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Abstract The use of computational complexity in planning, and in AI in general, has
always been a disputed topic. A major problem with ordinary worst-case analyses is that
they do not provide any quantitative information: they do not tell us much about the running
time of concrete algorithms, nor do they tell us much about the running time of optimal
algorithms. We address problems like this by presenting results based on the exponential
time hypothesis (ETH), which is a widely accepted hypothesis concerning the time com-
plexity of 3-SAT. By using this approach, we provide, for instance, almost matching upper
and lower bounds onthe time complexity of propositional planning.
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1 Introduction

In this article, we aim at making worst-case analyses of propositional planning more useful
and comprehensible. One problem with ordinary worst-case analyses is that they do not
provide any quantitative information: knowing that a particular computational problem is
PSPACE-complete does not tell us much about the behaviour of concrete algorithms for
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the problem, nor does it tell us much about the running time of optimal algorithms for
the problem. Later on (in Section 5.2), we will see striking examples of instance sets X

and Y that are widely separated with respect to their computational complexity (under the
assumption that NP�= PSPACE), yet almost indistinguishable with respect to upper and
lower bounds on worst-case time complexity. Another problem with ordinary worst-case
analyses is that they have traditionally been performed on very large and (in some sense)
unstructured sets of instances. To exemplify, consider Bylander’s results [8]: the complexity
analyses are performed on sets of instances characterised by the number of preconditions
and effects of actions. This leads to sets of instances that contain a wide variety of problems,
which often results in overly pessimistic complexity figures from an application point of
view.

Our approach is based on the exponential time hypothesis (ETH). This hypothesis was
suggested by Impagliazzo and Paturi [15] and it has become an important and widely used
assumption when studying the computational complexity of combinatorial problems, cf. the
survey by Lokshtanov et al. [22]. It is also gaining more and more popularity when study-
ing central problems in AI such as planning and constraint satisfaction [1, 3, 4, 19, 31].
The theory of NP-hardness provides evidence that many computational problems are
unlikely to be solvable in polynomial time, but this theory does not give any concrete lower
time bounds. To achieve such bounds, we need stronger complexity assumptions and the
ETH is such an assumption. Assessing the plausibility of the ETH is difficult due to the

same reasons as assessing the plausibility of P ?= NP: our understanding of this kind
of complexity questions is currently far too weak. We content ourselves by saying that
the ETH has deep connections with many topics in computer science, such as the exis-
tence of subexponential algorithms for NP-complete problems [16, 18, 25], the complexity
and approximability of optimisation problems [9, 23] and parameterised complexity theory
[10, 11], and the failure of ETH would have far-reaching consequences.

Complexity research in planning has typically first decided on some class C of planning
instances and then derived either a tractability result or a hardness result for that particular
class. A common objection to tractability results is that C is too restricted to be relevant
for real applications. For hardness results, a common objection is instead that C does not
correspond to actual applications and the worst cases of C are thus not relevant.

If the only problematic cases are the ones that do not seem to occur in practice
(for example, if they require inputs that are too large), we can simply decide to
eliminate them from consideration (without great loss of generality, presumably).

Levesque [20]

While this quote may seem to support the argument that the worst cases are irrelevant, it is a
fallacy to draw that conclusion. A more correct conclusion is that we have studied the wrong
class of instances and that the ones occuring in practice only constitute a subset of our class.

This inspires us to ask the following question: if we are provided with a class C of
planning instances and a planning algorithm A , what can we say about the behaviour of
A for instances of C? We will exploit the ETH to give a general answer to this question:
basically, we divide planning problems (parameterised by the allowed sets of instances)
into ‘easy’ and ‘hard’, and demonstrate how lower bounds on the time complexity of hard
problems can be deduced. We emphasise that the choice of both C and A is completely
arbitrary—any set of planning instances will do and any sound and complete planner will
do. In particular, we prove almost matching upper and lower bounds on the time complexity
of unrestricted propositional planning.
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The remainder of the article is structured as follows. In Section 2 we provide some
basic definitions for planning and satisfiability, and discuss the time complexity of algo-
rithms for propositional planning. We also formally define the ETH and use it to prove
some results that are needed later on. Section 3 formalises and proves the basic theorem that
we have already discussed informally. This is followed (in Section 4) by results concern-
ing lower bounds on the time complexity of propositional planning. The upper and lower
bounds presented in Sections 2 and 4 are not particularly close to each other so we take
the opportunity to discuss and present ways of tightening such bounds in Section 5: this
leads to almost matching upper and lower bounds for propositional planning. The results in
Sections 4 and 5 additionally illustrate two different lower bound methods with quite differ-
ent properties: the first method is always applicable (but may result in inferior bounds) while
the second method is only applicable in certain cases (but typically gives stronger bounds).
Finally (in Section 6), we use our approach for discussing a recent topic in planning: it has
been observed in practice that most planning algorithms seem to be much faster on solv-
able instances than on unsolvable ones, i.e. they are faster at finding a plan than at finding
that there is no plan. We demonstrate that this phenomenon is an artifact of the particular
algorithms and not an inherent asymmetry in planning. Let C be a set of planning instances
such that the planning problem for C is NP-hard. Let Cs contain the solvable instances in
C and let A be a planning algorithm that generates solutions (and not only provides yes/no
answers). If the worst-case time complexity of A is significantly better when applied to the
instances in Cs compared to the instances in C, then the ETH is not true. In fact, even if we
merely assume that A can generate plans for all instances in Cs (and may behave errati-
cally otherwise), then there exists a planner A ′ that is sound and complete for C and that
has the same time complexity as A up to a polynomial-time factor.

2 Preliminaries

We let N denote the natural numbers (i.e. the non-negative integers), Z denote the integers,
Z+ denote the positive integers and N∞ denote the set N ∪ {∞}, i.e. the natural numbers
extended with a symbol to denote infinity. Given some object X, we write |X| to denote its
cardinality, and we write ||X|| to denote its size, i.e. the number of bits in the representation
of X. Unless otherwise noted, we will assume that polynomials are non-decreasing functions
that grow at least linearly.

A propositional atom is a variable that can take one of the truth values true or false. The
negation of a propositional atom x is denoted x. A literal is either an atom or the negation of
an atom, and negation is extended to literals such that x = x. Let X be a set of propositional
atoms. Then L(X) denotes the set of literals over X, i.e. L(X) = { x, x | x ∈ X }. A set
Y ⊆ L(X) is consistent if either x �∈ Y or x �∈ Y for all x ∈ X. We furthermore define
Y+ = { x ∈ X | x ∈ Y } and Y− = { x ∈ X | x ∈ Y }. A set Z ⊆ X of atoms satsifies a set
Y ⊆ L(X) of literals if both Y+ ⊆ Z and Y− ∩ Z = ∅.

2.1 Planning

All results in this article will be stated using propositional STRIPS. In particular, we will use
propositional STRIPS with negative goals (PSN) [8], which can alternatively be viewed as
SAS+ [6] restricted to boolean (i.e. two-valued) variable domains.

