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Abstract. We analyze by exact Renormalization Group (RG) methods
the infrared properties of an effective model of graphene, in which two-
dimensional (2D) massless Dirac fermions propagating with a velocity
smaller than the speed of light interact with a 3D quantum electromag-
netic field. The fermionic correlation functions are written as series in the
running coupling constants, with finite coefficients that admit explicit
bounds at all orders. The implementation of Ward Identities in the RG
scheme implies that the effective charges tend to a line of fixed points. At
small momenta, the quasi-particle weight tends to zero and the effective
Fermi velocity tends to a finite value. These limits are approached with
a power law behavior characterized by non-universal critical exponents.

1. Introduction and Main Result

The charge carriers in graphene at half filling are effectively described by mass-
less Dirac fermions constrained to move on a two-dimensional (2D) mani-
fold embedded in three-dimensional (3D) space [10], with a Fermi velocity v
that is approximately 300 times smaller than the speed of light. As a con-
sequence, already without taking into account the interactions, the system
displays highly unusual features as compared to standard 2D electron gases,
such as an anomalous integer quantum Hall effect and the insensitivity to
disordered-induced localization; most of these effects have already been exper-
imentally observed [30,31]. The study of many-body interactions among the
charge carriers in graphene is of course very important, particularly in view of
recent experiments that suggest their relevant role in several physical proper-
ties of graphene [9,25,27,37].

The effect of a weak short range interaction in graphene is quite well
understood: it turns out that the behavior of the ground state is qualitatively
similar to the free one, except that the Fermi velocity and the wave function
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renormalization are renormalized by a finite amount. This was expected on
the basis of a power counting analysis [22–24]; recently, it has been rigorously
proven in [18,19], where the convergence of the perturbative series was estab-
lished, using the methods of constructive Quantum Field Theory (QFT) and
by taking into full account the lattice effects (i.e., by considering the Hubbard
model on the honeycomb lattice).

The situation in the presence of long range interactions is much more
subtle and still not completely understood. Their effect in graphene is usu-
ally studied in terms of a model of Dirac fermions interacting via a static
Coulomb potential; retardation effects of the electromagnetic (e.m.) field are
neglected because the free Fermi velocity v is 300 times smaller than the speed
of light c. At weak coupling, a logarithmic divergence of the effective Fermi
velocity v(k) at the Fermi points p±

F and a finite quasi-particles weight have
been predicted, on the basis of one-loop [21] and two-loop [29] computations.
An unbounded growth of the effective Fermi velocity was also confirmed by
an analysis based on a large-N expansion [26,36], which predicted a power
law divergence of v(k) at p±

F . It is not clear how to reconcile the logarith-
mic divergence expected from two-loop perturbative computations with the
power law behavior found by large-N expansions; moreover, the description in
terms of Dirac fermions introduces spurious ultraviolet divergences that can
produce ambiguities in the physical predictions [24,29]. These difficulties may
be related to a basic inadequacy of the effective model of Dirac fermions with
static Coulomb interactions: the fact that the effective Fermi velocity diverges
at the Fermi points (as predicted by all the analyses of the model) signals
that its physical validity breaks down at the infrared scale where v(k) becomes
comparable with the speed of light; at lower scales, retardation effects must
be taken into account, as first proposed in [20], where a model of massless
Dirac fermions propagating with speed v � c and interacting with an e.m.
field was considered. In [20] it was found that, at small momenta, the wave
function renormalization diverges as a power law; this implies that the ground
state correlations have an anomalous decay at large distances. Moreover, it was
found that the interacting Fermi velocity increases up to the speed of light,
again with an anomalous power law behavior. Despite its interest, the model
proposed in [20] has not been considered further. The results in [20] were found
on the basis of one-loop computations and in the presence of an ultraviolet
dimensional regularization scheme. It is interesting to investigate whether the
predictions of [20] remain valid even if higher orders corrections are taken into
account and in the presence of different regularization schemes closer to the
lattice cut-off that is truly present in actual graphene.

The model we consider describes massless Dirac fermions in 2+1 dimen-
sions propagating with velocity v < c, and interacting with a 3+1 dimensional
photon field in the Feynman gauge. We will not be concerned with the instan-
taneous case (c → ∞); therefore, from now on, for notational simplicity, we
shall fix units such that � = c = 1. The model is very similar to the one in
[20], the main difference being the choice of the ultraviolet cut-off: rather than
considering dimensional regularization, in order to mimic the presence of an
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underlying lattice, we explicitly introduce a (fixed) ultraviolet momentum cut-
off both in the electronic and photonic propagators. The correlations can be
computed in terms of derivatives of the following Euclidean functional integral:

eW(J,φ) =
∫
P (dψ)P (dA)eV (A,ψ)+B(J,φ) (1.1)

with, setting x = (x0, �x) and �x = (x1, x2) (repeated indexes are summed;
Greek and Latin labels run, respectively, from 0 to 2, 1 to 2),

V (A,ψ) :=
∫

Λ

dx [e jμ,xAμ,x − νμAμ,xAμ,x]

B(J, φ) :=
∫

Λ

dx
[
jμ,xJμ,x + φxψx + φxψx

]
,

(1.2)

where Λ is a 3D box of volume |Λ| = L3 with periodic boundary conditions
(playing the role of an infrared cutoff, to be eventually removed), the cou-
plings e, νμ are real and ν1 = ν2; the couplings νμ are counterterms to be fixed
so that the photon mass is vanishing in the deep infrared. Moreover, ψx, ψx

are four-component Grassmann spinors, and the μ-th component jμ,x of the
current is defined as:

j0,x = iψxγ0ψx, �jx = iv ψx�γψx, (1.3)

where γμ are euclidean gamma matrices, satisfying the anticommutation rela-
tions {γμ, γν} = −2δμ,ν . The symbol P (dψ) denotes a Grassmann integration
with propagator

g(≤0)(x) :=
∫

dk
(2π)3

eikx ik0γ0 + iv�k · �γ
k2
0 + v2|�k|2

χ0(k). (1.4)

where (2π)−3
∫

dk is a shorthand for |Λ|−1
∑

k=2πn/L with n ∈ Z
3, and

χ0(k) = χ(|k|) plays the role of a prefixed ultraviolet cutoff (here χ(t) is a
non-increasing C∞ function from R

+ to [0, 1] such that χ(t) = 1 if t ≤ 1 and
χ(t) = 0 if t ≥ M > 1). Finally, Aμ,x are gaussian variables and P (dA) is a
gaussian integration with propagator

w(≤0)(x) :=
∫

dp
(2π)3

eipxχ0(p)
2|p| =

∫
dpdp3

(2π)4
eipx χ0(p)

p2 + p2
3

. (1.5)

We perform an analysis based on the methods of constructive Renormalization
Group (RG) for non-relativistic fermions, introduced in [3,14] (see [4,28,33,34]
for updated introductions), which have already been proved effective in the
study of several low-dimensional critical systems, such as one-dimensional (1D)
interacting fermions [3,5,6], 2D critical Ising and vertex models [2,17], the 2D
Hubbard model on the square lattice at positive temperatures [7,11,12], inter-
acting fermions with asymmetric Fermi surfaces [13] and the 2D Hubbard
model on the honeycomb lattice [18,19], just to mention a few. Compared to
other RG approaches, such as those in [32,35], the advantage of the construc-
tive methods we adopt is that they allow us to get a rigorous and complete
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treatment of the effects of the cut-offs and a full control on the perturbative
expansion via explicit bounds at all orders; quite remarkably, in certain cases,
such as the ones treated in [6,11,12,7,18,19], these methods even provide a
way to prove the convergence of the resummed perturbation theory.

Using these methods, we construct a renormalized expansion, allowing
us to express the Schwinger functions, from which the physical observables
can be computed, as series in the effective couplings (the effective charges and
the effective photon masses, also called in the following the running coupling
constants), with finite coefficients at all orders, admitting explicit N ! bounds
(see Theorem 2.1 in Sect. 2 below). If the effective couplings remain small in
the infrared, informations obtained from our expansion by lowest order trun-
cations are reliable at weak coupling. The importance of having an expansion
with finite coefficients should not be underestimated; the naive perturbative
expansion in the fine structure constant is plagued by logarithmic infrared
divergences and higher orders are more and more divergent.

Of course the renormalized expansion is useful only as long as the run-
ning coupling constants are small. In fact, we do prove that they remain small
for all infrared scales, by implementing Ward Identities (WIs) in the RG flow,
using a technique developed in [6] for the rigorous analysis of Luttinger liquids
in situations where bosonization cannot be applied (e.g., in the presence of
an underlying lattice and/or of non-linear bands). The WIs that we use are
based on an approximate local gauge invariance, the exact gauge symmetry
being broken by the ultraviolet cut-off; its presence produces corrections to the
“naive” (formal) WIs, which can be resummed and, again, explicitly bounded
at all orders. The resulting modified WIs imply that the effective charges tend
to a line of fixed points, exactly as in 1D Luttinger liquids. We note that this
is one of the very few examples in which Luttinger liquid behavior is found in
dimensions higher than 1.

Let us denote by 〈. . .〉 = lim|Λ|→∞ 〈. . .〉Λ the expectation value with
respect to the interaction (1.2) in the infinite volume limit; our main result
can be informally stated as follows (more rigorous statements will be found
below).

Main result. There exists a choice of νμ such that, for k small,

〈ψkψk〉 =
1

Z(k)
ik0γ0 + iv(k)�k · �γ
k2
0 + v(k)2|�k|2

(1 +B(k)), (1.6)

where

Z(k) ∼ |k|−η, veff − v(k) ∼ (veff − v)|k|η̃, (1.7)

B(k), νμ, η, η̃, veff are expressed by series in the effective couplings with finite
coefficients that admit N !-bounds at all orders. Moreover: (i) the first non-
trivial contribution to B(k) is of second order in e; (ii) the first non-trivial
contribution to νμ is of second order in e and positive; (iii) the first non-trivial
contributions to η, η̃, veff are, respectively:
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η(2) =
e2

12π2
, η̃(2) =

2e2

5π2
, v

(2)
eff = 1 − F (v)

e2

6π2
, (1.8)

with

F (v)=
5
8

[(
1

2v2
−2
)
ξ0 − arctan ξ0

ξ30
+

1
2v2

arctan ξ0
ξ0

]
, ξ0 :=

√
1 − v2

v
. (1.9)

Note that the theory is not Lorentz invariant, because v �= c; moreover,
gauge symmetry is broken by the presence of the ultraviolet momentum cut-
off. These two facts produce unusual features as compared to standard QFT
models. In particular, the momentum cut-off produces correction terms in the
WIs, which can be rigorously bounded at all orders; despite these corrections,
one can still use the WIs to prove that the beta function for the effective
charges is asymptotically vanishing at all orders, so that the model admits a
line of (non-trivial) fixed points.

The lack of gauge invariance due to the ultraviolet momentum cut-off
makes it necessary (as in [8]) to introduce positive counterterms to keep the
photon mass equal to zero. Similarly, it implies that the effective couplings
with the temporal and spatial components of the gauge field are different and
that the effective Fermi velocity veff is not equal to the speed of light. However,
it is possible to introduce in the bare interaction two different charges, e0 and
e1, describing the couplings of the photon field with the temporal and spatial
components of the current, which can be tuned so that the dressed charges are
equal and veff = 1.

A more realistic model for single layer graphene could be obtained by
considering tight binding electrons hopping on the honeycomb lattice, whose
lattice currents are coupled to a 3D photon field. A Renormalization Group
analysis similar to the one in the present paper could be repeated for the lattice
model, by extending the formalism in [18,19]. If the lattice model is chosen in
such a way that lattice gauge invariance is preserved, we expect that its pho-
ton mass counterterms are exactly zero and that its effective Fermi velocity
is equal to the speed of light. In any case (i.e., both in the presence or in the
absence of lattice gauge invariance), we expect the lattice model to have the
same infrared asymptotic behavior of the continuum model considered here,
provided that the bare parameters eμ, νμ of the continuum model are properly
tuned.

Finally, let us comment about the possibility of providing a full non-per-
turbative construction of the ground state of the present model or, possibly,
of a more realistic model of tight binding electrons hopping on the honey-
comb lattice and interacting with e.m. forces. In this paper, we express the
physical observables in terms of series in the running coupling constants (with
bounded coefficients at all orders) and we show that the running coupling
constants remain close to their initial value, thanks to Ward Identities and
cancellations in the beta function. Thus, the usual problem that so far pre-
vented the non-perturbative construction of the ground state of systems of
interacting fermions in d > 1 with convex symmetric Fermi surface (namely,
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the presence of a beta function driving the infrared flow for the effective cou-
plings out of the weak coupling regime) is absent in the present case. Therefore,
a full non-perturbative construction of the ground state of the present model
appears to be feasible, using determinant bounds for the fermionic sector and
cluster expansion techniques for the bosonic sector. Of course, the construction
is expected to be much more difficult than the one in [6] or [18,19], due to the
simultaneous presence of bosons and fermions; if one succeeded in providing
it, it would represent the first rigorous example of anomalous Luttinger-liquid
behavior in more than one dimension.

The paper is organized as follows: in Sect. 2 we describe how to evaluate
the functional integrals defining the partition function and the correlations of
our model in terms of an exact RG scheme (details are discussed in Appendi-
ces A and B); in Sect. 3 we describe the infrared flow of the effective couplings
and prove the emergence of an effective Fermi velocity different from the speed
of light (the explicit lowest order computations of the beta function are pre-
sented in Appendix C); in Sect. 4 we derive the Ward Identity allowing us to
control the flow of the effective charges (details are discussed in Appendix D)
and proving that the beta function for the charges is asymptotically vanishing;
finally, in Sect. 5 we draw the conclusions.

2. Renormalization Group Analysis

2.1. The Effective Potential

In this section we show how to evaluate the functional integral (1.1); the inte-
gration will be performed in an iterative way, starting from the momenta
“close” to the ultraviolet cutoff moving towards smaller momentum scales. At
the n-th step of the iteration the functional integral (1.1) is rewritten as an
integral involving only the momenta smaller than a certain value, proportional
to M−n, where M > 1 is the same constant (to be chosen sufficiently close
to 1) appearing in the definition of the cut-off function (see lines after (1.4)),
and both the propagators and the interaction will be replaced by “effective”
ones; they differ from their “bare” counterparts because the physical param-
eters appearing in their definitions (the Fermi velocity v, the charge e, and
the “photon mass” νμ) are renormalized by the integration of the momenta on
higher scales. In the following, it will be convenient to introduce the scale label
h ≤ 0 as h := −n.

