1,692 research outputs found

    Simulation of undular bores evolution with damping

    Get PDF
    Propagation of undular bores with damping is considered in the framework of perturbed extended Korteweg-de Vries (peKdV) equation. Two types of damping terms for the peKdV equation, namely linear and Chezy frictional terms, which describe the turbulent boundary layers in the fluid flow are considered. Solving the peKdV equation numerically using the method of lines shows that under the influence of damping, the lead-ing solitary wave of the undular bores will split from the nonlinear wavetrain, propagates and behaves like an isolated solitary wave. The amplitude of the leading wave will remain the same for some times before it starts to decay again at a larger time. In general the amplitude of the leading wave and the mean level across the undular bore decreases due to the effect of damping

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Privacy In The Smart Grid: An Information Flow Analysis

    Get PDF
    Project Final Report prepared for CIEE and California Energy Commissio

    Introducing a new technology to enhance community sustainability: An investigation of the possibilities of sun spots

    Get PDF
    The introduction of the Sun SPOT, Small Programmable Object Technology, developed by Sun Microsystems has been depicted as providing a revolutionary change in cyber physical interaction. Based on Sun Java Micro Edition (ME), this sensor technology has the potential to be used across a number of discipline areas to interface with systems, the environment and biological domains. This paper will outline the potential of Sun SPOTs to enhance community sustainability. An action based research project was carried out to investigate the potential uses of these technologies and develop a prototype system as a proof of concept. The research will compare Sun SPOTs with similar technologies, provide an assessment of the technology, and propose a number of possible implementations of the technology to enhance community sustainability

    Reefer container monitoring system based on WSN and cloud technology

    Get PDF
    Reefer containers are the main transportation method for the import and export of food and medicine. For high-quality products is necessary to monitor the condition of the reefer containers in order to avoid affecting goods quality due to environmental variations. Monitoring the reefer containers which are used to transport fruits, vegetables, and dairy products is one of the examples. In this context appears the necessity to develop this work expressed by a distributed sensor system for monitoring reefer containers. With the support of the WSN (wireless sensor network) including a set of sensors, it is possible to obtain the information about the temperature, humidity and location data of the reefer container and upload those data to a cloud platform expressed in the case of the purposed system by The Things Network platform. Based on LEACH (Low Energy Adaptive Clustering Hierarchy) routing algorithm, the embedded software was developed to guarantee a well-balanced distribution of the energy load among WSN end-nodes. A web application and a mobile application has been developed to display the data coming from the WSN node. To check if the reefer container working in a good condition, an alarm software module has been developed to highlight abnormal data coming for the system. The routing algorithm has been simulated and the effectiveness of the algorithm is verified by simulation results. The effectiveness of the proposed system was experimentally tested, and several results are included in this dissertation.Os contentores frigoríficos são o principal método de transporte para a importação e exportação de alimentos e medicamentos. Em produtos de alta qualidade, é necessário monitorizar as condições dos contentores frigoríficos, a fim de evitar a perda da qualidade das merca dorias devido a variações térmicas. Por exemplo, monitorarizando os contentores frigoríficos usados para transportar frutas, vegetais e laticínios. Neste contexto, aparece a necessidade do desenvolvimento deste projeto descrito por um sistema de sensores distribuídos para monitorizar contentores frigoríficos. Com o suporte da rede de sensores sem fios, incluindo um conjunto de sensores, é possível obter informações sobre os dados da temperatura, humidade e localização do contentor refrigerado e fazer uplo ad desses dados numa plataforma em cloud expressa no caso do sistema proposto por plataforma de rede de coisas. Com base no algoritmo de roteamento LEACH, o software incorporado foi desenvolvido para garantir uma distribuição equilibrada da carga de energi a entre os nós de WSN. Uma aplicação Web e uma aplicação móvel foram desenvolvidas para mostrar os dados provenientes do nó WSN. Para verificar a qualidade dos dados, um módulo de software de alarme foi também desenvolvido para destacar dados anormais que chegam ao sistema. O algoritmo de roteamento foi simulado e a eficiência do algoritmo é verificada pelos resultados da simulação. A eficiência do sistema proposto foi testada experimentalmente e os vários resultados estão incluídos nesta dissertação

    Design and Implementation of Wireless Point-Of-Care Health Monitoring Systems: Diagnosis For Sleep Disorders and Cardiovascular Diseases

    Get PDF
    Chronic sleep disorders are present in 40 million people in the United States. More than 25 million people remain undiagnosed and untreated, which accounts for over $22 billion in unnecessary healthcare costs. In addition, another major chronic disease is the heart diseases which cause 23.8% of the deaths in the United States. Thus, there is a need for a low cost, reliable, and ubiquitous patient monitoring system. A remote point-of-care system can satisfy this need by providing real time monitoring of the patient\u27s health condition at remote places. However, the currently available POC systems have some drawbacks; the fixed number of physiological channels and lack of real time monitoring. In this dissertation, several remote POC systems are reported to diagnose sleep disorders and cardiovascular diseases to overcome the drawbacks of the current systems. First, two types of remote POC systems were developed for sleep disorders. One was designed with ZigBee and Wi-Fi network, which provides increase/decrease the number of physiological channels flexibly by using ZigBee star network. It also supports the remote real-time monitoring by extending WPAN to WLAN with combination of two wireless communication topologies, ZigBee and Wi-Fi. The other system was designed with GSM/WCDMA network, which removes the restriction of testing places and provides remote real-time monitoring in the true sense of the word. Second, a fully wearable textile integrated real-time ECG acquisition system for football players was developed to prevent sudden cardiac death. To reduce power consumption, adaptive RF output power control was implemented based on RSSI and the power consumption was reduced up to 20%. Third, as an application of measuring physiological signals, a wireless brain machine interface by using the extracted features of EOG and EEG was implemented to control the movement of a robot. The acceleration/deceleration of the robot is controlled based on the attention level from EEG. The left/right motion of eyeballs of EOG is used to control the direction of the robot. The accuracy rate was about 95%. These kinds of health monitoring systems can reduce the exponentially increasing healthcare costs and cater the most important healthcare needs of the society
    corecore