A PSN frame is a tuple F = 〈V,A〉 where V is a set of propositional atoms and A is
a set of actions. The state space is S(F ) = 2V and its members are called (total) states.
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Each action a ∈ A has a precondition pre(a) ⊆ L(V ) and an effect eff(a) ⊆ L(V ), which
are both consistent. The notation a : X ⇒ Y defines an action a with pre(a) = X and
eff(a) = Y . For all s, t ∈ S(F ) and a ∈ A, we say that

– action a is valid in s if s satisfies pre(a) and
– action a is from s to t if a is valid in s and t = (s ∪ eff(a)+) \ eff(a)−.

A sequence ω = 〈a1, . . . , a�〉 of actions in A is a plan from s0 ∈ S(F ) to s� ∈ S(F ) if
either

– ω is the empty sequence and s0 = s� or
– there are s1, . . . , s�−1 ∈ S(F ) such that ai is from si−1 to si for all i (1 ≤ i ≤ �).

A PSN instance is a tuple P = 〈V, A, sI , sG〉 such that F = 〈V,A〉 is a PSN frame,
sI ∈ S(F ) and sG ⊆ L(V ) is consistent. We tacitly assume that instances and frames do not
contain superfluous variables, i.e. every variable appears in the precondition or effect of at
least one action. A plan for P is a plan from sI to some s ∈ S(F ) that satisfies sG. Let PSN
denote the set of PSN instances. For any subset C ⊆ PSN of planning instances, we define
the Plan Existence (PE) problem as follows.

PE(C)
INSTANCE: A planning instance P ∈ C.
QUESTION: Does P have a plan?

We can alternatively view the PE problem as graph search. The state-transition graph
G(F) for a frame F = 〈V, A〉 is a directed graph defined as G(F) = 〈S, E〉, where S =
S(〈V, A〉) and E contains all edges 〈s, t〉 such that there is some action in A from s to t .
This is extended to instances such that if P = 〈V, A, sI , sG〉 is a PSN instance, then S(P ) =
S(〈V, A〉) and G(P ) = G(〈V, A〉). One typically wants F to be a succinct representation of
the graph G(F). However, the size of F and G(F) may be of the same order: for instance,
there may be one action in A for each edge in E.

Let P = 〈V, A, sI , sG〉 be an instance of PE(PSN) and assume, without loss of gener-
ality, that the goal state sG is a total state.1 Also let G(P ) = 〈S, E〉 be the state-transition
graph of P . Obviously, every path from sI to sG in G(P ) corresponds directly to a plan for
P . Hence, P is solvable if and only if there is a path from sI to sG in G(P ).

There are two obvious choices when it comes to representing planning instances: either
the preconditions and effects of actions are represented as lists of defined variables and their
values or as bitvectors over all variables. We will exclusively consider the list representation
in the sequel: the common situation is that actions depend on and changes a small number
of variables compared to the total number of variables.

2.2 Planning algorithms

In general, every planner for PSN must run in worst-case exponential time if we require
it to output a solution, since there are planning instances with exponentially long shortest
solutions. If the planner is only required to solve the decision problem, PE, then this simple
observation is not useful for saying anything about the running time of the planner. For
example, the 3S class [17] has instances with exponentially long shortest solutions, but
PE(3S) can be solved in polynomial time.

1This can always be achieved by adding one propositional atom and one action.
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We continue by demonstrating a straightforward upper bound for PE based on search in
the state-transition graph. Searching state-space graphs in planning requires somewhat more
care than for graph searching in general. We may assume that all actions in A are unique so
every action must correspond to a unique combination of preconditions and effects. The set
L(V ) of literals over V contains 2|V | literals, so there are less than 22|V | consistent subsets
of L(V ). Hence, there are at most 22|V | different preconditions and at most 22|V | different
effects, which results in at most 22|V | · 22|V | = 24|V | unique actions. That is, the size of
A, and thus also the size of P , is not necessarily polynomially bounded in the number of
variables for a class of planning instances. However, we know that |A| < ||A|| < ||P || so
the instance size is always a safe, albeit crude, upper bound on the number of actions.

For simplicity, we may consider representing G(P ) using adjacency lists and start by
constructing an array for S and initialising all adjacency lists, which takes time O(|S|) =
O(2|V |). Then note that every state in S can have at most one outgoing arc for every action,
i.e. each adjacency list is of length |A|, at most. We can compute the adjacency list for each
state s ∈ S by checking s against every action a ∈ A. If a is valid in s, then it is trivial
to compute the unique state t ∈ S such that a is from s to t , and insert an arc from s to
t in the adjacency list of s, if there is not already such an arc. Checking an action against
a state takes polynomial time in the instance size ||P || and |A| ≤ |P | ≤ ||P ||. Hence,
there is some polynomial p such that this procedure takes O(p(||P ||) time for each state.
Constructing G(P ) thus takes total time O (|S| + |S| · p(||P ||)) = O (|S| · p(||P ||)) =
O

(
2|V | · p(||P ||)).
Checking if there is a path from sI to sG in G(P ) can be done by depth-first or breadth-

first search in time

O ((|S| + |E|) · q(||P ||)) ⊆ O
(
(|S| + |S|2) · q(||P ||)

)
⊆

(
|S|2 · q(||P ||)

)

⊆ O
(

22|V | · q(||P ||)
)

for some polynomial q.
Recall that we require that every variable is used (i.e. appears in either the preconditions

or the effects) by at least one action. This implies that we have the name of each variable
appear in at least one action which requires at least |V | log |V | bits. Thus,

|V | log |V | ≤ ||A|| ≤ ||P ||
for sufficiently large |V |. We conclude that we can assume |V | ≤ ||P ||/Ψ for some arbi-
trarily chosen constant Ψ ≥ 1 without loss of generality. The method of solving PE(PSN)
by first constructing G(P ) and then search for a path in it thus has an upper bound of time

O
(

2|V | · p(||P ||) + 22|V | · q(||P ||)
)

⊆ O
(

2||P ||/Ψ · p(||P ||) + 22||P ||/Ψ · q(||P ||)
)

that equals O
(
2||P ||/(Ψ/2) · r(||P ||)) for some polynomial r . From now on and throughout

the article, fix Ψ ≥ 1 and let Φ = Ψ/2.
The algorithm proposed above uses an exponential amount of memory. By using Savitch’s

theorem [26], the amount of memory can be lowered. Savitch showed that there exists an
algorithm AS that takes a graph G = 〈U, E〉 as input and checks whether there exists a path
from u ∈ U to v ∈ U of length k or less using space O

(
log2(|U |)) and time |U |O(log k).

