

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in :

Theoretical Computer Science

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa21436

Paper:

Kullmann, O. (1999). New methods for 3-SAT decision and worst-case analysis. Theoretical Computer Science, 223

(1-2), 1-72.

http://dx.doi.org/10.1016/S0304-3975(98)00017-6

This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the

terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions.

When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO

database to judge whether or not it is copyright safe to add this version of the paper to this repository.

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cronfa at Swansea University

https://core.ac.uk/display/78854372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://cronfa.swan.ac.uk/Record/cronfa21436
http://dx.doi.org/10.1016/S0304-3975(98)00017-6
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/

Theoretical Computer Science 223 (1999) 1–72
www.elsevier.com/locate/tcs

Fundamental Study

New methods for 3-SAT decision and worst-case analysis 1

O. Kullmann ∗

Johann Wolfgang Goethe-Universit�at, Fachbereich Mathematik, D-60054 Frankfurt, Germany

Received July 1995; revised January 1998
Communicated by M. Nivat

Abstract

We prove the worst-case upper bound 1:5045::n for the time complexity of 3-SAT decision,
where n is the number of variables in the input formula, introducing new methods for the analysis
as well as new algorithmic techniques. We add new 2- and 3-clauses, called “blocked clauses”,
generalizing the extension rule of “Extended Resolution.” Our methods for estimating the size
of trees lead to a re�ned measure of formula complexity of 3-clause-sets and can be applied
also to arbitrary trees. c© 1999 Elsevier Science B.V. All rights reserved.

Keywords: 3-SAT; Worst-case upper bounds; Analysis of algorithms; Extended resolution;
Blocked clauses; Generalized Autarkness

Contents

1. Introduction : 2
1.1. Survey of the fundamental ideas so far : 3
1.2. The ideas leading to the bound 1:5044::n : 6
1.3. Applications and further improvements : 12
1.4. Outline of contents :12

2. Notations : 14
2.1. The “language” :14
2.2. The “semantics” :14
2.3. Substituting truth values for variables in clause-sets : 15
2.4. Abbreviations :15

3. Blocked clauses : 15
4. Generalizations of the Autarkness principle :17

4.1. Basic Autarkness : 17
4.2. Br-Autarkness : 18
4.3. Generalized Autarkness : 19

∗ E-mail: kullmann@mi.informatik.uni-frankfurt.de.
1 Supported by DFG–Leibniz–Programm Schn 143=5-1.

0304-3975/99/$ - see front matter c© 1999 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(98)00017 -6

2 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

5. Polynomial reductions : 19
5.1. The elementary reductions, combined by r0 : 19
5.2. “One-step look-ahead” for r0, and the reduction operator r :21
5.3. Properties of r : 21

6. The algorithm : 23
6.1. The overall structure of N3 : 23
6.2. Evaluating families of partial assignments with respect to cases of immediate decision or

autarkness : 25
6.3. Case A: Multiple occurrences of a variable in the 2-clauses :26
6.4. Case B: Variable-disjoint 2-clauses, and a not-blocked 2-clause exists : 28
6.5. Case C: The remaining case : 29

7. A worst case upper bound : 30
8. Estimating tree sizes :31

8.1. Some notations and a basic estimation lemma : 31
8.2. Distance functions and our main estimation lemma : 32
8.3. Using the �-function for selecting branchings : 34

9. The distance function :36
9.1. The hitherto existing distance functions : 36
9.2. The generalized “approximation” of the number of 2-clauses : 37
9.3. Using “budgets” for new 2-clauses : 38
9.4. The de�nition of d3 =�n − � · � : 39
9.5. A general upper bound for the numbers of eliminated clauses :40

10. Bounding the sum of d3 : 43
11. The two worst cases and the special choices for the parameters : 47

11.1. The worst case for “AN” : 50
11.2. The worst case for “BN” : 51
11.3. The basis of the bound on the number of leaves of the computation tree, depending on the

approximation parameter k and the number of new clauses in case “BN” : 51
12. Local balancings of distances : 52
13. The estimation of �max(d3;TN3 (F0)) : 54

13.1. The case “D” of degeneration, and case “C” :55
13.2. The case “AA” :55
13.3. Su�cient conditions for a surplus of at least � : 58
13.4. The case “AN” :59
13.5. The case “B” :61
13.6. The �nal step : 65

14. Final remarks : 66
14.1. Blocked clauses and Extended Resolution : 66
14.2. Comments to our method for estimating the size of trees :68
14.3. General complexity of SAT-decision : 68
14.4. Leaving 3-CLS to obtain faster 3-SAT-decision when the variables occur on the average less

than 5.9 times : 70
Acknowledgements :71
References : 71

1. Introduction

In this paper we study the exponential part of time complexity for 3-SAT decision
and prove the worst-case upper bound 1:5044::n for n the number of variables in the
input formula, using new algorithmic methods as well as new methods for the analysis.
These methods also deepen the already existing approaches in a systematic manner.

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 3

The following results for 3-SAT decision (abstracting from a polynomial factor in
the length of the input) are known:
1. The history of 3-SAT bounds begins with 1:839::n [24], or, by looking slightly closer
at the formula, 1:769::n [3].

2. The �rst important step was made by Monien and Speckenmeyer [24], yielding the
bound 1:618::n. 2 The idea is to enforce the existence of a 2-clause, yielding a better
output for 1-clause elimination.

3. In [29] this bound was improved to 1:578::n with the help of a re�ned algorithm
and a re�ned measure of formula complexity for 3-clause-sets (formulas in 3-CNF):
For the previous bound the mere existence of a 2-clause had been su�cient.

Compared to that, [29] starts the quantitative registration of 2-clauses (building up
on an idea of B. Monien).

4. While the measure of formula complexity from [29] (invoking a certain “approxi-
mation” of the number of 2-clauses) is further developed in this article, another step
in our direction is [33], reaching 1:5702::n. “Blocked clauses” are used in special
cases, eliminating certain branches from the search tree, and also, unlike [29], by
some global argumentation a (small) number of new 2-clauses can be taken into
account for sure (using also some sort of “budget” for new clauses).

5. The bound 1:5044::n was presented by the author in [16].
6. In the extended abstract [30] the bound 1:4962::n is claimed. In [20] the author of
the present article sketched how this bound can be reached by a re�nement of the
algorithm of this article.

For a general survey on worst-case upper bounds for SAT decision, considering also
other classes and other measures of formula complexity, see Section 14.3.1 (and [22]).

1.1. Survey of the fundamental ideas so far

The basic structure of the algorithms used for upper bounds for 3-SAT decision, called
“DPLL-algorithms” 3 due to [4, 5], is just “reducing and testing (or branching)”: On input
F0, one uses (certain) polynomial reductions F0→r(F0) where r(F0)=:F is satis�abil-
ity equivalent to F0. If this does not decide whether F0 is satis�able, one divides via

F ∈SAT⇔∃ i∈{1; : : : ; p} :’i ∗F ∈SAT

’i partial assignments, ’i ∗F the result of substituting truth-values via ’i in F .

2 The report [24] is published in [25], where the authors additionally introduced the notion of “Au-
tarkness” for the concept behind this improvement. Independently the same bound was also discovered in
Luckhardt [23] using a slightly more elementary algorithm and a more compact analysis. The latter seems
to us of importance for further progress in this �eld.
3 Or “DPLL-like algorithms”.

4 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

The progress made in the course of development from [24] to our results lies, very
roughly speaking, in extending the realm of reductions r, in selecting and constructing
better branchings (’1; : : : ; ’p), and, going hand in hand with these improvements, in
discovering new methods for estimating the size of the backtracking tree built up by
the above branchings. 4

For the analysis of complexity the measurement of formula complexity seems to us
to be most important, because there is an immediate feedback for the algorithm, which
is a “greedy” one and therefore ought to know in which direction the reduction of
formula complexity is big.
The basic ideas for the previous bounds (and algorithms) on 3-SAT-decision are as

follows. (We assume some basic knowledge about SAT decision here. In Section 2 the
reader will �nd the de�nitions of the fundamental notions used in this paper.)

1.1.1. The bounds 1:839::n and 1:769::n

A (partial) assignment ’ ful�lling ’(a)=’(b)=’(c)= 0 for a 3-clause {a; b; c}∈F
cannot satisfy F , i.e., ’(F)= 0 holds. In other words: After setting a and b to 0, the
value of c is forced to be 1 (by “Unit-clause-elimination”).
This trivial observation reduces the search space of assignments for a 3-clause-set

F from 2n to 1:839::n. The basis of this bound is given by 1:839::= �(3; 2; 1), where
�(3; 2; 1) (see De�nition 8.3) is the “cost” of the branching

(〈a→ 0; b→ 0; c→ 1〉; 〈a→ 0; b→ 1〉; 〈a→ 1〉)
with respect to the loss of variables. 5 This “branching tuple” (3; 2; 1) can be seen as
built up from the trivial branching (1; 1) and the improved branching (2; 1): (3; 2; 1)=
(1+ 2; 1+ 1; 1), where the tuple (1; 1) comes from testing the literal a and, within
branch 〈a→ 0〉, the tuple (2; 1) comes from testing the (new) 2-clause {b; c}.
By noticing that also in the other branch 〈a→ 1〉 there arises a new 2-clause (for

literal a not pure in F), we can (slightly) improve this bound to �(1+ 2; 1+1; 1+2;
1+1)n=1:769::n.

1.1.2. The bound 1:618::n

A better reduction of the search space is obtained if there is a 2-clause {a; b} in
F , because then already ’(a)=’(b)= 0⇒’(F)= 0 holds. When the existence of
a 62-clause is always guaranteed, we get the bound 1:618::n (1:618::= �(2; 1)). For that
purpose the following elementary fact is used (a form of the “Autarkness Principle”
from [25]):

(A0) : (’ ∗F)[0;2] 6= ∅ or ’ ∗F sat≡F

4 Containing only reduced formulas and thus abstracting from the polynomial reduction process.
5 For t= (t1; : : : ; tn) with ti¿0 we de�ne �(t) as the solution of

∑n
i=1 �(t)

−ti =1; �(t)¿0. The �-function
is our basic tool for estimating the size of the computation tree. It enables to valuate a whole branching and
seems to be also the right tool for that purpose in heuristic algorithms (instead of the use of products and
sums like in [10] or [13]). See [19].

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 5

for a partial assignment ’ and a 3-clause-set F , where F [0;2] is the set of clauses C ∈F

of length at most 2, and
sat≡ is the satis�ability equivalence:

After application of a partial assignment to a 3-clause-set F either there is a clause
of length at most 2, or the result is equivalent to F with respect to satis�ability. Thus in
the “exceptional case” (’ ∗F)[0;2] = ∅ we just reduce F to ’ ∗F (without branching).
The proof of (A0) consists in the simple observation that (’ ∗F)[0;2] = ∅⇒

’ ∗F ⊆F ⇒’ ∗F sat≡F holds (see Section 4). Both algorithms in [23, 25] use this ar-
gument, but in a slightly di�erent form: [23] uses (A0) where F is the original input
formula F0 and ’ the assignment corresponding to the whole path from the root F0
of the test-tree to the current test-formula ’ ∗F0. [25] stated the stronger version (A1)
of A0:

(A1) : (’ ∗F)[0;2]\F 6= ∅ or ’ ∗F sat≡F

and applied it to the current test-formula F and one of its direct successors ’ ∗F .
Note that (’ ∗F)[0;2]\F =(’ ∗F)\F holds, since applying a partial assignment to

a 3-clause-set does not create new 3-clauses. We use the notation

N (’; F) := (’ ∗F)\F

for the set of new clauses.

1.1.3. The bound 1:578::n

While the new 62-clause guaranteed (in the “normal case”) by (A1) (N (’; F) 6= ∅) is
not necessary for the previous bound, [29] exploited this e�ect for his improved bound
by including a certain “approximation” of the number of 62-clauses in his complexity
analysis. From our point of view the basis 1:57817::= �1;2;1 (see De�nition 11.2) of
the bound in [29] results from balancing the costs of the following two worst cases of
his algorithm:
1. In the �rst “worst case” all 2-clauses have disjoint variables and for a specially
chosen 2-clause {a; b}∈F one splits via 〈a→ 0; b→ 1〉; 〈a→ 1〉. (A1) gives at least
one new clause in every branch, and additionally [29] managed to guarantee for the
branch 〈a→ 0; b→ 1〉 one further new 2-clause. This yields the “cost”

�(

∗1︷︸︸︷
2 + (

∗2︷︸︸︷
2 −

∗3︷︸︸︷
1) · �;

∗1︷︸︸︷
1 + (

∗2︷︸︸︷
1 −

∗3︷︸︸︷
1) · �)= �(2+ �; 1)

for this branching, where � is the “weight of 2-clauses.”
The values under ∗1 stand for the loss of variables, under ∗2 for the number of
new 2-clauses and under ∗3 for the number of eliminated 2-clauses in the respective
branches.

2. In the second “worst case” some variable occurs twice in the 2-clauses of F : {a; b};
{a; c}∈F , which is also the maximal number of occurrences of a variable in the
2-clauses of F . For the branching 〈a→ 0; b→ 1; c→ 1〉; 〈a→ 1〉 we have:

6 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

(a) In branch 〈a→ 0; b→ 1; c→ 1〉 at most four 2-clauses are eliminated, and be-
cause [29] counts only variable-disjoint 2-clauses (an important point which will
be discussed later), only two of them are counted. 6

(b) And in branch 〈a→ 1〉 two 2-clauses are eliminated, from which one is counted.
Thus for the second worst case we get the cost

�(3− 2�; 1− �):

The optimal value �1;2;1 for � is the value where �(2+ �; 1)= �(3− 2�; 1− �) holds
true. Numerical calculations yield �1;2;1 = 0:200780:: and the basis

�1;2;1 = �(2+ �1;2;1; 1)= �(3− 2�1;2;1; 1− �1;2;1)= 1:57817::

of the bound.

1.2. The ideas leading to the bound 1:5044::n

1.2.1. The role of 2-clauses for 3-SAT-decision
The analysis of SAT-algorithms has to gauge (at each step) the reduction in formula

complexity achieved by the algorithm.
For the bound 1:618::n only the number n of variables of F ∈ 3-CLS is used for

measuring the complexity of F (thus measuring the reduction in formula complexity by
�n, the loss of variables). Now I cannot �gure out any way of improving �n=(2; 1),
achieved by the branching

(〈l→ 0; x→ 1〉; 〈l→ 1〉) for {l; x}∈F;

in the case that all 2-clauses are variable-disjoint (considering the worst case).
Thus, in order to improve that bound (and the algorithm(!)), another aspect of

structural simpli�cation than the loss of variables must additionally be taken into
account.
Let us consider in the variable-disjoint case the e�ect of the test-assignments ’0 =

〈l→ 0; x→ 1〉 and ’1 = 〈l→ 1〉 on the 3-clauses of F .
If ’i does not create a new 62-clause from some 3-clause (by assigning truth value

0 to one or two literals of some 3-clause and not a�ecting the other literals in that
clause), i.e., the set

N (’i; F)= (’i ∗F)\F
of new clauses is empty, then by (A1) (see Section 1.1.2) ’i ∗F is satis�ability equiv-
alent to F . So let us assume that at least one new 62-clause has been created by ’i,
i.e., N (’i; F) 6= ∅.

6 [29] treats the case, that in the �rst “worst case” the new 2-clauses are not variable-disjoint to the existing
ones or to each other, by an exhaustive case distinction and including the immediately following branching
into the calculation: This incisive complication is eliminated in our algorithm due to of our improved analysis
(see Section 1.2.4 in the next). In the second “worst case” new 2-clauses are not counted.

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 7

If the empty clause is created (⊥∈N (’i; F)) then this branch is completed. If a new
1-clause arises (N (’i; F)[1] 6= ∅) then we are also lucky since by 1-clause-elimination
one further variable can be eliminated. So let us assume that only new 2-clauses have
been created by ’i, i.e., N (’i; F)=N (’i; F)[2].
Now, since the only existing 2-clause a�ected by ’i is {l; x} (the 2-clauses are

variable-disjoint!), the total number of 2-clauses in F has not been decreased by ap-
plying ’i to F : One 2-clause has been eliminated, and |N (’i; F)|¿1 many 2-clauses
have been created.
If in at least one branch ’0 or ’1 also an additional new 2-clause can be guaranteed,

that is |N (’i; F)|¿2, then in fact in that branch the number of 2-clauses increases!
This increase could be exploited directly by considering the following two cases (for

simplicity we assume that in both branches two new 2-clauses are created):
1. The set of 2-clauses stays variable-disjoint: This case occurs maximally n=2-times
on any path in the backtracking tree (or computation tree as we say), and thus the
computation tree has been cut down. 7

2. Otherwise there exists a variable which occur at least twice in the 2-clauses of F ,
and testing such a variable yields (due to 1-clause-elimination) a bigger reduction
with respect to n than �n=(2; 1). 8

However, this approach complicates the algorithm and ignores “distant e�ects.” (The
reader should note that the case-distinction in only “locally complete,” i.e., for one
single node, while in general both cases may occur together in the computation tree,
and thus prevent the simple bounds.)
We choose another more general approach, combining both sights (the elimination

of variables vs. the increase in the number of (variable-disjoint) 2-clauses) by some
sort of linear combination.

1.2.2. The basic idea of re�ned measurement for 3-clause-sets, incorporating some
“compatible” amount of 2-clauses into the measure
As starting point we re�ne the measure n (number of variables) for the complexity

of F to a di�erence m = n− z where z reects in a suitable way the number of 62-
clauses of F . To determine this “suitable way” is a non-trivial task and is treated in
this work the �rst time systematically, motivated by an analogous quantity within the
proofs from [29].
Some remarks:

– z has to be subtracted from n since an increase in the number of 2-clauses should
decrease the formula complexity.

– In our framework it is preferable to incorporate into the measure z only the number
of 2-clauses instead of 62-clauses, since the empty clause ⊥ simply aborts the
current path in the computation tree and 1-clauses belong to the di�erence in the
number of variables (1-clause-elimination is applied always automatically).

7 If this case would be guaranteed for the whole tree, one gets (at least) the bound
√
2
n
.

8 And if this case would generally hold, the bound �(3; 1)n =1:465::n would be established.

8 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

– z has to be an “approximation” of the number of 2-clauses since the number of
2-clauses itself can be quadratically in n, but a measure (of formula complexity)
should take only non-negative values.

The “progress” made in the test-tree from F to one direct successor F ′, which, taken
together, determines our bound for the size of the test-tree (with the help of the �-
function), is now no longer the simple di�erence �n= n(F)− n(F ′), but

�m=�n−�z=(n(F)− n(F ′))− (z(F)− z(F ′)):

The reduction of F is the bigger the greater �m is, i.e., the greater �n= n(F)− n(F ′)
and the less �z= z(F)− z(F ′) (negative if possible) are.
In the whole we try to improve the bound 1:618::n by using negative �z in the

case of “small” �n (mainly the case of variable disjoint 2-clauses), corresponding to
an increase in the number of 2-clauses. In the case of “big” �n, the above combined
di�erence �m (in contrast) is decreased by a positive �z (more 2-clauses vanish than
arise), and thus the whole method can be seen as a balancing of the measurements of
the di�erent cases.
The following trivial equation is basic for our considerations:

�z=number of vanishing “z-clauses”− number of new “z-clauses”:
Thus we have to maximize the number of new “z-clauses” and to minimize (control)
the number of vanishing “z-clauses,” where by a “z-clause” we mean a 2-clause which
is counted by the approximation z. 9

1.2.3. New 2-clauses
To obtain a maximal number of new “z-clauses” we use the following two new

methods:
1. We introduce the notion of “Blocked Clauses,” a generalization of the addition of
new clauses by the extension rule of “Extended Resolution.” “Blocked Clauses”
are special (fast decidable) cases of “redundant clauses,” i.e., clauses which can be
satis�ability equivalently added to or eliminated from a given clause set. For testing
a clause-set F with variable disjoint 2-clauses we use blocked clauses to obtain new
2-clauses in the following ways:
(a) We choose the branching variable from a not-blocked 2-clause, because this

has a greater impact on the clause-set (i.e., yields more new 2-clauses).
(b) Blocked 2-clauses are “virtually” eliminated in the “br-Autarkness”-case of our

algorithm, a generalization of Autarkness, in order to establish the existence of
the not-blocked 2-clause in (a).

(c) Such blocked 3-clauses (without new variables) are added to F in some cases,
which become 2-clauses after branching.

9 Although this is only an “illusion,” since the 2-clauses counted by z are not materially �xed, this picture
is very helpful.

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 9

(d) In order to improve the e�ciency of (c), in F all blocked 3-clauses are elimi-
nated (before).

(e) All possible blocked 2-clauses (without new variables) have been added to F
(before), since they reveal better branching possibilities.

A predecessor of the notion of “Blocked Clauses” is Purdom’s “Complement Search”
in [28]: In a more general context conditions for eliminating certain branches from
the test tree are given, which correspond (for CNF) to the e�ect of addition of
blocked clauses and subsequent 1-clause-eliminations (compare (c) and (e)).

2. If a partial assignment ’ creates only “few” new 2-clauses, i.e., N (’; F) is “small,”
then with the concept of “Generalized Autarkness” we construct from ’ a new
branching, which, in case the old envisaged one (to which ’ belonged to) was not
already “good”, 10 is better than this old one. (Ordinary) “Autarkness” is just the
special case where zero new 2-clauses are created.

1.2.4. How new 2-clauses are taken into account
The problem that a new 2-clause in general is not a new “z-clause” (because z is

only an approximation of the total number of 2-clauses), and we do not know which
clauses are taken into account and which are not, is overcome by a general method,
tracing the new 2-clauses over the whole computation tree.
The “distance function” d3. We introduce the distance function d3(F; F ′) (replacing

�n−�z 11), depending on a “level of approximation” k. Let �(F) denote the maximal
number of occurrences of a variable in the 2-clauses of F . We distinguish two main
cases:
1. If in F the number of occurrences of variables in the 2-clauses is bounded by k
(i.e., �(F)6k), then d3 allows to account new 2-clauses up to a �xed amount.

2. Otherwise if �(F)¿k, then only vanishing 2-clauses are counted. (Motivated by the
fact, that in this case “many” variables vanish because of 1-clause-eliminations: At
least �(F)+ 2 together in both branches by testing a literal which realizes �(F).)