Setting χh(k) := χ(M−h|k|), we start from the following identity:

χ0(k) =
0∑

h=−∞
fh(k), fh(k) := χh(k) − χh−1(k); (2.1)

let ψ =
∑0
h=−∞ ψ(h) and A =

∑0
h=−∞A(h), where {ψ(h)}h≤0, {A(h)}h≤0 are

independent free fields with the same support of the functions fh introduced
above.

We evaluate the functional integral (1.1) by integrating the fields in an
iterative way starting from ψ(0), A(0); for simplicity, we start by treating the
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case J = φ = 0. We define V(0)(A,ψ) := V (A,ψ) and we want to inductively
prove that after the integration of ψ(0), A(0), . . . , ψ(h+1), A(h+1) we can rewrite:

eW(0,0) = e|Λ|Eh
∫
P (dψ(≤h))P (dA(≤h))eV(h)(A(≤h),

√
Zhψ

(≤h)), (2.2)

where P (dψ(≤h)) and P (dA(≤h)) have propagators

g(≤h)(k) =
χh(k)
Z̃h(k)

iγ0k0 + iṽh(k)�k · �γ
k2
0 + ṽh(k)2|�k|2

, w(≤h)(p) =
χh(p)
2|p| , (2.3)

V(h) has the form

V(h)(A,ψ) =
∑
n,m≥0
n+m≥1

∑
ρ,μ

∫ [ 2n∏
i=1

dki
(2π)3

]⎡
⎣ m∏
j=1

dpj
(2π)3

⎤
⎦ n∏
i=1

ψk2i−1,ρ2i−1
ψk2i,ρ2i,

×
m∏
i=1

Aμi,piW
(h)
m,n,ρ,μ({ki}, {pj})δ

⎛
⎝ m∑
j=1

pj +
2n∑
i=1

(−1)iki

⎞
⎠,

(2.4)

and Eh, Z̃h(k), ṽh(k) and the kernels W (h)
m,n,ρ,μ will be defined recursively.

In order to inductively prove (2.2), we split V(h) as LV(h) +RV(h), where
R = 1−L and L, the localization operator, is a linear operator on functions of
the form (2.4), defined by its action on the kernels W (h)

m,n,ρ,μ in the following
way:

LW (h)
0,1,ρ(k) := W

(h)
0,1,ρ(0) + k∂kW

(h)
0,1,ρ(0),

LW (h)
1,1,ρ,μ(p,k) := W

(h)
1,1,ρ,μ(0,0),

LW (h)
2,0,μ(p) := W

(h)
2,0,μ(0) + p∂pW

(h)
2,0,μ(0),

LW (h)
3,0,μ(p1,p2) := W

(h)
3,0,μ(0,0),

(2.5)

and LW (h)
P := 0 otherwise. As it will be clear from the dimensional analysis

performed in Sect. 2.4 below, these are the only terms that need renormaliza-
tion; in particular, LW (h)

0,1,ρ(k) will contribute to the wave function renormal-

ization and to the effective Fermi velocity, LW (h)
2,0,μ(p) to the effective photon

mass, and LW (h)
1,1,ρ,μ(p,k) to the effective charge.

As a consequence of the symmetries of our model, see Appendix A, it
turns out that

W
(h)
1,0,μ(0) = 0, W

(h)
3,0,μ(0,0) = 0, W

(h)
0,1,ρ(0) = 0,

Ŵ
(h)
2,0,μ(0) = −δμ1,μ2M

hνμ1,h, ∂pŴ
(h)
2,0,μ(0) = 0

(2.6)
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and, moreover, that

ψk k∂kW
(h)
0,1 (0)ψk = −izμ,hkμψkγμψk

ψk+pW
(h)
1,1,μ(0,0)ψkAμ,p = iλμ,hψk+pγμψkAμ,p,

(2.7)

with zμ,h, λμ,h real, and z1,h = z2,h, λ1,h = λ2,h. We can renormalize
P (dψ(≤h)) by adding to the exponent of its gaussian weight the local part
of the quadratic terms in the fermionic fields; we get that∫

P (dψ(≤h))P (dA(≤h))eV(h)(A,
√
Zhψ)

= e|Λ|th
∫
P̃ (dψ(≤h))P (dA(≤h))eṼ(h)(A,

√
Zhψ), (2.8)

where th takes into account the different normalization of the two functional
integrals, Ṽ(h) is given by

Ṽ(h)(A,ψ) = V(h)(A,ψ) +
∫

dk
(2π)3

izμ,hkμψkγμψk

=: V(h)(A,ψ) − LψV(h)(A,ψ), (2.9)

and P̃ (dψ(≤h)) has propagator equal to

g̃(≤h)(k) =
χh(k)
Z̃h−1(k)

iγ0k0 + iṽh−1(k)�k · �γ
k2
0 + ṽh−1(k)2|�k|2

, (2.10)

with

Z̃h−1(k) = Z̃h(k) + Zhz0,hχh(k),

Z̃h−1(k)ṽh−1(k) = Z̃h(k)ṽh(k) + Zhz1,hχh(k).
(2.11)

After this, defining Zh−1 := Z̃h−1(0), we rescale the fermionic field so that

Ṽ(h)(A,
√
Zhψ) = V̂(h)(A,

√
Zh−1ψ); (2.12)

therefore, setting

vh−1 := ṽh−1(0), e0,h :=
Zh
Zh−1

λ0,h, e1,hvh−1 =e2,hvh−1 :=
Zh
Zh−1

λ1,h,

(2.13)

we have that:

LV̂(h)(A(≤h),
√
Zh−1 ψ

(≤h))

=
∫

Λ

dx
(
Zh−1eμ,hj

(≤h)
μ,x A(≤h)

μ,x −Mhνμ,hA
(≤h)
μ,x A(≤h)

μ,x

)
, (2.14)

where

j
(≤h)
0,x := iψ

(≤h)
x γ0ψ

(≤h)
x , �j(≤h)x := ivh−1 ψ

(≤h)
x �γψ(≤h)

x . (2.15)
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After this rescaling, we can rewrite (2.8) as∫
P (dψ(≤h))P (dA(≤h))eV(h)(A,

√
Zhψ) = e|Λ|th

∫
P (dψ(≤h−1))P (dA(≤h−1))

×
∫
P (dψ(h))P (dA(h))eV̂(h)(A(≤h−1)+A(h),

√
Zh−1(ψ

(≤h−1)+ψ(h))), (2.16)

where ψ(≤h−1), A(≤h−1) have propagators given by (2.3) (with h replaced by
h− 1) and ψ(h), A(h) have propagators given by

g(h)(k)
Zh−1

=
f̃h(k)
Zh−1

iγ0k0 + iṽh−1(k)�k · �γ
k2
0 + ṽh−1(k)2|�k|2

, w(h)(p) =
fh(p)
2|p| ,

fh(k) = χh(k) − χh−1(k), f̃h(k) =
Zh−1

Z̃h−1(k)
fh(k).

(2.17)

At this point, we can integrate the scale h and, defining

eV(h−1)(A,
√
Zh−1ψ)+|Λ|Ẽh

:=
∫
P (dψ(h))P (dA(h))eV̂(h)(A+A(h),

√
Zh−1(ψ+ψ(h))), (2.18)

our inductive assumption (2.2) is reproduced at the scale h− 1 with Eh−1 :=
Eh + th + Ẽh. Notice that (2.18) can be seen as a recursion relation for the
effective potential, since from (2.9), (2.12) it follows that

V̂(h)(A,
√
Zh−1ψ) = Ṽ(h)(A,

√
Zhψ)

= V(h)(A,
√
Zhψ) − LψV(h)(A,

√
Zhψ). (2.19)

The integration in (2.18) is performed by expanding in series the exponential
in the r.h.s. (which involves interactions of any order in ψ and A, as apparent
from (2.4)), and integrating term by term with respect to the gaussian inte-
gration P (dψ(h))P (dA(h)). This procedure gives rise to an expansion for the
effective potentials V(h) (and to an analogous expansion for the correlations) in
terms of the renormalized parameters {eμ,k, νμ,k, Zk−1, vk−1}h<k≤0, which can
be conveniently represented as a sum over Feynman graphs according to rules
that will be explained below. We will call {eμ,k, νμ,k}h<k≤0 effective couplings
or running coupling constants while {eμ,k}h<k≤0 are the effective charges.

Note that such renormalized expansion is significantly different from the
power series expansion in the bare couplings e, νμ; while the latter is plagued
by logarithmic divergences, the former is order by order finite.

By comparing (1.1) and (1.2) with (2.2), (2.4) and (2.14), we see that the
integration of the fields living on momentum scales ≥ Mh produces an effective
theory very similar to the original one, modulo the presence of a new propaga-
tor, involving a renormalized velocity vh and a renormalized wave function Zh,
and the presence of a modified interaction V(h). The lack of Lorentz symmetry
in our model (implied by the fact that v �= 1) has two main effects: (1) the
Fermi velocity has a non-trivial flow; (2) the marginal terms in the effective
potential are defined in terms of two charges, namely e0,h and e1,h = e2,h,
which are different, in general.
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2.2. Tree Expansion

The iterative integration procedure described above leads to a representation
of the effective potentials in terms of a sum over connected Feynman diagrams,
as explained in the following. The key formula, which we start from, is (2.18),
which can be rewritten as

|Λ|Ẽh + V(h−1)(A(≤h−1),
√
Zh−1 ψ

(≤h−1))

=
∑
n≥1

1
n!

ETh
(
V̂(h)(A(≤h),

√
Zh−1ψ

(≤h));n
)
, (2.20)

with ETh the truncated expectation on scale h, defined as

ETh (X(A(h), ψ(h));n) :=
∂n

∂λn
log
∫
P (dψ(h))P (dA(h))eλX(A(h),ψ(h))

∣∣∣
λ=0

(2.21)

If X is graphically represented as a vertex with external lines A(h) and ψ(h),
the truncated expectation (2.21) can be represented as the sum over the
Feynman diagrams obtained by contracting in all possible connected ways
the lines exiting from n vertices of type X. Every contraction corresponds to
a propagator on scale h, as defined in (2.17). Since V̂(h) is related to V(h) by
a rescaling and a subtraction, see (2.9) and (2.12), Eq. (2.20) can be iterated
until scale 0, and V(h−1) can be written as a sum over connected Feynman
diagrams with lines on all possible scales between h and 0. The iteration of
(2.20) induces a natural hierarchical organization of the scale labels of every
Feynman diagram, which will be conveniently represented in terms of tree dia-
grams. In fact, let us rewrite V̂(h) in the r.h.s. of (2.20) as V̂(h)(A,

√
Zh−1ψ) =

LV(h)(A,
√
Zhψ) + RV(h)(A,

√
Zhψ), where L := L − Lψ, see (2.9). Let us

graphically represent V(h), LV(h) and RV(h) as in the first line of Fig. 1, and
let us represent Eq. (2.20) as in the second line of Fig. 1; in the second line, the
node on scale h represents the action of ETh . Iterating the graphical equation
in Fig. 1 up to scale 0, we end up with a representation of V(h) in terms of
a sum over Gallavotti–Nicolò trees τ [3,15,16]:

V(h)(A(≤h),
√
Zh ψ

(≤h)) =
∑
N≥1

∑
τ∈Th,N

V(h)(τ), (2.22)

= +
h − 1 h

h
= , =

h
, =

h

+ + + ...
hhh1−h 1−h1−h

V(h−1)

V(h) V(h) V(h)
_

Figure 1. Graphical interpretation of Eq. (2.20). The graph-
ical equations for LV(h−1), RV(h−1) are obtained from the
equation in the second line by putting an L, R label, respec-
tively, over the vertices on scale h
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=V(h − 1)

trees

h − 1 h h
v

1

v

v0

Figure 2. The effective potential V(h−1) can be represented
as a sum over Gallavotti–Nicolò trees. The black dots will be
called vertices of the tree. All the vertices except the first (i.e.
the one on scale h) have an R label attached, which means
that they correspond to the action of REThv , while the first rep-
resents ETh . The endpoints correspond to the graph elements
in Fig. 3 associated to the two terms in (2.14)

e)

Figure 3. The two possible graph elements associated to the
endpoints of a tree, corresponding to the two terms in the
r.h.s. of (2.14)

where Th,N is the set of rooted trees with root r on scale hr = h and N end-
points, see Fig. 2. The tree value V(h)(τ) can be evaluated in terms of a sum
over connected Feynman diagrams, defined by the following rules.

With each endpoint v of τ we associate a graph element of type e or ν,
corresponding to the two terms in the r.h.s. of (2.14), see Fig. 3. We intro-
duce a field label f to distinguish the fields associated to the graph elements
e and ν (any field label can be either of type A or of type ψ); the set of field
labels associated with the endpoint v will be called Iv. Analogously, if v is not
an endpoint, we call Iv the set of field labels associated with the endpoints
following the vertex v on τ .

We start by looking at the graph elements corresponding to endpoints of
scale 1: we group them in clusters, each cluster Gv being the set of endpoints
attached to the same vertex v of scale 0, to be graphically represented by a box
enclosing its elements. For any Gv of scale 0 (associated to a vertex v of scale 0
that is not an endpoint), we contract in pairs some of the fields in ∪w∈GvIw, in
such a way that after the contraction the elements of Gv are connected; each
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− 2 − 1 0 1

0
− 1

v0

Figure 4. A possible Feynman diagram contributing to
V (−2) and its cluster structure

contraction produces a propagator g(0) or w(0), depending on whether the two
fields are of type ψ or of type A. We denote by Iv the set of contracted fields
inside the box Gv and by Pv = Iv\Iv the set of external fields of Gv; if v is not
the vertex immediately following the root we attach a label R over the box
Gv, which means that the R operator, defined after (2.4), acts on the value of
the graph contained in Gv. Next, we group together the scale 0 clusters into
scale-(−1) clusters, each scale-(−1) cluster Gv being a set of scale 0 clusters
attached to the same vertex v of scale −1, to be graphically represented by a
box enclosing its elements, see Fig. 4.

