3,060 research outputs found

    Relaxation-Based Coarsening for Multilevel Hypergraph Partitioning

    Get PDF
    Multilevel partitioning methods that are inspired by principles of multiscaling are the most powerful practical hypergraph partitioning solvers. Hypergraph partitioning has many applications in disciplines ranging from scientific computing to data science. In this paper we introduce the concept of algebraic distance on hypergraphs and demonstrate its use as an algorithmic component in the coarsening stage of multilevel hypergraph partitioning solvers. The algebraic distance is a vertex distance measure that extends hyperedge weights for capturing the local connectivity of vertices which is critical for hypergraph coarsening schemes. The practical effectiveness of the proposed measure and corresponding coarsening scheme is demonstrated through extensive computational experiments on a diverse set of problems. Finally, we propose a benchmark of hypergraph partitioning problems to compare the quality of other solvers

    Wilsonian renormalization, differential equations and Hopf algebras

    Full text link
    In this paper, we present an algebraic formalism inspired by Butcher's B-series in numerical analysis and the Connes-Kreimer approach to perturbative renormalization. We first define power series of non linear operators and propose several applications, among which the perturbative solution of a fixed point equation using the non linear geometric series. Then, following Polchinski, we show how perturbative renormalization works for a non linear perturbation of a linear differential equation that governs the flow of effective actions. Then, we define a general Hopf algebra of Feynman diagrams adapted to iterations of background field effective action computations. As a simple combinatorial illustration, we show how these techniques can be used to recover the universality of the Tutte polynomial and its relation to the qq-state Potts model. As a more sophisticated example, we use ordered diagrams with decorations and external structures to solve the Polchinski's exact renormalization group equation. Finally, we work out an analogous construction for the Schwinger-Dyson equations, which yields a bijection between planar Ď•3\phi^{3} diagrams and a certain class of decorated rooted trees.Comment: 42 pages, 26 figures in PDF format, extended version of a talk given at the conference "Combinatorics and physics" held at Max Planck Institut fuer Mathematik in Bonn in march 2007, some misprints correcte

    Recent Advances in Graph Partitioning

    Full text link
    We survey recent trends in practical algorithms for balanced graph partitioning together with applications and future research directions

    Anomalous behavior in an effective model of graphene with Coulomb interactions

    Get PDF
    We analyze by exact Renormalization Group (RG) methods the infrared properties of an effective model of graphene, in which two-dimensional massless Dirac fermions propagating with a velocity smaller than the speed of light interact with a three-dimensional quantum electromagnetic field. The fermionic correlation functions are written as series in the running coupling constants, with finite coefficients that admit explicit bounds at all orders. The implementation of Ward Identities in the RG scheme implies that the effective charges tend to a line of fixed points. At small momenta, the quasi-particle weight tends to zero and the effective Fermi velocity tends to a finite value. These limits are approached with a power law behavior characterized by non-universal critical exponents.Comment: 42 pages, 7 figures; minor corrections, one appendix added (Appendix A). To appear in Ann. Henri Poincar

    JIGSAW-GEO (1.0): locally orthogonal staggered unstructured grid generation for general circulation modelling on the sphere

    Get PDF
    An algorithm for the generation of non-uniform, locally-orthogonal staggered unstructured spheroidal grids is described. This technique is designed to generate very high-quality staggered Voronoi/Delaunay meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric simulation, ocean-modelling and numerical weather prediction. Using a recently developed Frontal-Delaunay refinement technique, a method for the construction of high-quality unstructured spheroidal Delaunay triangulations is introduced. A locally-orthogonal polygonal grid, derived from the associated Voronoi diagram, is computed as the staggered dual. It is shown that use of the Frontal-Delaunay refinement technique allows for the generation of very high-quality unstructured triangulations, satisfying a-priori bounds on element size and shape. Grid-quality is further improved through the application of hill-climbing type optimisation techniques. Overall, the algorithm is shown to produce grids with very high element quality and smooth grading characteristics, while imposing relatively low computational expense. A selection of uniform and non-uniform spheroidal grids appropriate for high-resolution, multi-scale general circulation modelling are presented. These grids are shown to satisfy the geometric constraints associated with contemporary unstructured C-grid type finite-volume models, including the Model for Prediction Across Scales (MPAS-O). The use of user-defined mesh-spacing functions to generate smoothly graded, non-uniform grids for multi-resolution type studies is discussed in detail.Comment: Final revisions, as per: Engwirda, D.: JIGSAW-GEO (1.0): locally orthogonal staggered unstructured grid generation for general circulation modelling on the sphere, Geosci. Model Dev., 10, 2117-2140, https://doi.org/10.5194/gmd-10-2117-2017, 201
    • …
    corecore