The number of vanishing 2-clauses which are counted by d3 is (in any case) bounded
by a function of �n and k, since d3 considers only (maximal) sub-clause-sets P⊆F [2]

of the set of 2-clauses of F with �(P)6k 12 (plus a “reserve” for new 2-clauses).
The main idea for the realization of d3: Consider the whole subsequent computa-

tion. Consider a clause-set F with �(F)6k and one of its immediate successors F ′ in
the computation tree.
If also �(F ′)6k holds, then all new 2-clauses (arising at F ′ and new relative to F)

are counted for this branch, since for �6k the above P contains all 2-clauses.
Otherwise consider the �rst successor F∗ of F ′ in the computation tree with

�(F∗)6k. Because we did not count new 2-clauses at the intermediate points

10 W.r.t. �(�n), where �n stands for the whole tuple of di�erences, each single di�erence corresponding
to one branch of the branching we consider at this point.
11 d3(F; F ′) depends on F and F ′ in a more general way than being a di�erence of measure values for
clause-sets.
12 This generalizes the consideration of variable disjoint 2-clauses in [29] (there k =1).

10 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

between F and F∗, the number of new 2-clauses could not accumulate and at last at
F∗ the number of new 2-clauses at F must have been taken into account! 13

The framework for the realization of d3. The framework for this more global at-
tempt, compared to what can be achieved by using the ordinary methods of recursion
equations, is given by the “�-lemma” which enables us to estimate the number of leaves
in a tree with the help of an arbitrary distance function, i.e., a labeling of the edges
of the tree by positive real numbers (using necessarily the original tree, not the one
belonging to the (local) recursion equations).
The calculation of the upper bound on the number of leaves consists in the calculation

of the maximal �-value over all (inner) nodes of the tree, constituting the basis of the
(exponential) bound, and in calculating the maximal sum of the distances over all paths
of the tree, constituting the exponent of the bound.
Every tree has (up to a positive factor) exactly one distance function such that the

bound is exact. This optimal distance function is characterized by the condition that
all �-values over inner nodes of the tree are equal, motivating our general strategy of
balancing of di�erent cases. 14

Within this framework, the above idea, that new 2-clauses must eventually have
been taken into account, could already be involved in the de�nition of d3, and the
main problem left is to bound the maximal sum of d3-values over all paths in the
computation tree by a (reasonable) function of n.

1.2.5. Controlling the number of vanishing 2-clauses
Back to our problem of minimizing �z (from Section 1.2.2), we have the following

principles to control the number of vanishing 2-clauses:
1. The “basic test” consists of the two branches [〈l→ b〉]F for b∈{0; 1} for some
literal l, where []F means the addition of all possible 1-clause-eliminations. If
in one branch b “many” 2-clauses are eliminated, then in at least one of the two
branches b; b also “many” variables must have been eliminated, since if in branch b
only “few” variables are eliminated, then one of the eliminated variables of branch
b must occur “often” in the 2-clauses of F , and now, according to the special
choice of l as a literal such that the sum of occurrences of l and l in the 2-clauses
of F is maximal, 15 l or l itself occurs “often” in the 2-clauses of F with the
consequence that in the other branch b “many” variables must disappear. The case of
a symmetrical distribution of the number of disappearing variables on both branches
is even more favorable (owing to a fundamental property of the �-function).

13 If these new 2-clauses in fact vanished at an intermediate point, we distinguish three cases: If they
vanished inside the respective P they already have been taken into account, but if they vanish outside of the
respective P then either they are replaced by new 2-clauses or their loss must be compensated with the help
of a bigger �n (for this case we need the boundedness of the number of new 2-clauses which are taken
into account).
14 Also it is necessary that all sums of distances along a path from the root to a leaf are the same. But
this condition is, in our context, more or less “automatically” ful�lled.
15 I.e., � is attained for l.

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 11

2. According to 1. the number of vanishing 2-clauses is connected to the number of
eliminated variables. However, the bound is quadratically, 16 and furthermore only
holds for the whole branching, but not for one single branch. To control a single
branch and to optimize the estimation we use the approximation mentioned above
(choosing at the end k and the weight � optimal).

1.2.6. Bringing together the di�erent ideas
In the algorithm as well as in the analysis we have to combine all the above ideas

in an optimal way (“optimal” according to our knowledge of the shape of the “gen-
eral clause-set”). This combination, achieved with the help of d3, has to balance the
mentioned cases:
For variable disjoint 2-clauses small �n, but an increase in the number of 2-clauses,

and in the case of a multiple occurrence of a variable in the 2-clauses “big” �n, but
(in general) a decreasing number of 2-clauses.
This job seems not to be straightforward, and some e�ort is necessary to obtain

global tools (like d3) for the proof of the upper bound which work in any case.
Last, but not least, is should be mentioned that our decision algorithm also uses

certain polynomial reductions which help us to get rid o� some special ill-conditioned
cases (establishing some “normal form”).

1.2.7. Where the number 1:5044:: comes from
Analogously to our analysis of the bound 1:578::n from [29], we give the two worst

cases of our algorithm and show how the bound is computed:
1. Again, in the �rst “worst case” all 2-clauses have disjoint variables and for a spe-
cially chosen 2-clause {l; x}∈F one splits via 〈l→ 0; x→ 1〉, 〈l→ 1〉. Our algorithm
now achieves three new 2-clauses (in the “normal case”) for both branches and thus
we obtain the “cost”

�(

∗1︷︸︸︷
2 + (

∗2︷︸︸︷
3 −

∗3︷︸︸︷
1) · �;

∗1︷︸︸︷
1 + (

∗2︷︸︸︷
3 −

∗3︷︸︸︷
1) · �)= �(2+ 2�; 1+2�)

for this branching, where ∗1; ∗2 and ∗3 are as before.
2. Due to our (optimal) choice k =2 for the parameter k, in the second “worst
case” a literal l occurs three (= k +1) times in the 2-clauses of F : {l; x1}; {l; x2};
{l; x3}∈F , which is also the maximal number of occurrences of a variable in the
2-clauses of F(�(F)= 3= k +1). For the branching

(〈l→ 0; x1→ 1; x2→ 1; x3→ 1〉; 〈l→ 1〉)

16 We are only able to handle linear bounds, because we need a constant weight for the (approximation of
the) number of 2-clauses in the combined measure.

12 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

we have
(a) In branch 〈l→ 0; x1→ 1; x2→ 1; x3→ 1〉 at most nine (= (k +1)2) 2-clauses are

eliminated, and since we consider only the elimination of 2-clauses from a (max-
imal) set P of 2-clauses of F with �(P)6k =2, only six (= (k +1) · k) of them
are counted;

(b) In branch 〈l→ 1〉 three 2-clauses are eliminated, from which 2(= k) are counted.
Thus for the second worst case we get the cost

�(4− 6�; 1− 2�):
The optimal value �2;3;3 for � is the value where �(2+ 2�; 1+2�)= �(4− 6�; 1− 2�)
holds true. We obtain �2;3;3 = 0:12393:: and the basis

�2;3;3 = �(2+ 2�1;2;1; 1+2�1;2;1)= �(4− 6�1;2;1; 1− 2�1;2;1)= 1:50443::
of the bound.

1.3. Applications and further improvements

The SAT algorithm presented in this paper has not yet been implemented. However,
it seems to be more likely that the complete algorithm is of more theoretical interest,
while practical applications may result from heuristic versions of the involved ideas
(see [19]).
That transformation of general formulas into 3-CNF indeed can be of practical im-

portance has been demonstrated by the patent [31] and its commercializing. 17

For a survey on SAT algorithms and applications see [11].
I decided not to include the (relatively small) improvements of the bounds indicated

by [30], since the e�ort seems to be disproportionate to me. See [20], where it is
shown how to re�ne the algorithm of this paper to obtain the bound claimed in [30].
I believe that further progress, below the bound 1:49n, is only possible when �nding

a general structure in these re�nements.

1.4. Outline of contents

After introducing the basic notations in Section 2 we present the concept of “Blocked
Clauses” in Section 3 and two generalizations of the “Autarkness Principle” in
Section 4.
The polynomial reductions used in our 3-SAT algorithm N3 are the subject of

Section 5, while N3 is presented in Section 6.
The analysis of N3 is the subject of Sections 7–13. The basis of our analysis is the

“�-Lemma” 8.2 in Section 8, enabling us to calculate a bound on the number of leaves
for any tree T; given a “distance function” d; an arbitrary labeling of the edges of T
by positive real numbers.

17 In essence the patent is claimed for the (standard) method of transforming arbitrary propositional formulas
into 3-CNF, already mentioned in [32]!

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 13

The choice of the distance function for the “computation tree” TN3 (F0) is the subject
of Section 9. The �rst attempt is to use d0 =�n; the loss of variables (used in [23, 25]).
[29] used (implicitly) the improved distance function d1 =�m1 =�n − � · �z1 where
z1 is the maximal number of variable-disjoint 2-clauses in the clause-set and �∈R+ is
a parameter to be chosen optimally.
In Section 9.2 we generalize z1 to zk for k ∈N0 ∪ {+∞}; where zk(F) is the maximal

size of a set of 2-clauses of F such that every variable occurs at most k times:

zk(F) := max{ |P| : P⊆F [2] ∧ �(P)6k };

where �(P)= maxv∈Var(P) |{C ∈P : v∈C ∨ v∈C}| is the maximal number of occur-
rences of a variable in the 2-clauses of F .
Although d2 =�n− � · �zk is already an improvement over d1 =�n− � · �z1; since

we can optimize k, 18 it is not the end of the story, because zk counts only certain
2-clauses and thus new 2-clauses may not increase �n− � · �zk .
A solution for this problem is given in Subsection 9.3, where we introduce the

distance function d3 for TN3 (F0). By using “budgets,” d3 admits to credit an in-
crease in the number of 2-clauses for sure, but only to a certain amount, allow-
ing on the other side to restrict the negative e�ect of a decreasing number of 2-
clauses.
Of central importance for the application of d3; in order to obtain a bound in the

input parameter n(F0); is that the maximal sum of d3-values over all paths in TN3 (F0)
is reasonably connected to n(F0); which is treated in Section 10.
The special (optimal) values for the parameters of d3 (the size of the “budgets,”

the “level of approximation” for the 2-clauses, and their “weight”) are determined in
Section 11. Eventually the �nal estimations of the �-values with respect to the dis-
tance function d are done in Sections 12 and 13, containing most of the combinatorial
properties of N3.
In the “Final Remarks” we discuss the following topics:

– the connection of the addition of blocked clauses with “Extended Resolution”;
– some further results on our (general) method for estimating the size of trees;
– the general (time) complexity of SAT-decision (presenting the other known bound
for SAT decision, and recognizing the complexity of “(3; 2)-SSS” (a generalization
of 3-coloring, see [1, 2]) as a 3-SAT complexity with respect to a special measure-
ment of formula complexity (namely the number of 3-clauses));

– and at last, we combine the 3-SAT-decision algorithm N3 with the SAT-decision
algorithm from [22] realizing the upper bound 21=10·‘ for the number ‘ of literal
occurrences, and improve the bound 1:5045n for all 3-clause-sets F for which the
average number ‘=n of occurrences of literals is less than 5.9.

18 In [23, 25] k =0 was optimal, in [29] k =1 and here k =2.

14 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

2. Notations

2.1. The “language”

Let VA be a non-empty set (of “variables”) and LIT :=VA] {v : v∈VA} the
set of literals. Let l denote the complement and Var(l)∈VA the underlying variable
of l ∈ LIT. For L⊆LIT we use L := {l : l ∈ L} and Var(L) := {Var(l) : l∈L}.
A clause is a �nite and complement-free set of literals, the set of all clauses is

denoted by CL := {C ⊆LIT :C �nite∧C ∩C = ∅}.
CLS := {F ⊆CL :F �nite} is the set of all clause-sets. We use Lit(F) := ⋃

C∈F C
and Var(F) :=

⋃
C∈F Var(C) for F ∈CLS.

A special clause is the empty clause ⊥ (⊥ := ∅∈CL) and a special clause-set is
the empty clause-set > (> := ∅∈CLS).
A p-clause C is a clause of length p∈N0: |C|=p; while a 6p-clause is a clause

of length at most p.
For F ∈CLS; i; j∈Z let F [i; j] := {C ∈F : i6|C|6j} denote the sub-clause-set of

F of all clauses with length between i and j; F [i] :=F [i; i]. For p∈Z let p-CLS :=
{F ∈CLS :F =F [0; p]} denote the set of all p-clause-sets.
For l∈LIT and F ∈CLS we de�ne #l (F) as the number of occurrences of l in

F : #l(F) := |{C ∈F : l∈C}|; and #il(F) := #l(F [i]) as the number of occurrences of l in
the i-clauses of F; while l(F) :=

∑
l∈LIT #l(F)=

∑
l∈LIT

∑∞
i=1 #

i
l(F) is the number

of literal occurrences in F at all.
And by n(F) := |Var(F)| we denote the number of variables in F .

2.2. The “semantics”

A partial assignment is a mapping ’ : L→{0; 1} (L=dom(’)) with L⊆LIT and
L=L (L is closed under complement) such that ’ preserves complements:

∀l∈L :’(l)=’(l) (0=1; 1=0):

The set of all partial assignments is PASS.
We write “’(l)= : : :” i� l∈ dom(’). For ’∈PASS we de�ne: Var(’) :=

Var(dom(’)); and n(’) := |Var(’)|.
We extend ’ to clauses and clause-sets in the natural way (’∈PASS; C ∈CL;

F ∈CLS):

’(C) :=

0 if ∀l ∈ C :’(l) = 0;
1 if ∃l ∈ C :’(l) = 1;
unde�ned else;

’(F) :=

0 if ∃C ∈F :’(C) = 0;
1 if ∀C ∈F :’(C) = 1;
unde�ned else;

SAT := {F ∈CLS :∃’∈PASS :’(F)= 1} (trivially >∈SAT; {⊥}∈CLS\
SAT).

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 15

The equivalence relation corresponding to the partition {SAT;CLS\SAT} is the
satis�ability equivalence: F

sat≡ F ′ i� either F and F ′ are both satis�able or both
unsatis�able.
For the purpose of de�ning special partial assignments (as sets of ordered pairs) we

use for literals l1; : : : ; ls ∈LIT and truth values �1; : : : ; �s ∈{0; 1}:
〈l1→ ”1; : : : ; ls→ ”s〉 := {(li; �i); (li; �i) : 16i6s}:

2.3. Substituting truth values for variables in clause-sets

We substitute truth values for variables in clauses C ∈CL and clause-sets F ∈CLS

via partial assignments ’∈PASS:

’∗C :=C\’−1({0}) for ’(C) 6=1;
’∗F := {’∗C :C ∈F and ’(C) 6=1}:

’∗F emerges from F by eliminating all clauses which become true via ’ and elimi-
nating all remaining literals which become false via ’.
The basic properties are: ’∗F ∈CLS; ’(F)= 1 ⇔ ’∗F => and ’(F)= 0 ⇔

⊥∈’∗F .
For the purpose of SAT-decision we have for a literal l∈LIT:

F ∈SAT ⇔ (〈l→ 0〉∗F ∈SAT or 〈l→ 1〉∗F ∈SAT):

The use of the notation “’∗F” reects that here two objects are involved: the clause-
set F and the partial assignment ’; indicating that certain calculation are done with ’
itself. The sign “∗” is chosen analogously to the notation of scalar multiplication in
Linear Algebra (the semi-group PASS acts on the set CLS as a semi-module).

2.4. Abbreviations

We use “w.r.t.” for “with respect to,” “s.t.” for “such that” and “w.l.o.g.” for “with-
out loss of generality.”

3. Blocked clauses

A new concept is the concept of a “Blocked Clause” w.r.t. a given clause-set. 19

A blocked clause is a special (fastly recognizable) case of a “redundant clause”, that
means a clause which can be sat-equivalently eliminated from or adjoined to the given
clause-set.
The e�ects of blocked clauses are

1. Eliminating blocked clauses (generalization of the elimination of pure literals) causes
that the remaining clauses are “stronger linked to each other.”

19 A predecessor is [28], where the concept has been formulated in terms of eliminating branches in
DPLL-algorithms under certain circumstances.

16 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

2. Addition of blocked clauses (without new variables) eliminates some branches from
the search-tree (or computation tree), and may also increase our measure for the
number of 2-clauses.
Since addition of blocked clauses generalizes the Extension Rule of [32], it is also

helpful in analyzing Extended Resolution (see [9, 18, 21]). In Section 14.1 we discuss
this relationship a bit closer.

De�nition 3.1. A clause C ∈CL is called blocked for l∈LIT w.r.t. F ∈CLS i�
l∈C holds and for all C′ ∈F we have C ∩ C′ 6= {l}.
A clause C is called blocked w.r.t. F i� there is a literal l such that C is blocked

for l w.r.t. F .

C is blocked for l∈C w.r.t. F i� every clause of F either does not contain l
or additionally contains another complementary literal (i.e., its resolvent with C is
tautological).

C is not blocked w.r.t. F i� for all l∈C there is C′ ∈F with C ∩ C′= {l}.

Lemma 3.1 (Blocking-Lemma). For F ∈CLS and C ∈CL blocked w.r.t. F we have:

F ∪ {C} sat≡ F
sat≡ F\{C}.

Proof. It is enough to show F
sat≡ F\{C} for C ∈F . The direction F ∈SAT⇒

F\{C}∈SAT is obvious.
Consider ’∈PASS with ’(F\{C})= 1. W.l.o.g.: Var(’)=Var(F ∪ {C}). If

’(C)= 1 then immediately also ’(F)= 1. Otherwise, let C be blocked for l w.r.t. F .
We de�ne ’′ by ipping the value of l:

’′ := (’\〈l→ 0〉) ∪ 〈l→ 1〉:
Now ’′(F)= 1 holds because on the one hand we have ’′(l)= 1⇒’′(C)= 1, and on
the other hand ’′(C′)= 1 holds for C′ ∈F\{C} due to:
– if l =∈C′; then ’′(C′)= 1 (because of the de�nition of ’′ and ’(C′)= 1);
– if l∈C′ then there is another a∈C\{l} with a∈C′ (because of the blocking con-
dition) and by ’′(a)=’(a)= 0 we have ’′(C′)= 1 as well.

We conclude this section by introducing special notions for blocked clauses without
new variables:

De�nition 3.2. For F ∈CLS and l∈LIT:

B(F) :={C ∈CL : Var(C)⊆Var(F)∧C blocked w.r.t. F}
Bl (F) :={C ∈B(F) :C blocked for l w.r.t. F}:

By iterating Lemma 3.1 we easily obtain

Lemma 3.2. For F ∈CLS and l∈LIT we have: F
sat≡ F ∪ Bl(F).

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 17

4. Generalizations of the Autarkness principle

4.1. Basic Autarkness

The key observation (with trivial proof) leading to the �rst non-trivial bound
“1:618::n” for 3-SAT-decision in [25] (also [24]), called “Autarkness Principle,” is
the (easy) statement that when applying a partial assignment to a 3-clause-set F ei-
ther a new 62-clause is created, or the resulting clause-set is sat-equivalent to F (see
Lemma 4.1).
Independently, this upper bound has been obtained also in [23] using a weaker form

of Autarkness: In the process of testing there is either a 62-clause at all in the current
3-clause-set F (resulting from the original input Finput by a series of applications of
partial assignments), or F is sat-equivalent to Finput. 20

The new62-clause guaranteed by the Autarkness Principle in fact is �rstly employed
in [29] for the improved upper bound “1:578::n(F0).” We will strengthen the creation of
at least one new 2-clause both qualitatively (more from the new 2-clause is known) and
quantitatively (more than one new 2-clause is created). We start with a reformulation
of the Autarkness Principle from [25].

De�nition 4.1. A partial assignment ’∈PASS is called autark for a clause-set
F ∈CLS i� ’∗F ⊆F holds (i.e., ’ makes all clauses come true which are a�ected
by it 21).

Lemma 4.1 (“Autarkness–Lemma”, cf. [25]). Consider a partial assignment ’∈
PASS and a clause-set F ∈CLS.
1. Autark assignments can be applied sat-equivalently:

’ autark for F ⇒F
sat≡ ’∗F:

2. A partial assignment is autark for a p-clause-set i� it does not create a new clause
(which must be of length at most p− 1):
F ∈p-CLS⇒ (’ autark ⇔ (’∗F)[0; p−1]\F = ∅):

The lemma is used as follows for SAT decision:
In each projected branching (’0; : : : ; ’m) for a clause-set F 22 we search whether

there exists ’i0 which is autark for F – in this case we do not have to branch but can
immediately reduce F to ’i0 ∗F .
Otherwise we know that in every branch there must be a new clause (which in case

of F ∈p-CLS must be of length 6p− 1). 23

20 See the discussion of di�erences between [23] and [25] in [22].
21 More precisely: ∀C ∈F : ’(C) 6=1⇒’∗C ∈F .
22 I.e., F is divided into the subproblems ’0 ∗F; : : : ; ’m ∗F .
23 For 3-SAT decision in this way the bound 1:618::n = �(2; 1)n (see De�nition 8.3) is established, improv-
ing the trivial bound 1:839::n = �(3; 2; 1)n for 3-SAT-decision (which is still the best known for counting
satisfying assignments).

18 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

We generalize Lemma 4.1 in two directions:
– We want to guarantee not only the existence of an arbitrary (new) 62-clause but
of a not blocked (new) 62-clause, and this not only in ’∗F but in the reduced
r(’∗F) (see Section 4.2).

– We want to have an (e�ective) way to react not only in the case there are zero new
62-clauses but for an arbitrary number of new 62-clauses (see Section 4.3). 24

Lemma 4.2. The basic observations for “Autarkness” (with trivial proofs)
1. For F; F ′ ∈CLS with F ′ ⊆F the implication F ∈SAT⇒F ′ ∈SAT holds.
2. For F ∈CLS and ’∈PASS the implication ’∗F ∈SAT⇒F ∈SAT holds.

4.2. Br-Autarkness

For a convenient handling of the di�erent forms of autarkness the following notions
for new clauses are useful.

De�nition 4.2. For r :CLS→CLS; ’∈PASS and F ∈CLS we denote by
Nr(’;F) the set of new clauses created by applying �rst ’ and then r; and by N ′

r (’;F)
those new clauses which are not blocked:

Nr(’;F) :=r(’∗F)\F;
N ′
r (’;F) :=Nr(’; F)\B(r(’∗F)):

In case of omitted r or ’ we use the “neutral elements” instead, that is idCLS for r
and ∅ (the empty assignment) for ’.

Since the following easy observations are often used, we explicitly state them:

Lemma 4.3. Consider ’∈PASS and F ∈CLS.
1. ’ autark for F ⇔ N (’; F)= ∅.
2. In case of F ∈p-CLS we have for any r ful�lling ∀G ∈p-CLS :Nr(G)∈
(p− 1)-CLS

Nr(’; F)= (r(’∗F))[0; p−1]\F:

Lemma 4.4 (Br-Autarkness). For r :CLS→CLS ful�lling ∀F ∈CLS : r(F)
sat≡ F;

and for ’∈PASS; F ∈CLS we have

N ′
r (’; F)= ∅ ⇒ ’∗F sat≡ F (

sat≡ r(’∗F)):
(If after application of a partial assignment and reductions all new clauses are
blocked; then the reduced clause-set is sat-equivalent to the original one.)