The time bound did not appear in Savitch’s article, but it is a well-known folklore result.
The only thing one has to keep in mind when using this time bound is that we must be able
to check whether two vertices are connected or not in polynomial time (in the size of the
graph). Problem PE can thus be solved by asking if there is a plan of length k = |S| = 2|V |.
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If we assume an implicit graph representation where vertex adjacency can be checked in
p(||P ||) time for some polynomial p (such as PSN), we can thus solve PE in time

|S|O(log k) = |S|O(log |S|) = (2|V |)O(log 2|V |) = (2|V |)O(|V |) = 2O(|V |2) ⊆ 2O((||P ||/Ψ )2)

using space O(log2 |S|) = O(log2 2|V |) = O(|V |2) ⊆ O((||P ||/Ψ )2).

2.3 Satisfiability and the exponential time hypothesis

We will use several different variants of the boolean satisfiability problem during the course
of this article. In its basic form it is defined as follows.

SAT
INSTANCE: A boolean formula F on conjunctive normal form, i.e. F is a conjunction
of clauses where each clause is a disjunction of literals.
QUESTION: Does F have a satisfying assignment?

We require, without loss of generality, that repeated clauses are not allowed and that
no empty clauses appear. Note that the definition of SAT instances implies that there are
no unused variables, i.e. every variable appears in at least one clause. The problem k-SAT,
k ≥ 1, is the SAT problem restricted to clauses containing at most k literals. The SAT
problem is NP-complete and so is the k-SAT problem when k ≥ 3 [12, problem LO1]. We
will also consider the complement of SAT (known as UNSAT): an instance of this problem
is considered a ‘yes’-instance if and only if there does not exist a satisfying assignment.
The UNSAT problem is coNP-complete and so is the UNSAT problem restricted to clauses of
length k (which we denote k-UNSAT) whenever k ≥ 3. The following properties of 3-CNF
formulae will be used in the forthcoming proofs. The bounds are straightforward to prove
by recalling that F contains no repeated clauses, no empty clauses, and no unused variables.

Proposition 1 Let F be an arbitrary 3-CNF formula with n variables and m clauses. Then
one may assume that

1. n ≤ 3m,
2. m ≤ 8n3,
3. ||F || ≤ 3m(1 + log n) and
4. ||F || ≤ 12m log m, for m ≥ 2.

A more precise characterisation of the complexity of k-SAT (compared to merely saying
that it is an NP-complete problem) is possible by using the exponential time hypothesis
(ETH) [15, 16]. This hypothesis is a conjecture stated as follows.

Definition 2 For all constant integers k > 2, let sk be the infimum of all real numbers δ

such that k-SAT can be solved in time O(2δn), where n is the number of variables of an
instance. The exponential time hypothesis (ETH) is the conjecture that sk > 0 for all k > 2.

Informally, ETH says that satisfiability cannot be solved in subexponential time. One
may equivalently define the ETH for the number of clauses, i.e. replacing O(2δn) with
O(2δm) in Definition 2, where m is the number of clauses. It is known that the ETH with
respect to the number of clauses holds if and only if the ETH with respect to the number of
variables holds [16]. Note that since the ETH refers to actual deterministic time bounds it is
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possible to swap the answer, i.e. if we could solve k-UNSAT in time O(f (n)) for some func-
tion f , then we could also solve k-SAT in time O(f (n)). Hence, the ETH can equivalently
be defined in terms of the k-UNSAT problem.

Since using the ETH offers more precision than polynomial reductions between the usual
complexity classes do, we will benefit from also being more precise about how much a
reduction blows up the instance size, defining the following measure for this purpose.

Definition 3 Given a reduction ρ from some problem X to some problem Y, we say that ρ

has blow-up b, for some b > 0, if there exists an n > 0 such that ||ρ(I)|| ≤ ||I ||b for all
instances I of X such that ||I || ≥ n.

Clearly, every polynomial-time reduction has bounded blow-up.
The time complexity of a problem is usually defined as a function of the instance size,

while the ETH is defined as a function of the number of variables or clauses. This lat-
ter allows for a sharper characterisation but it is not quite suitable for planning where the
instance size is not necessarily polynomial in the number of variables. We will instead
use time bounds on the form O(2nc

), where n is the instance size. This approach is
closely related to the concept of power indices [28–30]: the power index of a problem X
equals inf{c | X ∈ DTIME(2nc

)}. Although the power index of SAT is obviously not known,
Stearns and Hunt assume that SAT has power index 1, which is known as the satisfiability
hypothesis (SH). The SH predates the ETH, but the concepts are clearly connected, with the
ETH as the stronger assumption. This is demonstrated by the following lemma which shows
that the power index of SAT must be at least 1 (and, thus, exactly 1) if the ETH is true, i.e.
the SH is true if the ETH is true.

Lemma 4 3-SAT and 3-UNSAT cannot be solved in time O(2||F ||c ) for any c < 1, unless
the ETH is false.

Proof Suppose 3-SAT can be solved in time O(2||F ||c ) for some c < 1. We know from
Proposition 1 that ||F || ≤ 12m log m, for m ≥ 2. Furthermore, 12m log m < m1+ε for all
ε > 0 and large m. Choose ε = 1−c, which satisfies that ε > 0 since c < 1. It then follows
from the assumption that 3-SAT can be solved in time O(2||F ||c ) ⊆ O(2m(1+ε)c

) = O(2md
),

where d = (1+ε)c = (1+ε)(1−ε) < 1. This contradicts the ETH since 2md
grows slower

than 2δm for all δ > 0. The case for 3-UNSAT is analogous.

It is important to note that this lemma only states a one-way relationship between the
SH and the ETH. It does state that the ETH must be false if 3-SAT can be solved in time
O(2||F ||c ) for some c < 1. However, it does not rule out the possibility that the ETH is still
false even if 3-SAT cannot be solved in time O(2||F ||c ) for any c < 1. This is because ||F || ∈
	(m log m) and there is no c such that m ∈ 	((m log m)c). If c < 1, then (m log m)c grows
strictly slower than m, and if c ≥ 1, then (m log m)c grows strictly faster than m.

3 Restricted planning

We will now address the main question of this article: if we are allowed to choose a class
of planning instances and a planning algorithm, what can we say about the time complexity
in this case? A general answer to this question will be provided in Theorem 5 below. We
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will then (in Sections 4 and 5) demonstrate how this answer can be instantiated to concrete
figures in specific cases.

3.1 Main result

Theorem 5 Let C be a class of PSN instances. Then, at least one of the following must
hold:

1. PE(C) is neither NP-hard nor coNP-hard,
2. there exists some c > 0 such that PE(C) cannot be solved in time O(2||P ||c ) or
3. the ETH is not true.

We will intervene with a brief discussion of this result before moving on to the proof.
In case (1), PE(C) is neither NP-hard nor coNP-hard. One may suspect that membership
in P is the most common instance of this case. If so, a tractable fragment of planning has
been identified. Assume now that PE(C) is in NP but not a member of P, i.e. PE(C) is
an NP-intermediate problem. This may appear a bit surprising since almost all complexity
results for planning appearing in the literature exclusively deal with “well-known” complex-
ity classes such as P, NP, and PSPACE. However, an infinite number of complexity classes
can be captured by propositional planning if we assume that P �= PSPACE–see Section 3.2.

