4 research outputs found

    Refining complexity analyses in planning by exploiting the exponential time hypothesis

    Get PDF
    The use of computational complexity in planning, and in AI in general, has always been a disputed topic. A major problem with ordinary worst-case analyses is that they do not provide any quantitative information: they do not tell us much about the running time of concrete algorithms, nor do they tell us much about the running time of optimal algorithms. We address problems like this by presenting results based on the exponential time hypothesis (ETH), which is a widely accepted hypothesis concerning the time complexity of 3-SAT. By using this approach, we provide, for instance, almost matching upper and lower bounds onthe time complexity of propositional planning.Funding Agencies|National Graduate School in Computer Science (CUGS), Sweden; Swedish Research Council (VR) [621-2014-4086]</p

    New methods for 3-SAT decision and worst-case analysis

    Get PDF
    We prove the worst-case upper bound 1:5045 n for the time complexity of 3-SAT decision, where n is the number of variables in the input formula, introducing new methods for the analysis as well as new algorithmic techniques. We add new 2- and 3-clauses, called &quot;blocked clauses&quot;, generalizing the extension rule of &quot;Extended Resolution.&quot; Our methods for estimating the size of trees lead to a refined measure of formula complexity of 3-clause-sets and can be applied also to arbitrary trees. Keywords: 3-SAT, worst-case upper bounds, analysis of algorithms, Extended Resolution, blocked clauses, generalized autarkness. 1 Introduction In this paper we study the exponential part of time complexity for 3-SAT decision and prove the worst-case upper bound 1:5044:: n for n the number of variables in the input formula, using new algorithmic methods as well as new methods for the analysis. These methods also deepen the already existing approaches in a systematically manner. The following results..
    corecore