Proof. By Lemmas 4.2 and 3.1.

24 Naturally, we then have to branch and the branching is the worse the bigger the number of new 2-clauses is.

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 19

4.3. Generalized Autarkness

Consider for F ∈CLS and ’∈PASS the set N (’; F) of new clauses. The basic
observation is just that for such ∈PASS for which all new clauses vanish, i.e.,
 (N (’; F))= 1 holds, ’ becomes autark for ∗F!
Thus we can build a new “Autarkness-branching” by testing all variables in N (’; F)

via a complete branching (1; : : : ; p) and adjoining ’ to those i with i(N (’; F))= 1.
Basic Autarkness is the special case with N (’; F)= ∅; where the “Autarkness-
branching” degenerates to a single branch: p=1; 1 = ∅.

Lemma 4.5. For F ∈CLS and compatible ’; ∈PASS 25 the following holds:
1. N (’; ∗F)⊆ ∗N (’; F).
2. (N (’; F))= 1 ⇒ ’ is autark for ∗F .

Proof. Part 1 is an easy exercise (note that ’∗(∗F)= (�∪)∗F = ∗(’∗F)), and
part 2 follows from part 1.

For later use we state explicitly in the next lemma the conclusion from part 2 and
Lemma 4.1.

Lemma 4.6. Assume a clause-set F ∈CLS and partial assignments ’; ∈PASS

are given ful�lling Var()⊆Var(N) and (N (’; F))= 1. Then the assignment is

extended sat-equivalently by ’: ∗F sat≡ (∪ ’)∗F .

5. Polynomial reductions

In this section we introduce the polynomial reductions used in our 3-SAT-algorithm
N3.
As usual a reduction is a subset of the satis�ability equivalence

sat≡ (called “correct-
ness” of the reduction). All reductions we use can be seen as special combinations of
the following building blocks:
• elimination of subsumed clauses;
• addition=elimination of resolvents;
• addition=elimination of blocked clauses;
• application of br-autarkness for special partial assignments.
We combine our (nine) reductions by the “reduction operator” r : 3-CLS→ 3-CLS

(see De�nition 5.3), whose relevant properties are stated in Lemma 5.1.

5.1. The elementary reductions, combined by r0

We start with the (eight) elementary reductions for F ∈ 3-CLS:

25 That is: ’|(Var(’) ∩ Var())= |(Var(’) ∩ Var()).

20 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

1. F → 〈l→ 1〉∗F (Elimination of a variable)
for l∈Lit (F) and one of
(a) “1-clause-elimination”: {l}∈F [1];
(b) “resolution with subsequent one-clause-elimination”: {l; x}; {l; x}∈F [2];
(c) “pure literals”: l =∈Lit (F).

2. F → (F\{C}) ∪ {C\{l}} (Elimination of a literal occurrence)
for l∈C ∈F [3] and ∃C′ ∈F [l∈C′ ∧ C′\{l}⊆C\{l}]
(“Resolution with subsequent subsumption of one parent clause”).

3. F → F ∪ {{a; b}} (Addition of a clause)
for {a; b}∈B(F)[2]\F (“Addition of blocked 2-clauses”).

4. F → F\{C} (Elimination of a clause)
for C ∈F [3] and one of
(a) “Subsumption”: ∃C′ ∈F [C′ ⊂C];
(b) “Resolution with subsequent subsumption of one not-parent clause”:

∃C′; C′′ ∈F\{C}; l∈C′ [C′ ∩ C′′= {l} ∧ (C′\{l}) ∪ (C′′\{l})⊆C];
(c) “Blocked clauses”: C ∈B(F).
Correctness of Reductions 1(a), 1(c) and 4(a) is obvious, for Reductions 3 and

4(c) use Lemma 3.1, and correctness of Reductions 1(b), 2 and 4(b) follows from the
correctness of Resolution, that means that {C; C′} |= (C\{l}) ∪ (C′\{l}) holds for
clauses C; C′ ∈CL with C∩C′= {l} (i.e., C and C′ have (exactly) one complementary
literal l in common).
Note that only by reductions of group 1 a 2-clause can vanish (and these reductions

eliminate at least one variable), and none of the reductions from 1 – 4 create a new
3-clause or a new variable.

De�nition 5.1. Let r0 : 3-CLS→ 3-CLS be polynomially computable s.t. r0(F)
emerges from F by successive applications of the eight reductions above (chosen ac-
cordingly to their above ordering) and none of these reductions is applicable to r0(F).

Obviously there are such r0’s (Reduction 3 does not cause problems since for n
variables there are at most 4

(n
2

)
2-clauses at all).

An useful notation for partial assignments ’∈PASS and F ∈CLS is the “1-
clause-closure” [’]F of ’ w.r.t. F; computed (polynomially) by successively extending
’ by possible 1-clause-eliminations:

De�nition 5.2. For F ∈CLS and ’∈PASS we de�ne [’]F as the result of the
following procedure:

[’]F :=’;
WHILE (⊥ =∈ [’]F ∗F ∧ ([’]F ∗F)[1] 6= ∅) DO
choose {l}∈ ([’]F ∗F)[1];
[’]F := [’]F ∪ 〈l→ 1〉

END WHILE.

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 21

In case of ⊥ =∈ [’]F ∗F the assignment [’]F is well-de�ned and does not depend on
the order of choices in De�nition. 5.2. We have the following properties:

[’]F∈PASS; ’⊆[’]F ; [’]F ∗F sat≡’∗F ; ([’]F ∗F)[1]=∅ or ⊥∈[’]F ∗F:

5.2. “One-step look-ahead” for r0, and the reduction operator r

The last reduction is as follows:
5. F → r0(〈l→ 1〉∗(F ∪ E))

for a literal l∈Lit (F) and a clause-set E with either E= ∅ or E=B[3]
l
(F) ful�lling

N ′
r0 (〈l→ 1〉; F ∪ E)= ∅:

By Lemma 3.2 we have F
sat≡ F ∪E; and thus correctness of Reduction 5 follows by

Lemma 4.4 about br-autarkness.

De�nition 5.3. Let r : 3-CLS→ 3-CLS be polynomially computable s.t. r(F)
emerges from F by successive applications of r0 and Reduction 5 (r0 with priority),
and none of the nine reductions from 1 – 5 is applicable to r(F).
The set of reduced 3-clause-sets we denote by

3-CLSr := r(3-CLS)\{{⊥}}:
(It is convenient for further use to exclude the empty clause here.)

What is the purpose of reduction 5?. In our proof of the upper bound 1:5044::n for
N3 we have to consider the following situation:

Suppose that in N3 for input F0 ∈ 3-CLSr ; for any partial assignment ’ part

of a branching envisaged by N3, and any modi�ed version F
sat≡ F0 of F0 used

in N3, the case N ′
r (’; F)= ∅ occurs.

By br-Autarkness now F0 can be reduced to r(’∗F).
However, in r(’∗F) possibly there is now no not-blocked 2-clause at all, which

“normally” would be used for branching at r(’∗F); and so we demand n(r(’∗F))6
n(F)− 2 as compensation.
This loss of variables yet is established by Reduction 5, since Reduction 5 covers all

cases where only one variable is eliminated (see part 5 of Lemma 5.1). The extension
E in Reduction 5 thereby captures the (relevant) modi�cation of F0 to F .

5.3. Properties of r

What we need for r is collected in the following lemma.

Lemma 5.1. For F ∈ 3-CLS the following holds:

1. r(F)
sat≡ F; r(r(F))= r(F); r(F) is polynomially computable in ‘(F)=

∑
C ∈ F |C|.

2. r(F) is obtained from F by a series of the following operations:
– application of a partial assignment;

22 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

– deletion of a literal-occurrence in a 3-clause;
– addition of 2-clause (without new variables);
– elimination of a 3-clause.

3. Basic relations between r(F) and F :
(a) r(F)∈ 3-CLS;
(b) Var(r(F))⊆Var(F) (no new variables are introduced);
(c) (r(F))[3]⊆F [3] (no new 3-clauses are created);
(d) F [0;2]* (r(F))[0;2]⇒Var(r(F))⊂Var(F) (elimination of a 62-clause is always

accompanied by elimination of a variable);
(e) ⊥∈F ⇒ r(F)= {⊥}.

4. For F ∈ 3-CLSr we have:
(a) F 6=>⇒ n(F)¿3 (F 6=> contains at least three variables);
(b) F [0;1] = ∅ (F consists only of 2- and 3-clauses);
(c) ({l; a}; {l; b}∈F [2]; {l; a} 6= {l; b}) ⇒ Var(a) 6=Var(b) (if two 2-clauses

have a common literal, then the other literals in these clauses have distinct
variables);

(d) Lit (F)=Lit (F) (if a literal is in F; then also its complement);
(e) {l; a; b}∈F [3]⇒{l}; {l; a}; {l; b}; {l; a; b} =∈F (after elimination of complemen-

tary literal-pairs there are no subsumed clauses);
(f) (i) ∀ a; b∈Lit (F); a 6= b : ∀C ∈ F [a∈C⇒ b∈C]⇒{a; b} ∈ F [2] (if a literal

a is always accompanied by the literal b; then the 2-clause {a; b} is in F);
(ii) #l(F)= 1∧ l∈C ∈F ⇒ #2

l
(F)¿|C|−1 (if a literal occurs only once (in

a 2-/3-clause); then its complement occurs in some 2-clauses (at least
once=twice));

(g) {x; y; z}∈F [3]⇒{x; y}; {x; z}; {y; z} =∈F (there are no subsumed clauses);
(h) (l∈C1 ∈F; l∈C2 ∈F) ⇒ (C1\{l}) ∪ (C2\{l}) =∈F [3] (no 3-clause is a resol-

vent of clauses in F);
(i) ∀C ∈F [3] ∀ l∈C ∃C′ ∈F :C ∩ C′= {l} (for every 3-clause and every literal l

in it there is a clause in F containing l; but no other complementary literals).
5. For a (reduced) 3-clause-set F ∈ 3-CLSr ; a literal l; a partial assignment ’∈

PASS with ∅ 6=Var(’)⊆Var(F); and for E with either E= ∅ or E=B[3]
l
(F);

where ’(l)= 1 is assumed; we have
N ′

r (’; F ∪ E)= ∅⇒ n(r(’∗(F ∪ E)))6n(F) − 2 (if in r(’∗(F ∪ E)) all new
clauses are blocked; then r(’∗(F ∪ E)) must have at least two variables less
than F).

6. If there are clauses {x; b}∈F [2] and {x; b; c}∈F [3]; then {x; c}∈ r(F) or {b; c}∈
r(F) or Var(r(F))⊂Var(F) must hold.

7. For ’∈PASS we have: ⊥∈ r(’∗F) ∩ r([’]F ∗F) or r(’∗F)= r([’]F ∗F).

Proof. Part 1 we have already discussed. Part 2 follows immediately from the de�-
nition of r. Part 3 follows from part 2. For 4(a) note that F with 0¡n(F)62 could
be reduced using the reductions of group 1 and 5. Properties 4(b) – 4(i) follow from
the de�nitions of Reductions 1–4 in the same order (“⊥ =∈F ” in part 4(b) follows by

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 23

Subsumption and the de�nition of -3-CLSr , and part 4(f)ii is an immediate conse-
quence of 4(f)i).
Part 5: Assume n(r(’ ∗ (F ∪E)))= n(F) − 1. Thus n(’)= 1 and Reduction 5 had

not been applied: r(’ ∗ (F ∪E))= r0(’ ∗ (F ∪E)) – but now in case N ′
r (’; F ∪E)= ∅

we could apply Reduction 5 to F contradicting F ∈ 3-CLSr .
Part 6: Assume Var(r(F))=Var(F). Thus no reduction of group 1 has been ap-

plied to F and hence, according to the ordering of reductions, Reduction 2 must
have been applied to {x; b; c} (because of {x; b}∈F). If the literal c of {x; b; c}
would have been eliminated then thereafter Reduction 1(b) could have been applied
yielding a contradiction. So one of the literals b; c must have been eliminated from
{x; b; c}.
Part 7: 1-clause-elimination is the �rst reduction in the ordering and is conuent

except of the di�erent ways to produce ⊥.

6. The algorithm

In this section we present the 3-SAT decision algorithm N3, explain its main fea-
tures, and prove its correctness.

6.1. The overall structure of N3

The recursive procedure

N3 : 3-CLSr →{0; 1}
is speci�ed by N3(F0)= 1⇔ F0 ∈SAT for inputs F0 ∈ 3-CLSr .
We use as data structure �nite families ’̂ of partial assignments with integers as

indices:

De�nition 6.1.

FPASS :=
⋃

I ⊆N0
I�nite

PASSI

For ’̂∈FPASS we denote by I (’̂) := dom(’̂) the index set of ’̂, and for i∈ I(’̂)
we use ’̂i := ’̂(i).

The very topmost perspective on N3 is that it consists of three (structured) instruc-
tions:
1. If F =>, then output “satis�able”.
2. Otherwise compute a “branching” (’̂; F) for input F0, where F is a variant of F0,
and ’̂ the list of “test assignments”.

3. Then branching by ’̂ (on F) is performed.

PROCEDURE N3(F0 ∈ 3-CLSr): {0; 1};

24 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

VARIABLES
F ∈ 3-CLS;
’̂∈FPASS;

BEGIN

(1) IF F => THEN
RETURN N3(F0) := 1;

(2) (’̂; F) := branching(F0);
(3) IF I(’̂)= ∅ THEN
(3a) RETURN N3(F0) := 0

ELSE
(3b) RETURN N3(F0) := maxi∈I(’̂)N3(r(’̂i ∗ F))

END IF
END N3;

N3 uses the function

branching : 3-CLSr\{>}→FPASS× 3-CLS

which must ful�ll the following correctness conditions (C1)–(C3) for any F0 ∈
3-CLSr (using branching(F0)=: (’̂; F)):
(C1) ∀ i∈ I(’̂) : ∅ 6=Var(’̂i)⊆Var(F)=Var(F0)
(C2) F0 ∈SAT ⇔ ∃ i∈ I(’̂) : ’̂i ∗ F ∈SAT

(C3) ∀i∈ I(’̂) :⊥ =∈ r(’̂i ∗ F).
(C1) ensures the termination of N3, (C2) the correctness of the result, and (C3) the
input condition “F0 ∈ 3-CLSr” for 3(b).
The function “branching” considers three cases for F0, depending on �(F0), the max-

imal number of occurrences of a variable in the 2-clauses of F0:

De�nition 6.2. For F ∈ 3-CLS: �(F) := maxv∈VA(#2v(F) + #
2
v(F)).

PROCEDURE branching(F0 ∈ 3-CLSr\{>}) :FPASS× 3-CLS;
BEGIN
IF �(F0)¿2 THEN
RETURN branching(F0) := (branchingA(F0); F0)

ELSE IF F [2]0 \B(F0) 6= ∅ THEN
RETURN branching(F0) := branchingB(F0)

ELSE
RETURN branching(F0) := (branchingC(F0); F0)

END IF
END branching;

The three cases (A)–(C) in words:
(A): Some variable occurs at least twice in the 2-clauses of F0.
(B): The 2-clauses of F0 are variable-disjoint, and at least one of them is not blocked.

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 25

(C): The 2-clauses of F0 are variable-disjoint, and every 2-clause is blocked (including
the case that there is no 2-clause at all).

Before presenting in Sections 6.3–6.5 the functions

branchingA; branchingC : 3-CLSr\{>}→FPASS

branchingB : 3-CLSr\{>}→FPASS× 3-CLS;

we give in the subsequent subsection a frequently used auxiliary procedure for evalu-
ating families of partial assignments.

6.2. Evaluating families of partial assignments with respect to cases of immediate
decision or autarkness

The function

eval :FPASS× 3-CLS→FPASS

performs the following task on input (’̂; F):

Each ’̂i is replaced by [’̂i]F . Then branches creating ⊥ are eliminated, and
if there is a branch where basic autarkness or br-autarkness occurs, only
such a branch is left.

De�nition 6.3. For ’̂∈FPASS and F ∈ 3-CLS we de�ne:

I ′(’̂; F) := {i∈ I(’̂): ⊥ =∈ r([’̂i]F ∗ F)}
A(’̂; F) := {i∈ I ′(’̂; F): N ([’̂i]F ; F)= ∅ ∨ N ′

r ([’̂i]F ; F)= ∅}

eval(’̂; F) :=

{
([’̂i]F)i∈I ′(’̂;F) if A(’̂; F)= ∅
([’̂a]F)i∈{a} for some a∈A(’̂; F) else.

The properties of “eval” we need in the sequel are listed in the following lemma.

Lemma 6.1. For F ∈CLS and ’̂∈FPASS we have (using ’̂′ := eval(’̂; F)):
1. “’̂′ is as good as ’̂ with respect to satis�ability”:

∃i∈ I(’̂)[’̂i ∗ F ∈SAT]⇔ ∃i∈ I(’̂′)[’̂′
i ∗ F ∈SAT]:

2. I(’̂′)⊆ I(’̂), and for each i∈ I(’̂′) we have ’̂′
i = [’̂i]F and r(’̂′

i ∗ F)∈ 3-CLSr .
3. In case of |I(’̂′)|¿2 neither basic autarkness nor br-autarkness can be applied
to any branch:

∀i∈ I(’̂′): N (’̂′
i ; F) 6= ∅ ∧ N ′

r (’̂
′
i ; F) 6= ∅:

4. If there is i∈ I(’̂′) with N ′
r (’̂

′; F)= ∅; then we have I(’̂′)= {i}. Assume that
additionally the following assumption is ful�lled:

26 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

There is F0 ∈ 3-CLSr ; a literal l∈Lit (F0) with ’̂′
i(l)= 1;

and E with either E= ∅ or E=Bl(F0); such that

F =F0 ∪E:

Then we know n(r(’̂′
i ∗ F))6n(F)− 2.

Proof. Parts 2 and 3 follow by De�nition 6.3. Part 1 is an immediate consequence of
Lemma 4.4, and for part 4 use Lemma 5.1, part 5.

6.3. Case A: Multiple occurrences of a variable in the 2-clauses

The main features of the handling of case (A) are:
• Branching on a variable occurring maximally often (and in the most symmetrical
way) in the 2-clauses of F0.

• Applying Generalized Autarkness to branches creating only one new clauses (but
only in cases where we are sure to obtain a “good” branching).

PROCEDUREbranchingA(F0 ∈ 3-CLSr\{>}) :FPASS;
VARIABLES

l∈LIT;
’̂∈FPASS;
’∈PASS;

BEGIN
(1) l := branchLitA(F0);
(2) I(’̂) := {0; 1}; ’̂0 := 〈l→ 0〉; ’̂1 := 〈l→ 1〉;

’̂ := eval(’̂; F0);
IF |I(’̂)|61 THEN
RETURN branchingA(F0) := ’̂;

(3) IF ∃i∈{0; 1}: |N (’̂i; F0)|=1 ∧ n(’̂i)¿2 ∧ (n(’̂0)− 1) · (n(’̂1)− 1)61 THEN
(3a) choose such i;

RETURN branchingA(F0) :=GenAut(’̂i; F0)
ELSE

(3b) RETURN branchingA(F0) := ’̂
END branchingA;

The algorithm in words: In (1) the branching literal l is selected, using

branchLitA : 3-CLS\{>} → LIT;

and the corresponding binary branching ’̂ is evaluated in (2).
Then in case there is ’̂i creating only one new clause, with n(’̂i) “big enough”

and the whole branching ’̂ not already “a very good one”, in (3a) the “Generalized
Autarkness Branching”, based on ’̂i and given by

GenAut :PASS× 3-CLS→FPASS;

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 27

is computed and used as output of “branchingA”. (See Section 8.3 for a motivation of
the condition in (3).)
Otherwise ’̂ itself is the result in (3b).

Lemma 6.2. Suppose that the function “GenAut” terminates, and its result ful�lls
correctness conditions (C1)–(C3) from Section 6.1 with F =F0 and ’̂=
GenAut(’; F0) (as it will be shown in Lemma 6.3). Then (C1)–(C3) are valid also
for the output of “ branchingA” (with F =F0).

6.3.1. The branching rule
In case (A) we choose as branching variable a variable occurring maximally often

in the 2-clauses of F0, and in case there is more than one of this kind we balance the
numbers #2v(F0) and #

2
v(F0) of occurrences in both signs.

For standardization we actually use a branching literal requiring additionally that l
(itself) occurs at least once in the 2-clauses of F0.

PROCEDUREbranchLitA(F0 ∈ 3-CLSr\{>}) :LIT;
BEGIN

L := {l∈Lit (F) : (#2l + #2l)(F0)= �(F0)∧ #2l (F0)¿1};
choose l∈L with maximal min(#2l (F0); #

2
l
(F0));

RETURN branchLitA(F0) := l
END branchLitA;

6.3.2. The “Generalized Autarkness branching”
The function “GenAut” is de�ned on inputs (’; F0)∈PASS× 3-CLS ful�lling

(GA)1: N(’;F0)=N(’;F0)[2] ∧ |N(’;F0)|=1:
According to the idea of “Generalized Autarkness”

“test the variables in N (’; F0) and extend those branches by ’ which satisfy
N (’; F0)”

the “Generalized Autarkness branching” is computed. The construction is iterated if in
this way n(’) increases.
PROCEDUREGenAut(’∈PASS; F0 ∈ 3-CLS) :FPASS;
VARIABLES

’̂∈FPASS;
a; b∈LIT;

BEGIN
(1) LET N (’; F0)= {{a; b}};
(2) I(’̂) := {0; 1; 2};

’̂0 := 〈a→ 0; b→ 0〉; ’̂1 := 〈a→ 0; b→ 1〉 ∪’; ’̂2 := 〈a→ 1〉 ∪’;
’̂ := eval(’̂; F0);

28 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

IF |I(’̂)|62 THEN
RETURN GenAut(’; F0) := ’̂;

(3) IF ∀ i∈ I(’̂) : |N (’̂i; F0)|¿2∨ n(’̂i)6n(’) THEN
(3a) RETURN GenAut(’; F0) := ’̂

ELSE
(3b) choose i∈ I(’̂) with |N (’̂i; F0)|=1 and n(’̂i)¿n(’);

RETURN GenAut(’; F0) :=GenAut(’̂i; F0)
END GenAut;

In (1) the new clause is named “{a; b}”, Then in (2) the “Generalized Autarkness
branching” is generated and evaluated.
If all ’̂i now either create at least two new clauses or do not eliminate more variables

than ’, then the result of “GenAut” is ’̂ (in (3a)).
Otherwise in (3b) the same construction is repeated with ’̂i instead of ’.

Lemma 6.3. The procedure “GenAut” terminates for inputs ’∈PASS and F0 ∈
3-CLS ful�lling (GA)1; and the correctness conditions (C1)–(C3) are ful�lled for
’̂=GenAut(’; F0) and F =F0.