In case (2), PE(C) cannot be solved in time O(2||P ||c ) for some c > 0: this is bad news
since it basically implies that A performs poorly on C. At this point, it is important to recall
that the choice of A and C is completely arbitrary. This, in turn, implies that Levesque’s
suggestion (as stated in the introductory section) of removing ‘unwanted’ instances is prob-
lematic: in order to get a running time that is in O(2||P ||c ) for all c > 0, we have to find a
subset C′ of C such that PE(C′) does not belong to the same complexity class as PE(C).
We can restate this as follows: PE(C′) must be easier with respect to worst-case computa-
tional complexity than PE(C). In other words, understanding the worst-case computational
complexity of planning problems is highly relevant also for understanding the complexity
of naturally arising planning problems.

Regarding case (3), it suffices to note that if the ETH were false, then this would have
such fundamental consequences for complexity theory in general that both this article and
many others in the literature would become obsolete.

Proof of Theorem 5 First suppose that PE(C) is neither NP-hard nor coNP-hard. Then we
are in case 1 and we are done.

Otherwise, PE(C) can be assumed to be either NP-hard or coNP-hard. If there is some
c > 0 such that PE(C) cannot be solved in time O(2||P ||c ), then we are in case 2 and we are
done.

In case 3, the remaining possibility is that there is some algorithm A that can solve
PE(C) in time O(2||P ||c ) for all c > 0. First consider the case where PE(C) is NP-hard.
Then there is a polynomial reduction ρ from 3-SAT to PE(C), i.e. there is some polynomial
p and some b such that ρ has blow-up b and can be computed in time p(||F ||). There is then
an algorithm B for 3-SAT that works by first computing the PSN instance ρ(F ) and then
applying A to ρ(F ). Choose c such that 0 < c < 1/b. It then follows from the assumption
that B solves 3-SAT in time

O
(
p(||F ||) + 2(||F ||b)c

)
= O

(
p(||F ||) + 2||F ||bc

)
= O

(
2||F ||bc

)
.

However, this contradicts the ETH according to Lemma 1, since bc < b(1/b) = 1.
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Instead suppose that PE(C) is coNP-hard. Then there is a polynomial reduction ρ from
3-UNSAT to PE(C) and the rest of the proof is analogous to the previous case, since Lemma
1 applies also to 3-UNSAT.

Theorem 5 may appear slightly disappointing for at least two reasons: (1) it is not exclu-
sively about the planning problem since it can easily be adapted to almost any computational
problem and (2) it does not take any concrete algorithm into account. Reason (1) is inter-
esting from several viewpoints. It is quite obvious that Theorem 5 is applicable to a wide
range of problems. In fact, it can be adapted to every NP- or coNP-hard problem with vir-
tually no changes of its proof. However, this is not the case for the results appearing later
in this article; in fact, most of the proofs intimately use the fact that we are studying the
planning problem and not an arbitrary NP- or coNP-hard problem. For instance, we will (in
Section 4) exhibit a particular polynomial-time reduction from 3-UNSAT to PE(PSN) with
blow-up 3. Obtaining similar reductions to some other problem X poses certain problems.
First of all, most NP- and coNP-hardness proofs are not based on direct reductions from 3-
(UN)SAT—such proofs are typically based on (sometimes quite long) chains of reductions
from the (UN)SAT problem to X. The blow-up of such a chain can be huge (and thus lead
to weak results) and, more importantly, immensely difficult to calculate. The close connec-
tions between propositional logic and propositional planning made this potentially difficult
problem quite manageable.

Reason (2) is, fortunately, not a reason for disappointment. Theorem 5 is providing a
lower bound and no algorithm can beat this bound unless the ETH is false. Thus, there
is no need to discuss any particular algorithm. This fact must not be interpreted wrongly:
even though no given planner A can beat the lower bound, planner A can have a time
complexity that is significantly worse than this bound. Thus, the choice of planner is not at
all unimportant when facing concrete planning instances.

While case 2 of this theorem states that there exists some constant c such that PE(C)
cannot be solved in time O(2||P ||c ), it does not say anything about concrete values of c.
Typically, we want to know the value of c, or at least we need some estimation of the value,
since there is a huge difference between algorithms that run in, say, time O(2||P ||0.01

) and
algorithms that run in time O(2||P ||0.99

). The proof hints at one way to determine actual
values for c, though, based on the blow-up of reductions. This can be formalised as follows.

Corollary 6 Let C be a class of PSN instances. If the ETH holds and PE(C) is NP-hard,
then PE(C) cannot be solved in time O(2||P ||1/c

) for any c > b∗ where

b∗ = inf{b | there is a poly-time reduction from 3-SAT to PE(C) w. blow-up b}.
The analogous result holds when PE(C) is coNP-hard.

Proof Suppose problem PE(C) can be solved in time O(2||P ||1/c
) for some c > b∗. Choose

a polynomial-time reduction from 3-SAT to PE(C) with blow-up b such that b∗ < b < c.
Such a reduction must exists due to the definition of b∗. By assumption we can thus solve 3-
SAT in time O(2(||F ||b)1/c

) = O(2||F ||b/c
), but this contradicts the ETH according to Lemma

4, since b/c < 1.

While this corollary establishes a relationship between the blow-up of reductions and
the constant c, it still only states that c and b∗ are related. Hence, we will (in Section 4)
demonstrate how one can proceed to achieve actual values for c. It is quite natural that



166 M. Aghighi et al.

computing exact values for b∗ and c is often a difficult problem. We stress that finding exact
values is not always a necessity—estimates of b∗ and c still provide working lower bounds
albeit not optimal bounds.

3.2 Capturing complexity classes with planning classes

For all that we know, it could be the case that only a finite number of complexity classes
can be captured by planning. In fact, earlier results point in this direction: it is extremely
rare that any other classes than P, NP, and PSPACE appear in complexity classifications of
planning. However, this is not the case—planning captures an enormous amount of different
computational problems and complexity classes if we assume that P �= PSPACE. We will
see below that any complexity class C such that P ⊆ C ⊆ PSPACE and that is closed under
polynomial reductions can be described by a class of planning instances. Furthermore, every
computational problem X in PSPACE can be captured by the plan existence problem!

Bylander has shown that PE(PSN) is PSPACE-complete [8]. This was accomplished by
devising a polynomial-time reduction from Turing machine acceptance with polynomially
bounded tape. Let M be a Turing machine where the tape length is bounded by a poly-
nomial q, i.e. the number of tape cells is bounded by q(|x|) where x is the input string.
Let ρ(M, q, x) denote the corresponding PSN instance that has a solution if and only if
M accepts input x using at most q(|x|) tape cells. According to Bylander’s result, ρ is
polynomial-time computable. The reason that we make the polynomial q explicit, instead
of implicit in M , is that Bylander’s reduction must have explicit access to it. Now, consider
the following set of PSN instances:

C
q
M = { ρ(M, q, x) | x is an input string for M }.