Again, for each v of scale −1 that is not an endpoint, if we denote by
v1, . . . , vsv the vertices immediately following v on τ , we contract some of the
fields of ∪svi=1Pvi in pairs, in such a way that after the contraction the boxes
associated to the scale 0 clusters contained in Gv are connected; each contrac-
tion produces a propagator g(−1) or w(−1). We denote by Iv the set of fields
in ∪svi=1Pvi contracted at this second step and by Pv = ∪svi=1Pvi\Iv the set of
fields external to Gv; if v is not the vertex immediately following the root we
attach a label R over the box Gv (Table 1).

Now, we iterate the construction, producing a sequence of boxes into
boxes, hierarchically arranged with the same partial ordering as the tree τ .
Each box Gv is associated to many different Feynman (sub-)diagrams, con-
structed by contracting in pairs some of the lines external to Gvi , with vi,
i = 1, . . . , sv, the vertices immediately following v on τ ; the contractions are
made in such a way that the clusters Gv1 , . . . , Gvsv are connected through
propagators of scale hv. We denote by PAv and by Pψv the set of fields of type
A and ψ, respectively, external to Gv. The set of connected Feynman dia-
grams compatible with this hierarchical cluster structure will be denoted by
Γ(τ). Given these definitions, we can write:

V(h)(τ) =
∑

G∈Γ(τ)

∫ ∏
f∈Pψv0

dkf
(2π)3

∏
f∈PAv0

dpf
(2π)3

Val(G),

Val(G) =

⎡
⎣ ∏
f∈PAv0

A
(≤h)
μ(f),pf

⎤
⎦
⎡
⎣ ∏
f∈Pψv0

√
Zh−1 ψ̃

(≤h)
kf ,ρ(f)

⎤
⎦ δ(v0)V̂al(G),

(2.23)
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Table 1. List of the symbols introduced in Sects. 2.2, 2.4

Symbol Description

τ Gallavotti–Nicolò (GN) tree
r Root label of the tree
v0 First vertex of the tree, immediately following the root
hv Scale label of the tree vertex v
Th,N Set of GN trees with root on scale hr = h and with N endpoints
Iv Set of field labels associated with the endpoint of the tree v
Gv Cluster associated with the tree vertex v
Iv Set of contracted fields inside the box corresponding to the cluster Gv

Pv Set of external fields of Gv

vi i-th vertex immediately following v on the tree
sv Number of vertices immediately following the vertex v on the tree

P#
v Set of fields of type # = A,ψ external to Gv

Γ(τ) Set of connected Feynman diagrams compatible with the hierarchical cluster
structure of the tree τ

n0
v Number of propagators contained in Gv but not in any smaller cluster
mν

v Number of end-points of type ν immediately following v on the tree
v′ Vertex immediately preceding v on the tree

n#
v Number of vertices of type # = e, ν following v on the tree
zv Improvement on the scaling dimension due to the renormalization

V̂al(G) = (−1)π
∫ ∏

v not e.p.

(
Zhv−1

Zhv−2

) |Pψv |
2 Rαv

sv!

×

⎡
⎢⎢⎢⎢⎣
(∏
�∈v

g
(hv)
�

)
⎛
⎜⎜⎜⎜⎝

∏
v∗ e.p.
v∗>v,

hv∗=hv+1

K
(hv)
v∗

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

where (−1)π is the sign of the permutation necessary to bring the contracted
fermionic fields next to each other; in the product over f ∈ Pψv , ψ̃ can be
either ψ or ψ, depending on the specific field label f ; δ(v0) = δ(

∑
f∈PAv0

pf −∑
f∈Pψv0

(−1)ε(f)kf ), where ε(f) = ± depending on whether ψ̃ is equal to ψ or
ψ; the integral in the third line runs over the independent loop momenta; sv is
the number of vertices immediately following v on τ ; R = 1−L is the operator
defined in (2.5) and preceding lines); αv = 0 if v = v0, and otherwise αv = 1;
g
(k)
� is equal to g(k) or to w(k) depending on the fermionic or bosonic nature

of the line �, and � ∈ v means that � is contained in the box Gv but not in any
other smaller box; finally, K(k)

v∗ is the matrix associated to the endpoints v∗ on
scale k + 1 (given by ie0,kγ0 if v∗ is of type (a) with label ρ = 0, by iej,kvkγj
if v∗ is of type e with label ρ = j ∈ {1, 2}, or by −Mkνμ,k if v∗ is of type ν. In
(2.23) it is understood that the operators R act in the order induced by the
tree ordering (i.e., starting from the endpoints and moving toward the root);
moreover, the matrix structure of g(k)

� is neglected, for simplicity of notations.
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h

kk

h − 1 h h + 1 h + 2

h + 1

e

e

e

v0

v1

e

Figure 5. A possible Feynman diagram contributing to
V(h−1) and its cluster structure

2.3. An Example of Feynman Graph

To be concrete, let us apply the rules described above in the evaluation of a
simple Feynman graph G arising in the tree expansion of V(h−1). Let G be the
diagram in Fig. 5, associated to the tree τ drawn in the left part of the figure;
let us assume that the sets Pv of the external lines associated to the vertices
of τ are all assigned. Setting

e0,h := e0,h , ēj,h := vh−1ej,h, (2.24)

we can write:

Val(G) = − 1
4!2!

Zh
Zh−1

Zh−1

Zh−2
ē2μ1,hē

2
μ2,h+1M

hνμ1,hψk

×
{∫

dp
(2π)3

|w(h)(p)|2γμ1g
(h)(k + p)

×R
[∫

dq
(2π)3

γμ2g
(h+1)(k + p + q)γμ2w

(h+1)(q)
]

× g(h)(k + p)γμ1

}
ψk, (2.25)

where R [F (k + p)] = F (k + p) − F (0) − (k + p) · ∇F (0) ≡ 1
2 (kμ + pμ)(kν +

pν)∂μ∂νF (k∗). Notice that the same Feynman graph appears in the evalua-
tion of other trees, which are topologically equivalent to the one represented
in the left part of Fig. 5 and that can be obtained from it by: (i) relabeling
the fields in Pv1 , Pv0 , (ii) relabeling the endpoints of the tree, (iii) exchanging
the relative positions of the topologically different subtrees with root v0. If
one sums over all these trees, the resulting value one obtains is the one in
Eq. (2.25) times a combinatorial factor 22 · 3 · 4 (22 is the number of ways for
choosing the fields in Pv1 and in Pv0 ; 3 is the number of ways in which one can
associate the label ν to one of the endpoints of scale h + 1; 4 is the number
of distinct unlabeled trees that can be obtained by exchanging the positions
of the subtrees with root v0).

2.4. Dimensional Bounds

We are now ready to derive a general bound for the Feynman graphs produced
by the multiscale integration. Let WN ;(h)

m,n,ρ,μ be the contribution from trees with



Vol. 11 (2010) Anomalous Behavior in an Effective Model of Graphene 1423

N end-points to the kernel W (h)
m,n,ρ,μ in 2.4, i.e.

W (h)
m,n,ρ,μ({ki}, {pj})

=
∞∑
N=1

∑
τ∈Th,N

∗∑
G∈Γ(τ)

|PAv0 |=m,
|Pψv0 |=2n

V̂al(G) ≡
∞∑
N=1

WN ;(h)
m,n,ρ,μ({ki}, {pj}), (2.26)

where the * on the sum indicates the constraints that: ∪f∈PAv0
{pf} =

∪mj=1{pj}; ∪f∈Pψv0
{kf} = ∪2n

i=1{ki}; ∪f∈PAv0
{μ(f)} = μ; ∪f∈Pψv0

{ρ(f)} = ρ.
TheN -th order contribution to the kernel of the effective potential admits

the following bound.

Theorem 2.1. (N ! bound) Let ε̄h = maxh<k≤0{|eμ,k|, |νμ,k|} be small enough.
If Zk/Zk−1 ≤ eCε̄

2
h and C−1 ≤ vk−1 ≤ 1, for all h < k ≤ 0 and a suitable

constant C > 0, then

||WN ;(h)
m,n,ρ,μ|| ≤ (const.)N ε̄Nh

(
N

2

)
Mh(3−m−2n), (2.27)

where ||WN ;(h)
m,n,ρ,μ|| := sup{ki},{pj} |WN ;(h)

m,n,ρ,μ({ki}, {pj})|.

The factor 3 − 2n − m in (2.27) is referred to as the scaling dimension
of the kernel with 2n external fermionic fields and m external bosonic fields;
according to the usual RG terminology, kernels with positive, vanishing or
negative scaling dimensions are called relevant, marginal or irrelevant opera-
tors, respectively. Notice that, if we tried to expand the effective potential in
terms of the bare couplings e, νμ, the N -th order contributions in this “naive”
perturbation series could not be bounded uniformly in the scale h as in (2.27),
but rather by the r.h.s. of (2.27) times |h|N , an estimate which blows up order
by order as h → −∞ (Table 1).

Proof. Using the bounds∥∥∥g(h)(k)
∥∥∥ ≤ const ·M−h,

∫
dk
∥∥∥g(h)(k)

∥∥∥ ≤ const ·M2h,

∣∣∣w(h)(k)
∣∣∣ ≤ const ·M−h,

∫
dk
∣∣∣w(h)(k)

∣∣∣ ≤ const ·M2h,

(2.28)

and the assumptions on vk−1 and Zk/Zk−1 into (2.23), we find that, if τ ∈ Th,N
and G ∈ Γ(τ),

|V̂al(G)| ≤ (const.)N ε̄Nh
∏

v not e.p.

e
C
2 ε̄

2
h|Pψv |

sv!
M−3hv(sv−1)M2hvn

0
vMhvm

ν
v

×
∏

v not e.p.
v>v0

M−zv(hv−hv′ ), (2.29)

where n0
v is the number of propagators � ∈ v, i.e., of propagators � contained

in the box Gv but not in any smaller cluster; sv is the number of vertices
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immediately following v on τ ; mν
v is the number of end-points of type ν imme-

diately following v on τ (i.e., contained in Gv but not in any smaller cluster);
v′ is the vertex immediately preceding v on τ and zv = 2 if |Pψv | = |Pv| = 2,
zv = 1 is |Pψv | = 2|PAv | = 2 and zv = 0 otherwise. The last product in
(2.29) is due to the action of R on the vertices v > v0 that are not end-
points. In fact, the operator R, when acting on a kernel W (hv)

1,1 (p,k) associ-

ated to a vertex v with |Pψv | = 2|PAv | = 2, extracts from W
(hv)
1,1 the rest of

first order in its Taylor expansion around p = k = 0: if |W (hv)
1,1 (p,k)| ≤ C(v),

then |RW (hv)
1,1 (p,k)| = 1

2 |(p∂p+k∂k)W (hv)
1,1 (p∗,k∗)| ≤ (const.)M−hv+hv′C(v),

where M−hv is a bound for the derivative with respect to momenta on scale hv
and Mhv′ is a bound for the external momenta p, k; i.e., R is dimensionally
equivalent toM−(hv−hv′ ). The same is true if R acts on a kernelW (hv)

3,0 (p1,p2).
Similarly, if R acts on a terms with |Pv| = 2, it extracts the rest of second
order in the Taylor expansion around k = 0, and it is dimensionally equivalent
to k2∂2

k ∼ M−2(hv−hv′ ). As a result, we get (2.29).
Now, let nev (nνv) be the number of vertices of type e (of type ν) following

v on τ . If we plug in (2.29) the identities

∑
v not e.p.

(hv − h)(sv − 1) =
∑

v not e.p.

(hv − hv′)(nev + nνv − 1)

∑
v not e.p.

(hv − h)n0
v =

∑
v not e.p.

(hv − hv′)
(

3
2
nev + nνv − |Pv|

2

)
(2.30)

∑
v not e.p.

(hv − h)mν
v =

∑
v not e.p.

(hv − hv′)nνv

we get the bound

|V̂al(G)|

≤(const.)N ε̄Nh
1
sv0 !

Mh(3−|Pv0 |)
∏

v not e.p.
v>v0

e
C
2 ε̄

2
h|Pψv |

sv!
M (hv−hv′ )(3−|Pv|−zv).

(2.31)

In the latter equation, 3 − |Pv| is the scaling dimension of the cluster Gv, and
3−|Pv|−zv is its renormalized scaling dimension. Notice that the renormaliza-
tion operator R has been introduced precisely to guarantee that 3−|Pv|−zv <
0 for all v, by construction. This fact allows us to sum over the scale labels
h ≤ hv ≤ 1, and to conclude that the perturbative expansion is well defined
at any order N of the renormalized expansion. More precisely, the fact that
the renormalized scaling dimensions are all negative implies, via a standard
argument (see, e.g., [3,16]), the following bound, valid for a suitable constant
C (see (2.27) for a definition of the norm ‖ · ‖):
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||WN ;(h)
m,n,ρ,μ|| ≤ (const.)N ε̄Nh

1
sv0 !

Mh(3−m−2n)

×
∑

τ∈Th,N

∑
G∈Γ(τ)

|PAv0 |=m,
|Pψv0 |=2n

∏
v not e.p.
v>v0

e
C
2 ε̄

2
h|Pψv |

sv!
M (hv−hv′ )(3−|Pv|−zv), (2.32)

from which, after counting the number of Feynman graphs contributing to the
sum in (2.32), (2.27) follows. �

An immediate corollary of the proof leading to (2.27) is that contributions
from trees τ ∈ Th,N with a vertex v on scale hv = k > h admit an improved
bound with respect to (2.27), of the form ≤ (const.)N ε̄Nh (N/2)!Mh(3−|Pv0 |)

Mθ(h−k), for any 0 < θ < 1; the factor Mθ(h−k) can be thought of as a
dimensional gain with respect to the “basic” dimensional bound in (2.27).
This improved bound is usually referred to as the short memory property (i.e.,
long trees are exponentially suppressed); it is due to the fact that the renor-
malized scaling dimensions dv = 3 − |Pv| − zv in (2.31) are all negative, and
can be obtained by taking a fraction of the factors M (hv−hv′ )dv associated to
the branches of the tree τ on the path connecting the vertex on scale k to the
one on scale h.

Remark. All the analysis above is based on the fact that the scaling dimension
3 − |Pv| in (2.31) is independent of the number of endpoints of the tree τ ; i.e.,
the model is renormalizable. A rather different situation is found in the case
of instantaneous Coulomb interactions, in which case the bosonic propagator
is given by (2|�p|)−1 rather than by (2|p|)−1. In this case, choosing the bosonic
single scale propagator as w(h)(p) = χ0(p)fh(�p)(2|�p|)−1, one finds that the
last bound in (2.28) is replaced by

∫
dp
∣∣w(h)(p)

∣∣ ≤ (const.)Mh (dimension-
ally, this bound has a factor Mh missing). Repeating the steps leading to
(2.31), one finds a general bound valid at all orders, in which the new scaling
dimension is 3 − |Pv| +nev +nνv ; this (pessimistic) general bound assumes that
at each scale the loop lines of the graph are all bosonic. Perhaps, this bound
can be improved, by taking into account the explicit structure of the expan-
sion; however, it shows that the renormalizability of the instantaneous case, if
true, does not follow from purely dimensional considerations and its proof will
require the implementation of suitable cancellations.