Proof. The termination is guaranteed because of the increasing n(’)-values. For the
correctness conditions use Lemmas 6.1 and 4.6 with = 〈a→ 0; b→ 1〉 resp. =
〈a → 1〉.

6.4. Case B: Variable-disjoint 2-clauses, and a not-blocked 2-clause exists

In case (B) the following ideas are used:
1. The branching literal is chosen from a 2-clause which is not blocked.
2. In case not “enough” new clauses are created, blocked clauses are added for com-
pensating the missing new clauses.

PROCEDUREbranchingB(F0 ∈ 3-CLSr\{>}) :FPASS× 3-CLS;
VARIABLES

l∈LIT;
’̂∈FPASS;
F ∈ 3-CLS;

BEGIN
(1) l := branchLitB(F0);
(2) I(’̂) := {0; 1}; ’̂0 := 〈l→ 0〉; ’̂1 := 〈l→ 1〉;

’̂ := eval(’̂; F0);
IF |I(’̂)|61 THEN
RETURN branchingB(F0) := (’̂; F0);

(3) IF |N (’̂0; F0)|¿3∧ |N (’̂1; F0)|¿3 THEN
RETURN branchingB(F0) := (’̂; F0);

(4) IF |N (’̂0; F0)|=2 THEN

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 29

(4a) F :=F0 ∪B[3]
l
(F0)

ELSE
(4b) F :=F0 ∪B[3]l (F0);
(5) RETURN branchingB(F0) := (eval(’̂; F); F)
END branchingB;

The algorithm in words. In (1) the branching literal is selected, and the correspond-
ing binary branching ’̂ is evaluated in (2).
If both branches create at least three new clauses (before applying r) then in this

“normal case” the result is ’̂ (in (3)), without changing F0.
Otherwise blocked clauses are added in (4a) resp. (4b):
In (4a) we choose “blocked for l” since there are only few l-occurrences, while in

(4b) there are only few l-occurrences in F0.

Lemma 6.4. The result of “ branchingB” ful�lls correctness conditions (C1)–(C3).

Proof. Use Lemmas 6.1 and 3.2.

6.4.1. The branching rule

PROCEDUREbranchLitB(F0 ∈ 3-CLSr\{>}) :LIT;
BEGIN
choose C ∈F [2]0 \B(F0);
choose l∈C;
RETURN branchLitB(F0) := l

END branchLitB;

6.5. Case C: The remaining case

In this last case, which can only occur at the root of the test tree generated by N3

or after application of (br)-autarkness (compare Lemma 6.1, part 4), we can simply
choose any branching literal:

PROCEDUREbranchingC(F0 ∈ 3-CLSr\{>}) :FPASS;
BEGIN

l := branchLitC(F0);
I(’̂) := {0; 1}; ’̂0 := 〈l→ 0〉; ’̂1 := 〈l→ 1〉;
RETURN eval(’̂; F0)

END branchingC;
PROCEDUREbranchLitC(F0 ∈ 3-CLSr\{>}) :LIT;
BEGIN
choose l∈Lit (F);
RETURN branchLitC(F0) := l

END branchLitC.

30 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

Theorem 1. Algorithm N3 terminates on every input F0 ∈ 3-CLSr and gives the cor-
rect answer, i.e., N3(F0)= 0⇔ F =∈SAT and N3(F0)= 1⇔ F ∈SAT.

Proof. Use Lemmas 6.2 and 6.4.

7. A worst case upper bound

The basic concept for analyzing the running rime of algorithm N3 is that of a
“computation tree”:

De�nition 7.1. For a (reduced) 3-clause-set F0 ∈ 3-CLSr the computation tree TN3 (F0)
reproduces the recursive calls of the procedure N3 for input F0, whereby we continue
evolving the tree also when we found the formula satis�able.
The node-labelings F0; F : nds(TN3 (F0))→ 3-CLS give the corresponding input-

formula respectively its variant.
More precisely we de�ne for F0 ∈ 3-CLSr:
(i) If F0 => then TN3 (F0) is the trivial tree with one node w and F0(w) :=F0 :=F(w).
(ii) Otherwise, using (’̂; F) := branching(F0), let TN3 (F0) be the tree with |I(’̂)|-many

subtrees TN3 (r(’̂i ∗ F)) (i∈ I(’̂)) at the root. Using w for the root: F0(w) :=F0
and F(w) :=F .

In fact the tree TN3 (F0) is not uniquely de�ned but depends on the special choices
performed in “branching”. Of course all our results hold for any of these choices.
For every reasonable model of computation (e.g., Turing machines) and every (rea-

sonable) realization M of the (abstract) algorithm N3 in this model, there exists a
polynomial p s.t. for the number tM(F0) of steps performed by M for any input F0
(suitably coded)

tM(F0)6p(‘(F0)) · #lvs (TN3 (F0))

holds, where ‘(F0) is the number of literal occurrences in F0 and #lvs(TN3 (F0)) :=
|lvs(TN3 (F0))| is the number of leaves in the computation tree TN3 (F0).
We are interested only in the “mathematical part” #lvs (TN3 (F0)) of the number of

steps tM(F0), and abstract from the polynomial part p(‘(F0)) (which depends on the
model of computation and on the realization).

Theorem 2. For every (reduced) 3-clause-set F0 ∈ 3-CLSr the number of leaves in the
computation tree TN3 (F0) is bounded in the worst case by

#lvs (TN3 (F0))¡0:55 · 1:50444n(F0)

where n(F0) is the number of variables in F0.

The proof of Theorem 2 is the subject of Sections 8 to 13.

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 31

8. Estimating tree sizes

8.1. Some notations and a basic estimation lemma

For us a tree T is any �nite partial order T =(P;6) with least element root (T)
s.t. there is exactly one path from the root to any node.
We use nds(T) :=P for the set of nodes of T , and for a node w∈ nds(T) let dsT (w)

be the set of direct successors of w in T . 26

Furthermore, let lvs(T) be the set of leaves, #lvs(T) the number of leaves, and
ndsk(T) the set of nodes with at least k direct successors. 27

A path in T is a sequence (w0; : : : ; wn) (n¿0) of nodes of T s.t. wi+1 is a direct
successor of wi.
An edge labeling d of T is a mapping

d : {(w; w′) :w∈ nds(T) ∧ w′ ∈ dsT (w)}→R:

For w; w′ ∈ nds(T) with w′¿w we de�ne

dw′ (w) :=d(w; w′′); where w′′ is determined by w′′ ∈ dsT (w) ∧ w′′6w′

(“the value of d at w in direction w′”).
As node labelings we consider any mapping with domain nds(T).

Lemma 8.1. Consider a tree T with a “transition probability” p; i.e., an edge labeling
of T with values in the interval [0; 1] such that for every inner node the sum of
probabilities of outgoing edges is 1. 28

For a leaf w∈ lvs (T) let p(w) be the resulting probability for reaching w. 29

Then we can estimate the number of leaves by

#lvs (T)6 max
w∈lvs (T)

p(w)−1:

Proof. By induction one easily proves∑
w∈lvs (T)

p(w)= 1; ⇒ #lvs (T) · min
w∈lvs (T)

p(w)61:

For every tree T there is exactly one optimal transition probability pT with respect
to the estimation in Lemma 8.1 (i.e., where the inequality becomes an equality). pT

is characterized by the condition that the probabilities for all leaves are the same.

26 i.e., dsT (w) := {w′ ∈ nds(T) :w′¿w∧¬∃ w′′ ∈ nds(T)[w¡w′′¡w′]}.
27 ndsk (T) := {w∈ nds(T) : |dsT (w)|¿k}, lvs (T) := nds(T)\nds1(T), #lvs (T) := |lvs (T)|.
28 ∀w∈ nds1(T) :∑w′∈dsT (w)pw′ (w)= 1
29 p(w) :=

∏
v∈ nds(T); v¡w

pw(v)

32 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

8.2. Distance functions and our main estimation lemma

Our approach for estimating tree sizes is not based on the transition probabilities of
Lemma 8.1 but on “distance functions” d (from which (implicitly) transition proba-
bilities are derived).
Distance functions are edge labelings by positive real numbers which gauge the

progress in reducing the complexity: The bigger d(w; w′) for a node w and one of its
direct successors w′ is, the bigger is (resp. “should be”) the reduction of complexity
achieved by the branch w→w′.
Additionally we use the notion of a measure 30 � with induced distance function ��.

A measure is a node labeling with non-negative real numbers such that the di�erences
�� give a distance function. � has the meaning of an estimation of “the” (decision)
complexity of the formula at the given node.
As an introductory example consider the measure �= n, the number of variables

(every node is labeled with the number of variables of the formula at this node).
The induced distance function �� gives the number of eliminated variables (for each
branch).

De�nition 8.1. A distance function d for T is an edge-labeling of T with values in
R∗+, where for “single edges” (w; w′) 31 also d(w; w′)= 0 is allowed.

De�nition 8.2. Given a real-valued node labeling � for a tree T , the edge labeling ��
is de�ned by

��(w; w′) := �(w)− �(w′)

for w∈ nds(T), w′ ∈ dsT (w).
If � has its values in fact in R+ and �� is a distance function, then we call � a

measure. We assign to every distance function d a measure
∑

d by de�ning (
∑

d)(w)
as the maximal sum of d-values on the paths from w to any leaf:

∑
d (w) := max

∑
v∈nds(T)
w6v¡w′

dw′(v) :w′ ∈ lvs (T) ∧ w6w′

 :

On “standardized” measures and distance functions the operations � and
∑

are
inverse to each other, 32 and thus for trees the notions of “measure” and “distance
function” are (essentially) equivalent. However we consider the concept of a distance
function as more basic, since given a measure � one can easily calculate the

30 Perhaps “potential” would be a somewhat better choice.
31 dsT (w)= {w′}.
32 Measures �=

∑
d induced by distance functions are 0 on all leaves, while for distance functions d=��

induced by measures the sum of d-values on all paths from the root to a leaf is the same – now for measures
� and distance functions d with these properties we have �

∑
d= d and

∑
��= �.

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 33

corresponding distance function �� by local operations, but to obtain from a given
distance function d the corresponding measure

∑
d involves global calculations over

the whole tree.
Furthermore the measures and distance functions used in this paper 33 do not depend

on the tree, but only on the formulas labeling the nodes, and then the concept of
distance functions is in fact more general than that of measures.
In order to be able to transform any distance function into a transition probability,

we introduce the “�-function” on “branching tuples” in the next de�nition.

De�nition 8.3. A branching tuple t is a tuple of positive real numbers. For breadth
one also 0 is allowed. The set of all branching tuples is BT:

BT :=
⋃
n¿1
(R∗+)n ∪{(0)}:

For t=(t1; : : : ; tm)∈BT\{(0)} we de�ne �(t) as the unique positive solution of the
equation

m∑
i=1

�(t)−ti =1;

while for (0) we de�ne �((0)) := 1.
Given a tree T with a distance function d, we induce a mapping d : nds1(T)→BT

by

d (w) := (d(w; w ′))w ′∈dsT (w):

(Considering d(w) as a branching tuple, we use in fact the notion of “branching tuples
modulo permutations of the components”, which is justi�ed by the invariance of the
�-function against permutation.)
Now for w∈ nds1(T) also �(d (w)) is well de�ned, gauging the cost of a single

branching w. We obtain a “worst-case gauging” �max(d ,T) of whole T by

�max(d ;T) :=max({�(w)}w∈nds1(T) ∪{1}):

As basic properties of � just note:
1. � :BT→ [1;+∞[;
2. �((t1; : : : ; tm))= 1⇔ m=1;
3. �((t1; : : : ; tm))= �((t�(1); : : : ; t�(m))) for any permutation �;
4. �((t1; t2; : : : ; tm))¡�((t′1; t2; : : : ; tm)) for m¿2 and t1¿t′1.

Lemma 8.2. Consider a tree T with a distance function d.
From d we derive a “transition probability” pd by de�ning

pd(w; w ′) := �(d(w))−d(w;w ′)

for w∈ nds(T) and w ′ ∈ dsT (w).

33 Or (implicitly) elsewhere in the literature.

34 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

The estimation of Lemma 8.1 now can be extended to

#lvs (T)6 max
w∈lvs (T)

pd(w)−16�max(d; T)
∑

d(root (T)):

Proof.

max
w∈lvs (T)

pd(w)−1 = max
w∈lvs (T)

∏
v¡w

pd
w(v)

−1 = max
w∈lvs (T)

∏
v¡w

�(d(v))dw(v)

6 max
w∈lvs (T)

∏
v¡w

�max(d; T)dw(v) = max
w∈lvs (T)

�max(d; T)
∑

v¡wdw(v)

= �max(d; T)
∑

d(root (T)):

Preliminary versions of this “�-lemma” can be found in [8, 23]. The bene�ts of this
new lemma, compared with its predecessors, are as follows:
1. One can handle arbitrary positive real numbers as edge-labelings and thus
optimize d.

2. More generally, for the �rst time we consider the whole d as one object, enabling
us to perform global optimizations on d, involving the whole tree, which compares
favorably to the use of recursion equations.
In all the �-lemma for the special purpose of estimating tree sizes improves the ordi-

nary method of recursion equations, allowing to handle globally the situation where a
set of alternative recursion equations is given with possible interplay between the dif-
ferent cases. Optimizations with continuous parameters are supported, and a framework
for taking global properties of the considered trees into account is established.
On the contrary by using recursion equations the original tree in e�ect is substituted

by a new one, consisting of the branchings belonging to the (di�erent) recursion equa-
tions, and thus, according to this loss of information, the use of an arbitrary distance
function d in the �-lemma makes no sense anymore since we cannot even formulate
the notion of the maximal sum of d-values over all paths in the original tree.
The main point in using the �-lemma is the right choice of the distance function d.

In Section 14.2 we briey discuss this subject from a general point of view.
For 3-SAT-algorithms the de�nition of an appropriate distance function d is the

subject of the subsequent Section 9.
An additional handling of nodes with “bad” �-value but with predecessors or suc-

cessors with “good” �-value is presented in Section 12.

8.3. Using the �-function for selecting branchings

The �-function seems to be the right tool for the purpose of selecting a branching
from a set of alternatives in backtracking SAT-algorithms, provided a “good” measure
of formula complexity is given, which can guide the “greedy” backtracking algorithm.
(See [19].)
In our 3-SAT-algorithm N3 the �-function is not directly used, since the calculation

of the corresponding branching tuples seems to be too expensive, but with the help

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 35

of certain simplifying assumptions the �-valuations guided the design of the algorithm.
For example now we motivate the exceptional case in which in case (A) of N3 the
originally proposed branching is replaced by the “Generalized Autarkness-Branching”
(see instruction (3) in “branchingA”).
In this special case the branching (’0; ’1) is replaced by the branching

(〈a→ 0; b→ 0; x→ 1〉; 〈a→ 0; b→ 1〉 ∪’; 〈a→ 1〉 ∪’);

where ’ is ’0 or ’1, N (’; F0)= {{a; b}} and {a; b; x}∈F0 with ’(x)= 0 (see
Section 6.3.2). Let (p; q) be �n for the original branching. W.l.o.g.: p= n(’). Then
�n for the new branching is (at least) (3; p+ 2; p+ 1).

Lemma 8.3. For p; q∈N with p¿2 and (p− 1) · (q− 1)61 we have

�(p; q)¿�(3; p+ 2; p+ 2):

Proof. First assume q=1. Then �(p; q)= �(p; 1)= �(p; 1+p; 1+1) (see Lemma 8.4)
= �(p;p+ 1; 2)¿�(p+ 2; p+ 1; 3).
Otherwise we have p= q=2. Now �(p; q)= �(2; 2)= �(2; 2 + 2; 2 + 2) (see

Lemma 8.4) = �(2; 4; 4)¿�(2 + 1; 4 − 1; 4) (see Lemma 8.5)= �(3; 3; 4)= �(3; 2 + 2;
2 + 1).

The �rst auxiliary lemma used in the proof states that the �-value of a composed
branching tuple t∗, that is, a branching tuple t ′ is concatenated to one branch of another
branching tuple t, lies between the �-values of the parts t; t ′.

Lemma 8.4. Consider two arbitrary branching tuples t=(t1; : : : ; tm) and t ′=(t′1; : : : t
′
n).

Then for t∗ := (t1 + t′1; : : : ; t1 + t′n; t2; : : : ; tm) we have:
(i) �(t ′)= �(t)⇒ �(t∗)= �(t);
(ii) �(t ′)¡�(t)⇒ �(t ′)¡�(t∗)¡�(t);
(iii) �(t ′)¿�(t)⇒ �(t ′)¿�(t∗)¿�(t).

Proof. Directly from the de�nition of the �-function.

The second auxiliary lemma essentially states that for two binary branching tuples
with the same sum of the components that tuple which is more symmetric (has a
smaller distance between the two components) has the smaller �-values.

Lemma 8.5. Consider two branching tuples t and t ′ of the same breadth which co-
incide except of two components:

t=(t1; : : : ; tn); t ′=(t′1; : : : ; t
′
n); n¿2; ti= t′i for i¿3:

Assume t′1 + t′2¿t1 + t2 and min(t′1; t
′
2)¿min(t1; t2). Then we have �(t ′)6�(t). And if

additionally t′1 + t′2¿t1 + t2 or min(t′1; t
′
2)¿min(t1; t2) holds, then we have �(t ′)¡�(t).

36 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

Proof. For a branching tuple t=(t1; : : : ; tn) let

�(t)(x) :=
n∑

i=1
x−ti :

Now �(t)− �(t ′)= �((t1; t2))− �((t′1; t
′
2)) holds, and in general we have:

�((t′1; t
′
2))6�((t1; t2))⇔ (t′1 + t′2¿t1 + t2 and min(t′1; t

′
2)¿min(t1; t2)):

9. The distance function

The aim of this section is to motivate, de�ne and discuss the distance function d3

for TN3 (F0), the main tool for the analysis of N3. For that purpose the following
conventions are useful.

De�nition 9.1. Every “formula measure” � : 3-CLS→R induces a node labeling of
TN3 (F0) via �(w) := �(F0(w)) for w∈ nds(TN3 (F0)), as well as any “formula distance
function” d : (3-CLS)2→R induces an edge labeling of TN3 (F0) via d (w;w

′) :=
d(F0(w); F0(w ′)) for w∈ nds(T) and w ′ ∈ dsT (w). (In this context � and d are arbitrary
mappings.)

9.1. The hitherto existing distance functions

The problem of Section 9 is to �nd a (“good”) distance function d ful�lling∑
d(root (TN3 (F0)))6n(F0)

since we are interested in an upper bound depending on n(F0).
The �rst approach is to take d0 =�n. Using d0 [23, 25] (exploiting Lemma 4.1)

obtained the bound �max(d0; TL=MS)61:6180 : : : = �(2; 1)= �0;1;1 (see De�nition 11.2)
for their underlying computation tree TL=MS.
In my opinion the improved bound obtained by [29] is based essentially on the

(implicit) use of the re�ned distance function d1 =�m1 where

m1(F) := n(F)− � · z1(F);

z1(F) :=max{|P|: P⊆F [2] ∧∀C; C′ ∈P [C 6=C′ ⇒ Var(C)∩Var(C′)= ∅]}:
Here �∈R+ is a parameter to be chosen s.t. �max becomes minimal. [29] proved (in
our interpretation) �max(d1; TSch(F0))6�1;2;1 = 1:5780 : : : .
The advantage of m1 over n is that an increase in the number of 2-clauses can

increase �m1 (while �n stays unchanged) and thus decreases �max(�m1; TS(F0)). The
algorithm therefore must try to produce as many new 2-clauses as possible (for [23, 25]
the mere existence of a 2-clause was su�cient) while not eliminating to many old 2-
clauses, and in case more 2-clauses vanish than new 2-clauses arise, an increase of �n
(due to the special situation) must compensate this loss.

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 37

9.2. The generalized “approximation” of the number of 2-clauses

De�nition 9.2. We generalize the measure z1 to zk : 3-CLS→N0 for k ∈N0 ∪{+∞}:

zk(F) :=max{|P|: P⊆F [2] ∧ �(P)6k }:

We consider zk(F) as an “approximation” of z∞(F)= |F [2]|. We cannot use z∞(F)
itself because the number of (arbitrary) 2-clauses eliminated by (applying) a partial
assignment ’ cannot be bounded in n(’) only. By way of contrast the number of
vanishing “zk -clauses” is less than k · n(’) (see Lemma 9.6).
Some basic properties of zk (and �) are given in the next lemma.

Lemma 9.1. For all k; k ′ ∈N0 ∪{+∞}; clauses C with |C|6 3 and F; F ′ ∈ 3-CLS

the following holds:
1. � is monotonic: F ⊆F ′ ⇒ �(F)6�(F ′);
2. zk(F) is monotonic in k and F : k6k ′ ∧F ⊆F ′ ⇒ zk(F)6zk′(F ′);
3. k¿�(F)⇒ zk(F)= z�(F)(F);
4. (a) �(F)6�(F ∪{C})6�(F) + 1;
(b) zk(F)6zk(F ∪{C})6zk(F) + 1;

5. (a) zk(F)¡zk′(F)⇔ min(�(F); k ′)¿k + 1;
(b) �(F)=min{k ∈N0: zk(F)= zk+1(F)};

6. (a) �(F)6z∞(F)6 1
2 · �(F) · n(F);

(b) 2 · z∞(F)=n(F)6�(F)6min(z∞(F); 4 · (n(F)− 1)) for n(F)¿1;
(c) min(k; z∞(F))6zk(F)6 1

2 ·min(k; �(F)) · n(F).

