonal linear polarization states using a single detector. The material classification with polarization sensing is tested with the previously referred materials culminating in an 87% and 11% degree of linear polarization retention from the metallic paint and the diffuse material, respectively, computed by Stokes parameters calculus. The procedure was independently validated under the same conditions with a micro-polarizer camera (92% and 13% polarization retention).O intuito primordial do trabalho reportado no presente documento é o desenvolvimento de um sensor LiDAR funcional, que permita validar o conceito de medição direta do tempo de voo de pulsos óticos para a estimativa de distância, e a aquisição de conhecimento crítico respeitante a aspetos fundamentais que prejudicam a performance do sensor, ambicionando melhorias futuras para um sensor endereçado para aplicações automóveis. Destarte, o sistema LiDAR é implementado através de uma arquitetura que engloba tanto funções óticas como eletrónicas, sendo posteriormente caracterizado através de uma sequência de testes experimentais comumente aplicáveis em benchmarking de sensores LiDAR. O design tira partido de um díodo de laser híbrido (pulsado a 6kHz, largura temporal de 46ns; comprimento de onda de pico de 919nm e largura espetral de 5nm), um fotodíodo PIN para detetar a radiação refletida, um andar de transamplificação e dois conversores tempo-digital, com discriminação temporal com threshold constante para marcar o tempo de trânsito entre emissão e receção. Ademais, um design modular flexível é adotado através de duas PCBs independentes, compondo o transmissor e o recetor (deteção e processamento de sinal). A divergência global do feixe emitido para o ambiente circundante é 0.4º×1º, apresentando uma potência ótica de pico de 60W (eficiência de 87% na transmissão). O sensor é testado em ambiente fechado, entre 0.56 e 4.42 metros. A precisão dentro das distâncias de trabalho varia entre 4cm e 7cm, o que se reflete numa razão sinal-ruído entre 12dB e 18dB. O design requer calibração para corrigir erros sistemáticos nas distâncias adquiridas devido a duas fontes: o desvio no ToF devido a diferenças nos percursos optoeletrónicos, inerentes à arquitetura, e uma dependência adicional da intensidade do sinal refletido, induzida pela técnica de discriminação implementada e denotada time-walk. A exatidão do sistema pós-calibração perfaz um valor médio de 1cm. Dois alvos distintos são utilizados durante a fase de caraterização e avaliação performativa: uma tinta metálica aplicada em revestimentos de automóveis e um material difusor. Esta seleção é representativa de dois cenários extremos em aplicações reais do LiDAR. A caraterização dos subsistemas ótico e eletrónico é minuciosamente detalhada, incluindo a constatação de uma boa concordância entre observações empíricas e simulações óticas em ZEMAX e elétricas num software SPICE. O principal elemento limitante do design implementado é identificado como sendo a técnica de discriminação adotada. Por conseguinte, é proposta a substituição do anterior bloco por uma técnica de discriminação a uma fração constante do pulso de retorno, com exatidões da ordem sub-milimétrica. Esta modificação é imperativa para eliminar o offset sistemático nas medidas de distância, decorrente da dependência da intensidade do sinal. Uma outra inclusão de extrema relevância é um mecanismo de varrimento que assegura o cumprimento dos requisitos de campo de visão para aplicações automóveis. As diretrizes para a integração de um micro-espelho no sensor concebido são providenciadas, permitindo atingir um campo de visão de 46º×17º. Conclusivamente, é feita uma prova de princípio para a utilização da polarização como complemento das medições do tempo de voo, de modo a suportar a classificação de materiais em processamento avançado. A arquitetura original é modificada para incluir uma lâmina de atraso variável, permitindo a deteção de estados de polarização ortogonais com um único fotodetetor. A classificação de materiais através da aferição do estado de polarização da luz refletida é testada para os materiais supramencionados, culminando numa retenção de polarização de 87% (tinta metálica) e 11% (difusor), calculados através dos parâmetros de Stokes. O procedimento é independentemente validado com uma câmara polarimétrica nas mesmas condições (retenção de 92% e 13%)

    An efficient telemetry system for restoring sight

    Get PDF
    PhD ThesisThe human nervous system can be damaged as a result of disease or trauma, causing conditions such as Parkinson’s disease. Most people try pharmaceuticals as a primary method of treatment. However, drugs cannot restore some cases, such as visual disorder. Alternatively, this impairment can be treated with electronic neural prostheses. A retinal prosthesis is an example of that for restoring sight, but it is not efficient and only people with retinal pigmentosa benefit from it. In such treatments, stimulation of the nervous system can be achieved by electrical or optical means. In the latter case, the nerves need to be rendered light sensitive via genetic means (optogenetics). High radiance photonic devices are then required to deliver light to the target tissue. Such optical approaches hold the potential to be more effective while causing less harm to the brain tissue. As these devices are implanted in tissue, wireless means need to be used to communicate with them. For this, IEEE 802.15.6 or Bluetooth protocols at 2.4GHz are potentially compatible with most advanced electronic devices, and are also safe and secure. Also, wireless power delivery can operate the implanted device. In this thesis, a fully wireless and efficient visual cortical stimulator was designed to restore the sight of the blind. This system is likely to address 40% of the causes of blindness. In general, the system can be divided into two parts, hardware and software. Hardware parts include a wireless power transfer design, the communication device, power management, a processor and the control unit, and the 3D design for assembly. The software part contains the image simplification, image compression, data encoding, pulse modulation, and the control system. Real-time video streaming is processed and sent over Bluetooth, and data are received by the LPC4330 six layer implanted board. After retrieving the compressed data, the processed data are again sent to the implanted electrode/optrode to stimulate the brain’s nerve cells

    Energy harvesting wireless sensor network edge device simulation tool

    Get PDF
    Wireless Sensor Networks (WSN) are Internet of Things (IoT) edge devices. They are becoming widely adopted in many industries including health care, building energy management and conditional monitoring. As the scale of WSN deployments increases, the cost and complexity of battery replacement and disposal become more significant and in time may become a barrier to adoption. Harvesting ambient energies provides a pathway to reducing dependence on batteries and in the future may lead to autonomously powered sensors. This work describes a simulation tool that enables the user to predict the battery life of a wireless sensor that utilizes energy harvesting to supplement the battery power. To create this simulator, all aspects of a typical WSN edge device were modelled including, sensors, transceiver and microcontroller as well as the energy source components (batteries, photovoltaic cells, thermoelectric generators (TEG), supercapacitors and DC/DC converters). The tool allows the user to plug and play different pre characterized devices as well as add user defined devices. The goal of this simulation tool is to predict the battery lifetime of a device and determine the scope for extension using ambient energy sources. This work was part of a larger EU multi-partner project titled “Residential Retrofit assessment platform and demonstrations for near zero energy and CO2 emissions with optimum cost, health, comfort and environmental quality” (ReCO2ST). The ReCO2ST project has received funding from the European Union’s “Horizon 2020” research and innovation programme under the grant agreement No. 768576
    corecore