We say that ρ has property (*) if

1. for every P ∈ C
q
M , there exists exactly one string x such that P = ρ(M, q, x) and

2. for every P ∈ C
q
M , one can in polynomial time compute the x such that P =

ρ(M, q, x).

Property (*) is not a very prohibitive assumption—think of PDDL2 encodings of
Bylander’s reduction. Every such reduction has property (*) since every variable is given
an explicit name. Thus, given an instance of C

q
M , we can extract the unique input string

in polynomial time by looking at the variables corresponding to the tape. Henceforth,
let ρ denote this particular reduction.

Theorem 7 Let X be an arbitrary computational problem in PSPACE. Then there exists
a class CX of PSN instances such that X and PE(CX) are polynomial-time equivalent
problems.

Proof The problem X can be solved by a Turing machine MX with tape length bounded by
a polynomial q (since X is in PSPACE). Let CX = { ρ(MX, q, x) | x is an input string}.
Obviously, there exists a polynomial-time reduction from X to PE(CX). There is also a
polynomial-time reduction in the other direction: arbitrarily choose P ∈ CX and compute

2PDDL (the Planning Domain Definition Language) is a commonly used specification language for planning
instances.
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(in polynomial time) the input string x such that ρ(MX, q, x) = P . Then, P has a solution
if and only if MX accepts x.

Corollary 8 Let C be a complexity class in PSPACE such that C is closed under polynomial-
time reductions and C contains complete problems under polynomial-time reductions. Then,
there exists a set of PSN instances C such that PE(C) is complete for C.

4 A concrete lower bound

The results in the previous section are general and Corollary 6 only states that there exists
a relationship between the lower bound and the blow-up of reductions. Hence, we will give
a more concrete example in this section, demonstrating how one can determine the actual
blow-up of a reduction and use this to instantiate the previous result. More precisely, we
will present a reduction from 3-UNSAT to PE(PSN).

We begin by recalling how to encode an n-bit binary counter in PSN [2]. Let V =
{x1, . . . , xn} and let A contain the n actions

ci : {x1, . . . , xi−1, xi} ⇒ {x1, . . . , xi−1, xi} (1 ≤ i ≤ n).

Then use V and A to construct a PSN instance P = 〈V,A, sI , sG〉 such that sI = ∅ and
sG = { xi | 1 ≤ i ≤ n }. This instance is always solvable and it has a shortest plan of length
2n −1 actions that corresponds to a Hamilton path from sI to sG in the state-transition graph
G(P ).

Construction 9 Define a function ρ : 3 − UNSAT → PSN as follows. Let F be an instance
of 3-UNSAT with n variables {x1, . . . , xn} and m clauses {C(F)1, . . . , C(F )m}. Assume
without loss of generality that F contains no clause C(F)j that is a tautology, i.e. both xi

and xi appear in C(F)j for some 1 ≤ i ≤ n. We construct a corresponding PSN instance
ρ(F ) = PF = 〈V,A, sI , sG〉 as follows:

– Let V = {x1, . . . , xn+1}.
– Let c1, . . . , cn+1 denote the actions in the n + 1-bit counter over the variables

x1, . . . , xn+1. For each clause C(F)j = (�1 ∨ �2 ∨ �3) of F , where 1 ≤ j ≤ m, define
Tj = {�1, �2, �3}. Let A = { ai,j | 1 ≤ i ≤ n + 1, 1 ≤ j ≤ m }, where the actions are
defined as ai,j : pre(ci) ∪ Tj ⇒ eff(ci). One may view ai,j as action ci in a binary
counter extended with preconditions saying “clause j is not satisfied by x1, . . . , xn”.

– Let sI = ∅.
– Let sG = {x1, . . . , xn, xn+1}.

This construction is indeed a polynomial reduction from 3-UNSAT to PE(PSN) and we
now determine a concrete upper bound for its blow-up.

Lemma 10 The function ρ in Construction 9 is a polynomial reduction from problem 3-
UNSAT to PE(PSN) with blow-up 3 at most.

Proof We first prove that the function ρ is a polynomial reduction from 3-UNSAT to
PE(PSN). Let F be a 3-UNSAT instance and let PF = ρ(F ) be the corresponding PSN
instance according to Construction 9. If we treat the variables x1, . . . , xn+1 as encoding
a binary number, then every plan must count through all numbers from 0 to 2n, since
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these numbers correspond to the initial and goal states and there are only counting actions.
Furthermore, for each state s ∈ S(PF ), only one of the different types c1, . . . , cn+1 of
counter actions is valid in s and there are m variants of each such action, one for each
clause of F . Hence, for each step in a plan for PF , there are m different actions to choose
from. An action corresponding to a clause C(F)j of F has a precondition that requires all
literals in C(F)j to be false, i.e. the action is valid only if C(F)j is false in the current
variable assignment specified by variables x1, . . . , xn. This means that for each assignment,
i.e. for each state, it is necessary to find an action corresponding to a clause of F that is
false for that assignment. In other words, a plan for PF must verify that for every assign-
ment to x1, . . . , xn, at least one clause of F is false, i.e. that F is unsatisfiable. Hence,
ρ is a reduction from 3 − UNSAT to PE(PSN) and it is obvious that it is polynomial-time
computable.

We then prove that ρ has blow-up at most 3. Let F be a 3-UNSAT instance with n variables
and m clauses. Without losing generality, assume that m ≥ 3 and n ≥ 2. We know from
Proposition 1 that n ≤ 3m and that F requires ||F || ≤ 3m(1 + log n) bits to represent.
However, it is reasonable to assume that all clauses contain exactly three literals, so we
can assume equality, i.e. ||F || = 3m(1 + log n). Let ρ(F ) = PF = 〈V, A, sI , sG〉 be the
corresponding PSN instance according to Construction 9. Then |V | = n + 1 and |A| =
m|V | = m(n + 1).

Each set of literals is represented as a list of literals. Each literal must uniquely identify a
variable and its polarity, which requires log |V |+1 bits. A consistent literal set thus requires
at most |V |(log |V | + 1) bits. For a total state it is sufficient to list the variables that are
true, but for simplicity we overestimate this to get |V |(log |V |+1) bits also in this case. For
the set of variables, V , we just list all variables where each variable requires log |V | bits to
identify. For the action set, A, we list all actions and represent the precondition and effect
for each one. We thus get:

||V || = |V | · log |V |,
||A|| = ∑

a∈A (||pre(a)|| + ||eff(a)||)
≤ |A| · (|V |(log |V | + 1) + |V |(log |V | + 1))

≤ m|V | · 2|V |(log |V | + 1)

= 2m|V |2(log |V | + 1),

||sI ||, ||sG|| ≤ |V | · (log |V | + 1).