Proof. Parts 1–4 are obvious from the de�nition. Part 5(a) “⇒” follows from parts 2
and 3, and “⇐” follows by part 4(a). Part 5(b) is an immediate consequence of 5(a).
For part 6(a) note that no clause contains complementary literals and

z∞(F)= 1
2‘(F

[2])6 1
2�(F) · n(F):

For v∈Var(F) we have

�(F)6|{{a; b}∈CL: Var(a)= v∧Var(b)∈Var(F)\{v}}|=2 · 2 · (n(F)− 1)

and hence by part (a) part (b) follows. Finally min(k; z∞(F))6zk(F) follows from
�(P)6|P| for P⊆F [2], and for P⊆F [2] s.t. �(P)6k and |P|= zk(F) holds we have
(by part (a)):

zk(F)= |P|6 1
2�(P)n(F)6

1
2 min(k; �(F)) · n(F):

Using the “approximation parameter” k we generalize the measure m1:

De�nition 9.3. For F ∈ 3-CLS and �∈R+ with �¡2=k we de�ne

mk(F) := n(F)− � · zk(F):

38 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

By the distance function d2 :=�mk =�n− � ·�zk now
• we can use an optimal level k of approximation of the number of 2-clauses (e.g. for
our complexity bound k =2 is optimal).
However, it is not the end of the story:
Our main problem is that new 2-clauses do not need to contribute to �zk , since zk

counts only certain 2-clauses and we do not know which.
An ad hoc approach used in [29] (for z1) to overcome this di�culty is as follows:
Consider a branch w→w ′ where some new 2-clause did not account to �zk . Due

to Lemma 9.1 part 5(a) then a variable must occur more than k times in the 2-clauses
of F0(w ′), and thus it is advantageous to form an aggregate �–value out of these con-
secutive branchings, 34 since at w ′ we obtain a good �n-value. But even for z1 this
job is tedious, causes a (too) complicated algorithm, and gives away all long-range
e�ects.
An alternative de�nition of zk by “maximal k-matchings”. We de�ne an undirected

graph G(F) for F ∈ 3-CLS, where the set of nodes is Var(F) and every 2-clause
{a; b}∈F [2] connects the nodes Var(a);Var(b) (parallel edges are allowed).
Now zk(F) is the maximal size of a “k-matching” in G(F), where a k-matching

is a set M of edges such that every node of G(F) is adjacent to at most k edges
from M .

9.3. Using “budgets” for new 2-clauses

Here a general method is introduced for bringing new 2-clauses into account which
(implicitly) takes the whole computation tree into consideration and completes (at least
for the moment) our way of approximating the number of 2-clauses.
We introduce the distance function d3= d3(k; (hi)i∈N0 ; �) for TN3 (F0), depending

additionally on “budgets” (hi) allowing
• to take for a branch w→w ′ up to h�(w) new 2-clauses de�nitely into account (but
not more).
We require hi=0 for i¿k. Thus we divide the nodes w into two categories:

– If �(w)6k holds then an increase in the number of 2-clauses improves �(d3(w))
over �(�n(w)).

– But if �(w)¿k holds then �(d3(w)) gets worse (compared with �(�n(w))) and
indeed the worse the bigger the hi are.
This partition is motivated by the fact that due to the branching rule of “branchingA”

(see Section 6.3.1) an increasing �(w) causes an increasing �n(w) (at least in the worst
case).
More precisely we have the following case distinction in mind:

– The case �(w)= 0 is covered by br-Autarkness.
– In case �(w)= 1 in both branches created by “branchingB” (see Section 6.4) only
one 2-clause vanishes and thus the number of new 2-clauses (at least one by

34 According to Lemma 8.4 a “mean value” of the �-values of the single branchings w and w ′.

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 39

br-Autarkness) determines an increase in the number of 2-clauses: �w ′z∞(w)=
�w ′(w)− 1¿0, where �w ′(w) := z∞(w ′)− z∞(F0(w ′)∩F0(w)) is the number of new
2-clauses.

– For case 1¡�(w)6k, belonging to “branchingA” (see Section 6.3), the number of
eliminated 2-clauses (increasing with �(w)) in fact is greater than the number of new
2-clauses (at least in the worst case and for our analysis), thus �(d3(w))¿�(�n(w)),
but the new 2-clauses provided by Generalized Autarkness prevent the �–value from
being too bad.

– For �(w)¿k only the negative contribution by the eliminated 2-clauses is counted,
but, due to the restriction of d3 to an approximation of z∞, the case �(w)= k + 1
is the worst. 35

The cases �(w)= 1 and �(w)= k + 1 are the overall worst cases, and for �(w)= 1
the weight � should be as large as possible while for �(w)= k+1 as small as possible.
The more new 2-clauses we have in case �(w)= 1 the bigger is the optimal k (using
an optimal �).

9.4. The de�nition of d3 =�n− � · �
For our handling of the variation in the number of 2-clauses the following di�eren-

tiation between eliminated and new 2-clauses is basic.

De�nition 9.4. For i∈N0 ∪ {+∞} and F; F ′ ∈ 3-CLS we de�ne:

�zi(F ;F ′) := zi(F\F ′)

�(F ;F ′) := z∞(F ′\F):

�zi(F; F ′) is the number of “zi-clauses” eliminated by the transition F →F ′, and
�(F; F ′) is the (total) number of new clauses created by this transition. We have

�z∞= �z∞ − �:

That only for the calculation of eliminated clauses the “approximations” zi are used,
while for the calculation of new clauses all new clauses are considered, mirrors a
fundamental asymmetry of our approach:
While the number of eliminated 2-clauses has to be restricted to make it depend on

�n, we want, on the other hand, to take an arbitrary number of new 2-clauses into
account (at least in principal). (The restrictions we have to pose on the number of
“acceptable” new clauses do not depend on �n but on �.)

De�nition 9.5. Assume k∈N0, h :N0→N0 and �∈R+ ful�lling:
(i) ∀i∈N0 [i¿k ⇒ hi=0],
(ii) �¡(k +maxi∈{0;:::; k} hi)−1 (10 :=+∞).

35 Also in these cases the new clauses provided by Generalized Autarkness are useful, but only for restricting
the costs for providing the budgets.

40 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

We de�ne �(k,h)(F;F ′) and d3(k,h, �)(F ,F ′) for F; F ′ ∈ 3-CLS as follows:

�(k; h)(F ;F ′) := max
(
min

(
�z∞(F; F ′); max

i∈{0;:::; k}
(hi + �zi(F; F ′))

)
− �(F; F ′);

�zk(F; F ′)− h�(F)

)
d3(k; h; �) :=�n− � · �(k; h):

Remarks. 1. In the following we use �= �(k; h) and d3 =d3(k; h; �).
2. Because of �¿0, for the sake of a good �max(d3; TN3 (F0))-value � should be as
small (negative) as possible and of course �n should be as large as possible.

3. Comparing d3 with d2 we see that � replaces zk . And the reader should further-
more note the structural similarity between the de�nition of � and the equation
�z∞= �z∞ − �, that is, � is the maximum of two versions of that equation.

4. Contrary to the hitherto distance functions there is no formula measure � : 3-CLS

→R s.t. d3 =�� holds. 36

The de�nition of � combines two cases, as shown in the next lemma.

Lemma 9.2. For F; F ′ ∈ 3-CLS we have, using �zi= �zi(F; F ′), �= �(F; F ′) and �=
�(F; F ′):
1. �(F)6k ⇒ �= �zk −min(�; h�(F));
2. �(F)¿k ⇒ �=max(min(�z∞;maxi∈{0;:::; k}(hi + �zi))− �; �zk).

Proof. The easy proofs are left as an exercise to the reader (for part 1 just note that
because of �6k we have �z∞= �zk).

In order to prove that d3 is a distance function for TN3 (F0) we need an upper bound
for �zk .

9.5. A general upper bound for the numbers of eliminated clauses

The aim of this subsection is to give a general upper bound for the number of elim-
inated zk -clauses (with arbitrary k) when applying partial assignments or the reduction
operator r.

Lemma 9.3. For k ∈N0 ∪ {+∞} we have
1. For F; F ′; F ′′ ∈ 3-CLS: �zk(F; F ′)6�zk(F; F ′′) + �zmin(k; �(F))(F ′′; F ′).
2. And for a sequence F0; : : : ; Fs, s∈N0 of clause-sets Fi ∈ 3-CLS:

�zk(F0; Fs)6
s−1∑
i=0

�zmin(k; �(F0);:::;�(Fi))(Fi; Fi+1):

36 One reason is that �zi does not ful�ll the “triangle equality” �zi(F; F ′)= �zi(F; F ′′) + �zi(F ′′; F ′) as it
would be the case for �zk =��, but only the triangle inequality (see Lemma 9.3).

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 41

Proof. Part 1: The reader should be easily able to verify that (generally)

�zk(F; F ′)=max{|P| − |P ∩F ′|: P⊆F [2] ∧ �(P)6k}

holds. Now for P⊆F [2] with �(P)6k we have the estimations

|P| − |P ∩F ′′|6�zk(F; F ′′);

|P ∩F ′′| − |(P ∩F ′′)∩F ′|6�zmin(k; �(F))(F ′′; F ′):

Adding the inequalities yields |P|−|P ∩F ′′ ∩F ′|6�zk(F; F ′′)+�zmin(k; �(F))(F ′′; F ′) and
thus by |P ∩F ′′|¿|P ∩F ′′ ∩F ′| the assertion follows.
Part 2: s=0: 060.
s¿0: By part 1 and the induction hypothesis we have:

�zk(F0; Fs)6 �zk(F0; F1) + �zmin(k; �(F0))(F1; Fs)6�zk(F0; F1)

+
s−1∑
i=1

�zmin(k; �(F0); �(F1);:::; �(Fi))(Fi; Fi+1):

Lemma 9.3 enables us to estimate �zk(F; F ′) by dividing the transformation F →F ′

into smaller steps F =F0→ · · · →Fn=F ′ for which we have appropriate estimations.
Note that a transformation Fi+1 =’i ∗Fi in the situation ’i=’′

i ∪’′′
i can be further

divided via Fi+1 =’′
i ∗ (’′′

i ∗F).
The next lemma estimates the total number of 2-clauses eliminated by a partial

assignment.

Lemma 9.4. For F; F ′ ∈ 3-CLS with F ⊆F ′ and V ⊆VA; ’∈PASS the following
holds:
1. F\(’ ∗F ′)= {C ∈F : Var(C)∩Var(’) 6= ∅} (and thus F\(’ ∗F ′)=F\(’ ∗F));
2. |{C ∈F [2]: Var(C)∩V 6= ∅}|6|V | · �(F).
(In words: The clauses; which are eliminated by ’; are those clauses which are e�ected
(at all) by ’. And the number of 2-clauses; which are a�ected by ’; is less than or
equal to the number of variables eliminated by ’ times the maximal number �(F)
of occurrences of a variable in the 2-clauses of F .)

Proof. Part 1 follows from ’ ∗ {C}= {C} for Var(’)∩Var(C)= ∅, and Var(’)∩
Var(’ ∗F)= ∅.
Part 2 : |{C ∈F [2]: Var(C)∩V 6= ∅}|6∑

v∈V (#
2
v+#

2
v)(F)6

∑
v∈V �(F)= |V | · �(F).

The main result of this subsection now is given in the following lemma.

Lemma 9.5. Assume k ∈N0 ∪ {+∞}. Then we have:
1. For F ∈ 3-CLS; ’∈PASS: �zk(F; ’ ∗F)6n(’) ·min(k; �(F)):
2. Assume a sequence F0; : : : ; Fs, s∈N0 of clause-sets Fi ∈ 3-CLS.

42 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

(a) Assume furthermore that there is I ⊆{0; : : : ; s− 1} and ’ : I →PASS s.t.

∀i∈I [Fi+1 =’i ∗Fi]∧∀i∈{0;:::; s−1}\I [F
[2]
i ⊆F [2]i+1]:

Then: �zk(F0; Fs)6
∑

i∈I n(’i) ·min(k; �(F0); : : : ; �(Fi)).
(b) If ∀i∈{0;:::; s−1}[Fi+1 = r(Fi) ∨ ∃ ’∈PASS[Fi+1 =’ ∗Fi]] holds; then:

�zk(F0; Fs)6(n(F0)− n(Fs)) · min(k; �(F0)):

Proof. Part 1: Take P⊆F [2] with �(P)6k. Then |P\(’ ∗P)|6n(’) · �(P) (by Lemma
9.4)6n(’) ·min(k; �(F)).
Part 2(a) follows immediately by Lemma 9.3 part 2 and by part 1. And using

Lemma 5.1 part 2 we get part 2(b) from part 2(a).

Since F0(w ′) for a successor w ′ ∈ dsT (w) of a node w∈ nds(TN3 (F0)) results from
F0(w) by a series of applications of partial assignments and r, we can apply
Lemma 9.5 part 2(b):

Lemma 9.6. For w∈ nds(TN3 (F0)); w ′ ∈ ds(w) and k ∈N0 ∪ {+∞} the number of
eliminated “zk -clauses” in branch w→w ′ is less than or equal to the number of
eliminated variables times the minimum of parameter k and the maximal number
�(w) of occurrences of a variable in the 2-clauses of F0(w):

�w ′zk(w)6�w ′n(w) · min(k; �(w)):
(We use �w ′zk(w) := (�zk)w ′(w)).

We conclude this section with some bounds on � and d3 and proving that d3 is
indeed a distance function for TN3 (F0).

Lemma 9.7. 1. For w∈ nds(TN3 (F0)) and w ′ ∈ ds(w) we have
(a) �w ′(w)6�w ′zk(w) + maxi∈{0;:::; k} hi6k ·�w ′n(w) + maxi∈{0;:::; k} hi.
(b) d3w ′(w)¿�w ′n(w) · (1− k · �)− � · maxi∈{0;:::; k} hi.

2. d3 is a distance function for TN3 (F0).

Proof. Part 1(a): For the �rst inequality we have

max(min(�w ′z∞(w); max
i∈{0;:::; k}

(hi + �w ′zi(w)))− �w ′(w); �w ′zk(w)− h�(w))

6max
(
max

i∈{0;:::; k}
(hi + �w ′zi(w))− �w ′(w); �w ′zk(w)− h�(w)

)

6max
(
max

i∈{0;:::; k}
(hi + �w ′zk(w)); �w ′zk(w)

)
= �w ′zk(w) + max

i∈{0;:::; k}
hi:

The second inequality is a consequence of Lemma 9.6. Part 1(b) follows immediately
from part (a), and part 2 follows from part 1(b), condition (ii) of De�nition 9.5 and
the fact �w ′n(w)¿1.

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 43

10. Bounding the sum of d3

Consider �= �(k; h) and d3 =d3(k; h; �) (see De�nition 9.5). This section is devoted
to the proof of∑

d3(!0)6n(F0)− · · · ;
where

De�nition 10.1. !0 := root (TN3 (F0)) is the root of the computation tree,

and : : : is some negligible quantity.

The idea is to study paths (w1; : : : ; wt) in TN3 (F0) with �(w1); �(wt)6k and �(wi)¿k
for 1¡i¡k, that means at the endpoints w1 and wt the distance function �n can
be improved with the help of � while at the intermediate nodes w2; : : : ; wt−1 “for
compensation” �n is impaired by �. For those paths we show (Lemma 10.4):

t−1∑
i=1

�wt (wi)¿
t−1∑
i=1

�wt zk(wi)

and thus
t−1∑
i=1

d3wt
(wi) =

t−1∑
i=1

�wtn(wi)− � ·
t−1∑
i=1

�wt (wi)6
t−1∑
i=1

�wtn(wi)− � ·
t−1∑
i=1

�wt zk(wi)

=
t−1∑
i=1

�wtmk(wi)=mk(w1)− mk(wt)= n(w1)− � · zk(w1)− mk(wt):

This result is generalized to arbitrary paths by dividing them into sub-paths (up to a
start and an end section). In order to emphasize the rather general nature of the proofs
in this section, in fact we will not consider paths in TN3 (F0) but arbitrary sequences
(F1; : : : ; Ft) of 3-clause-sets. 37

We start with some (further) basic properties of zi; �zi and �.

Lemma 10.1. For i∈N0 and F; F1; F2; F ′ ∈ 3-CLS we have
1. zi(F1 ∪F2)6zi(F1) + zi(F2);
2. (a) �zi(F; F ′) is increasing in i and F (w.r.t. ⊆) and decreasing in F ′;
(b) �z∞(F; F ′)= �z�(F)(F; F ′);
(c) �zi(F; F ′)¿�zi(F; F ′);
(d) �zi(F; F ′) + zi(F ∩F ′)¿zi(F):

3. (a) �(F)¿k ⇒ (�− �zk)(F; F ′)¿0;
(b) (�− �zk)(F; F ′)¿−min(�(F; F ′); h�(F)):

37 Furthermore, the results of this section hold for example for an arbitrary � : 3-CLS→R+ which only
has to ful�ll monotonicity: F ⊆F ′ ⇒ �(F)6�(F ′). And the results also do not depend on the notion of
(3-)clause-sets.

44 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

4. (a) (�− �zk)(F; F ′)¿− h�(F) + (zk − z�(F))(F ′);
(b) �(F)6k ⇒ (�− �zk)(F; F ′)¿− (z∞ − zk)(F ′).

Proof. Parts 1 and 2 follow directly from the de�nition of �zi (for 2(c) and 2(d) use
1). Part 3(a) follows from Lemma 9.2 part 2, and part 3(b) follows from part 3(a)
and Lemma 9.2 part 1.
Part 4(a): By part 3(b) we can estimate

(�− �)(F; F ′) = ((�− �) + (�− �))(F; F ′)

¿− h�(F) + �zk(F; F ′)− zk(F) + zk(F ′):

By part 2(d) we get �zk(F; F ′) + z�(F)(F ′)¿zk(F); since zk(F ∩F ′)6z�(F)(F ∩F ′)
6z�(F)(F ′). Replacing �zk(F; F ′) − zk(F) by −z�(F)(F ′) now completes the proof
of 4(a).
Part 4(b): Again by part 3(b) we can estimate:

(�− �)(F; F ′) =((�− �) + (�− �))(F; F ′)

¿− �(F; F ′) + �zk(F; F ′)− zk(F) + zk(F ′):

Furthermore, using �(F)6k we get �(F; F ′)+zk(F)= z∞(F ′\F)+zk(F)= z∞(F ′\F)+
z∞(F)= z∞(F ′) − z∞(F ∩F ′) + z∞(F)= z∞(F\F ′) + z∞(F ′)= zk(F\F ′) + z∞(F ′)
= �zk(F; F ′) + z∞(F ′).

Lemma 10.2. For a sequence (F1; : : : ; Fu) of 3-clause-sets Fi ∈ 3-CLS and for
06a6k:

za(Fu)¿zk(Fu)− (zk − za)(F1)−
u−1∑
i=1
(�zk − �zk)(Fi; Fi+1):

Proof. By Lemma 10.1 part 2(a) and 2(c) we only strengthen the assertion when
replacing �zk by �za. Now because of

u−1∑
i=1
(�za − �zk)(Fi; Fi+1)= (za(F1)− za(Fu))− (zk(F1)− zk(Fu));

we are done.

The next lemma is of central importance for this section.

Lemma 10.3. For a sequence (F1; : : : ; Ft) of 3-clause-sets Fi ∈ 3-CLS ful�lling
�(Fi)¿k for all 16i6t − 2

t−1∑
i=1
(�− �zk)(Fi; Fi+1)¿min

(
z∞(F1); max

i∈{0;:::; k}
(hi + zi(F1))

)
−zk(F1)− (z∞ − zk)(Ft)

holds.

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 45

Proof. Induction on t; considering three cases: t=1; t=2 and t¿3.
t=1: min(z∞(F1); max

06i6k
(hi+ zi(F1)))− zk(F1)− (z∞− zk)(F1)6z∞(F1)− z∞(F1)= 0:

Case t=2:

(�− �zk)(F1; F2)

¿min
(
�z∞(F1; F2); max

06i6k
(hi + �zi(F1; F2))

)
− �(F1; F2)− �zk(F1; F2)

= min
(
�z∞(F1; F2); max

06i6k
(hi + �zi(F1; F2))

)
− z∞(F2) + z∞(F1 ∩F2)− �zk(F1; F2)

= min
(
�z∞(F1; F2) + z∞(F1 ∩F2); max

06i6k
(hi + �zi(F1; F2) + z∞(F1 ∩F2))

)
− zk(F1)

−(z∞ − zk)(F2):

¿min
(
z∞(F1); max

06i6k
(hi + zi(F1))

)
− zk(F1)− (z∞ − zk)(F2):

(with Lemma 10.1 part 2(d)).

Case t¿3: Using case t=2 we get

t−1∑
i=1
(�− �zk)(Fi; Fi+1)

=
t−2∑
i=1
(�− �zk)(Fi; Fi+1) + (�− �zk)(Ft−1; Ft)

¿
t−2∑
i=1
(�− �zk)(Fi; Fi+1) + min

(
z∞(Ft−1); max

06i6k
(hi + zi(Ft−1))

)
− zk(Ft−1)

∑
(z∞ − zk)(Ft): (1)

Sub-case (a): z∞(Ft−1)6max06i6k(hi + zi(Ft−1)).
With induction hypothesis we conclude:

(1)¿min
(
z∞(F1); max

06i6k
(hi + zi(F1))

)
− zk(F1)− (z∞ − zk)(Ft−1)

+z∞(Ft−1)− zk(Ft−1)− (z∞ − zk)(Ft)

= min
(
z∞(F1); max

06i6k
(hi + zi(F1))

)
− zk(F1)− (z∞ − zk)(Ft):

Sub-case (b): z∞(Ft−1)¿max06i6k(hi + zi(Ft−1)).
Here the induction hypothesis is useless:

(1)=
t−2∑
i=1
(�− �zk) (Fi; Fi+1) + max

06i6k
(hi + zi(Ft−1))− zk(Ft−1)− (z∞ − zk)(Ft):

46 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

Choose a∈{0; : : : ; k} such that ha + za(F1) is maximal. By Lemma 10.2 we continue:

(1)¿
t−2∑
i=1
(�− �zk)(Fi; Fi+1) + ha + za(Ft−1)− zk(Ft−1)− (z∞ − zk)(Ft)

¿
t−2∑
i=1
(�− �zk)(Fi; Fi+1) + ha + zk(Ft−1)− (zk − za)(F1)

−
t−2∑
i=1
(�zk − �zk)(Fi; Fi+1)− zk(Ft−1)− (z∞ − zk)(Ft)

=
t−2∑
i=1
(�− �zk)(Fi; Fi+1) + ha + za(F1)− zk(F1)− (z∞ − zk)(Ft):

Finally applying Lemma 10.1 part 3(a) we conclude:

(1)¿ ha + za(F1)− zk(F1)− (z∞ − zk)(Ft)

¿min
(
z∞(F1); max

06i6k
(hi + zi(F1))

)
− zk(F1)− (z∞ − zk)(Ft):

Lemma 10.4 applies the general bound of Lemma 10.3 to the case that at the be-
ginning and the end of the sequence of 3-clause-sets we have �6k.

Lemma 10.4. For a sequence (F1; : : : ; Ft) of 3-clause-sets Fi ∈ 3-CLS ful�lling �(F1);
�(Ft)6k and �(Fi)¿k for 26i6t − 2

t−1∑
i=1
(�− �zk)(Fi; Fi+1)¿0

holds.

Proof. The case t=1 is trivial. So consider the case t¿1. Applying �rst Lemma 10.1
parts 4(a) and 4(b), and then Lemma 10.3 (using �(Ft)6k) we get

t−1∑
i=1
(�− �zk)(Fi; Fi+1)

= (�− �zk)(F1; F2) +
t−1∑
i=2
(�− �zk)(Fi; Fi+1)

¿max(−h�(F1) + (zk − z�(F1))(F2); −(z∞ − zk)(F2)) +
t−1∑
i=2
(�− �zk)(Fi; Fi+1)

= max(−h�(F1) + (zk − z�(F1))(F2); −(z∞ − zk)(F2))

+ min
(
z∞(F2); max

06i6k
(hi + zi(F2))

)
− zk(F2): (2)

In case z∞(F2)6max06i6k(hi + zi(F2)) obviously (2) ¿ 0 holds, and in the other
case z∞(F2)¿max06i6k(hi + zi(F2)) use i := �(F1)6k.

