8 research outputs found

    Rotary-wing MAV Modeling & Control for indoor scenarios

    Get PDF
    This paper is about modeling and control of Miniature Aerial Vehicles ¿MAVs for indoor scenarios, specially using, micro coaxial and quadrotor systems. Mathematical models for simulation and control are introduced and subsequently applied to the commercial aircraft: the DraganFlyer quadrotor and the Micro-Mosquito coaxial flying vehicle. The MAVs have been hardware-modified in order to perform experimental autonomous flight. A novel approach for control based on Hybrid Backstepping and the Frenet-Serret theory is used for attitude stabilization (Backstepping+FST), introducing a desired attitude angle acceleration function dependent on aircraft velocity. Results of autonomous hovering and tracking are presented based on the scheme we propose for control and attitude stabilization when MAV is maneuvering at moderate speeds

    Evaluation of the Thorax of Manduca Sexta for Flapping Wing Micro Air Vehicle Applications

    Get PDF
    The tobacco hornworm hawkmoth (Manduca sexta) provides an excellent model from which to gather knowledge pertaining to the development of a Flapping Wing Micro Air Vehicle (FWMAV). One of the major challenges in design of a FWMAV is the energy demanding nature of low Reynolds number flapping flight. Therefore, an understanding of the power required by the flight muscles to actuate the wings is essential for the design of a FWMAV. The M.sexta wing/thorax mechanism was evaluated as a mechanical system in order to gain insight to the mechanical power required to produce the full natural wing stroke. A unique dynamic load device was designed and constructed to mechanically actuate the upstroke and downstroke of the M.sexta in order to achieve the full flapping motion. Additionally, the forces applied through the flight muscles were directly measured in order to attain the power requirements of the flight muscles simultaneously. The experiment yielded wing stroke amplitudes of + 60 and - 35, which is what is seen in nature during hovering. The DVM and DLM muscle groups were calculated to have a power density of 112 W/kg with the vehicle energy density being 2 W/kg. The power output requirement indicates the need for a lightweight and energy-dense power source/actuator combination for the development of FWMAVs

    Development of Optimized Piezoelectric Bending Actuators for Use in an Insect Sized Flapping Wing Micro Air Vehicle

    Get PDF
    Piezoelectric bimorph actuators, as opposed to rotary electric motors, have been suggested as an actuation mechanism for flapping wing micro air vehicles (FWMAVs) because they exhibit favorable characteristics such as low weight, rapidly adaptable frequencies, lower acoustic signature, and controllable flapping amplitudes. Research at the Air Force Research Labs and the Air Force Institute of Technology has shown that by using one actuator per wing, up to five degrees of freedom are possible. However, due to the weight constraints on a FWMAV, the piezoelectric bimorph actuators need to be fully optimized to support free flight. This study focused on three areas of investigation in order to optimize the piezoelectric actuators: validating and improving analytical models that have been previously suggested for the performance of piezoelectric bimorph actuators; identifying the repeatability and reliability of current custom manufacturing techniques; and determining the failure criteria for piezoelectric actuators so that they can be driven at the highest possible voltage. Through the optimization, manufacturing, and performance testing of piezoelectric bimorphs, analytical models have been adjusted to fit the empirical data to yield minimum mass actuators that could potentially meet the mechanical energy requirements in a FWMAV. For custom manufactured actuators, optimized tapered actuators with an end extension showed an 89.5% energy density improvement over optimized rectangular actuators and a 19.5% improvement in energy density over commercially available actuators

    Evaluation of the Thorax of Manduca Sexta for Flapping-Wing Micro Air Vehicle Applications

    Get PDF
    The tobacco hornworm hawkmoth (Manduca sexta) provides an excellent model from which to garner knowledge pertaining to the development of a Flapping Wing Micro Air Vehicle (FWMAV). Insect-sized FWMAVs will be used by the future warfighter for reconnaissance, nuclear/chemical/biological hazard sensing, and targeting. One of the major challenges facing FWMAV developers is the energetically demanding nature of low Reynolds flapping flight. Investigating the Manduca sexta thorax/wing flapping mechanism as a mechanical system will provide insight into its inherent efficiency. This thesis examined the energetics of the thorax under static loading and dynamic loading using an innovative load-application technique. It was discovered that the thorax resists compression by a spring constant k=0.62 N/mm under the action of the dorsoventral flight muscles (DVMs). Constant stiffness measurement (CSM) nanoindentation of a major component of the thoracic exoskeleton, the tergum, revealed an elastic modulus of 5 GPa. This value is a benchmark for engineers seeking energy-storing materials for a FWMAV fuselage. Finally, a truly groundbreaking device was developed and used to directly measure the power requirement of the DVMs at Manduca sexta\u27s natural flapping frequency (25 Hz). This effort yielded a mechanical power output of 72-143 W*kg-1 for the DVMs. The feasibility of the author\u27s approach was confirmed by the agreement of this conclusion with published results. The power output requirement confirms the need for lightweight and energy-dense power sources for the fruition of fully-capable FWMAVs