It is now straightforward to verify that ||PF || ≤ 3m(n + 1)2 · (log(n + 1) + 1).
To prove that the blow-up is at most 3, we need to prove that ||PF || ≤ ||F ||3

for sufficiently large instances. We have assumed that ||F ||3 = (3m(log n + 1))3 =
27m3(log n+1)3. We also know that n ≤ 3m, so 3m(n+1)2 ≤ 48m3 (since m ≥ 2). Hence,

||PF ||
||F ||3 = 3m(n + 1)2 · (log(n + 1) + 1)

(3m(log n + 1))3
≤ 48m3 · (log(n + 1) + 1)

27m3 · (log n + 1)3
≤ 1,

which holds since n ≥ 2. Note that this result is not sensitive to the constant in the expres-
sion for ||F ||; if we underestimate ||F || with the value m(log n + 1), i.e. only assuming at
least one literal per clause, then the inequality would still hold for sufficiently large values
of n. It follows that the construction has blow-up at most 3.
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We can now plug this blow-up figure into Corollary 6 to get a concrete lower bound for
PSN planning.

Theorem 11 PE(PSN) takes time 
(2||P ||1/3
) to solve, unless the ETH is false.

Proof We know from Lemma 10 that there exists a polynomial-time reduction ρ from 3-
UNSAT to PE(PSN) with blow-up 3. Hence, we know that b∗ ≤ 3 for the constant b∗ in
Corollary 6. It thus follows from this corollary that PE(PSN) takes time 
(2||P ||1/3

) to solve,
unless the ETH is false.

After having seen how to use Theorem 5 for analysing the time complexity of planning
problems, it is not very hard to investigate the time complexity of, for instance, standard
benchmark problems. An excellent starting point is the article by Helmert [13]. Let us con-
sider the benchmark problem GRID for instance. Helmert shows NP-hardness in Theorem
30 via a reduction from 3-SAT. The blow-up of this reduction can be determined and it
immediately gives a c > 0 such that GRID cannot be solved in time O(2||P ||c ) unless the
ETH is false. Let us consider the TRANSPORT problem instead. Here, Helmert shows NP-
hardness (in Theorem 14) by a reduction from the HAMILTONIAN PATH problem. In this
case, we need to analyse two reductions: some reduction from 3-SAT to HAMILTONIAN

PATH (Theorem 7.46 in Sipser [27] presents one possible reduction) followed by Helmert’s
reduction. Once again, we can obtain a c > 0 such that TRANSPORT cannot be solved in
time O(2||P ||c ) unless the ETH is false. Note that the value of c established in this way may
not be optimal.

5 An improved lower bound

By combining the upper bounds presented in Section 2.1 with Theorem 11, we know
that PSN planning can be performed in time O(2||P ||/Φ) where Φ ≥ 1/2 but it cannot
be performed in time O(2||P ||1/3

) if the ETH holds. We study lower bounds for domain-
independent planning in greater detail in this section. We show that PE(PSN) cannot be
solved in time O(2||P ||c ) for any c < 1 and this bound closely matches the upper bound for
PE(PSN). The lower bound on PSN planning that was shown in Theorem 11 was obtained
by analysing the blow-up of a particular reduction from 3-UNSAT to PE(PSN). This way
of obtaining lower bounds is very general—it is applicable whenever one is considering
(co)NP-hard problems—but it is sometimes difficult to achieve tight bounds. There are
alternative ways of obtaining lower bounds, though, and we will illustrate one of them.
While the ETH is intrinsically based on the time complexity of 3-SAT, there are other com-
putational problems that can be used equally well, i.e. there are other problems X such
that if X can be solved in subexponential time, then the ETH is false. Sometimes X exhibit
properties that simplify the identification of lower bounds.

We consider lower bounds based on the number of variables in Section 5.1 and we use
these bounds for proving results based on instance size in Section 5.2.

5.1 Lower bound in the number of variables

In the sequel, we will exploit a particular constraint satisfaction problem (CSP) for obtaining
an improved lower bound on the complexity of PE(PSN). Let � be a set of finitary relations
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over some domain D; such sets are known as constraint languages. We define CSP(�) to
be the following computational problem.

CSP(�)

INSTANCE: A tuple 〈V, C〉 where V is a finite set of variables and C is a finite set of
constraints, i.e. objects R(vi1 , . . . , vik ) where R ∈ �, {vi1 , . . . , vik } ⊆ V and k equals
the arity of R.
QUESTION: Is there a function f : V → D such that 〈f (vi1), . . . , f (vik )〉 ∈ R for
every constraint R(vi1 , . . . , vik ) in C?

Given a CSP(�) instance 〈V,C〉, we say that 〈V, C〉 has degree3 d if each variable
appears in at most d different constraints. Given a constraint language �, we let CSP(�)-
d denote the CSP(�) problem restricted to instances of degree d. Let R denote the 6-ary
relation {(1, 0, 0, 0, 1, 1), (0, 1, 0, 1, 0, 1), (0, 0, 1, 1, 1, 0)}. We have the following result.

Theorem 12 (Jonsson et al. [18, Thm. 6.2]) CSP({R})-2 can be solved in time 2ε·n (where
n is the number of variables) for every ε > 0 if and only if the ETH is false.

We have chosen to work with CSP({R})-2 because of its simplicity: we only need to
consider a single relation and we know the exact value of the degree bound. However, many
other degree-bounded constraint problems would, in principle, have worked equally well
for obtaining the lower bound.

Note that every instance 〈V,C〉 of CSP({R})-2 satisfies |C| ≤ 2|V |: assume we have a
set of constraints {C1, . . . , Cn} and we want to minimise the number of variables used in
these constraints. To fill “all variable slots”, we make pairs of the constraints and fill them
with one variable per pair, i.e.

C1(x1, . . . , x1), C2(x1, . . . , x1), C3(x2, . . . , x2), C4(x2, . . . , x2), . . .

Hence, n/2 variables are needed and |C| = 2|V | under the safe assumption that n is even.
We now present a polynomial-time reduction from CSP({R})-2 to PE(PSN). We exploit

the fact that CSP({R})-2 instances contain a fairly small number of constraints in order to
produce PSN instances that contain a small number of variables and actions.

Let T = 〈V, C〉 be an arbitrary instance of CSP({R})-2. Assume V = {v1, . . . , vn} and
C = {C1, . . . , Cm}. We construct a PSN instance PT = 〈W, A, sI , sG〉 based on 〈V, C〉. We
avoid notational inconveniences by not giving concrete names to the actions in A; we simply
refer to them by their preconditions and effects. Let W = {a1, . . . , an}∪{b1, . . . , bm}∪{c}.
For each variable vi ∈ V , introduce the action c ⇒ ai . For each Cj ∈ C, do the following.
Assume for simplicity that Cj = R(v1, . . . , v6) and introduce the following three actions:

1. a1, a2, a3, a4, a5, a6 ⇒ bj , c

2. a1, a2, a3, a4, a5, a6 ⇒ bj , c

3. a1, a2, a3, a4, a5, a6 ⇒ bj , c

Finally, let sI = {w | w ∈ W } and sG = {bj | 1 ≤ j ≤ m}. It is not hard to verify
that 〈W,A, sI , sG〉 has a solution if and only if 〈V, C〉 has a solution, 〈W,A, sI , sG〉 can be
constructed in polynomial time in ||〈V,C〉||, and that |W | ≤ 3|V | + 1 since |C| ≤ 2|V |.