2.5. The Schwinger Functions

A similar analysis can be performed for the two-point function, see Appen-
dix B. It turns out that, similarly to what we found above for the effective
potentials, the two-point function can be written in terms of a renormalized
perturbative expansion in the effective couplings {eμ,k, νμ,k}k≤0 and in the
renormalization constants {Zk, vk}k≤0, with coefficients represented as sums
of Feynman graphs, uniformly bounded as |Λ| → ∞; in contrast, the graphs
forming the naive expansion in e, νμ are plagued by logarithmic infrared diver-
gences.
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More explicitly, if Mh ≤ |k| ≤ Mh+1, we get (see Eqs. B.10–B.13):

〈ψkψk〉 =
h+1∑
j=h

g(j)(k)
Zj−1

(
1 + B̃(k)

)
, (2.33)

where B̃(k) is given by a formal power series in {eμ,k, νμ,k}k≤0 with coefficients
depending on {Zk, vk}k≤0, and starting from second order; under the same
hypothesis of Theorem 2.1, the N -th order contribution to B̃(k) is bounded
by (const.)N (ε̄−∞)N (N/2)! uniformly in k. Eq. (2.33) is equivalent to Eq. (1.7)
of the main result (see the end of Section 3.3 below for the explicit relation
between Zh, vh and Z(k), v(k)).

To prove our main result we need to control the flow of the effective
charges at all orders in perturbation theory, and to do this we shall use Ward
Identities, see Sect. 4. These are non-trivial relations for the three-point func-
tions, which can be related to the renormalized charges in the following way.
Consider a theory with a bosonic infrared cutoff Mh∗ , that is assume that the
bare bosonic propagator is given by (1.5) with χ0(p) replaced by χ[h∗,0](p) :=
χ0(p)−χ0(M−h∗

p), which is vanishing for |p| ≤ Mh∗ and it is equal to χ0(p)
for |p| ≥ Mh∗+1; denote by 〈. . .〉h∗ the expectation value in the presence of
the bosonic infrared cutoff. As shown in Appendix B, setting ē0,h := e0,h,
ē1,h = ē2,h := vh−1e1,h, and taking |q| = Mh∗

, |q + p| ≤ Mh∗
, |p| � Mh∗

(we will be interested in the limit p → 0), the following result holds (see
Eqs. B.14–B.16):

〈jμ,−p;ψq+pψq〉
h∗

= iZh∗−1
ēμ,h∗

e
〈ψq+pψq+p〉

h∗
(
γμ + B̄μ,h∗(p,q)

)
〈ψqψq〉

h∗ , (2.34)

where B̄μ,h∗ is given by a formal power series in {eμ,k, νμ,k}h∗<k≤0, starting
from second order and with the N -th order of the series admitting a bound
proportional to (ε̄h∗)N (N/2)!, uniformly in k. Eq. (2.34) is one of the two
desired equations relating the three-point function to the two-point function
and the effective charge eμ,h∗ . A second independent equation expressing the
three-point function in terms of the two-point function and of the bare charge
e will be derived in Sect. 4, see (4.4), using the (approximate) gauge invariance
of the theory. Combining the two equations we will be able to relate eμ,h∗ to
the bare charge e, for all h∗ < 0, and this will allows us to control the flow of
the effective couplings on all infrared scales. This procedure will be described
in detail in the next two sections.

3. The Flow of the Effective Couplings

3.1. The Beta Function

A crucial point for the consistency of our approach is that the running cou-
pling constants eμ,h, νμ,h are small for all h ≤ 0, that the ratios Zh/Zh−1 are
close to 1, and the effective Fermi velocity vh does not approach zero. Even if
we do not prove the convergence of the series but only N ! bounds, we expect
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that our series gives meaningful information only as long as the running cou-
pling constants satisfy these conditions. In this section we describe how to
control their flow. We shall proceed by induction: we will first assume that
ε̄ = maxk≤0{|eμ,k|} is small, that Zh/Zh−1 ≤ eCε̄

2
and C−1 ≤ vh ≤ 1 for

all h ≤ 0 and a suitable constant C > 0, and we will show that, by properly
choosing the values of the counterterms νμ in (1.2), the constants νμ,h remain
small: maxh≤0{|νμ,h|} ≤ (const.) ε̄2. Next, once that the flow of νμ,h is con-
trolled, we will study the flow of Zh and vh under the assumption that the
constants eμ,h remain bounded and small for all h ≤ 0; we will show that,
asymptotically as h → −∞, Zh ∼ M−ηh, with η = O(e2) a positive exponent,
while vh grows, approaching a limiting value veff close to the speed of light.
Finally, we shall start to discuss the remarkable cancellations following from
a Ward Identity that guarantee that the constants eμ,h remain bounded and
small for all h ≤ 0; the full proof of this fact will be postponed to Sect. 4 and
Appendix D.

The renormalized parameters obey to recursive equations induced by the
previous construction; i.e., (2.6), (2.7), (2.11), (2.13) imply the flow equations:

Zh−1

Zh
= 1 + z0,h := 1 + βzh, vh−1 =

Zh
Zh−1

(vh + z1,h) := vh + βvh (3.1)

νμ,h = −M−hW
(h)
2,0,μ,μ(0) := Mνμ,h+1 + βνμ,h+1, (3.2)

e0,h =
Zh
Zh−1

λ0,h := e0,h+1 + βe0,h+1, (3.3)

e1,h =
Zh
Zh−1

λ1,h

vh−1
:= e1,h+1 + βe1,h+1, (3.4)

and e2,h = e1,h. The beta functions appearing in the r.h.s. of flow equations are
related, see (2.7), to the kernels WN ;(h)

m,n,ρ,μ, so that they are expressed by series
in the running coupling constants admitting the bound (2.27). For the explicit
expressions of the one-loop contributions to the beta function, see below.

3.2. The Flow of νμ,h

Let us assume that ε̄ = maxk≤0{|eμ,k|} is small, that Zh/Zh−1 ≤ eC ε̄
2

and
C−1 ≤ vh ≤ 1 for a suitable constant C, for all h ≤ 0. Under these assump-
tions, the flow of νμ,h can be controlled by suitably choosing the counterterms
νμ; in fact, if νμ is chosen as

νμ = −
0∑

k=−∞
Mk−1βνμ,k, (3.5)

then the effective coupling νμ,h is

νμ,h = −
h∑

k=−∞
M−h−1+kβνμ,k, (3.6)

from which one finds that νμ,h can be expressed by a series in {eμ,k}k≤0, start-
ing at second order and with coefficients bounded uniformly in h. At lowest
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order, if h < 0 and setting ξh :=
√

1−v2h
vh

(see Appendix C):

β
ν,(2)
0,h = −(M − 1)

e20,hv
−2
h

π2

[
ξh − arctan ξh

ξ3h

] ∞∫

0

dt
(
2χ(t) − χ2(t)

)
(3.7)

β
ν,(2)
1,h = −(M − 1)

e21,h
2π2

[
arctan ξh

ξh
− ξh − arctan ξh

ξ3h

]

×
∞∫

0

dt
(
2χ(t) − χ2(t)

)
. (3.8)

By the above equations we see that lowest order contributions to νμ are
positive, that is νμ can be interpreted as bare photon masses. Using the
short memory property and symmetry considerations, one can also show that
βν0,h − βν1,h is a sum of graphs whose contributions are of the order O(1 − vh)
or O(e0,h − e1,h).

3.3. The Flow of Zh and vh

In this section we show that, under proper assumptions on the flow of the effec-
tive charges, the effective Fermi velocity vh tend to a limit value veff = v−∞
and that both veff − vh and Z−1

h vanish as h → −∞ with an anomalous power
law.

Let us assume that the effective charges tend to a line of fixed points:

eμ,h = eμ,−∞ +O(e3(v−∞ − vh)) +O(e3Mθh), (3.9)

with 0 < θ < 1 and eμ,−∞ = e+O(e3); this is a remarkable property that will
be proven order by order in perturbation theory using WIs, see the following
section. Moreover, let νμ be fixed as in the previous subsection (under the
proper inductive assumptions on Zk and vk).

We start by studying the flow of the Fermi velocity. At lowest order (see
Appendix C), its beta function reads:

β
v,(2)
h =

logM
4π2

[
e20,hv

−1
h

2
arctan ξh

ξh
−
(

2e21,hvh−
e20,hv

−1
h

2

)
ξh−arctan ξh

ξ3h

]
.

(3.10)

Note that if e0,k := e1,k, then the r.h.s. of (3.10) is strictly positive for all
ξh > 0 and it vanishes quadratically in ξh at ξh = 0. The higher order con-
tributions to βvh have similar properties. This can be proved as follows: we
observe that the beta function βvh is a function of the renormalized couplings
and of the Fermi velocities on scales ≥ h, i.e.:

βvh = βvh

(
{(e0,k, e1,k, e2,k) , (ν0,k, ν1,k, ν2,k), vk}k≥h

)
. (3.11)
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We can rewrite βvh as βv,relh + βv,1h + βv,2h + βv,3h , with:

βv,relh = βvh

(
{(e0,k, e0,k, e0,k), (ν0,k, ν0,k, ν0,k), 1}k≥h

)
,

βv,1h = βvh

(
{(e0,k, e0,k, e0,k), (ν0,k, ν0,k, ν0,k), vk}k≥h

)

−βvh

(
{(e0,k, e0,k, e0,k), (ν0,k, ν0,k, ν0,k), 1}k≥h

)
,

βv,2h = βvh

(
{(e0,k, e0,k, e0,k), (ν0,k, ν1,k, ν2,k), vk}k≥h

)
(3.12)

−βvh

(
{(e0,k, e0,k, e0,k), (ν0,k, ν0,k, ν0,k), vk}k≥h

)
,

βv,3h = βvh

(
{(e0,k, e1,k, e2,k), (ν0,k, ν1,k, ν2,k), vk}k≥h

)

−βvh

(
{(e0,k, e0,k, e0,k), (ν0,k, ν1,k, ν2,k), vk}k≥h

)
.

By relativistic invariance it follows that βv,relh = 0 and by the short memory
property (see discussion after Eq. (2.32)) we get:

βv,1h = O
(
e20,h(1 − vh)

)
,

βv,2h = O
(
e20,h(ν0,h − ν1,h)

)
, (3.13)

βv,3h = O (e0,h(e0,h − e1,h)) .

Using (3.6) and an argument similar to the one leading to Eq. (3.13), we
also find that ν0,h − ν1,h can be written as a sum of contributions of order
e0,h(e0,h − e1,h) and of order e20,h(1 − vh). Therefore, we can write:

vh−1

vh
= 1 +

logM
4π2

[
8
5
e2(1 − vh)(1 +A′

h) +
4
3
e(1 +B′

h)(e0,h − e1,h)
]
, (3.14)

where the numerical coefficients are obtained from the explicit lowest order
computation (3.10); A′

h is a sum of contributions that are finite at all orders
in the effective couplings, which are either of order two or more in the effective
charges, or vanishing at vk = 1; similarly, B′

h is a sum of contributions that
are finite at all orders in the effective couplings, which are of order two or more
in the effective charges. From (3.14) it is apparent that vh tends as h → −∞
to a limit value

veff = 1 +
5
6e

(e0,−∞ − e1,−∞)(1 + C ′
−∞) (3.15)

with C ′
−∞ a sum of contributions that are finite at all orders in the effec-

tive couplings, which are of order two or more in the effective charges. The
fixed point (3.15) is found simply by requiring that in the limit h → −∞ the
argument of the square brackets in (3.14) vanishes.

Using Eq. (3.9), we find that the expression in square brackets in the r.h.s.
of (3.14) can be rewritten as (8e2/5)(veff − vh +R′

h)(1 +A′′
h), where (i) A′′

h is
a sum of contributions that are finite at all orders in the effective couplings,
which are either of order two or more in the effective charges, or vanishing at
vk = veff ; (ii) R′

h is a sum of contributions that are finite at all orders in the
effective couplings, which are of order two or more in the effective charges and



1430 A. Giuliani et al. Ann. Henri Poincaré

are bounded at all orders by Mθh, for some 0 < θ < 1. Therefore, (3.14) can
be rewritten as

veff − vh−1 = (veff − vh)
(

1 − vh
veff − vh +R′

h

veff − vh
logM

2e2

5π2
(1 +A′′

h)
)
, (3.16)

from which, using the fact that R′
h = O(e2Mθh), we get that there exist two

positive constants C1, C2 such that 1:

C1M
hη̃ ≤ veff − vh

veff − v
≤ C2M

hη̃, (3.17)

with

η̃ = − logM

[
1 − veff logM

2e2

5π2

(
1 +A′′

−∞
)]

; (3.18)

at lowest order, Eq. (3.18) gives η̃(2) = 2e2/(5π2).
Similarly C1M

ηh ≤ Zh ≤ C2M
ηh for two suitable positive constants

C1, C2, with η = limh→−∞ logM (1+ z0,h); at lowest order we find (see Appen-
dix C):

β
z,(2)
h =

logM
4π2

(2e21,h − e20,hv
−2
h )

ξh − arctan ξh
ξ3h

, (3.19)

so that η(2) = e2

12π2 .
Before we conclude this section, let us briefly comment about the relation

between Zh, vh and the functions Z(k) and v(k) appearing in the main result,
see (1.6). If |k| = Mh, we define Z(k) = Zh and v(k) = vh; for general |k| ≤ 1,
we let Z(k) and v(k) be smooth interpolations of these sequences. Of course,
we can choose these interpolations in such a way that, if Mh ≤ |k| ≤ Mh+1,∣∣∣∣Z(k)

Zh
− 1
∣∣∣∣ ≤
∣∣∣∣Zh+1

Zh
− 1
∣∣∣∣ = O(η logM),

∣∣∣∣v(k) − vh
veff − vh

∣∣∣∣ ≤
∣∣∣∣vh+1 − vh
veff − vh

∣∣∣∣ = O(η̃ logM).
(3.20)

Therefore, we can replace in the leading part of the two-point Schwinger func-
tion (2.33) the wave function renormalization Zj and the effective Fermi veloc-
ity vj by Z(k) and v(k), provided that the correction term B̃(k) in (2.33) is
replaced by a quantity B(k) defined so to take into account higher order cor-
rections satisfying the bounds (3.20). This leads to the main result Eq. (1.6).