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 47

Finally we are able to prove the main result of this section:

Theorem 3. For every sequence (F1; : : : ; Fs) of 3-clause-sets Fi ∈ 3-CLS we have

s−1∑
i=1

�(Fi; Fi+1)¿zk(F1)− zk(Fs)− max
i∈{0;:::; k}

hi:

Proof. The assertion is equivalent to

s−1∑
i=1
(�− �zk)(Fi; Fi+1) + max

i∈{0;:::; k}
hi¿0:

Consider indices 0=: n0¡n1¡ · · ·¡np¡np+1 := s + 1 with p¿0; �(Fn1); : : : ; �(Fnp)
6k and �(Fj)¿k for 06i6p and ni + 16j6ni+1 − 1. We reformulate again the
assertion:

n1−1∑
j=1

(�− �zk)(Fj; Fj+1) +
p∑

i=1

ni+1−1∑
j=nj

(�− �zk)(Fj; Fj+1) + max
i∈{0;:::; k}

hi¿0:

By Lemma 10.1 part 3(a) the �rst part
∑n1−1

j=1 is non-negative, and by Lemma 10.4

all
∑ni+1−1

j=nj for 16i6p− 1 are also non-negative. It remains to show
s−1∑
j=np

(�− �zk)(Fj; Fj+1) + max
i∈{0;:::; k}

hi¿0:

In case np= s we are done, since all hi are non-negative. Otherwise, using Lemma 10.1
parts 3(a) and 4(a), we conclude:

s−1∑
j=np

(�− �zk)(Fj; Fj+1) + max
i∈{0;:::; k}

hi¿(�− �zk)(Fnp ; Fnp+1) + max
i∈{0;:::; k}

hi

¿− h�(Fnp) + (zk − z�(Fnp))(Fnp+1) + max
i∈{0;:::; k}

hi¿0:

Applying Theorem 3 to TN3 (F0) we get

Lemma 10.5. ∀F0 ∈ 3-CLSr :
∑

d3(!0)6n(F0) + � · maxi∈{0;:::; k} hi − � · zk(!0) −
minw∈lvs (TN3 (F0)) mk(w).

11. The two worst cases and the special choices for the parameters

Combining the �-Lemma 8.2 with Lemma 9.7, part 2 and Lemma 10.5 we have
established our basis for the analysis of algorithm N3. In this section we motivate and
de�ne the special parameter values k; (hi)06i6k and � needed for d3 =d3(k; (hi); �).
First we introduce some further notions for the computation tree TN3 (F0) used fre-

quently in the sequel.

48 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

De�nition 11.1. For w∈ nds1(TN3 (F0)) we de�ne the following predicates:

“D”(w) :⇔ the branching is degenerated: |I(w)|=1;

“A”(w) :⇔¬“D”(w) and case (A) holds: �(w)¿2;

“AA”(w) :⇔ “A”(w) and case (3a) of “branchingA” holds;

“AN”(w) :⇔ “A”(w) and case (3b) of “branchingA” holds;

“B”(w) :⇔¬“D”(w) and case (B) holds: �(w) = 1 ∧ F0(w)[2]\B(w) 6= ∅;

“BN”(w) :⇔ “B”(w) and case (3) of “branchingB” holds;

“BB0”(w) :⇔ “B”(w) and case (4a) of “branchingB” holds;

“BB1”(w) :⇔ “B”(w) and case (4b) of “branchingB” holds;

“C”(w) :⇔¬“D”(w) and case (C) holds: �(w)61 ∧ F0(w)[2]\B(w) = ∅:

Let ’̂(w) be de�ned by branching(F0(w))= (’̂(w); F(w)); and I (w) := I(’̂(w)).
Let l(w) be the result of branchLitA(F0(w)); branchLitB(F0(w)) or branchLitC(F0(w))

in case “A”(w); “B”(w) or “C”(w). And let

#0(w) := #2l(w)(F(w)); #1(w) := #2l(w) (F(w)):

New clauses in branch i∈ I(w) are denoted by

Ni(w) :=N (’̂i(w); F(w));

Nr
i (w) :=Nr(’̂i(w); F(w)):

For i∈ I(’̂(w)) let wi be the root of subtree TN3 (r(’̂i(w) ∗ F(w))).
Finally for any edge labeling d of TN3 (F0); for w∈ nds(TN3 (F0)) and for i∈ I(w) we

use di(w) :=dwi(w).

Note that for w∈ nds1(TN3 (F0)) with ¬“D”(w) and ¬“AA”(w) we have I(w)= {0; 1};
and that the test assignments are given by

’̂i(w)= [〈l(w)→ i〉]F(w)

for i∈ I(w). Furthermore in cases “A”(w); “BN”(w) and “C”(w) we have F(w)=
F0(w); while in general F0(w)⊆F(w) holds (hence N (’̂i(w); F0(w))⊆Ni(w)), and
F(w)[2] =F0(w)[2].
In order to estimate d3(w) we have to give lower bounds on �in(w) and �i(w); and

upper bounds on �izj(w) for 06j6k. The next lemma gives the structural facts for
�in and �i:

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 49

Lemma 11.1. The basic facts for the estimation of �n and �
For w∈ nds1(TN3 (F0)) and i∈ I(w) we have

1. �in(w)¿n(’̂i(w))¿1;
2. (a) �i(w)= |Nr

i (w)|;
(b) �in(w)= n(’̂i(w))⇒ Ni(w)⊆Nr

i (w);
(c) ¬“D”(w)⇒ Ni(w); N r

i (w) 6= ∅.

Proof. For part 2(b) use property 3(d) of Lemma 5.1, and for part 2(c) use Lemma
6.1, part 3.

The lower bounds for �n and � we need in this section are given in the next lemma.

Lemma 11.2. Lower bounds for �n and � in the cases “AN”, “B(N)” and “C”
Consider w∈ nds(TN3 (F0)) with “AN”(w) ∨ “B”(w) ∨ “C”(w).

1. (a) n(’̂i(w))¿#i(w) + 1 for i∈ I(w);
(b) #0(w) + #1(w)= �(w);
(c) ¬“C”(w)⇒ #0(w)¿1.

2. In case “AN”(w):
(a) �1n(w)= 1⇒ |N0(w)|¿2;
(b) �0n(w)=�1n(w)= 2⇒ �0(w); �1(w)¿2.

3. In case “BN”(w): |N0(w)|; |N1(w)|¿3.

Proof. Part 1 follows from the special choices for l(w) (see Sections 6.3.1 and 6.4.1).
For part 2 see case (3a) in “branchingA” (and for 2(b) also use part 1 and

Lemma 11.1, parts 2(a) and 2(b)).
And for part 3 see case (3) in “branchingB”.

For the cases “AN,” “B” and “C” we improve the upper bounds for �zk from
Lemma 9.5 as follows.

Lemma 11.3. Consider F ∈ 3-CLS; l∈LIT and j∈N0 ∪ {+∞}. We de�ne the
partial assignment ’ as 〈l→ 0〉 extended by the immediately following 1-clause-
eliminations:

’ := 〈l→ 0〉 ∪ 〈x→ 1 : {l; x}∈F [2]〉:
We assume that ’ is indeed a partial assignment (’∈PASS); i.e.; F does not
contain clauses {l; x} and {l; x} at the same time; which is ful�lled for F ∈ 3-CLSr

(see Property 4(c) from Lemma 5.1).
By Lemma 9.5 we can estimate the number of eliminated zj-clauses by

�zj(F; ’ ∗ F)6min(j; �(F)) · n(’)= min(j; �(F)) · (#2l (F) + 1):
However the special structure of ’ we did not use yet. For example; if we have
’= 〈l→ 0; x→ 1〉 for {l; x}∈F [2]; where all 2-clauses of F are variable-disjoint
(�(F)= 1); then �zj(F; ’ ∗ F)= 1 (for j¿1) holds; while the above bound gives only
�zj(F; ’ ∗ F)62.

50 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

The reason for this di�erence is that because of #2
l
(F)= 0 all 2-clauses eliminated

by 〈l→ 0〉 are already covered by the 2-clauses eliminated by 〈x→ 1 : {l; x}∈F [2]〉.
For the general case we easily obtain:

(i) �zj(F; ’ ∗ F)6min(j; #2
l
(F)) + min(j; �(F)) · #2l (F):

If ’ ∗ F is anew transformed into F ′ ∈ 3-CLS such that no new variables are in-
troduced, and every eliminated 2-clause contains also an eliminated variable (as for
’ ∗ F → r(’ ∗ F)); then by the triangle inequality from Lemmas 9.3 and 9.5, part
2(b) we �nally get

(ii) �zj(F; F ′)6min(j; #2
l
(F)) + min(j; �(F)) · (�n(F; F ′)− 1):

Applied to TN3 (F0) we obtain:

Lemma 11.4. For a node w∈ nds(TN3 (F0)) with “AN”(w) ∨ “B”(w) ∨ “C”(w); for
i∈ I(w) and for j∈N0 ∪ {+∞} we have

�izj(w)6min(j; #i(w)) + (�in(w)− 1) ·min(j; �(w)):

Now we consider the two worst cases of N3 mentioned in Section 9.3, leading us
to the numerical de�nitions of the parameters k; h and �.

11.1. The worst case for “AN”

Consider w∈ nds(TN3 (F0)) with “AN”(w) and �(w)= k + 1 ful�lling

#0(w)= �(w)= k + 1 (⇒ #1(w)= 0);

�0n(w)= #0(w) + 1= k + 2;

�1n(w)= #1(w) + 1=1:

Lemma 11.4 yields:

�0zj(w)6(k + 1) · j for j∈{0; : : : ; k};

�1zk(w)6k; �1z∞(w)6k + 1:

Furthermore, applying Lemma 11.2 part 2 and Lemma 11.1 part 2:

�0(w)¿2; �1(w)¿1:

Thus assuming

(Ah) : ∀j∈{0;:::; k}[hj62 + (k + 1) · (k − j)]

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 51

we obtain the following upper bounds for �i(w) (see Lemma 9.2, part 2):

�0(w)6max
(
min(�0z∞(w); max

j∈{0;:::; k}
(hj + �0zj(w)))− �0(w); �0zk(w)

)

6max
(
max

j∈{0;:::; k}
(hj + j · (k + 1))− 2; k · (k + 1)

)
= k · (k + 1):

�1(w)6max
(
min(�1z∞(w); max

j∈{0;:::; k}
(hj + �1zj(w)))− �1(w); �1zk(w)

)
6 max(�1z∞(w)− �1(w); �1zk(w))6k:

We conclude:

d3(w)¿(k + 2− (k + 1) · k · �; 1− k · �): (1)

11.2. The worst case for “BN”

Consider w∈ nds(TN3 (F0)) with “BN”(w); �0n(w)= 2 and �1n(w)= 1. We assume
that lower bounds for the number of new 2-clauses are given: �i(w)¿qi ∈N for
i∈ I(w).
Lemma 11.4 gives

�0z∞(w); �1z∞(w)61 (in fact = 1)

and hence, assuming max(q0; q1)6h1; Lemma 9.2, part 1 gives for i∈{0; 1}:

�i(w)61− qi:

Thus:

d3(w)¿(2 + (q0 − 1) · �; 1 + (q1 − 1) · �): (2)

11.3. The basis of the bound on the number of leaves of the computation tree,
depending on the approximation parameter k and the number of new clauses in case
“BN”

We de�ne �k; q0; q1 as the minimal �-value reachable w.r.t. the branching tuples (1)
and (2):

De�nition 11.2. For k ∈N0 and q0; q1 ∈N we de�ne:

�k; q0 ; q1 := min
06�¡1=k

max
(
�(k + 2− (k + 1) · k · �; 1− k · �);

�(2 + (q0 − 1) · �; 1 + (q1 − 1) · �)
)
:

Trivially we have �0; q0 ; q1 = �(2; 1)=1:618:

52 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

For k¿1 the function �(k + 2 − (k + 1) · k · �; 1 − k · �) of 06�¡1=k is strictly
decreasing, starting at �(k+2; 1); while �(2+(q0−1)·�; 1+(q1−1)·�) is increasing (for
q0; q1¿1), starting at �(2; 1)¡�(k + 2; 1); and hence there is exactly one 0¡�¡1=k
where the two functions coincide:

De�nition 11.3. For k; q0; q1 ∈N let �k;q0;q1 be the solution �∈R; 0¡�¡1=k of

�(k + 2− (k + 1) · k · �; 1− k · �);= �(2 + (q0 − 1) · �; 1 + (q1 − 1) · �):

Now:

�k; q0 ; q1 = �(k + 2− (k + 1) · k · �k; q0 ; q1 ; 1− k · �k; q0 ; q1)

= �(2 + (q0 − 1) · �k; q0 ; q1 ; 1 + (q1 − 1) · �k; q0 ; q1):

Lemma 11.2 part 3 motivates to choose q0 = q1 = 3. Using mink∈N0 �k;3;3 = �2;3;3 38 we
are now ready to de�ne the numerical values of the parameters k; h and �:

De�nition 11.4. The numerical values of the parameters:

k := 2; h0 := 0; h1 := 5; h2 := 2; hi := 0 for i¿3; � := �2;3;3:

The values of h1; h2 are maximally chosen s.t. condition (Ah) is ful�lled. Numerical
calculation yield �2;3;3 = 0:123931:: and �2;3;3 = 1:504432::

12. Local balancings of distances

In this section we present our method of handling the situation where the �-value
of one node is “bad” but in the neighbourhood there are nodes with “good” �-value
which can compensate the “bad” value.
A possibility to handle this situation is to build composite branching tuples in the

way of Lemma 8.4. We prefer to shift “surplus” since it is easier to handle 39 and
allows to share surplus’ between di�erent nodes.

De�nition 12.1. For a branching tuple t ∈BT and an envisaged �-value �¿1 (in case
t has breadth one also �=1 is possible) we de�ne the surplus ��(t) of t w.r.t. � as

��(t) := sup{ �∈R : t − �∈BT ∧ �(t − �)6� };

38 We will not prove the optimality of our choice of the parameters since it does not matter for the bound.
39 For a “bad” node w with a “good” successor w′ we are not able to �x the type of w′ (for example,
if we know �(w′)¿2; then nevertheless we can have “AN”(w); “AA”(w) or “D”(w)(!)) and thus, when
using composite branching tuples we had to consider all compositions of the branching tuple at w with the
branching tuples of all the di�erent cases at w′; since replacing in a composite branching tuple one of the
component tuples by a tuple with a better �-value can nevertheless impair the total �-value(!) – however
when shifting surplus’ we only have to guarantee that in all cases for w′ the needed surplus is available,
which can be done by looking at those cases alone (no combination with the node which needs “support”
is needed), and thus can be used also for di�erent types of nodes w.

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 53

where t − � for t=(t1; : : : ; ts) is t=(t1 − �; : : : ; ts − �).

Some remarks: (the breadth of t we denote by |t|)
1. Using min(t) := min16i6s ti for t=(t1; : : : ; ts) we have t − �∈BT ⇔ �¡min(t)
(in case of s=1 also �= min(t) is possible).

2. If |t|¿1 then ��(t)¡min(t) holds, while otherwise we have ��(t)= min(t)= t.
3. For |t|¿1 we have

lim
�↗min(t)

�(t − �)=+∞ and lim
�→−∞

�(t − �)= 1

and thus indeed ��(t) is well de�ned, and since � is continuous we could de�ne
� by using the “max” instead of the “sup.”

4. (a) ��(t)¿0⇔ �(t)6�;
(b) �(t − ��(t))= � for |t|¿1.

Lemma 12.1. Consider a tree T with distance function d; nodes w0; w∈ nds1(T) with
w∈ dsT (w0) and a real number s∈R.
We de�ne the edge labeling d[w0; w; s] as equal to d except for the edges (w0; w)

and (w; vi); where dsT (w)= {v1; : : : ; vm}:
d[w0; w; s](w0; w) := d(w0; w) + s;

d[w0; w; s](w; vi) := d(w; vi)− s:

d[w0; w; s] has the same maximal sum as d:∑
d[w0; w; s](root (T))=

∑
d(root (T)):

If −d(w0; w)¡s6��(d(w)) for �¿1 holds; then d[w0; w; s] is a distance function for
T with

�(d[w0; w; s](w))6�:

“Bad” cases with �(d3(w))¿�2;3;3 for w∈ nds(TN3 (F0)) occur, at least according to
our analysis, in the following three situations:
(1) In case “C”(w) the branching at w is a poor one, but for compensation we

have “br-autarkness” (compare Lemma 6.1, part 4), guaranteeing that the im-
mediate predecessor w0 of w has property “D”(w0); and so we can replace d3 by
d3[w0; w; ��2; 3; 3 (w)]. (See Lemma 13.4.)
If w is the root of TN3 (F0); then we introduce a “virtual” predecessor !

∗
0 ; increas-

ing the maximal sum
∑

d3(!∗0) only by a constant. See Lemma 13.14.
(2) Under certain circumstances in case “BB1”(w) one new 2-clause is “missing,” but

then we know that for one direct successor w′ of w there is a variable occurring
in both signs in the 2-clauses, which assures a surplus at w′ of at least 1 · �
(compensating the “missing” clause). So we replace d3 by d3[w; w′; �].

(3) And also under certain circumstances in case “AN”(w) we need a surplus from
one direct successor.

54 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

Some di�culties arise with (2) and (3): Although we know that we have a favourable
situation at w′; which “should” yield a surplus of �; the algorithm must deviate from
what we expect in the following three cases:
(i) the branching rule behaves di�erent (for example “AA”(w) may happen); or
(ii) the branching at w′ is in fact degenerated, i.e., “D”(w′) holds;
(iii) or w′ even is a leaf: w′ ∈ lvs (TN3 (F0)).
(i) is handled by showing that in all possible cases the surplus � is guaranteed. See
Lemma 13.9.
In case (ii) we have to be careful, since the surplus at w′ is possibly also used for

(1). Fortunately we need only the amount � in (2) and (3), and so it su�ces to show
�− ��2; 3; 3 (w)6d3(w0) for the situation in (1). See Lemma 13.4.
And to handle case (iii) we just increase the maximal sum

∑
d3 by �. See

Lemma 13.14.

13. The estimation of �max(d3; TN3 (F0))

In this section we �nally conclude the proof of Theorem 2. In order to do so,
we have to show that for all branching tuples t in TN3 (F0); induced by the distance
function d3 (in some cases modi�ed according to the foregoing section), the estimation
�(t)6�2;3;3 holds. The values �(t) are computed by numerical calculations.
The reader who wants to verify �(t)6�2;3;3 can do this by simply checking that

m∑
i=1

�−ti
2;3;361

holds, where t=(t1; : : : ; tm).
We start by a general lower bound for d3; easily obtained from the general �zk -bound

of Lemma 9.6 when using the special values for h0; h1; h2:

Lemma 13.1. Consider a node w∈ nds1(TN3 (F0)) and i∈ I(w). Using the abbrevia-
tions �n :=�in(w) and � := �i(w) we have the following general bounds:
1. (a) �i(w)62 + �n+max(3; �n)−min(�; 2);
(b) ¬“D”(w)⇒ �i(w)61 + �n+max(3; �n).

2. (a) d3i (w)¿�n · (1− 2�)− � · (max(5− �n; 2)−min(�; 2));
(b) ¬“D”(w)⇒ d3i (w)¿�n · (1− 2�)− � ·max(4− �n; 1).

Before obtaining in the next lemma (as an easy application) a criterion for nodes
with a surplus of at least �, we introduce the following convention:

De�nition 13.1. For tuples t=(t1; : : : ; tp) and t′=(t′1; : : : ; t
′
q) the relation t¿t

′ is ful-
�lled i� p= q holds and for all 16i6p we have ti¿t′i .

Lemma 13.2. For a node w∈ nds(TN3 (F0)) with |I(w)|=2, �n(w)¿(2; 2) and∑
i∈I(w) �in(w)¿6 we have ��2; 3; 3 (d

3(w))¿�.

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 55

Proof. Apply Lemma 13.1, part 2(b) to the cases �n(w)¿(3; 3) and �n(w)¿(2; 4),
getting d3(w)¿(3 − 7�) · (1; 1) resp. d3(w)¿(2 − 6�; 4 − 9�). Numerical calculations
yield �((3− 8�) · (1; 1))= 1:41:: and �(2− 7�; 4− 10�)= 1:46::

13.1. The case “D” of degeneration, and case “C”

Immediately from Lemma 13.1 we get the following estimation of the surplus at a
node belonging to case “D” (using the numerical value for �):

Lemma 13.3. Consider w∈ nds(TN3 (F0)) with “D”(w).
1. ��2; 3; 3 (d

3(w))¿�.
2. If �n(w)¿2 holds, then we have ��2; 3; 3 (d

3(w))¿2− 7�.

Lemma 13.4. For a node w∈ nds(TN3 (F0)) with “C”(w), which is not the root of
TN3 (F0) and thus has a direct predecessor w0 ∈TN3 (F0), we have the following:
1. ��2; 3; 3 (d

3(w0))¿2− 7�;
2. �(d3[w0; w;−(2− 8�)](w))6�(3− 9�; 3− 9�)= 1:44 : : :¡�2;3;3.

Proof. By Lemma 11.1, part 2(c) we know that “D”(w0) holds.
Furthermore, Lemma 6.1, part 4 gives us �n(w0)¿2, since the additional assumption

in Lemma 6.1, part 4, called (∗) here, is ful�lled as the following argumentation shows:
Assume �n(w0)= 1. Thus F0(w0) 6=F(w0) must hold (otherwise we could use
E := ∅ for (∗)).
We conclude that N3 on input F0(w0) must have passed instructions (4a) or
(4b) in “branchingB”, because these are the only places in N3 where the input
is changed.
Furthermore ’̂′

i = ’̂(w0) from Lemma 6.1, part 4 corresponds to variable ’̂1 from
“branchingB”, i.e., ’̂(w0)= 〈l→ 1〉 for l := branchLitB(F0(w0)), since n(’̂0)¿2
holds (there is a 2-clause C ∈F [2]0 (w0) with l∈C, and thus the 1-clause-closure,
performed by “eval” in instruction (2) of “branchingB”, adds (at least) one addi-
tional variable to 〈l→ 0〉).
Now if “branchingB” has passed (4a) we can set E :=B[3]

l
(F0(w0)), and in case

(4b) we set E := ∅.
The previous Lemma 13.3 now gives ��2; 3; 3 (d

3(w0))¿2− 7�. From that surplus we
can use 2 − 8�, since 1� must be saved for a (possible) “negative surplus” at the
predecessor of w0.
Because of �(w)61 we immediately get from Lemma 9.2, part 1 and Lemma 9.6

the estimation

d3(w)¿(1− �) · (�0n(w); �1n(w))¿(1− �; 1− �):

13.2. The case “AA”

De�nition 13.2. For w∈ nds(TN3 (F0)) with “AA”(w) let ’(w) be the parameter ’ of
procedure “GenAut” (see Section 6.3.2) at the last call, so that there are literals a; b

56 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

with N (’(w); F0(w))= {{a; b}} and

’̂0(w)= [〈a→ 0; b→ 0〉]F0(w);

’̂1(w)= [〈a→ 0; b→ 1〉 ∪ (w)]F0(w); ’̂2(w)= [〈a→ 1〉 ∪’(w)]F0(w):

(In case I(w)|=2 one of these assignments is in fact not present in ’̂(w).)