Assume now that PE(PSN) can be solved in 2|V |c time for some c < 1. This implies that
CSP({R})-2 can be solved in 2(3|V |)c time. This implies, in turn, that CSP({R})-2 can be

3The reader should be aware that other notions of degree appear in the literature.
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solved in time 2ε·|V | for all ε > 0, since ε|V | > (3|V |)c for large |V | when c < 1. Hence,
the ETH does not hold due to Theorem 12. We have shown the following result.

Lemma 13 PE(PSN) cannot be solved in time 2|V |c for any c < 1 unless the ETH is false.

One should note that this result holds for much more restricted sets of planning instances
than PSN. For example, the actions have only positive effects, which implies that the optimal
solutions are very short since no variable is required to change more than once at most.
One should also note that there probably are no “useful” reductions from CSP({R})-2 to
every NP-hard planning problem PE(C) in the sense that they beat the bounds that can be
obtained by the blow-up method in Section 4.

5.2 Lower bound in the instance size

The bound given in Section 5.1 measures the size of the instance in the number of variables.
We continue by presenting bounds that are based on the usual instance measure, i.e. the
number of bits needed to represent the instance.

Let T = 〈V, C〉 be an arbitrary instance of CSP({R})-2 and let PT be the corresponding
planning instance 〈W,A, sI , sG〉. Recall that we have |V | actions for setting the variables
and at most 3|C| ≤ 6|V | actions for checking the clauses. It follows that ||W || = |W | ·
log |W |,

||A|| ≤
∑

a∈A

(||pre(a)|| + ||eff(a)||) ≤ D′ · |V | · log |W |,

(for some constant D′) and ||sI ||, ||sG|| ≤ |W |·(log |W |+1). By recalling that |W | ≤ 3|V |+
1, it follows that ||PT || ≤ D · |V | log(|V |) for sufficiently large n and some sufficiently
large constant D.

Assume that PE(PSN) can be solved in time 2||P ||c for some c < 1. This implies that
CSP({R})-2 can be solved in time 2(D·|V | log |V |)c . If d = 1 + 1−c

2 , then |V | log |V | ∈
O(|V |d) and CSP({R})-2 can be solved in time 2(D·|V |d )c , too. We see that

2(D·|V |d )c = 2(Dc ·|V |c·
(

1+ 1−c
2

)

)

and c · (1 + 1−c
2 ) = 3c−c2

2 < 1 since 0 < c < 1. This implies, in turn, that problem
CSP({R})-2 can be solved in time 2ε·|V | for all ε > 0. Hence, the ETH does not hold due to
Theorem 12 and we have proved the following result.

Theorem 14 The problem PE(PSN) can be solved in time 2||P ||/Φ while PE(PSN) cannot
be solved in time 2||P ||c for any c < 1 unless the ETH is false.

Since Φ ≥ 1/2 it follows that PE(PSN) can be solved in time 4||P || while it cannot be
solved in time 2||P ||c for any c < 1 (unless the ETH is false). The second statement implies
that PE(PSN) cannot be solved in time 4||P ||c for any c < 1 so the bounds are matching
each other quite closely.

We conclude this section by discussing some consequences of the near-optimal bounds
provided by Theorem 14. By this theorem, we know that PE(PSN) cannot be solved in time
2||P ||c for any c < 1. This lower bound holds even if we only consider instances having very
short plans, i.e. plans ω of length ≤ |V |. This is a direct implication of the definition of PT

where each variable can change at most one time. Define

X = {PT | T is an instance of CSP({R})-2}
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and note that PE(X) is NP-complete, PE(X) can be solved in time O(2||P ||/Φ) and PE(X)

cannot be solved in time 2||P ||c for any c < 1.
Arbitrarily choose Y ⊆ PSN such that PE(Y ) is PSPACE-complete: one may, for

instance, let Y denote the set of planning instances that results from the reduction in the
proof of Theorem 3.1 in Bylander [8]. Let Z = X ∪ Y . We see that PE(Z) can be solved
in 2||P ||/Φ time but it cannot be solved in 2||P ||c time for any c < 1. Viewed slightly dif-
ferently (as pointed out above), we know that PE(Z) can be solved in time 4||P || but PE(Z)

cannot be solved in time 4||P ||c for any c < 1. Thus, PE(X) and PE(Z) belong to different
complexity classes (under the assumption that NP �= PSPACE) but they are almost indistin-
guishable from the viewpoint of time complexity. Thus, we cannot, in the general case, get
much concrete information about running times from statements like “PE(Z) is complete
for complexity class C” when NP ⊆ C.

Another consequence of Theorem 14 is that the upper bound is obtained by basic depth or
breadth search without using any heuristics at all. This may seem counterintuitive—should
not the use of powerful heuristics be highly important when considering large complex
instances? The answer is an emphatic “no”. Domain-independent heuristic guidance can
be very powerful on small and medium-size instances. For large instances, the amount of
help that can be provided diminishes drastically: the advantages of heuristically pruning the
search tree are too small in comparison to the enormous size of the search tree. The situation
may be very different when considering restricted sets of planning instances and heuristics
which are tailored to these restrictions since, in that case, Theorem 14 is not applicable.

6 Solvable vs. Unsolvable instances

An asymmetry in handling solvable and unsolvable instances has received attention in the
literature recently [5, 7, 14, 24]: it has been observed that planners are often very good at
finding plans but less good at verifying that no plan exists. From a theoretical point of view,
this is a somewhat surprising anomaly. If we consider a tractable class of planning problems,
then it is easy both to find a plan and to find that there is no plan. On the other hand, if we
are faced with an NP-hard class, then it cannot be the case that all solvable instances are
easy, and only some of the unsolvable instances are hard, as the following result shows.

Theorem 15 Let A be a planning algorithm. Let C be a class of PSN instances such that
PE(C) is NP-hard and let ρ be a polynomial-time reduction from 3-SAT to PE(C) with
blow-up b. If algorithm A can generate a plan for each solvable instance in C in 2||P ||c

steps for some c such that 0 < c < 1/b, then the ETH is not true.

Note that the behaviour of A only needs to be correct for solvable instances. For
unsolvable instances, it may give incorrect answers or not even terminate.

Proof Suppose there is some algorithm A that can generate a plan for each solvable
instance of C in 2||P ||c steps for some c such that 0 < c < 1/b. Let F be an arbitrary 3-
SAT instance and let PF = ρ(F ) be the corresponding PSN instance. Simulate A on PF

for 2||PF ||c steps. If PF is solvable, then A will return a correct plan for PF , since it has to
be correct for all solvable instances. On the other hand, if PF is not solvable, then there are
three possibilities:

1. A answers that PF has no plan,
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2. A does not halt within 2||P ||c steps or
3. A returns an output string that is not a plan for PF .