3.4. The Flow of the Effective Charges at Lowest Order

The physical behavior of the system is driven by the flow of eμ,h; in the fol-
lowing section, using a WI relating the three- and two-point functions, we
will show that eμ,h remain close to their initial values for all scales h ≤ 1
and limh→−∞ eμ,h = eμ,−∞ = e+ Fμ, where Fμ can be expressed as series in
the renormalized couplings starting at third order in the effective charges. In

1 Equation (3.17) must be understood as an order by order inequality: if we truncate the
theory at order N in the bare coupling e, both sides of the inequality in Eq. (3.17) are
verified asymptotically as e → 0, for all N ≥ 1.
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perturbation theory, this fact follows from non-trivial cancellations that are
present at all orders. For illustrative purposes, here we perform the lowest
order computation in non-renormalized perturbation theory, in the presence
of an infrared cutoff on the bosonic propagator χ[h,0](p) = χ0(p)−χ0(M−hp);
at this lowest order, such a “naive” computation gives the same result as the
renormalized one; for the full computation, see next section and Appendix D.
If

(γ̄0, γ̄1, γ̄2) := (γ0, vγ1, vγ2), (k̄0, k̄1, k̄2) := (k0, vk1, vk2), (3.21)

the effective charges on scale h at third order are given by:(
e
(3)
μ,h − e

)
γμ

= ie3
∫

dk
(2π)3

χ[h,0](k)
2|k|

[
γ̄νg

(≤0)(k)iγμg(≤0)(k)γ̄ν+γ̄ν∂k̄μg
(≤0)(k)γ̄ν

]

(3.22)

where the first term in square brackets is the vertex renormalization, while the
second term is due to the wave function and velocity renormalizations. Note
that both integrals are well defined in the ultraviolet (thanks to the presence
of an ultraviolet cutoff in the propagators), while for h → −∞ they are loga-
rithmically divergent in the infrared. However, a remarkable cancellation takes
place between the two integrals; in fact:

g(≤0)(k)iγμg(≤0)(k) + ∂k̄μg
(≤0)(k)

=
∂k̄μχ0(k)

i�k + χ0(k) (χ0(k) − 1)
1
i�k iγμ

1
i�k , (3.23)

with �k := k0γ0 + v�k · �γ, so that

e
(3)
0,h = e+ ie3

∫
dk

(2π)3
γ̄μ

1
i�k γ̄μ

k0

2|k|2χ
′
0(k)χ[h,0](k) +O

(
e3(M − 1)

)

(3.24)

e
(3)
1,h = e+

ie3

v

∫
dk

(2π)3
γ̄μ

1
i�k γ̄μ

k1

2|k|2χ
′
0(k)χ[h,0](k) +O

(
e3(M − 1)

)
.

Notice that the cancellation does not depend on the presence of the bosonic
IR cutoff; this fact will play an important role in the analysis at all orders
of the flow of the effective charges, see next section. An explicit computation
of (3.24) says that, at third order in e,

e
(3)
μ,−∞ = e+ eα(2)

μ , (3.25)

where

α
(2)
0 =

e2

8π2

(
2 − v−2

)(ξ0 − arctan ξ0
ξ30

)
+O(e2(M − 1)), (3.26)

α
(2)
1 =

e2

16π2

1
v2

(
arctan ξ0

ξ0
− ξ0 − arctan ξ0

ξ30

)
+O(e2(M − 1)); (3.27)
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the correction terms O(e2(M−1)) can be made as small as desired, by choosing
0 < M − 1 � 1. Note that the two effective charges are different:

e
(3)
0,−∞ − e

(3)
1,−∞ = − e3

5π2
F (v) +O

(
e3(M − 1)

)
, (3.28)

where F (v) the function defined in (1.9). Combining (3.28) with (3.15) gives
the last equation of (1.8)

Of course, the one-loop computation that we just described does not say
much: if we could not guarantee that a similar cancellation takes place at
all orders there would always be the possibility that higher orders produce a
completely different behavior, e.g. a vanishing or diverging flow for eμ,h, cor-
responding to completely different physical properties of the system. In order
to obtain a control at all orders on eμ,h one needs to combine the multiscale
evaluation of the effective potentials with Ward Identities. This is not a trivial
task: Wilsonian RG methods are based on a multiscale momentum decomposi-
tion which breaks the local gauge invariance, which Ward Identities are based
on. In Sect. 4 below, following a strategy recently proposed and developed in
[6], we will prove (3.25).

Remark. Note the unusual feature that e0,h �= e1,h, an effect due to the pres-
ence of the momentum cut-off and the fact that v �= 1. The discussion of
this and previous sections can be repeated in the case that the bare inter-
action involves two different charges, e0 and e1, describing the couplings of
the photon field with the temporal and spatial components of the current.
If e = (e0 + e1)/2 and e0 − e1 = O(e3), the conclusion is that veff = 1 −
(e2/6π2)F (v) + (5/6)(e0 − e1)/e + O(e4) and it is of course possible to fine
tune the bare parameters e0 and e1 in such a way that e0,−∞ = e1,−∞ and
veff = 1. Note that, in a more realistic model for graphene, describing tight
binding electrons on the honeycomb lattice coupled with a 3D photon field
via a lattice gauge invariant coupling, one expects that e0,−∞ = e1,−∞ and
veff = 1.

4. Ward Identities

In this section we prove that order by order in perturbation theory the effective
charges eμ,h remain close to their original values eμ,0 = e; moreover, we prove
that asymptotically as h → −∞, e0,h �= e1,h, see (3.25)–(3.28). The proof is
based on a suitable combination of the RG methods described in the previous
sections together with Ward Identities; even though the momentum regulari-
zation breaks the local gauge invariance needed to formally derive the WIs, we
will be able, following the strategy of [6], to rigorously take into account the
effects of cutoffs, and to control the corrections generated by their presence.

As anticipated at the end of Sect. 2, we consider a sequence of models,
to be called reference models in what follows, with different infrared bosonic
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cutoffs on scale h, i.e. with bosonic propagator given by:

w[h,0](p) ≡
χ[h,0](p)

2|p| , χ[h,0](p) ≡ χ0(p) − χ0(M−hp) (4.1)

(the idea of introducing an infrared cutoff only in the bosonic sector is bor-
rowed from Adler and Bardeen [1], who used a similar regularization scheme
in order to understand anomalies in quantum field theory). The generating
functional W[h,0](J, φ) of the correlations of the reference model can be eval-
uated following an iterative procedure similar to the one described in Sect. 2
(see Appendix B for details), with the important difference that after the
integration of the scale h we are left with a purely fermionic theory, which
is superrenormalizable: in fact, setting m = 0 in the formula for the scaling
dimension (see lines following (2.27) and recall that for scales smaller than h
the reference model has no bosonic lines) we recognize that the scaling dimen-
sion of this fermionic theory is 3 − 2n, which is always negative once that the
two-legged subdiagrams have been renormalized, see [18,19]. Let us denote by
{e[h]μ,k}k≥h the effective couplings of the reference model; of course, if k ≥ h

e
[h]
μ,k = eμ,k, (4.2)

where {eμ,k}k≤0 are the running coupling constants of the original model. On
the other hand, as proven in Appendix B, the vertex functions 〈jμ,−p;ψk+pψk〉h
of the reference model with bosonic cutoff on scale h computed at external
momenta k, k+p such that |k+p|, |k| � Mh and |p| � Mh are proportional
to the charges e[h]μ,h = eμ,h, see (2.34); therefore, if we get informations on the
vertex functions of the reference models, we automatically infer informations
on the effective couplings of the original model.

Such informations are provided by Ward Identities; by performing the
change of variables ψx → eiαxψx, ψx → e−iαxψx in the generating functional
W[h,0](J, φ) of the reference model and using that the Jacobian of this trans-
formation is equal to 1, see [6], we get:

eW[h,0](J,φ)

=
∫
P (dψ)P[h,0](dA)e−

∫
dxψx(e−iαxDeiαx−D)ψx+V (A,ψ)+B(J,φe−iα), (4.3)

where P[h,0](dA) is the gaussian integration with propagator (4.1) and, if �k =
γ0k0 + v�γ · �k, the pseudo-differential operator D is defined by:

(Dψ)x =
∫

χ(k)>0

dk
(2π)3

eikx

χ0(k)
i�kψk.

If we derive (4.3) with respect to α, φ and φ and then set α = φ = J = 0, we
get the following identity:

pμ〈jμ,−p;ψk+pψk〉h = 〈ψkψk〉h − 〈ψk+pψk+p〉
h

+ Δh(k,p) (4.4)
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where

Δh(k,p) =
∫

dk′

(2π)3
〈ψk′+pC(k′,p)ψk′ ;ψk+pψk〉

h
(4.5)

and

C(k,p) = i�k
(
χ0(k)−1 − 1

)
− i(�k + �p)

(
χ0(k + p)−1 − 1

)
. (4.6)

The correction term Δh(k,p) in (4.4) is due to the presence of the ultraviolet
momentum cut-off, and it can be computed by following a strategy analogous
to the one used to prove the vanishing of the beta function in one-dimensional
Fermi systems [6]. We can write

Δh(k,p) = αμpμ〈jμ,−p;ψk+pψk〉h +
pμ
Zh

Rμ,h(k,p), (4.7)

where the correction Rμ,h(k,p) is dimensionally negligible with respect to the
first term, see Appendix D. More precisely, in Appendix D it is shown that: (i)
Rμ,h(k,p) can be written as a sum over trees with N endpoints of contribu-
tions R(N)

μ,h (k,p); (ii) it is possible to choose αμ in such a way that, under the
same conditions of Theorem 2.1 and if |k| = Mh, |k+p| ≤ Mh and |p| � Mh,

|R(N)
μ,h (k,p)| ≤ (const.)N

(
N

2

)
!M−2hM

h
2 ε̄Nh . (4.8)

An explicit computation, see Appendix D, shows that at lowest order α(2)
μ is

given by (3.26)–(3.27).
Let us now show how to use the previous relations in order to derive

bounds on the effective charges. Let us pick |k| = Mh and |p| � Mh; using
Eqs. (2.33)–(2.34) and the fact that

g(h)(k) − g(h)(k + p) = g(h)(k + p)(ip0γ0 + ivh−1�p · �γ)g(h)(k) + pμr̂μ(k,p),
(4.9)

with r̂μ(k,p) = O(|p|M−3h), we find that

〈ψkψk〉h − 〈ψk+pψk+p〉
h

=
1

Zh−1
g(h)(k + p)(ip0γ0 + ivh−1�p · �γ)g(h)(k)

+
pμ
Zh−1

(r̃μ(k,p) + r̂μ(k,p)) , (4.10)

pμ〈jμ,−p;ψk+pψk〉h =
1

eZh−1
g(h)(k + p)(ie0,hp0γ0 + ivh−1e1,h�p · �γ)

×g(h)(k) +
pμ
Zh−1

rμ(k,p), (4.11)

with |rμ(k,p)|, |r̃μ(k,p)| expressed by sums over trees of order N ≥ 2 of con-
tributions r(N)

μ (k,p), r̃(N)
μ (k,p) bounded by (see Appendix B, formulas (B.13)

and (B.16))

|r(N)
μ (k,p)| + |r̃(N)

μ (k,p)| ≤ (const.)N ε̄Nh

(
N

2

)
!M−2h. (4.12)
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Now, if we plug (4.7) into the Ward identity (4.4), and we use the relations
(4.10)–(4.11), we get an identity that, computed at k = k0 := (Mh,�0) and
p = p0 := (p,�0), after taking the limit p → 0, reduces to:

e0,h
e

(1 − α0) = 1 + iM2h [r̃0(k0,0) +R0,h(k0,0) − (1 − α0)r0(k0,0)] γ0

≡ 1 +A0,h, (4.13)

with A0,h a sum of contributions associated to trees of order N ≥ 2 bounded
at the N -th order by (const.)N (ε̄h)N (N/2)!, as it follows from the estimates
on R0,h, r0, r̃0 (note the crucial point that such estimate is proportional to
(ε̄h)N rather than to (ε̄−∞)N ; this is the main reason why we chose to intro-
duce the infrared cutoff on the bosonic propagator, see the end of Sect. 2.5
and the beginning of this section). Eq. (4.13) combined with (3.26) implies, as
desired, that the effective charge e0,h remains close to e0,0 = e at all orders in
renormalized perturbation theory. Moreover, proceeding as in the derivation of
Eq. (3.13), we find that |A0,h−A0,−∞| = O(e2(veff −vh))+O(e2Mθh), for some
0 < θ < 1, from which we get Eq. (3.9) for μ = 0. Similarly, if k1 := (0,Mh, 0),
we get:

e1,h
e

(1 − α1) =
vh−1

vh
+ iM2hvh−1

× [r̃1(k1,0) +R1,h(k1,0) − (1 − α1)r1(k1,0)] γ1

≡ 1 +A1,h, (4.14)

with A1,h a sum of contributions associated to trees of order N ≥ 2 bounded
at the N -th order by (const.)N (ε̄h)N (N/2)!, which implies that the effective
charge e1,h remains close to e1,0 = e at all orders in renormalized perturbation
theory. Moreover, as in the μ = 0 case, |A1,h − A1,−∞| = O(e2(veff − vh)) +
O(e2Mθh), for some 0 < θ < 1, from which we get Eq. (3.9) for μ = 1.

Equations (4.13) and (4.14) not only imply the boundedness of the effec-
tive charges eμ,h but they also allow us to compute the difference e0,h − e1,h,
asymptotically as h → −∞, at all orders in renormalized perturbation theory.
At lowest order, e(3)0,h−e

(3)
1,h = e(α(2)

0 −α
(2)
1 ), as anticipated in previous section.