The general estimation of �zk from Lemma 9.6 we have to re�ne for the “General-
ized Autarkness branching” (remember Section 4.3) in those cases, where applying the
1-clause-closure (De�nition 5.2) has “no additional e�ect.” In fact we prove the fol-
lowing general result:
Consider a “test-system” (1; : : : ; p) of partial assignments created by binary branch-

ing (corresponding to a binary tree where each inner node is labeled by the “branching
variable”).
Extend the to ′

i such that the additional variables are taken from a �xed set V
of variables (apart from that the extensions are arbitrary).
If now for each ′

i the 1-clause-closure (with respect to a certain clause-set F) does
not add new variables, and also the empty clause is not created, then each ′

i only
e�ects 2-clauses which contain some variables from V .

Lemma 13.5. Consider F ∈ 3-CLS and V ⊆VA.
Consider a “test system” (1; : : : ; p) of partial assignments generated by the fol-

lowing rule, starting with the trivial test system (∅):
• If (1; : : : ; m) already has been generated, choose 16i6m and generate

(1; : : : ; i−1; i+1; : : : ; m; i ∪ 〈v→ 0〉; i ∪ 〈v→ 1〉)

for a variable v =∈ Var(i).
Consider (�nally) any system (′

1; : : : ;
′
p) of partial assignments ful�lling

∀i∈{1; : : : ; p} : i ⊆ ′
i ∧ Var(′

i)\Var(i)⊆V:

Assume

(∗) ∀i∈{1; : : : ; p} : (′
i ∗ F)[0;1] = ∅:

Then for all i∈{1; : : : ; p} we have:
(i) {C ∈F [2] : Var(′

i)∩Var(C) 6= ∅}⊆{C ∈F [2] : Var(C)∩V 6= ∅}.
(ii) If especially V =Var(’) for some ’∈PASS holds: �zk(F; ′

i ∗ F)6
�zk(F; ’ ∗F).

Proof. Part (ii) follows immediately from part (i) by Lemma 9.4, part 1.
Assume there is a 2-clause C ∈F [2] with Var(′

i)∩Var(C) 6= ∅ and Var(C)∩V = ∅.
It follows Var(i)∩Var(C) 6= ∅.
Let C = {l; x} with Var(l)∈Var(i).

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 57

Due to the construction of (1; : : : ; p) there is i′ with i′(l)= 0. Because of
assumption (∗) (concerning 1-clauses) we have ′

i′(x)= 1, and thus also i′(x)= 1
holds (using Var(x) =∈V).
Now by the same argumentation (but with x instead of l) there must also be i′′

ful�lling i′′(x)= 0 and i′′(l)= 1.
Due to the construction of the test-system (1; : : : ; p) the following is true:

If there are j1 and j2 with j1 (a)= 0; j1 (b)= 1 and 2 (a)= 1; 2 (b)= 0 for
any literals a; b; a 6= b, then there must be j3 with j3 (a)= j3 (b)= 0.

Hence we get a contradiction to (∗) (concerning the 0-clause).

Lemma 13.6. For a node w∈ nds(TN3 (F0)) with “AA”(w) we have ��2; 3; 3 (d
3(w))¿�.

Proof. To start with, �rst note that due to instruction (3) in “branchingA” we have
n(’(w))¿2.
Let N (’(w); F0(w))= {{a; b}}. There is {a; b; c}∈F0(w)[3] with ’(c)= 0 and

[〈a→ 0; b→ 0〉]F0(w)⊇〈a→ 0; b→ 0; c→ 1〉:
Thus in case |I(w)|=2 we know �n(w)¿(3; 3) and therefore we can apply
Lemma 13.2, yielding the assertion.
For the remainder of the proof assume |I(w)|=3 (and so I(w)= {0; 1; 2}).
With respect to �n and � we have the following estimations (see instructions (2)

and (3b) of “GenAut”, and apply Lemma 11.1, part 2(b)):

�0n(w)¿ 3; (1)

�1n(w)¿ 2 + n(’(w))¿4; (2)

�2n(w)¿ 1 + n(’(w))¿3; (3)

�0n(w)= 3 ∧ n(’(w))= 2⇒ �0(w)¿2; (4)

�1n(w)= 2 + n(’(w))⇒ �1(w)¿2; (5)

�2n(w)= 1 + n(’(w))⇒ �2(w)¿2: (6)

In case n(’(w))¿3 Lemma 13.1, parts 2(a) and 2(b), and (5), (6) give

�(d3(w)− �)6 �
(
(3 · (1− 2�)− � · (2− 1); 5 · (1− 2�)− � · (2− 2);

4 · (1− 2�)− � · (2− 2))− �
)
=1:48::¡�2;3;3:

The case n(’(w))= 2 remains.
In this case procedure “GenAut” cannot have entered the “loop” in (3b) but must

have executed (3a) immediately.
Furthermore

’(w)= 〈l→ 0; x→ 1〉

58 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

holds for some 2-clause {l; x}∈F0(w)[2] with #2l (w)= #
2
l
(w)= 1 and �(w)= 2,

due to instruction (3) in “branchingA” and Lemma 11.2, parts 1(a) and 1(b)
(branchLitA(F0(w))∈{l; l}).
Because of �(w)= 2, Lemma 9.2, part 1 yields for i∈ I(w)

�i(w)= �izk(w)−min(�i(w); 2): (7)

Sub-case I: �n(w)= (3; 4; 3).
Here we can apply Lemma 13.5, part (ii) (and Lemma 11.1, part 2(a) as well as

Lemma 9.3, part 2) and get

�izk(w)6�zk(F0(w); ’(w) ∗ F0(w));

while by Lemma 11.3 we obtain

�zk(F0(w); ’(w) ∗ F0(w))61 + 2 · 1=3:
Altogether we have (using (4)–(6)):

�(d3(w)− �)6 �((3− � · (3− 2); 4− � · (3− 2); 3− � · (3− 2))− �)

= 1:43::¡�2;3;3:

For the rest of the proof the estimation �izk(w)62 ·�in(w) from Lemma 9.6 su�ces
for (7).
Sub-case II: �n(w)¿(3; 5; 3).

�(d3(w)− �)6 �((3− � · (6− 2); 5− � · (10− 1); 3− � · (6− 2))− �)

= 1:48::¡�2;3;3:

The (better) sub-cases �n(w)¿(3; 4; 4) and �n(w)¿(4; 4; 3) are handled analo-
gously.

Before turning to case “AN” we complete in the next subsection our list of cases
which yield a surplus of at least �.

13.3. Su�cient conditions for a surplus of at least �

The next lemma combines the estimations from Lemmas 9.2 and 11.4 (omitting the
straight-forward proofs).

Lemma 13.7. For w∈ nds(TN3 (F0)) with “AN”(w) and i∈ I(w)= {0; 1} we have
1. �(w)= 2⇒ �i(w)6# i(w) + 2�in(w)− 2−min(�i(w); 2),
2. �(w)= 3 ∧ �in(w)¿2⇒ �i(w)6# i(w) + 3�in(w)− 4.

Lemma 13.8. For w∈ nds(TN3 (F0)) with “AN”(w) and �n(w)¿(2; 2) we have
��2; 3; 3 (d

3(w))¿�.

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 59

Proof. Because of Lemma 13.2 we assume �0n(w) + �1n(w)65. Lemma 11.2 part 1
gives #i(w)6�in− 1 for i∈ I(w).
Case I: �n(w)= (2; 2).
By Lemma 11.2 part 2(b) we have �0(w); �1(w)¿2. Thus Lemma 13.7 part 1 gives

�(d3(w)− �)6�((2; 2)− 2�)= 1:48::¡�2;3;3:

Case II: �0n(w) + �1n(w)= 5.
By Lemma 13.7 parts 1 and 2 we get �i(w)6# i(w) + 3�in(w)− 4. Altogether:

�(d3(w)− �)6�(2− 5�; 3− 7�)= 1:49::¡�2;3;3:

Using Lemmas 13.3, 13.6, 13.8, and the selection condition for the branching literal
in “branchLitA” (see Section 6.3.1) we immediately get:

Lemma 13.9. For w∈ nds1(TN3 (F0)) s.t. there is a variable v occurring maximally
often and in every sign at least once, i.e., ful�lling

∃v∈Var(w) : (#2v + #2v)(w)= �(w) ∧min(#2v(w); #2v(w))¿1
we can infer ��2; 3; 3 (d

3(w))¿�.

13.4. The case “AN”

We complete our estimations for �i in case “AN” as follows, again combining
Lemma 9.2 and Lemma 11.4 (and again omitting the easy proofs).

Lemma 13.10. For w∈ nds(TN3 (F0)) with “AN”(w), �(w)¿3 and �1n(w)= 1 we have
1. �0(w)62�0n(w)−min(�0(w); 2),
2. �1(w)6min(�(w); 6)− 1.

Lemma 13.11. Consider w∈ nds(TN3 (F0)) with “AN”(w). Assume w1 is not a leaf of
TN3 (F0). Then

�(d3[w; w1;max(min(��2; 3; 3 (d
3(w1)); �); 0)](w))¡�2;3;3

holds.

Proof (Outline). We consider two main cases: �(w)= 2 (case I) and �(w)¿3
(case II).
Since in case II “enough” variables disappear, it is the easier case and can be handled

by means of Lemma 13.10.
If in case I not “enough” variables vanish, and not “enough” new 2-clauses are

created in the branch w→w1, then we have to look more carefully at the special
situation (in cases I.1, I.2, I.3):
We have two occurrences {l(w); a}; {l(w); b}∈F0(w)[2] of the branching literal l(w)

in the 2-clauses of F0(w). If these two clauses are the only occurrences of Var(a) and

60 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

Var(b), then we can improve our (general) bound �0zk(w)64 in branch w→w0 by
�0zk(w)= 2 (case I.1).
Otherwise (I.2, I.3) we can apply Lemma 13.9 to w1 (since the one new 2-clause

brings a complementary literal into play), getting a surplus ��2; 3; 3 (d
3(w1))¿�.

Proof. Due to Lemma 13.8 we assume �1n(w)= 1, and thus by Lemmas 11.1 and
11.2 we have

’̂1(w)= 〈l(w)→ 1〉; #1(w)= 0; N1(w)⊆Nr
1 (w)

#0(w)= �(w); �0n(w)¿�(w) + 1:

Case I: �(w)= 2. Lemma 13.7, part 1 and Lemma 11.2, part 2(a) give

�0(w)6 2�0n(w)− 2−min(�0(w); 2); (1)

�1(w)6 2−min(�1(w); 2)61; (2)

d0(w)¿�0n(w) · (1− 2�) + (2 + min(�0(w); 2)) · � (3)

¿ 3(1− 2�) + 4�=3− 2�; (4)

d1(w)¿ 1− �: (5)

If �0n(w)¿4, then (3) and (5) give d3(w)¿(4 − 5�; 1 − �) and thus �(d3(w))¡
�2;3;3.
Thus we assume �0n(w)= 3 in the following (and hence in fact �0(w)¿2 is the
case).
If �1(w)¿2, then by (2) and (4) we have

�(d3(w))6�(3− 2�; 1)=1:494::¡�2;3;3:

So let us assume �1(w)= 1 for the rest of case I. Now we have to consider F0(w1) in
detail. To begin with just note (remember Lemma 5.1, part 3(d))

N1(w)=Nr
1 (w); F0(w1)[2] = (’̂1(w) ∗ F0(w))[2]:

Using l := l(w) there are 2-clauses {l; a}; {l; b}∈F0(w) with

’̂0(w)= 〈l→ 0; a→ 1; b→ 1〉:
Lemma 5.1, part 4(g) yields

l(F0(w))=
2
l
(F0(w))= �1(w)= 1:

Let {l; x; y}∈F(w0) the l-occurrence in F0(w). Lemma 5.1, part 4(f)i gives

{l; x}; {l; y}∈F0(w)[2]; ⇒{l; x; y}= {l; a; b};
and thus

F0(w1)[2] = (F0(w)[2]\{{l; a}; {l; b}})∪{{a; b}};
from which we conclude �(w1)62.

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 61

Case I.1: (#2a + #
2
a)(F0(w))= (#

2
b + #

2
b
)(F0(w))= 1.

Now

F0(w0)[2]⊇F0(w)[2]\{{l; a}; {l; b}}
holds. It follows �0zk(w)= 2, yielding (recall Lemma 9.2)

�0(w)6�0zk(w)−min(�0(w); 2)=0 :
�(d3(w))6�(3; 1− �)= 1:497::¡�2;3;3:

Case I.2: (#2a + #
2
a)(F0(w))= 2.

Due to the selection condition in “branchLitA” we have #a(F0(w))= 0; ⇒
#a(F0(w))= 2. Hence there is a 2-clause {a; u}∈F0(w) with Var(u) 6=Var(l), and we
know

{a; u}; {a; b}∈F0(w1)

with �(w1)= 2. Now we are enabled to apply Lemma 13.9, getting ��2; 3; 3 (d
3(w))¿�.

Finally, using (4), (5):

�(d3[w; w1; �](w))6�(3− 2�; 1− �+ �)¡�2;3;3:

Case I.3: (#2b + #
2
b
)(F0(w))= 2. Analogously to case I.2.

Case II: �(w)¿3.
By Lemma 13.10 and Lemmas 11.1, 11.2 we obtain the estimations

d30(w)¿�0n(w) · (1− 2�) + � ·min(�0(w); 2)
¿(�(w) + 1) · (1− 2�) + 2�;

d31(w)¿1− � ·min(�(w)− 1; 5):
⇒ d3(w)¿t(�(w)) := ((�(w) + 1) · (1− 2�) + 2�; 1− � ·min(�(w)− 1; 5)):

Calculating �(t(3))= �2;3;3, �(t(4))= 1:46::, �(t(5))= 1:44::, �(t(6))= 1:44:: and
(�(w)¿7⇒ t(�(w))¿t(6)), the proof of Lemma 13.11 is �nished.

13.5. The case “B”

The last part in the series of Lemmas 13.7 and 13.10 is

Lemma 13.12. For w∈ nds(TN3 (F0)) with “B”(w) and for i∈ I(w)

�i(w)6�in(w) + i − 1−min(�i(w); 5)
holds.

Lemma 13.13. Consider w∈ nds(TN3 (F0)) with “B”(w). Assume w1 is not a leaf of
TN3 (F0). Then we have

�(d3[w; w1;max(min(��2; 3; 3 (d
3(w1)); �); 0)](w))6�2;3;3:

62 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

Proof ((Rough) Outline). Since the “normal case” “BN”(w) has been constitutional
for the bound (recall Section 11), the critical cases are “BB0”(w) and “BB1”(w).
In these cases N3 adds blocked 3-clauses with the aim to create additional new

2-clauses after branching (two new 2-clauses are already assured by the reduction
process (remember Section 5) and the choice of the branching literal).
In fact these new 3-clauses become eliminated after branching (in the branch where

only two new 2-clauses have been created) or become 2-clauses (in the other branch(!))
since they all contain the branching literal.
If all these new 3-clauses (really) yield new and additional 2-clauses we have no

problems. More di�cult are the cases where these 2-clauses either are already present
(i.e., are not “new”), or do coincide with those two new 2-clauses mentioned above
or among one another (i.e., they are not “additional”).
In these “overlapping” cases (�nally) the surplus established by Lemma 13.9 com-

pensates the missing new 2-clause.

Proof. First we consider the combinatorial situation in some detail.
By Lemma 5.1, part 4(e) we see, using l := l(w):

’̂0 := ’̂0(w)= 〈l→ 0; x→ 1〉; ’̂1 := ’̂1(w)= 〈l→ 1〉;
where

{l; x}∈F0 :=F0(w)

is the l-occurrence in F [2]0 . Due to Lemma 5.1, part 4(f)i there is also

{l; y; z}∈F [3]0 ;

where by Lemma 5.1, parts 4(e) and 4(g) Var(x) =∈Var({y; z}) holds.
Since {l; x} is not blocked for x w.r.t. F0 (see Section 6.4.1), there is
{x; u; v}∈F [3]0

with Var(l) =∈Var({u; v}), and Lemma 5.1, part 4(h) gives {u; v} 6= {y; z}. Hence
N (’̂0; F0)⊇{{u; v}; {y; z}}; |N (’̂0; F0)|¿2: (1)

Now let us look at the l-occurrences in F0. Because of �(F0)= 1 and using Lemma 5.1,
part 4(f)ii we have # l(F0)¿2, and thus there exist

{l; a; b}; {l; c; d}∈F [3]0

with {a; b} 6= {c; d}. Lemma 5.1, part 4(e) yields x =∈{a; b; c; d} (however x∈{a; b; c; d}
is possible). We conclude

N (’̂1; F0)⊇{{a; b}; {c; d}}; |N (’̂1; F0)|¿2: (2)

(By the way, (of course) Lemma 5.1, part 4(g) is also used here.)

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 63

Now we turn to the estimation of d3(w). Lemma 13.12 gives

d30(w)¿�0n · (1− �) + � · (1 + min(�0; 5)) (3)

¿ 2 · (1− �) + � · (1 + 2)=2 + �; (4)

d31(w)¿�0n · (1− �) + � ·min(�1; 5) (5)

¿ 1 · (1− �) + � · 2=1 + �; (6)

where �0=1 := �0=1(w) and �0=1n :=�0=1n(w).
If �0¿3, then (3) and (6) yield

�(d3(w))6�(3 · (1− �) + � · (1 + 1); 1 + �)= �(3− �; 1 + �)= 1:45::¡�2;3;3:

Furthermore, in case �1¿2 we obtain by (4) and (5)

�(d3(w))6�(2 + �; 2 · (1− �) + �)= �(2 + �; 2− �)= 1:41::¡�2;3;3:

Thus we assume �0 = 2 and �1 = 1 in the sequel. By Lemma 11.1, part 2(b) it
follows

Ni(w)⊆Nr
i (w)

for i∈ I(w). Moreover (see Lemma 5.1, part 3(d)):

F0(wi)= (F0\{{l; x}})∪Nr
i (w):

In case “BN”(w) (3) and (5) just give

�(d3(w))6�(2 + 2�; 1 + 2�)= �2;3;3:

So let us assume “BB0”(w) or “BB1”(w) is the case. Note that in our situation we
can describe these cases as follows:

“BB0”(w)⇔N (’̂0; F0)= {{u; v}; {y; z}}; (7)

“BB1”(w)⇔N (’̂0; F0)⊃{{u; v}; {y; z}} ∧ N (’̂1; F0)= {{a; b}; {c; d}}: (8)

Case I: “BB0”(w). Here we have

F :=F(w)=F0 ∪Bl(F0)
[3]:

If #l(F0)¿3 would be the case, then there would be {l; x′; y′}∈F [3] with {x′; y′} 6=
{x; y} and {x′; y′}∈N (’̂0; F0), and by Lemma 5.1, part 4(h) also {x′; y′} 6= {u; v}
would hold, contradicting case I (see (1)).
So we conclude #l(F0)= 2, and therefore

Bl(F0)=Bl(F0)
[3] = {{l; x; y}; {l; x; z}}:

64 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

Because of �(F0)= 1 and {l; x}∈F0 we have {x; y}; {x; z} =∈F0, and thus

N1(w)⊇{{a; b}; {c; d}; {x; y}; {x; z}}:
Now Lemma 5.1, part 4(i) (stating the absence of blocked 3-clauses in F0) gives

|N1(w)|¿4; ⇒ �1¿4;

and thus by (4), (5) we get

�(d3(w))6�(2 + �; 1 + 3�)= 1:496::¡�2;3;3:

The remaining case is
Case II: “BB1”(w). We have

F =F0 ∪Bl(F0)[3]:

If (“just by chance”) �1¿3 holds, then (again) �(d3(w))6�(2 + 2�; 1 + 2�)= �2;3;3 is
the case. So we assume �1 = 2, i.e.,

Nr
1 (w)= {{a; b}; {c; d}}:

Hence # l(F0)= 2 must hold, and we infer (recall (2)):

Bl(F0)= {{l; a; c}; {l; a; d}; {l; b; c}; {l; b; d}}∩CL: (9)

Here two things could happen:
(i) in case {a; b}∩ {c; d} 6= ∅ some of these clauses would in fact be 2-clauses; and
(ii) in case {a; b}∩ {c; d} 6= ∅ some of these clauses would in fact be no clauses (!)

(therefore we added “∩CL”).
Case (i) is easy to handle, since in our situation we simply have {a; b}∩ {c; d}= ∅:
Assume {a; b}∩ {c; d} 6= ∅. W.l.o.g.: a= c.
Now Lemma 5.1, part 4(f)i gives {l; a}∈F0, thus {l; a}= {l; x}, but this is impos-

sible since {l; x} is not blocked for l w.r.t. F0 (see Section 6.4.1) – contradiction.
Case (ii) is more complicated. We will show that now either �0¿5 with

�(d3(w))6�(2 + 4�; 1 + �)= 1:497::¡�2;3;3

or ��2; 3; 3 (w)¿� with

�(d3[w; w1; �](w))6�(2 + 2�; 1 + �+ �)= �2;3;3

(or both) must hold. To that end assume �064 and ��2; 3; 3 (w)¡�.
Now Lemma 13.9 assures {a; b}∩ {c; d} 6= ∅, and thus

Bl(F0)=Bl(F0)[3]; |Bl(F0)|=4:
Furthermore, Lemma 13.9 yields

{a; b; c; d}∩Lit (F0\{{l; x}})= ∅;
since otherwise we had, say, {a; e}∈F0 and thus {a; b}; {a; e}∈F0(w1).