    The Characterization of Material Properties and Structural Dynamics of the Manduca Sexta Forewing for Application to Flapping Wing Micro Air Vehicle Design

    Get PDF
    The Manduca Sexta species of moth serves as a source of biological inspiration for the future of micro air vehicle flapping flight. The ability of this species to hover in flapping flight has warranted investigation into the critical material, structural, and geometric properties of the forewing of this biological specimen. A rigorous morphological study of the Manduca Sexta forewing was conducted to characterize the physical and material properties of the biological forewing for the purpose of developing an advanced parametric three dimensional model finite element analysis (FEA) model. This FEA model was tuned to match the experimentally determined structural dynamics of the biological specimen and serves as the basis for an engineered wing design. Manufacturing methods are developed and implemented to fabricate the baseline engineered wing design. Biological wings and engineered wings are experimentally tested to determine the aerodynamic lift production of each of wings under the same boundary conditions. Through this research, a structural dynamics based engineering methodology has been used to design, develop, and identify biomimetic engineered wings that experimentally produce aerodynamic forces equivalent to their biological analog

    Design and Control of Flapping Wing Micro Air Vehicles

    Get PDF
    Flapping wing Micro Air Vehicles (MAVs) continues to be a growing field, with ongoing research into unsteady, low Re aerodynamics, micro-fabrication, and fluid-structure interaction. However, research into flapping wing control of such MAVs continues to lag. Existing research uniformly consists of proposed control laws that are validated by computer simulations of quasi-steady blade-element formulae. Such simulations use numerous assumptions and cannot be trusted to fully describe the flow physics. Instead, such control laws must be validated on hardware. Here, a novel control technique is proposed called Bi-harmonic Amplitude and Bias Modulation (BABM) which can generate forces and moments in 5 vehicle degrees of freedom with only two actuators. Several MAV prototypes were designed and manufactured with independently controllable wings capable of prescribing arbitrary wing trajectories. The forces and moments generated by a MAV utilizing the BABM control technique were measured on a 6-component balance. These experiments verified that a prototype can generate uncoupled forces and moments for motion in five degrees of freedom when using the BABM control technique, and that these forces can be approximated by quasi-steady blade-element formulae. Finally, the prototype performed preliminary controlled flight in constrained motion experiments, further demonstrating the feasibility of BABM

    Miniaturized Power Electronic Interfaces for Ultra-compact Electromechanical Systems

    Get PDF
    Advanced and ultra-compact electromechanical (EM) systems, such as kinetic energy harvesting and microrobotic systems are deemed as enabling solutions to provide efficient energy conversion. One of the most critical challenges in such systems is to develop tiny power electronic interfaces (PEIs) capable of addressing power conditioning between EM devices and energy storage units. This dissertation presents technologies and topological solutions toward fabricating miniaturized PEIs to efficiently regulate erratic power/voltage for kinetic energy harvesting and drive high-voltage actuators for microrobotic systems. High-frequency resonant-switching topologies are introduced as power stages of PEIs that allow small footprint of the circuit without suffering from switching losses. Two types of bridgeless resonant ac-dc converters are first introduced and developed to efficiently convert arbitrary input voltages into a regulated dc output voltage. The proposed topologies provide direct ac-dc power conversion with less number of components, in comparison to other resonant topologies. A 5-mm×6-mm, 100-mg, 2-MHz and 650-mW prototype is fabricated for validation of capability of converting very-low ac voltages into a relatively higher voltage. A resonant gate drive circuit is designed and utilized to further reduce gating losses under high-frequency switching and light-load condition. The closed-loop efficiency reaches higher than 70% across wide range of input voltages and output powers. In a multi-channel energy harvesting system, a multi-input bridgeless resonant ac-dc converter is developed to achieve ac-dc conversion, step up voltage and match optimal impedance. Alternating voltage of each energy harvesting channel is stepped up through the switching LC network and then rectified by a freewheeling diode. The optimal electrical impedance can be adjusted through resonance impedance matching and pulse-frequency-modulation (PFM) control. In addition, a six-input standalone prototype is fabricated to address power conditioning for a six-channel wind panel. Furthermore, the concepts of miniaturization are incorporated in the context of microrobots. In a mobile microrobotic system, conventional bulky power supplies and electronics used to drive electroactive polymer (EAP) actuators are not practical as on-board energy sources for microrobots. A bidirectional single-stage resonant dc-dc step-up converter is introduced and developed to efficiently drive high-voltage EAP actuators. The converter utilizes resonant capacitors and a coupled-inductor as a soft-switched LC network to step up low input voltages. The circuit is capable of generating explicit high-voltage actuation signals, with capability of recovering unused energy from EAP actuators. A 4-mm × 8-mm, 100-mg and 600-mW prototype has been designed and fabricated to drive an in-plane gap-closing electrostatic inchworm motor. Experimental validations have been carried out to verify the circuit’s ability to step up voltage from 2 V to 100 V and generate two 1-kHz, 100-V driving voltages at 2-nF capacitive loads

    Advanced Mobile Robotics: Volume 3

    Get PDF
    Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective
    corecore