5. Conclusions

We considered an effective continuum model for the low energy physics of
single-layer graphene, first introduced by Gonzalez et al. [20]. We analyzed
it by constructive Renormalization Group methods, which have already been
proved effective in the non-perturbative study of several low-dimensional fer-
mionic models, such as one-dimensional interacting fermions [6], or the Hub-
bard model on the honeycomb lattice [18,19]. While in the present case we
are not able yet to prove the convergence of the renormalized expansion,
we can prove that it is order by order finite, see Theorem 2.1 above. Note
that, on the contrary, the power series expansion in the bare couplings is
plagued by logarithmic divergences and, therefore, informations obtained from
it by lowest order truncation are quite unreliable. In perspective, the proof
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of convergence of the renormalized expansion appears to be much more dif-
ficult than the one in [6] or [18,19], due to the simultaneous presence of
bosons and fermions, but it should be feasible (using determinant bounds
for the fermionic sector and cluster expansion techniques for the boson sec-
tor).

A key point of our analysis is the control at all orders of the flow of the
effective couplings: this is obtained via Ward Identities relating three- and two-
point functions, using a technique developed in [6] for the analysis of Luttinger
liquids, in cases where bosonization cannot be applied (like in the presence of
an underlying lattice or of non-linear bands). The Ward Identities have cor-
rections with respect to the formal ones, due to the presence of a fermionic
ultraviolet cut-off. Remarkably, these corrections can be rigorously bounded
at all orders in renormalized perturbation theory (see Sect. 4).

Several questions remain to be understood. First of all, the effective model
we considered is clearly not fundamental: a more realistic model for graphene
should be obtained by considering electrons on the honeycomb lattice coupled
to an electromagnetic field living in the 3D continuum. We believe that a Ren-
ormalization Group analysis, similar to the one we performed here, is possible
also for the lattice model, by combining the techniques and results of [18,19]
with those of the present paper; we expect that the lattice model is asymptotic
to the continuum one considered here, provided that the bare parameters of
the continuum model are properly tuned. Another important open problem
is to understand the behavior of the system in the case of static Coulomb
interactions; this case can be obtained by taking the limit c → ∞ together
with a proper rescaling of the electronic charge in the model with retarded
interactions. However, as discussed in the Remark at the end of Sect. 2.4,
the static case seems to be much more subtle than the one considered in this
paper, since it apparently requires cancellations even to prove renormalizabil-
ity of the theory at all orders. We plan to come back to this case in a future
publication.
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Appendix A. Symmetries

In this Appendix we prove formulas (2.6) and (2.7); to do this, we exploit suit-
able symmetry transformations. We use the following explicit representation
of the euclidean gamma matrices:

γ0 =
(

0 I
−I 0

)
, γ1 =

(
0 iσ2

iσ2 0

)
, γ2 =

(
0 iσ1

iσ1 0

)
, (A.1)
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where σ1 =
(

0 1
1 0

)
and σ2 =

(
0 −i
i 0

)
. It is also useful to define: γ3 =(

0 −iσ3

−iσ3 0

)
, with σ3 =

(
1 0
0 −1

)
, and the corresponding fifth gamma

matrix

γ5 = γ0γ1γ2γ3 =
(
I 0
0 −I

)
, (A.2)

which anticommutes with all the other gamma matrices: {γμ, γ5} = 0, ∀μ =
0, . . . , 3. Finally, given ω ∈ {+,−}, we define the chiral projector Pω := (1 +
ωγ5)/2.

It is straightforward to check that both the gaussian integrations P (dψ),
P (dA) and the interaction V (A,ψ) are invariant under the following symmetry
transformations, which are preserved by the multiscale integration:

(1) Chirality: Pωψk → e−iαωPωψk, ψkP−ω → ψkP−ωe
+iαω , with αω ∈ R

independent of k.
(2) Spatial rotations: ψk → e

θ
4 [γ1,γ2]ψ

R
[1,2]
−θ k

, ψk → ψ
R

[1,2]
−θ k

e− θ
4 [γ1,γ2] and

Aμ,p →
[
R

[1,2]
θ A·,R[1,2]

−θ p

]
μ
, with

R
[1,2]
θ =

⎛
⎝1 0 0

0 cos θ − sin θ
0 sin θ cos θ

⎞
⎠ . (A.3)

The invariance of the model under (2) is a simple consequence of the
fact that

e− θ
4 [γ1,γ2] (γ0, γ1, γ2) e

θ
4 [γ1,γ2]

= (γ0, γ1 cos θ − γ2 sin θ, γ2 cos θ + γ1 sin θ). (A.4)

(3) Complex conjugation: ψk → (−iγ2)ψ−k, ψk → ψ−k(iγ2), Aμ,k →
−Aμ,−k and κ → κ∗, where κ is a generic constant appearing in P (dψ),
P (dA) and/or in V (A,ψ).

(4.a) Horizontal reflections: ψk → (iγ3γ1)ψk̃, ψk → ψk̃(−iγ1γ3) and Aμ,p →
(−1)μAμ,p̃, where k̃ = (k0,−k1, k2).

(4.b) Vertical reflections: ψk → (−iγ2)ψk̃, ψk → ψk̃(iγ2) and Aμ,p →
(−1)δμ,2Aμ,p̃, where k̃ = (k0, k1,−k2).

(5) Particle-hole: ψk → (−γ0γ2)ψ
T

k̃ , ψk → ψT
k̃
γ2γ0, and Aμ,p →

(−1)1−δμ,0Aμ,p̃, where k̃ = (k0,−�k).
(6) Inversion: ψk → γ0γ3ψk̃, ψk → ψk̃γ3γ0 and Aμ,k → (−1)δμ,0Aμ,p̃,

where k̃ = (−k0,�k).
In addition to the previous symmetries, if v = c = 1 the theory has an
additional space–time invariance, namely:
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(7) Relativistic invariance: ψk → e
θ
4 [γ0,γ1]ψ

R
[0,1]
−θ k

, ψk → ψ
R

[0,1]
−θ k

e− θ
4 [γ0,γ1]

and Aμ,p →
[
RθA·,R−1

θ p

]
μ
, with

R
[0,1]
θ =

⎛
⎝cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞
⎠. (A.5)

The invariance of the model under (7) is a simple consequence of the remark
that

e− θ
4 [γ0,γ1] (γ0, γ1, γ2) e

θ
4 [γ0,γ1] =(γ0 cos θ−γ1 sin θ, γ1 cos θ+γ0 sin θ, γ2). (A.6)

It is now straightforward to check that these symmetries imply (2.6), (2.7).
In fact, the first two identities in the first line of (2.6) and the second iden-
tity in the second line of (2.6) easily follow from (4.a) + (4.b) + (6). Using
(4.a) + (4.b) + (6) we also find that

W
(h)
2,0,μ,ν(0) = δμνW

(h)
2,0,μ,μ(0), (A.7)

while, from (2) + (3), we get

W
(h)
2,0,1,1(0) = W

(h)
2,0,2,2(0), W

(h)
2,0,μ,μ(0) ∈ R, (A.8)

which imply the first identity in the second line of (2.6) (notice that, if v =
c = 1, from (7) we also get that W (h)

2,0,0,0(0) = W
(h)
2,0,1,1(0)).

Let us now consider the combination ψkW
(h)
0,1 (k)ψk. Using the fact that

{I, γ5, {γj}0≤j≤3, {γjγ5}0≤j≤3, {γj1γj2}0≤j1<j2≤3} is a complete basis for the
space of complex 4 × 4 matrices, we can rewrite it as:

ψkW
(h)
0,1 (k)ψk = ψk

⎧⎨
⎩c0(k)I +

3∑
j=0

[
cj1(k)γj + cj15(k)γjγ5

]

+
∑

0≤j1<j2≤5

cj1j22 (k)γj1γj2 + c5(k)γ5

⎫⎬
⎭ψk. (A.9)

Now, using the invariance under (1), we find that, e.g.,

ψkc0(k)Iψk =
∑
ω=±

ψkPωc0(k)IPωψk =e−2iαω
∑
ω=±

ψkPωc0(k)IPωψk, (A.10)

for all αω ∈ R, which implies that c0(k) = 0; similarly, using the invariance
under (1) and the fact that [γ5, Pω] = [γj1γj2 , Pω] = 0, ∀0 ≤ j1 < j2 ≤ 3, we
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find that c5(k) = 0 and cj1j22 (k) = 0, ∀0 ≤ j1 < j2 ≤ 3. Therefore,
∫

dk
(2π)3

ψkW
(h)
0,1 (0)ψk =

∫ 3∑
j=0

dk
(2π)3

ψk

[
cj1(0)γj + cj15(0)γjγ5

]
ψk,

(A.11)∫
dk

(2π)3
ψkk∂kW

(h)
0,1 (0)ψk

=
3∑
j=0

∫
dk

(2π)3
ψk

[
k∂kc

j
1(0)γj + k∂kc

j
15(0)γjγ5

]
ψk. (A.12)

Let us first look at (A.11). Using the invariance under (4.a), we find that
[cj1(0)γj + cj15(0)γjγ5] = γ3γ1[c

j
1(0)γj + cj15(0)γjγ5]γ1γ3, which implies that

c11(0) = c31(0) = c115(0) = c315(0) = 0. Using (2), we find that also c21(0) =
c215(0) = 0; finally, using (6), we find that c01(0) = c015(0) = 0. This concludes
the proof of the third identity in the first line of (2.6).

Let us now look at (A.12). The terms proportional to k0 in the r.h.s. of
(A.12) are invariant under (2) + (4.a) + (4.b), which implies that ∂k0c

1
1(0) =

∂k0c
2
1(0) = ∂k0c

3
1(0) = ∂k0c

j
15(0) = 0. The terms proportional to k1 are invari-

ant under (4.b) + (6), while the terms proportional to k2 are invariant under
(4.a)+ (6); combining these transformations with (2), we find that ∂k1c

0
1(0) =

∂k1c
2
1(0) = ∂k1c

3
1(0) = ∂k1c

j
15(0) = 0, that ∂k2c

0
1(0) = ∂k2c

1
1(0) = ∂k2c

3
1(0) =

∂k2c
j
15(0) = 0, and that ∂k1c

1
1(0) = ∂k2c

2
1(0). Therefore,∫

dk
(2π)3

ψkk∂kW
(h)
0,1 (0)ψk =

∫
dk

(2π)3
ψk

[
a0k0γ0 + a1

�k · �γ
]
ψk, (A.13)

for two suitable constants a0, a1. Using the invariance under (3), we find that
a0 = iz0,h and a1 = iz1,h, with zμ,h ∈ R, which concludes the proof of the first
line of (2.7) (of course, if v = c = 1, then from (7) we also get that z0,h = z1,h,
that is the speed of light is not renormalized).

A completely analogous discussion can be repeated for the second line of
(2.7), but we will not belabor the details here.

Appendix B. Multiscale Integration for the Correlation
Functions

The multiscale integration used to compute the partition function W(0, 0),
described in Sect. 2, can be suitably modified in order to compute the two and
three-point correlation functions in the reference model with bosonic infrared
cutoff on scale h, see (4.1). We start by rewriting the two and three point
Schwinger functions in the following way:

〈ψkψk〉h∗ =
∂2

∂φk∂φk

W[h∗,0](J, φ)
∣∣
J=φ=0

,

(B.1)

〈jμ,−p;ψk+pψk〉h∗ =
∂3

∂Jμ,p∂φk+p∂φk

W[h∗,0](J, φ)
∣∣
J=φ=0
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where W[h∗,0](J, φ) is the generating function of the reference model. The two
point Schwinger function 〈ψkψk〉 appearing in our main result is obtained as
limh∗→−∞ 〈ψkψk〉h∗ .

In order to compute W[h∗,0](J, φ), we proceed in a way analogous to
the one described in Sect. 2. We iteratively integrate the fields ψ(0), A(0), . . .,
ψ(h+1), A(h+1), . . ., and after the integration of the first |h| scales we are left
with a functional integral similar to (2.2), but now involving new terms depend-
ing on J, φ. Let us first consider the case h ≥ h∗; the regime h < h∗ will be
discussed later.

Case h ≥ h∗. We want to inductively prove that

eW[h∗,0](J,φ)

= e|Λ|Eh+S(≥h)(J,φ)

∫
P (dψ(≤h))P[h∗,0](dA(≤h))eV(h)(A(≤h)+GAJ,

√
Zhψ

(≤h))

×eB(h)
φ (A(≤h)+GAJ,

√
Zhψ

(≤h),φ)+W
(h)
R (A(≤h)+GAJ,

√
Zhψ

(≤h),φ), (B.2)

where S(≥h)(J, φ) is independent of (A,ψ), W (h)
R contains terms explicitly

depending on (A,ψ) and of order ≥ 2 in φ, while B(h)
φ is given by:

B(h)
φ (A,

√
Zhψ, φ) =

∫
dk

(2π)3
[
φk[Q(h+1)(k)]†ψk + ψkQ

(h+1)(k)φk

]

+
∫

dk
(2π)3

[
φk[G(h+1)

ψ (k)]†
∂

∂ψk

V(h)(A,
√
Zhψ)

+
∂

∂ψk
V(h)(A,

√
Zhψ)G(h+1)

ψ (k)φk

]
. (B.3)

Moreover, the functions GA, Q(h), G(h)
ψ are defined by the following relations:

eGA,μ(p) := 1 + νμw
[h∗,0](p), G

(h)
ψ (k) :=

0∑
i=h

g(i)(k)
Zi−1

Q(i)(k),

(B.4)
Q(h)(k) := Q(h+1)(k) − iZhzμ,hkμγμG

(h+1)
ψ (k),

with Q(1)(k) ≡ 1, G(1)(k) ≡ 0. Note that, if k is in the support of g(h)(k),

Q(h)(k) = 1 − izμ,hkμγμg
(h+1)(k),

(B.5)

G
(h)
ψ (k) =

g(h)(k)
Zh−1

Q(h)(k) +
g(h+1)(k)

Zh
,

that is ||Q(h)(k) − 1|| ≤ (const.) ε̄2h and ||G(h)
ψ (k)|| ≤ (const.)Z−1

h M−h. More-
over, by the compact support properties of w[h∗,0](p), GA,μ(p) ≡ e−1 for all
|p| ≤ Mh∗

.
In order to prove (B.2)–(B.4) by induction, let us first check them at

the first step. The generating functional of the correlations is defined as
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(see (1.1)–(1.2))

eW[h∗,0](J,φ)

=
∫
P (dψ(≤0))P[h∗,0](dA(≤0))e

∫
dp

(2π)3
(eA(≤0)

μ,p +Jμ,p)j
(≤0)
μ,−p−νμ(A(≤0)

μ , A(≤0)
μ )+B(0,φ)

(B.6)

which, under the change of variables

A(≤0)
μ,p → A(≤0)

μ,p + e−1νμw
[h∗,0](p)Jμ,p; (B.7)

can be rewritten in the form (B.2), with

Eh = 0, e2S(≥0) = νμ(Jμ, Jμ) + ν2
μ(Jμ, w

[h∗,0]Jμ),
(B.8)

W
(0)
R = 0, V(0) = V, B(0)

φ (A+GAJ, ψ, φ) = B(0, φ).