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 65

We conclude (recall x =∈{a; b; c; d})
’̂0 ∗ Bl(F0)⊆N0(w):

In case x =∈{a; b; c; d} we had |’̂0 ∗ Bl(F0)|=4. Lemma 5.1, part 4(i) gives {y; z} =∈
’̂0 ∗ Bl(F0), and thus we had |N0(w)|¿4 + 1=5 contradicting �064.
So, �nally, x∈{a; b; c; d} must hold. W.l.o.g.: x= a, i.e.,

{l; x}= {l; a}
and

{{b; c}; {b; d}}⊆N0(w):

Since we assumed |N (’̂0; F0)|¿3 and �064, one of {b; c}, {b; d} must already be
present in N (’̂0; F0):

{{b; c}; {b; d}}∩N (’̂0; F0) 6= ∅:
Since by Lemma 5.1, part 4(i) we have {l; b; c}; {l; b; d} =∈F0, it follows

{x; b; c}∈F0 ∨ {x; b; d}∈F0:

W.l.o.g.: {x; b; c}∈F0. Thus

{x; b; c}; {x; b}∈ ’̂1 ∗ F

({x; b}= ’̂1 ∗ {l; a; b}), and now Lemma 5.1, part 6 establishes
{x; c}∈F0(w1) ∨ {b; c}∈F0(w1):

However we have {c; d}∈F0(w1) as well, contradicting Lemma 13.9.

13.6. The �nal step

Lemma 13.14. For all F0 ∈ 3-CLSr there is a distance function d for TN3 (F0) with
1: �max(d;TN3 (F0)))6�2;3;3;
2:

∑
d(root (TN3 (F0)))6n(F0)− c; where c := 1− �.

Proof. Lemma 10.5 yields (using !0 = root (TN3 (F0))):∑
d3(!0)6n(F0) + � · 5− � · 0− 3 · (1− �)= n(F0) + 8�− 3;

where mk(w)¿n(w)−� ·n(w)= n(w) · (1−�)¿3 · (1−�) for w∈ nds(TN3 (F0)) follows
by Lemma 9.1, part 6(c) and Lemma 5.1, part 4(a).
Performing the balancings of d3 according to Lemmas 13.4, 13.11 and 13.13 (see

Lemma 12.1), getting d, increases the maximal sum by at most (2− 8�)+ �=2− 7�.
Thus∑

d(!0)6n(F0) + 8�− 3 + 2− 7�= n(F0)− (1− �):

66 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

Lemmas 13.3, 13.4, 13.6, 13.11 and 13.13 together with 12.1 give �max(d;TN3 (F0))6
�2;3;3.

Now the �-Lemma 8.2 together with Lemma 13.14 and 2−c=0:5448:: proves
Theorem 2.

14. Final remarks

14.1. Blocked clauses and Extended Resolution

Extended Resolution, introduced in [32], allows the extension of the set F0 of
premises by repeated applications of Fi →Fi+1 =Fi ∪{{l; a; b}; {l; a}; {l; b}} for Var (l)
=∈Var (Fi). For the known “di�cult” formulas or clause-sets (e.g. pigeonhole formulas
and formulas corresponding to graphs via the Tseitin-construction [32]) Extended Res-
olution admits polynomial-size proofs and hence till today no super-polynomial lower
bound for Extended Resolution is known.
By observing that the clauses {l; a; b}; {l; a}; {l; b} are just blocked clauses (for l

respectively l and for every order of addition), we can easily generalize this concept
by allowing the addition of arbitrary blocked clauses. In this way we get a more
symmetric concept of extensions, and also it is possible now to add (blocked) new
clauses without new variables (as used in N3).

De�nition 14.1. E ∈CLS is called a simple blocked extension for F ∈CLS if there
is an order E= {C1; : : : ; Cm} such that

∀ 16i6m :Ci is blocked w.r.t. F ∪{C1; : : : ; Ci−1}
holds. A simple (K ;K ′)-resolution proof P of C from F∈CLS for K; K ′∈N0∪{+∞}
and C ∈CL is a resolution proof of C from F ∪E, where E is a simple blocked
extension for F with clause-length at most K , and with at most K ′ new variables (in
total):
– E ∈K-CLS,
– |Var (E)\Var (F)|6K ′.
The length of P is its ordinary length as resolution proof. P is called tree-like if it is
tree-like as resolution proof.

The correctness of this concept of proofs for the deduction of ⊥ follows from
Lemma 3.1 (but note that simple blocked extensions are not conservative with respect
to general implication).
In [18] this concept is studied in a more general form, called “Generalized Extended

Resolution” 40 which allows also (implicit) eliminations of blocked clauses, making the
notion of extension independent of the order of addition. Among others an exponential

40 “(K; K ′)-resolution” (without the adjective “simple”) refers to this more general concept.

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 67

lower bound for (∞; 0)-resolution proofs is shown for the Pigeonhole Principle. To
obtain from that a (sub)exponential lower bound for N3, two di�culties must be
overcome:
– blocked clauses are introduced in N3 at all nodes of the computation tree, not only
at the root,

– and furthermore the dynamical addition and elimination of clauses (allowing to add
more blocked clauses) has to be handled.
A lower bound for (∞;∞)-resolution seems to be intractable at this time, since

simple (3;∞)-resolution already contains Extended Resolution. 41
We conclude this subsection by showing that simple tree-like (3; 0)-resolution can

not be simulated by resolution:

Lemma 14.1. Simple treelike (3; 0)-resolution cannot (even for 3-clause-sets) be sim-
ulated polynomially by resolution.

Proof. Let (Fn)n∈N be any sequence of unsatis�able 3-clause-sets such that there is no
polynomial bound on the length of resolution proofs for (Fn), but there are polynomially
bounded extended resolution proofs for (Fn). (For example consider the Pigeonhole
Formulas transformed into 3-CLS in the standard way.)
Since tree-like Extended Resolution polynomially simulates Extended Resolution, 42

for each n there is a sequence (En
i)i∈{1; :::; mn} of applications of the extension rule, i.e.,

for all 16i6mn

En
i = {{xn

i ; a
n
i ; b

n
i }; {xn

i ; a
n
i }; {xn

i ; b
n
i }}

Var (xn
i) =∈Var (Fn)∪Var

(⋃
k¡i

En
k

)
;

Var ({an
i ; b

n
i })⊆Var (Fn)∪Var

(⋃
k¡i

En
k

)
holds, such that there are polynomial (in ‘(Fn)) tree-like resolution proofs of ⊥ from
Fn ∪En, where En :=

⋃
i6mn

En
i .

Take a variable y not contained in any Fn ∪En, and de�ne

E′
n := {{xn

i ; y}}16i6mn :

F ′
n :=Fn ∪E′

n has the same complexity w.r.t. resolution as Fn. On the other hand F ′
n

has a short simple tree-like (3; 0)-resolution proof:
The simple blocked extension E′′

n for F
′
n is obtained as follows:

1. First add {y} (blocked for y).
41 In fact they are (polynomially) equivalent as shown in [18].
42 Lemma 4.4.8 from [15] proves that tree-like Frege Systems polynomially simulate Frege Systems, while
Lemma 4.5.8 from [15] says that Extended Resolution and Extended Frege Systems polynomially simulate
each other. Now it is not hard to see that the proof of Lemma 4.5.8 also shows that tree-like Extended Res-
olution polynomially simulates tree-like Extended Frege Systems, and that the construction of Lemma 4.4.8
also gives that Extended tree-like Frege Systems polynomially simulate Extended Frege Systems.

68 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

2. (a) Add {xn
1 ; a

n
1 ; b

n
1} (blocked for xn

1).
(b) Add {xn

1 ; a
n
1 ; y} and {xn

1 ; b
n
1 ; y} (blocked for xn

1).
3. In the same way add all {xn

i ; a
n
i ; b

n
i }; {xn

i ; a
n
i ; y} and {xn

i ; b
n
i ; y} for 26i6mn.

E′′
n does not contain new variables due to the dummy variables in E′

n.
And by Unit-resolution we obtain En from E′′

n .
43

14.2. Comments to our method for estimating the size of trees

The next lemma motivates that for the purpose of estimating

(∗) #lvs(T)6�max(d; T)
∑

d(root (T))

(recall Section 8) this upper bound is the better the closer the �-values are lying
together and thus for a good estimation the job is to balance the di�erent �-values over
the tree:

Lemma 14.2. For any tree T up to a positive factor there is exactly one distance
function dT with #lvs(T)= �max(dT ; T)

∑
dT (root (T)). dT is characterized by the condition

that for every path from the root to a leaf the sum of distances is the same; and
that �(d(w)) is constant on inner nodes.

For the choice of the �-function we have the following justi�cation:

Lemma 14.3. The �-function is the (pointwise) minimal function � :BT→ [1;+∞)
such that for all trees T and all distance functions d for T formula (∗) is valid.

Finally we note that in our handling of � we used in fact only very general properties
of the zk -measures, so that the distance function d3 in a generalized framework could
be useful also for other applications.

14.3. General complexity of SAT-decision

Here we consider the general time complexity of SAT-decision for subclasses of
CLS, more strictly speaking the exponential (or “mathematical”) part of the time
complexity, abstracting from polynomial factors.

De�nition 14.2. For K⊆CLS and � :K→R+ we de�ne the power coe�cient
�(K;�) as the in�mum of exponents � which bound (up to a polynomial in ‘(F)) by

43 If the reader is disturbed by the fact that F ′
n contains blocked clauses, he may use instead:

E′
n := {{xn

i ; y}; {xn
i ; y}; {an

i ; b
n
i ; y} : 16i6mn}∪ {{y; v}; {v; w}; {w; y}}. To see that F ′

n =Fn ∪E′
n has the

same complexity for resolution as Fn, apply the autark assignment 〈y→ 1; v→ 1; w→ 1〉 and note that
clauses eliminated by some autark assignment can be eliminated from any resolution proof of ⊥.
The simple blocked extension E′′

n for F ′
n is now E′′

n := {{xn
i ; y}; {xn

i ; a
n
i ; y}; {xn

i ; b
n
i ; y} : 16i6mn}:

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 69

2�·� the time complexity of deciding SAT for K (by multi-tape Turing-machines):

�(K;m) := inf{�∈R+ :∃TM M∃polynomial P[M decides SAT for K with time-

bound (P(‘(F)) · 2�·�(F))F∈K]}:44
Due to the polynomial factor P(‘(F)) power coe�cients do not depend on the special

coding and the special model of computation (when considering at least 2-tape TMs
(cf. [26], 2.8.9)). In contrast to the notion of “power indices” from [14], the notion of
power coe�cients is designed for the consideration of those classes K, for which there
is a polynomial time and linear size reduction t :CLS→K, i.e., t is computable in
polynomial time w.r.t. ‘(F) and there is a constant c such that for all F ∈CLS

t(F)
sat≡ F and ‘(t(F))6c · ‘(F)

holds.

14.3.1. The known upper bounds for power coe�cients
1. (a) �(CLS-3; n)6 log2 �(9; 9; 9)=0:17610::; where CLS-3 is the class of clause-

sets with every variable occurring at most three times [22];
(b) �(CLS-(1;∞); n)6 log2 �(3; 3; 3)=0:52832::; where CLS-(1;∞) is the class

of clause-sets in which every variable appears in one sign at most once (for the
other sign there are no restrictions) [22, 23].

2. (a) �(3-CLS; n)6 log2 �2;3;3 = 0:58921:: (Theorem 2), which can be improved
somewhat to �(3-CLS; n)6 log2 1:49625::=0:58135:: by re�ning the case “BN”
[20, 30];

(b) �(p-CLS; n)6 log2 �(1; : : : ; p− 1)¡1+ log2(1− 2−p) for p¿2. ([23, 25]; the
generalization of N3 (and of the improved bound!) to p-CLS should be pos-
sible but is not an obvious task);

(c) �(p-CLS; n)61 − �(p)=p ([27]), where 0¡�(p)¡ 1=2 is the solution of
1− �=p = H2(�) for the binary entropy function H2(�) = −� · log2 � − (1− �) ·
log2(1− �), which is better than (b) for p¿5 (limp→∞ �(p) = 1=2).

3. Using c(F) := |F |, ci(F) := c(F [i]) and c∗(F) := ∑n(F)
i=3 (i − 2) · ci(F) it is known

that
(a) �(CLS; c∗)= �(3-CLS; c∗)6 log2 �(1; 4)=0:46495:: ([1] and Lemma 14.6);
(b) �(CLS; c)6 log2 �(6; 7; 6; 7)=0:30896:: [12].

4. �(CLS; ‘)61=10 [22].

14.3.2. Two variants for the number n of variables, counting only “hard” variables
By well-known techniques we obtain the following two lemmas.

Lemma 14.4. �(CLS; n)= �(3-CLS; n′)= �(CLS; n′); where for F ∈CLS we de-
�ne n′(F) := |{v∈Var (F) : #v(F) · #v(F)¿2}| as the number of variables which occur
in one sign at least once in F and in the other sign at least twice.

44 inf ∅= +∞.

70 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

Lemma 14.4 gives �(CLS; n′)61, generalizing the polynomial decidability of
CLS-2. Analogously, the following lemma generalizes the polynomial decidability
of 2-CLS:

Lemma 14.5. �(3-CLS; n∗)= �(3-CLS; n); where for F ∈ 3-CLS we de�ne n∗(F)
as the number of variables of F occurring in both signs in the 3-clauses of F .

14.3.3. 3-coloring and “(3,2)-SSS”
Here we discuss (shortly) the close relation between 3-SAT and 3-coloring.
In [2] the notion of “(a; b)-SSS” (“SSS” stands for “Symbol System Satis�ability”)

is introduced. An (a; b)-SSS instance consists of:
– a set V of vertices with n := |V | elements,
– for each vertex a list of 6a colors,
– and a set of constraints, where a constraint is a list ((v1; i1); : : : ; (vr; ir)) of pairs of
vertices and colors with r6b components.

The meaning of such a constraint is: vertex v1 is not colored with color i1 or : : : or
vertex vr is not colored with color ir . The problem is to decide whether there is a
coloring of the vertices ful�lling all constraints. The class of these (decision) problems
is denoted by “(a; b)-SSS”.
(2; p)-SSS is (up to renaming) identical with p-CLS, 45 while (k; 2)-SSS is a natural

(and useful) generalization of the k-coloring problem. As in De�nition 14.2 we de�ne
the power coe�cients �((a; b)-SSS; n), using the number n of vertices in (a; b)-SSS
instances.

Lemma 14.6. �((3; 2)-SSS; n)= �(3-CLS; c3) (recall 3 in Section 14.3.1). The mea-
sure c3 is extended to whole CLS by c∗; for which we obtain: �(3-CLS; c∗)=
�(CLS; c∗).
Proof. For �((3; 2)-SSS; n)6�(3-CLS; c∗) we transform a (3,2)-SSS instance in the
natural way into a 3-clause-set (the variables are the pairs (v; i)), and observe that
there are at most n clauses of length 3.
And for the other direction transform a 3-clause-set according to Lemma 1 of [1] into

a (3,2)-SSS instance (the nodes are the clauses, the colors the position of the literals in
the clauses) and eliminate all nodes corresponding to 62-clauses via Lemma 2 of [1].
Finally c∗ is invariant w.r.t. the standard transformation CLS→ 3-CLS.

14.4. Leaving 3-CLS to obtain faster 3-SAT-decision when the variables occur
on the average less than 5.9 times

With the help of the algorithm L :CLS→{0; 1} from [22], realizing �(CLS; ‘)6
1=10, we are able to improve the bound 1:5045n from Theorem 2 for all F ∈ 3-CLS

ful�lling ‘(F)=n(F)6c0 := 10 · log2 �2;3;3 = 5:8921:: as follows.

45 Of course with respect to SAT.

O. Kullmann / Theoretical Computer Science 223 (1999) 1–72 71

Denote by N′
3 : 3-CLS→{0; 1} the algorithm from Section 6, completed by reduc-

ing the input (F0 7→ r(F0)) and excluding the trivial case ⊥∈ r(F0).
Then our combined algorithm C3 is given by

PROCEDURE C3(F0 ∈ 3-CLS) : {0; 1};
BEGIN
IF F => THEN RETURN 1
ELSE IF ⊥∈F THEN Return 0
ELSE IF ‘(F)=n(F)6c0 THEN
RETURN L(F)

ELSE
RETURN N′

3 (F)
END C3.

Theorem 4. The 3-SAT-algorithm N′
3 : 3-CLS→{0; 1} decides 3-SAT with the fol-

lowing time bound (F0 ∈ 3-CLS; ‘ := ‘(F0); n := n(F0)):

log2 #lvs(TC3 (F0))6min(log2 �2;3;3 · n; 1=10 · ‘)

=

{
1=10 · ‘ for ‘=n6c0

log2 �2;3;3 · n else
:

Acknowledgements

I am very obliged to Henri Morel and Paul W. Purdom for encouraging me, for
their help in improving the presentation of the paper, and for valuable discussions.

References

[1] R. Beigel, D. Eppstein, 3-coloring in time O(1:3446n): a no-MIS algorithm, in: 36th IEEE Symp. on
Foundations of Computer Science, 1995, pp. 444–452.

[2] R. Beigel, R. Floyd, The Language of Machines: An Introduction of Computability and Formal
Languages, Computer Science Press, New York, 1993.

[3] E. Dantsin, Two systems for proving tautologies, based on the split method, J. Sov. Math. 22 (1983)
1293–1305.

[4] M. Davis, G. Logemann, D. Loveland, A machine program for theorem-proving, Comm. ACM 5 (1962)
394–397.

[5] M. Davis, H. Putnam, A computing procedure for quanti�cation theory, J. ACM 7 (1960) 201–215.
[6] D. Du, J. Gu, P.M. Pardalos (Eds.), Satis�ability Problem: Theory and Applications (DIMACS

Workshop March 11–13, 1996), DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, vol. 35, American Mathematical Society, Providence, RI, 1997.

[7] J. Franco, G. Gallo, H. B�uning, E. Speckenmeyer, C. Spera, (Eds.), Workshop on the Satis�ability
Problem, Universit�at zu K�oln, Report No. 96-230, Siena, April 29–May 3 1996.

[8] A.V. Gelder, A satis�ability tester for non-clausal propositional calculus, Inform. and Comput. 79 (1988)
1–21.

[9] A.V. Gelder, Propositional search with k-clause introduction can be polynomially simulated by
resolution, in: 5th Internat. Symp. on Arti�cial Intelligence and Mathematics, January 1998.

72 O. Kullmann / Theoretical Computer Science 223 (1999) 1–72

[10] A.V. Gelder, Y.K. Tsuji, Satis�ability testing with more reasoning and less guessing, in: D.S. Johnson,
M. Trick, (Eds.), Cliques, Coloring, and Satis�ability: Second DIMACS Implementation Challenge
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 26, American
Mathematical Society, Providence, RI, 1996, pp. 559–586.

[11] J. Gu, P.W. Purdom, J. Franco, B.W. Wah, Algorithms for the satis�ability (SAT) problem: A survey,
in: D. Du, J. Gu, P.M. Pardalos (Eds.), Satis�ability Problem: Theory and Applications (DIMACS
Workshop March 11–13, 1996), DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, vol. 35, American Mathematical Society, Providence, RI, 1997.

[12] E. Hirsch, Two new upper bounds for SAT, Proc. SODA’98, to appear.
[13] J.N. Hooker, V. Vinay, Branching rules for satis�ability, J. Autom. Reasoning 15 (1995) 359–383.
[14] H.B. Hunt, R.E. Stearns, Power indices and easier hard problems, Math. Systems Theory 23 (1990)

209–225.
[15] J. Kraj�i�cek, Bounded Arithmetic, Propositional Logic, and Complexity Theory, Cambridge University

Press, Cambridge, 1995.
[16] O. Kullmann, Methods for 3-SAT-decision in less than 20:59·n steps, Bull. Symbol. Logic 1 (1) (1995)

96–97. Abstracts of contributed papers of the Logic Colloquium’ 93, Keele, England, July 20–29, 1993.
[17] O. Kullmann, A note on a generlization of extended resolution, in: [7, pp. 73–95]. Revised: [18].
[18] O. Kullmann, On a generalization of extended resolution, Discrete Appl. Math., submitted (special

edition on the satis�ability problem); revised version of [17], 1996.
[19] O. Kullmann, Heuristics for SAT algorithms: A systematic study. SAT’98, Second Workshop on the

Satis�ability Problem, May 10–14, 1998, Eringerfeld, Germany.
[20] O. Kullmann, Worst-case analysis, 3-SAT decision and lower bounds: approaches for improved SAT

algorithms, in: D. Du, J. Gu, P.M. Pardalos (Eds.), Satis�ability Problem: Theory and Applications
(DIMACS Workshop March 11–13, 1996), DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, vol. 35, American Mathematical Society, Providence, RI, 1997, pp. 261–313.

[21] O. Kullmann, The combination of extended resolution and DPLL-algorithms, forthcoming.
[22] O. Kullmann, H. Luckhardt, Deciding propositional tautologies: algorithms and their complexity, Inform.

and Comput. submitted.
[23] H. Luckhardt, Obere Komplexit�atsschranken f�ur TAUT-Entscheidungen, in: Frege Conf. 1984, Schwerin,

Akademie-Verlag, Berlin, 1984, pp. 331–337.
[24] B. Monien, E. Speckenmeyer, 3-satis�ability is testable in O(1:62r) steps, Technical Report Bericht Nr.

3=1979, Universit�at-Gesamthochschule-Paderborn, 1979, Reihe Theoretische Informatik.
[25] B. Monien, E. Speckenmeyer, Solving satis�ability in less than 2n steps, Discrete Appl. Math. 10 (1985)

287–295.
[26] C.H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, MA; 1994.
[27] R. Paturi, P. Pudlak, F. Zane, Satis�ability coding lemma, in: Proc. 38th Annual Symp. Foundations of

Computer Science (FOCS 97), 1997, pp. 566–574.
[28] P.W. Purdom, Solving satis�ability with less searching, IEEE Trans. Pattern Anal. Machine Intell. 6 (4)

(1984) 510–513.
[29] I. Schiermeyer, Solving 3-satis�ability in less than 1:579n steps, in: Selected paper from Computer

Science Logic ’92, Lecture Notes Computer Science, vol. 702, Springer, Berlin, 1992, pp. 379–394.
[30] I. Schiermeyer, Pure literal look ahead: an O(1; 497n) 3-satis�ability algorithm, in: [7, pp. 127–136].

Siena, April 29–May 3 (1996).
[31] G.M.N. Stalmarck, Method and apparatus for checking propositional logic theorems in system analysis,

1990, European Patent Speci�cation; application: December 19, 1990, Bulletin 90=51; publication: June
28, 1995, Bulletin 95=26.

[32] G.S. Tseitin, On the complexity of derivation in propositional calculus, in: Seminars in Mathematics.
V.A. Steklov Mathematical Institute, Leningrad, vol. 8, 1968. (English translation 1970; A.O. Slisenko
(Ed.))

[33] W. Zhang, Number of models and satis�ability of sets of clauses, Theoret. Comput. Sci. 155 (1996)
277–288.