Obviously, if A does not return any output string (cases 1 and 2), then PF has no solution. It
remains to distinguish between a solvable instance and case 3. This can be done by checking
whether the output string returned by A is a plan for PF or not. The output string can
contain at most 2||PF ||c symbols, since A does not have time to produce a longer output
string, so there can be at most this many actions in the string. Each step of a plan can be
verified in time p(||PF ||) for some fixed polynomial p. Hence, the output from A can be
checked in time O(p(||PF ||) · 2||PF ||c ). The construction of PF guarantees that A outputs
a correct plan for PF if and only if F is satisfiable. Hence, we can check whether F is
satisfiable or not in time

O
(

2||PF ||c + p(||PF ||) · 2||PF ||c) ⊆ O
(
(1 + p(||F ||b)) · 2(||F ||b)c) ⊆ O

(
2||F ||bc+ε

)

for all ε > 0. Furthermore, bc < 1, since c < 1/b, so we can choose ε such that 0 < ε <

1 − bc. However, then bc + ε < 1, which contradicts the ETH according to Lemma 4.

We note that using the ETH is crucial in establishing the previous result. Assume that
we, for instance, would like to use the P �= NP hypothesis instead of the ETH. Then, we
would need to prove the following:

Let A be a planning algorithm. Let C be a class of PSN instances such that PE(C) is
NP-hard and let ρ be a polynomial-time reduction from 3-SAT to PE(C) with blow-
up b. If algorithm A can generate a plan for each solvable instance in C in 2||P ||c

steps for some c such that 0 < c < 1/b, then P = NP.

However, this statement is not true in general. Let X be any NP-complete problem. By
Theorem 7, there exists a class CX of PSN instances such that X and PE(CX) are polynomial-
time equivalent problems. This implies that PE(CX) is NP-complete and there exists a
polynomial-time reduction from 3-SAT to PE(CX) with blow-up b. Assume now that A
can generate a plan for each solvable instance in C in 2||P ||c steps for some c such that
0 < c < 1/b. By arguing as in the proof of Theorem 15, this merely implies that PE(CX)

can be solved in 2||P ||bc
steps where 0 < bc. This fact does not imply that PE(CX) can be

solved in polynomial time, though, since the function 2||P ||bc
(with 0 < bc) grows faster

than every polynomial. Thus, we cannot draw the conclusion that P = NP.
An immediate consequence of the proof of Theorem 15 is the following.

Corollary 16 Let A be a planning algorithm and let C be a class of PSN instances. If
algorithm A can generate a plan for each solvable instance in C in f (n) steps, then PE(C)

can be solved in (p(n) + 1) · f (n) steps for some polynomial p that does not depend on C.

In other words, if A is a planner that can generate plans for all solvable instances in C,
then there exists a planner A ′ that is sound and complete for C and that has the same time
complexity as A up to a polynomial factor. With this result in mind, one may speculate why
planners apparently are better at analysing solvable instances than unsolvable instances in
empirical evaluations. One possible explanation is that the development of planners has to
a large extent been spurred by the international planning competitions [21]. However, the
backside of this development is that these competitions, and thus also most planners, has
been heavily focused on instances that are guaranteed to be solvable, that is, the planners
and methods used are getting increasingly faster at finding solutions but not on verifying
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that no solutions exist. Another possible explanation is that the test cases that have been
used are not sufficiently large. Corollary 16 is an asymptotic result and a planner may very
well not behave as expected when given instances that are too small.

7 Conclusions

Planning is an attractive but underused problem in theoretical computer science. It is
straightforward and natural to model most problems in PSPACE as planning problems and
we have shown that for every ‘reasonable’ complexity class in PSPACE there is a match-
ing subproblem of PSN planning. Planning thus has the modelling power to make ‘fine
distinctions’ between problems.

It is nowadays common to base lower bounds for problems on the assumption that the
ETH is true, which typically results in a bound that is a function of the number of variables,
or similar. This is not sufficient for planning, though, since the size of planning instances is
not always polynomially bounded in the number of variables. Hence, we have demonstrated
two methods for deriving lower bounds of the form 2||P ||c for the time complexity of plan-
ning, both exploiting the assumption that the ETH is true. The first method works for any
class of planning instances and is based on relating the constant c to the minimum blow-up
in instance-size for polynomial reductions. This allowed us to determine a lower bound of

(2||P ||1/3

) for general PSN planning, unless the ETH is false. The second method is based
on a reduction from a CSPproblem with lower-bound properties analogous to the SAT prob-
lem. This method works only for a subclass of PSN planning, but gives the sharper lower
bound that this subclass cannot be solved in time 4||P ||c for any c < 1, unless the ETH
is false, a bound that tightly matches the upper bound O(4||P ||). Considering the benefi-
cial properties of planning mentioned above, this subclass of PSN is, thus, a very attractive
problem to make reductions from when proving lower bounds for other problems.

We have finally considered the issue of solvable vs. unsolvable planning instances. Due
to the International Planning Competitions (IPC), there has been strong focus on developing
planners that are good at finding a solution that is known to exist, while not being equally
good at determining that there is no solution. We have shown that there there is no such
imbalance in theory, if looking at the worst-case time complexity of the planning problem.
Finding that there is no solution is at most a polynomial factor harder than generating a
solution, when there is one. We are likely to see a similar shift in performance of actual
planning algorithms in the future, since the IPC has recently held its first competition on
unsolvable and mixed solvable/unsolvable instances.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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6. Bäckström, C., Nebel, B.: Complexity results for SAS+ planning. Comput. Intell. 11, 625–656 (1995)
7. Bogomolov, S., Magazzeni, D., Podelski, A., Wehrle, M.: Planning as model checking in hybrid

domains. In: Proceedings 28th AAAI Conference on Artificial Intelligence (AAAI-14), pp. 2228–2234,
QC, Canada (2014)

8. Bylander, T.: The computational complexity of propositional STRIPS planning. Artif. Intell. 69(1-2),
165–204 (1994)

9. Chen, J., Chor, B., Fellows, M., Huang, X., Juedes, D.W., Kanj, I.A., Xia, G.: Tight lower bounds for
certain parameterized NP-hard problems. Inf. Comput. 201(2), 216–231 (2005)

10. Chen, J., Huang, X., Kanj, I., Xia, G.: Strong computational lower bounds via parameterized complexity.
J. Comput. Syst. Sci. 72(8), 1346–1367 (2006)

11. Chen, Y., Grohe, M.: An isomorphism between subexponential and parameterized complexity theory.
SIAM J. Comput. 37(4), 1228–1258 (2007)

12. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-completeness
(1979)

13. Helmert, M.: Complexity results for standard benchmark domains in planning. Artif. Intell. 143(2), 219–
262 (2003)
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