Let us now assume that (B.2)–(B.4) are valid at scales ≥ h, and let us
prove that the inductive assumption is reproduced at scale h − 1. We pro-
ceed as in Sect. 2; first, we renormalize the free measure by reabsorbing into
P̃ (dψ(≤h)) the term exp{LψV(h)}, see (2.8)–(2.11), and then we rescale the
fields as in (2.12). Similarly, in the definition of B(h)

φ , Eq. (B.3), we rewrite
V(h) = LψV(h) + V̂(h), combine the terms proportional to LψV(h) with those
proportional to Q(h+1), and rewrite

B(h)(A,
√
Zhψ, φ) = B̂(h)(A,

√
Zh−1ψ, φ)

:=
∫

dk
(2π)3

[
φk[Q(h)(k)]†ψk + ψkQ

(h)(k)φk

]

+
∫

dk
(2π)3

[
φk[G(h+1)

ψ (k)]†
∂

∂ψk

V̂(h)(A,
√
Zh−1ψ)

+
∂

∂ψk
V̂(h)(A,

√
Zh−1ψ)G(h+1)

ψ (k)φk

]
,

with Q(h) defined by (B.4). Finally, we rescale W (h)
R , by defining

Ŵ
(h)
R (A+GAJ,

√
Zh−1ψ) := W

(h)
R (A+GAJ,

√
Zhψ),

and perform the integration on scale h:∫
P (dψ(h))P (dA(h))eV̂(h)(A(≤h)+GAJ,

√
Zh−1ψ

(≤h))

×eB̂(h)
φ (A(≤h)+GAJ,

√
Zh−1ψ

(≤h))+Ŵ
(h)
R

≡ e|Λ|Ẽh+S(h−1)(J,φ)+V(h−1)(A(≤h−1)+GAJ,
√
Zh−1ψ

(≤h−1))

×eB(h−1)
φ (A(≤h−1)+GAJ,

√
Zh−1ψ

(≤h−1))+W
(h−1)
R ,

where S(h−1)(J, φ) contains terms depending on (J, φ) but independent of
A(≤h−1), ψ(≤h−1). Defining S(≥h−1) := S(h−1) + S(≥h), we immediately see
that the inductive assumption is reproduced on scale h− 1.

Case h < h∗. For scales smaller than h∗, there are no more bosonic fields to
be integrated out, and we are left with a purely fermionic theory, with scaling
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dimensions 3 − 2n, 2n being the number of external fermionic legs, see Theo-
rem 2.1 and following lines. Therefore, once that the two-legged subdiagrams
have been renormalized and step by step reabsorbed into the free fermionic
measure, we are left with a superrenormalizable theory, as in [18,19]. In par-
ticular, the four fermions interaction is irrelevant, while the wave function
renormalization and the Fermi velocity are modified by a finite amount with
respect to their values at h∗; that is, if ε̄h∗ = maxk≥h∗{|eμ,k|, |νμ,k|}:

Zh = Zh∗(1 +O(ε̄2h∗)), vh = vh∗(1 +O(ε̄2h∗)). (B.9)

Tree expansion for the two-point function. As for the partition function
(see Sect. 2), the kernels of the effective potentials produced by the multiscale
integration of W[h∗,0](J, φ) can be represented as sums over trees, which in
turn can be evaluated as sums over Feynman graphs. Let us consider first the
expansion for the two-point Schwinger function. After having taken functional
derivatives with respect to φk, φk and after having set J = φ = 0, we get an
expansion in terms of a new class of trees τ ∈ T (h∗)

k̄,h̄,N
, with k̄ ∈ (−∞,−1] the

scale of the root and h̄ > k̄; these trees are similar to the ones described in
section 2, up to the following differences.
(1) There are N + 2 end–points and two of them, called v1, v2, are spe-

cial and, respectively, correspond to
[
Q(hv1−1)(k)

]†
ψ

(≤hv1−1)

k or to

ψ
(≤hv2−1)

k Q(hv2−1)(k).
(2) The first vertex whose cluster contains both v1, v2, denoted by v̄, is on

scale h̄. No R operation is associated to the vertices on the line joining v̄
to the root.

(3) There are no lines external to the cluster corresponding to the root.
(4) There are no bosonic lines external to clusters on scale h < h∗.

In terms of the new trees, we can expand the two-point Schwinger func-
tion as:

〈ψkψk〉h∗ =
hk+1∑
j=hk

[Q(j)
ψ (k)]†

g(j)(k)
Zj−1

Q(j)(k)

+
∞∑
N=2

0∑
h̄=−∞

h̄−1∑
k̄=−∞

∑
τ∈T (h∗)

k̄,h̄,N

S2(τ ;k), (B.10)

where hk < 0 is the integer such that Mhk ≤ |k| < Mhk+1, and S2(τ ;k)
is defined in a way similar to V(h)(τ) in (2.23), modulo the modifications
described in items (1)–(4) above. Using the bounds described immediately
after (B.5), which are valid for k belonging to the support of g(h)(k), and pro-
ceeding as in Sect. 2.4, we get bounds on S2(τ ;k), which are the analogues of
Theorem 2.1:

0∑
h̄=−∞

h̄−1∑
k̄=−∞

∑
τ∈T (h∗)

k̄,h̄,N

||S2(τ ;k)|| ≤ (const.)N ε̄Nh∗

(
N

2

)
!
M−hk

Zhk

. (B.11)
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Notice that the result (B.10) and the bound (B.11) are true for any k such
that |k| ≥ Mh∗

; being the bound (B.11) uniform in h∗, our result on the two
point function (1.6) and (2.33) is obtained by fixing k and taking the limit
h∗ → −∞ in (B.10).

In order to understand (B.11), it is enough to notice that, as far as dimen-
sional bounds are concerned, the vertices v1 and v2 play the role of two ν ver-
tices with an external line (the φ line) and an extra Z−1/2

hk
M−hk factor each.

Moreover, since the vertices on the path Pr,v̄ connecting the root with v̄ are
not associated with any R operation, we need to multiply the value of the tree
τ ∈ T (h∗)

k̄,h̄,N
by M (1/2)(h̄−k̄)M (1/2)(k̄−h̄), and to exploit the factor M (1/2)(k̄−h̄)

in order to renormalize all the clusters in Pr,v̄. Therefore,

0∑
h̄=−∞

h̄−1∑
k̄=−∞

∑
τ∈T (h∗)

k̄,h̄,N

||S2(τ ;k)|| ≤ (const.)N
(
N

2

)
!

× ε̄Nh∗

Zhk

∑
h̄≤hk

∑
k̄≤h̄

M k̄M h̄−hkM (1/2)(h̄−k̄)M−2hk (B.12)

where the factor M k̄ is due to the fact that graphs associated to the trees
τ ∈ T (h∗)

k̄,h̄,N
have two external lines; the factor M h̄−hk is given by the product

of the two short memory factors associated to the two paths connecting v̄ with
v1 and v2, respectively; the “bad” factor M (1/2)(h̄−k̄) is the price to pay to
renormalize the vertices in Pr,v̄; the Z−1

hk
and the last M−2hk are due to the

fact that v1, v2 behave dimensionally as ν vertices times an extra Z−1/2
hk

M−hk

factor. Performing the summation over k̄ and h̄ in (B.12), we get (B.11). Note
also that, if k is on scale hk � h∗, then the derivatives of ||S2(τ ;k)|| can be
dimensionally bounded as

0∑
h̄=−∞

h̄−1∑
k̄=−∞

∑
τ∈T (h∗)

k̄,h̄,N

||∂nkS2(τ ;k)||≤(const.)N ε̄Nh∗

(
N

2

)
!
M−(1+n)hk

Zhk

, (B.13)

from which the bound on r̃(N)
μ (k,p) stated in (4.12) immediately follows.

Tree expansion for the three-point function. Let us pick |k| = Mh∗
,

|k + p| ≤ Mh∗
and |p| � Mh∗

, which is the condition that we need in order
to apply Ward Identities in the form described in Sect. 4. In this case, the
expansion of three-point function 〈jμ,−p;ψk+pψk〉h∗ is very similar to the one
just described for the two-point function. The result can be written in the form

〈jμ,−p;ψk+pψk〉h∗ = i
ēμ,h∗

e
[G(h∗−1)

ψ (k + p)]†γμg(h∗)(k)Q(h∗)(k)

+
∑
N≥1,
h̄≤h∗

∑
k̄<h̄,
hv3>h

∗

∑
τ∈T (h∗)

k̄,h̄,hv3 ,N

S3(τ ;k,p) (B.14)



1444 A. Giuliani et al. Ann. Henri Poincaré

where T (h∗)

k̄,h̄,hv3 ,N
is a new class of trees, with k̄ < 0 the scale of the root,

similar to the trees in T (h∗)

k̄,h̄,N
, up to the fact that they have N + 3 endpoints

rather than N +2 (see item (1) in the list preceding (B.10)); three of them are
special: v1 and v2 are associated to the same contributions described in item
(1) above, while v3 is associated to a contribution Zhv̄3−1 (eμ,hv̄3 /e)j

(≤hv̄3 )
μ,−p −

Mhv̄3 (νμ,hv̄3 /e)Aμ,−p, with v̄3 the vertex immediately preceding v3 on τ (which
the endpoint v3 is attached to) and hv3 > h∗. The value of the tree, S3(τ ;k,p),
is defined in a way similar to S2(τ ;k), modulo the modifications described
above. S3(τ ;k,p) admits bounds analogous to (B.11)–(B.12); recalling that
|k| = Mh∗

, |k + p| ≤ Mh∗
and |p| � Mh∗

, we find:

h∗∑
h̄=−∞

h̄−1∑
k̄=−∞

1∑
hv3=h∗+1

∑
τ∈T (h∗)

k̄,h̄,hv3 ,N

||S3(τ ;k,p)||

≤ (const.)N
(
N

2

)
! ε̄Nh∗

1
Zh∗−1

×
∑
h̄≤h∗

k̄<h̄
hv3>h

∗

M (1/2)(k̄−h̄)M h̄−h∗
M (1/2)(h∗−hv3 )M−2h∗

, (B.15)

where M (1/2)(k̄−h̄) is the short memory factor associated to the path between
the root and v̄; M h̄−h∗

is the product of the two short memory factors associ-
ated to the paths connecting v̄ with v1 and v2, respectively; M (1/2)(h∗−hv3 ) is
the short memory factor associated to a path between h∗ and v3;M−2h∗

/Zh∗−1

is the product of two factors M−hkZ
−1/2
hk−1 associated to the vertices v1 and v2

(see the discussion following (B.11) and recall that in this case hk = h∗). We
remark that in this case, contrary to the case of the two-point function, the
fact that there is no R operator acting on the vertices on the path between the
root and v̄ does not create any problem, since those vertices are automatically
irrelevant (they behave as vertices with at least five external lines, i.e., J , φ, φ̄
and at least two fermionic lines) and, therefore, R = 1 on them. Note also that
the vertices of type Jφψ, which have an R operator acting on, can only be on
scale h∗ − 1 or h∗ (by conservation of momentum) and, therefore, the action
of the R operator on such vertices automatically gives the usual dimensional
gain of the form const.Mhv−hv′ . Performing the summations over k̄, h̄, hv3 in
(B.15), we find the analogue of (B.11):

h∗∑
h̄=−∞

h̄−1∑
k̄=−∞

1∑
hv3=h∗+1

∑
τ∈T (h∗)

k̄,h̄,hv3 ,N

||S3(τ ;k,p)||

≤ (const.)N
(
N

2

)
! ε̄Nh∗

M−2h∗

Zh∗−1
, (B.16)

from which the bound on r(N)
μ (k,p) stated in (4.12).
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Appendix C. Lowest Order Computations

In this Appendix we reproduce the details of the second order computations
leading to (3.7)–(3.10).

C.1. Computation of β
z,(2)
h

By definition, see (2.7) and (3.1), βzh = z0,h = −iγ0∂k0W
(h)
0,1 (0). At one-loop,

defining ē0,h = e0,h and ē1,h = vh−1e1,h, we find:

β
z,(2)
h = z

(2)
0,h = −iγ0ē

2
μ,h+1

∫
dp

(2π)3
∂p0

(
fh+1(p)

2|p|

)
γμg

(h+1)(p)γμ

− iγ0ē
2
μ,h+2

(
Zh+1

Zh

)2 ∫ dp
(2π)3

∂p0

(
fh+2(p)

2|p|

)
γμg

(h+1)(p)γμ

− iγ0ē
2
μ,h+2

Zh+1

Zh

∫
dp

(2π)3
∂p0

(
fh+1(p)

2|p|

)
γμg

(h+2)(p)γμ. (C.1)

Using inductively the beta function equations for Zh+1, vh+1, eμ,h+2, and
neglecting higher order terms, we can rewrite (C.1) as

z
(2)
0,h = iγ0ē

2
μ,h+1

1
2

∫
dp

(2π)3
p2
0

|p|3
iγμγ0γμ
p2
0 + v2

h|�p|2

×
[
(fh+1(p) − |p|f ′

h+1(p))(fh+1(p) + fh+2(p))

+ (fh+2(p) − |p|f ′
h+2(p))fh+1(p)

]
. (C.2)

Passing to radial coordinates, p = p(cos θ, sin θ cosϕ, sin θ sinϕ), and using the
fact that

∫
dp(f ′

h+1fh+1 + f ′
h+1fh+2 + f ′

h+2fh+1) = 0, we find:

z
(2)
0,h = (2v2

he
2
1,h − e20,h)

1
8π2

⎡
⎣

∞∫

0

dp
p

(f2
h+1 + 2fh+1fh+2)

⎤
⎦

×

⎡
⎣

1∫

−1

d cos θ
cos2 θ

cos2 θ + v2
h sin2 θ

⎤
⎦ . (C.3)

The integral over the radial coordinate p can be computed using the definition
(2.1):

∞∫

0

dp
p

(f2
h+1 + 2fh+1fh+2)

=

∞∫

0

dp
p

[2(χ(p) − χ(Mp)) − (χ2(p) − χ2(Mp))] = lim
ε→0

Mε∫

ε

dp
p

= logM.

(C.4)

Finally, an explicit evaluation of the integral over d cos θ leads to (3.19).



1446 A. Giuliani et al. Ann. Henri Poincaré

C.2 Computation of z
(2)
1,h

By definition, see formulas (2.7) and (3.1), βv,(2)h = z
(2)
1,h − vhz

(2)
0,h, with z1,h =

−iγ1∂k1W
(h)
0,1 (0). At second order, proceeding as in the derivation of (C.2), we

find:

z
(2)
1,h = iγ1ē

2
μ,h+1

1

2

×
∫

dp

(2π)3
p2
1

|p|3
iγμvhγ1γμ

p2
0 + v2

h|�p|2
[
(fh+1(p) − |p|f ′

h+1(p))(fh+1(p)+fh+2(p))

+ (fh+2(p) − |p|f ′
h+2(p))fh+1(p)

]

= e2
0,hvh

1

16π2

⎡
⎣

∞∫

0

dp

p
(f2

h+1 + 2fh+1fh+2)

⎤
⎦

×
⎡
⎣

1∫

−1

d cos θ
sin2 θ

cos2 θ + v2
h sin2 θ

⎤
⎦ . (C.5)

An explicit evaluation of the integral leads to

z
(2)
1,h = e20,hv

−1
h

logM
8π2

(
arctan ξh

ξh
− ξh − arctan ξh

ξ3h

)
, (C.6)

which, combined with βv,(2)h = z
(2)
1,h − vhz

(2)
0,h, leads to (3.19).

C.3 Computation of β
ν,(2)
μ,h

By definition, see (2.6) and (3.1), βνμ,h = −M−h+1W
(h−1)
2,0,μ,μ(0) − Mνμ,h. At

second order, we find:

β
ν,(2)
μ,h = −M−h+1

ē2μ,h
2

∫
dp

(2π)3
Tr
(
γμg

(h)(p)γμg(h)(p)
)

−M−h+1ē2μ,h+1

Zh
Zh−1

∫
dp

(2π)3
Tr
(
γμg

(h+1)(p)γμg(h)(p)
)
. (C.7)

Using inductively the beta function equations for eμ,h, Zh−1, vh−1, and neglect-
ing higher orders, we can rewrite (C.7) as

β
ν,(2)
0,h = −2M−h+1e20,h

∫
dp

(2π)3
fh(p)2 + 2fh(p)fh+1(p)

(p2
0 + v2

h|�p|2)2
(−p2

0 + v2
h|�p|2),

(C.8)

β
ν,(2)
1,h = −2M−h+1ē21,h

∫
dp

(2π)3
fh(p)2 + 2fh(p)fh+1(p)

(p2
0 + v2

h|�p|2)2
p2
0,
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where we used that Tr (γμγαγμγα) = −4 if μ �= α and 4 otherwise; passing to
radial coordinates we find

β
ν,(2)
0,h =

−2
(2π)2

M−h+1e20,h

⎡
⎣

∞∫

0

dp
(
f2
h + 2fhfh+1

)
⎤
⎦

×
1∫

−1

d cos θ
− cos2 θ + v2

h sin2 θ

(cos2 θ + v2
h sin2 θ)2

,

(C.9)

β
ν,(2)
1,h =

−2
(2π)2

M−h+1ē21,h

⎡
⎣

∞∫

0

dp
(
f2
h + 2fhfh+1

)
⎤
⎦

×
1∫

−1

d cos θ
cos2 θ

(cos2 θ + v2
h sin2 θ)2

.

The integral over the radial coordinate p can be rewritten as, using the defi-
nition (2.1):

∞∫

0

dp
(
f2
h + 2fhfh+1

)
= Mh−1(M − 1)

∞∫

0

dp
(
2χ(p) − χ2(p)

)
. (C.10)

Finally, an explicit evaluation of the integral over d cos θ leads to (3.7).

Appendix D. Multiscale Integration of the Correction Term
to the WI

In this Appendix we prove (4.7) and the bound (4.8). We assume that |k| = Mh

and |p| � Mh. We start by rewriting

pμ
Zh

Rμ,h(k,p) =
∂3

∂J̃p∂φk+p∂φk

W̃[h,0](J̃ , φ)
∣∣
J̃=φ=0

, (D.1)

with W̃[h,0](J̃ , φ) defined as:

eW̃[h,0](J̃,φ) :=
∫
P (dψ)P[h,0](dA) eV (A,ψ)+B̃(J̃,φ), (D.2)

and

B̃(J̃ , φ) =
∫

dp
(2π)3

J̃p

[∫
dk

(2π)3
ψk+pC(k,p)ψk − αμpμjμ,−p

]

+
∫

dk
(2π)3

[
φkψk + φkψk

]
. (D.3)

The main difference with respect to the generating functional of the correlation
functions is the presence of the correction term proportional to C(k,p), see
(4.6) for a definition. Equation (D.2) can again be studied by RG methods, see
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[6] for further details. A crucial role is played by the properties of the function
C(k,p); it is easy to verify that

g(i)(k + p)C(k,p)g(j)(k) (D.4)

is non-vanishing only if at least one of the indices i, j is equal to 0; more-
over, when it is non-vanishing, it is dimensionally bounded from above by
(const.)|p|M−i−j .

We start by integrating the scale 0, and we find:

eW̃[h,0](J̃,φ) = e|Λ|E−1+S̃(≥−1)(J̃,φ)

×
∫
P (dψ(≤−1))P[h,−1](dA(≤−1)) eV(−1)(A(≤−1),

√
Z−1ψ

(≤−1))+B̃(−1)
, (D.5)

where S̃(≥−1) collects the terms depending on J̃ , φ but independent of A,ψ,
and

B̃(−1)(A,ψ) = B̃(−1)
J (A,ψ) + B(−1)

φ (A,ψ) + W̃
(−1)
R , (D.6)

with: B̃(−1)
J (A,ψ) linear in J̃ and independent of φ; B(−1)

φ (A,ψ) given by (B.3);

W̃
(−1)
R the rest, which is at least quadratic in (J̃ , φ). With respect to the compu-

tation of W[h,0](J̃ , φ), we now have new marginal terms of the form J̃ ψ̄ψ, which
are contained in B̃(−1)

J (A,ψ) and need to be renormalized. Let us symbolically
represent by W̃

(−1)
m,n ({ki}, {qi},p) the generic non-trivial kernel appearing in

B̃(−1)
J (A,ψ); m is the number of bosonic external lines while 2n is the number

of ψ fields; {ki}, {qi} are, respectively, the fermionic/bosonic momenta and p
is the momentum flowing through J̃ . As usual, these new kernels can be repre-
sented as sums over Feynman graphs. The J̃ external line can be attached to a
simple vertex, corresponding to the monomial −αμpμJ̃pj

(≤0)
μ,−p, or to a “thick”

vertex, representing J̃pψk+pC(k,p)ψk (the “small circle” associated to the ver-

tex represents the matrix kernel C(k,p), see Fig. 6). Let us denote by W (−1),C
m,n

the contribution to W̃ (−1)
m,n coming from graphs with the J̃ line attached to a

thick vertex, see Fig. 6. By the properties of the C(k,p) function, see [6] for
details, it follows that W̃ (−1)

m,n ({ki}, {qi},p) =: pμW̄
(−1)
m,n,μ({ki}, {qi},p), with

W̄
(−1)
m,n,μ dimensionally bounded as a W (−1)

m+1,n kernel, uniformly in p. We define

the action of the R ≡ 1−L operator on W̄ (−1)
m,n,μ in a way similar to (2.5)–(2.7).

In particular, LW̄ (−1)
0,1,μ(k,p) := W̄

(−1)
0,1,μ(0,0) and, by symmetry,

Z−1J̃pψk+pLW̄ (−1)
0,1,μψk = −Z−2J̃pαμ,−1j

(≤−1)
μ−p , (D.7)

for a real constant αμ,−1, which is by definition the effective α-coupling on scale
−1. Note that the last two graphs in Fig. 6 do not contribute to αμ,−1 simply
because they are one-particle reducible and, therefore, they are vanishing at
zero external momenta.

We now iterate the same procedure, and step by step the local parts of
the kernels of type J̃ ψ̄ψ are collected together to form a new running cou-
pling constant, αμ,k; in order to show that Rμ,h is dimensionally negligible as
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+ + +
p

q

k

q + p

W(−1),C
0,1 =

Figure 6. Schematic representation of the expansion for
W

(−1),C
0,1 ; the small circle represents C(k,p)

h → −∞, we need to show that it is possible to fix the initial data αμ = αμ,0 in
such a way that αμ,h goes exponentially to zero as h → −∞, which is proved
in the following.

The flow of αμ,k. The new marginal running coupling constants αμ,h
evolve according to the flow equation: αμ,k−1 = αμ,k + βαμ,k, where αμ,0 = αμ
are the counterterms appearing in the bare interaction (D.3). The beta func-
tion βαμ,h can be split as

βαμ,k = βα,1μ,k + βα,2μ,k , (D.8)

where βα,1μ,k collects the contributions independent of αμ,k′ (which, there-
fore, are associated to graphs with the J̃ external line emerging from the
thick vertex representing C(k,p)), and βα,2μ,k collects the terms from graphs
with one vertex of type αμ,k′ for some k′ > k. It is crucial to recall
that by the properties of C(k,p), the graphs contributing to βα,1μ,k have at
least one propagator on scale 0 or −1; by the short memory property, this
means that they can be dimensionally bounded by (const.)ε̄2kM

θk, for any
0 < θ < 1. Similarly, the contributions to βα,2μ,k associated to graphs with
at least one vertex of type αμ,k′ for some k′ > k can be bounded by
(const.)ε̄2k|αμ,k′ |Mθ(k−k′). The counterterms αμ are fixed in such a way that
αμ,−∞ = 0, i.e., αμ = −

∑0
k=−∞(βα,1μ,k + βα,2μ,k). Finally, using the fact that

|βα,1μ,k | ≤ (const.)ε̄2kM
θk and |βα,2μ,k | ≤ (const.)

∑
k′>k ε̄

2
k|αμ,k′ |Mθ(k−k′), we find

that |αμ,h| ≤ (const.)ε̄2h∗M (θ/2)h. This dimensional estimate on αμ,h easily
implies the desired estimate on Rμ,h(k,p) stated in (4.8) and we will not
belabor the details here.

Lowest order computation of αμ. At lowest order, α(2)
μ = −

∑
k≤0 β

α,1,(2)
μ,k ,

where βα,1,(2)μ,k is the one-loop contribution to βα,1μ,k . Moreover, βα,1,(2)μ,k = 0 for

all k ≤ −1. Therefore, neglecting higher order terms, we find α(2)
μ = −βα,1,(2)μ,0 ,
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J

0

J

0

Figure 7. Lowest order contribution to α0, α1

that is (see Fig. 7):

α
(2)
0 = −iγ0ē

2
ν,0

∫
dk

(2π)3
γν∂p0

[
g(0)(k + p)C(k,p)g(0)(k)

]
p=0

×γνw(0)(k), (D.9)

α
(2)
1 = − iγ1

v
ē2ν,0

∫
dk

(2π)3
γν∂p1

[
g(0)(k + p)C(k,p)g(0)(k)

]
p=0

×γνw(0)(k). (D.10)

After a straightforward computation, using the fact that

∂pμ

[
g(0)(k + p)C(k,p)g(0)(k)

]
p=0

=
1
i�k [−iγ̄μχ0(k) (1 − χ0(k)) + i�k∂μχ0(k)]

1
i�k ,

where �k = k0γ0 + v�k · �γ and (γ̄0, γ̄1, γ̄2) = (γ0, vγ1, vγ2), we finally get (3.26)–
(3.27).

References

[1] Adler, S., Bardeen, W.: Absence of higher-order corrections in the anomalous
axial-vector divergence equation. Phys. Rev. 182, 1517–1536 (1969)

[2] Benfatto, G., Falco, P., Mastropietro, V.: Universal relations for nonsolvable
statistical models. Phys. Rev. Lett. 104, 075701 (2010)

[3] Benfatto, G., Gallavotti, G.: Perturbation theory of the Fermi surface in a quan-
tum liquid. A general quasiparticle formalism and one-dimensional systems.
J. Stat. Phys. 59, 541–664 (1990)

[4] Benfatto, G., Gallavotti, G.: Renormalization Group. Princeton University
Press, NJ (1995)

[5] Benfatto, G., Gallavotti, G., Procacci, A., Scoppola, B.: Beta function and Schw-
inger functions for a many fermions system in one dimension. Anomaly of the
fermi surface. Commun. Math. Phys. 160, 93–171 (1994)

[6] Benfatto, G., Mastropietro, V.: Ward identities and chiral anomaly in the Lutt-
inger liquid. Commun. Math. Phys. 258, 609–655 (2005)



Vol. 11 (2010) Anomalous Behavior in an Effective Model of Graphene 1451

[7] Benfatto, G., Giuliani, A., Mastropietro, V.: Fermi liquid behavior in the 2D
Hubbard model at low temperatures. Ann. Henri Poincaré 7, 809–898 (2006)
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[22] González, J., Guinea, F., Vozmediano, M.A.H.: Electron–electron interactions
in graphene sheets. Phys. Rev. B 63, 134421 (2001)

[23] Herbut, I.F.: Interactions and phase transitions on graphene’s honeycomb lat-
tice. Phys. Rev. Lett. 97, 146401 (2006)

[24] Herbut, I.F., Juricic, V., Roy, B.: Theory of interacting electrons on the honey-
comb lattice. Phys. Rev. B 79, 085116 (2009)

[25] Jiang, Z., Henriksen, E.A., Tung, L.C., Wang, Y.-J., Schwartz, M.E., Han, M.,
Kim, P., Stormer, H.L.: Infrared spectroscopy of Landau levels of graphene.
Phys. Rev. Lett. 98, 197403 (2007)

[26] Kotov, V.N., Uchoa, B., Castro Neto, A.H.: Electron–electron interactions in
the vacuum polarization of graphene. Phys. Rev. B 78, 035119 (2008)

[27] Li, G., Luican, A., Andrei, E.: Scanning tunneling spectroscopy of graphene on
graphite. Phys. Rev. Lett. 102, 176804 (2009)



1452 A. Giuliani et al. Ann. Henri Poincaré
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