8,046 research outputs found

    Power conversion and signal transmission integration method based on dual modulation of DC-DC converters

    Get PDF
    For the development of communication systems such as Internet of Things, integrating communication with power supplies is an attractive solution to reduce supply cost. This paper presents a novel method of power/signal dual modulation (PSDM), by which signal transmission is integrated with power conversion. This method takes advantage of the intrinsic ripple initiated in switch mode power supplies as signal carriers, by which cost-effective communications can be realized. The principles of PSDM are discussed, and two basic dual modulation methods (specifically PWM/FSK and PWM/PSK) are concluded. The key points of designing a PWM/FSK system, including topology selection, carrier shape, and carrier frequency, are discussed to provide theoretical guidelines. A practical signal modulation-demodulation method is given, and a prototype system provides experimental results to verify the effectiveness of the proposed solution

    Analysis and design of a modular multilevel converter with trapezoidal modulation for medium and high voltage DC-DC transformers

    Get PDF
    Conventional dual active bridge topologies provide galvanic isolation and soft-switching over a reasonable operating range without dedicated resonant circuits. However, scaling the two-level dual active bridge to higher dc voltage levels is impeded by several challenges among which the high dv/dt stress on the coupling transformer insulation. Gating and thermal characteristics of series switch arrays add to the limitations. To avoid the use of standard bulky modular multilevel bridges, this paper analyzes an alternative modulation technique where staircase approximated trapezoidal voltage waveforms are produced; thus alleviating developed dv/dt stresses. Modular design is realized by the utilization of half-bridge chopper cells. Therefore, the analyzed converter is a modular multi-level converter operated in a new mode with no common-mode dc arm currents as well as reduced capacitor size, hence reduced cell footprint. Suitable switching patterns are developed and various design and operation aspects are studied. Soft switching characteristics will be shown to be comparable to those of the two-level dual active bridge. Experimental results from a scaled test rig validate the presented concept

    DC power line communication based on power/signal dual modulation in phase shift full bridge converters

    Get PDF
    For intelligent DC distributed power systems, data communication plays a vital role in system control and device monitoring. To achieve communication in a cost effective way, power/signal dual modulation (PSDM), a method that integrates data transmission with power conversion, can be utilized. In this paper, an improved PSDM method using phase shift full bridge (PSFB) converter is proposed. This method introduces a phase control based freedom in the conventional PSFB control loop to realize communication using the same power conversion circuit. In this way, decoupled data modulation and power conversion are realized without extra wiring and coupling units, and thus the system structure is simplified. More importantly, the signal intensity can be regulated by the proposed perturbation depth, and so this method can adapt to different operating conditions. Application of the proposed method to a DC distributed power system composed of several PSFB converters is discussed. A 2kW prototype system with an embedded 5kbps communication link has been implemented, and the effectiveness of the method is verified by experimental results

    An Optimized Dual Active Bridge Converter for EV On-board Charger

    Get PDF

    Vanadium redox flow batteries: Potentials and challenges of an emerging storage technology

    Get PDF
    open4noIn this paper an overview of Vanadium Redox Flow Battery technologies, architectures, applications and power electronic interfaces is given. These systems show promising features for energy storage in smart grid applications, where the intermittent power produced by renewable sources must meet strict load requests and economical opportunities. This paper reviews the vanadium-based technology for redox flow batteries and highlights its strengths and weaknesses, outlining the research lines that aim at taking it to full commercial success.openSpagnuolo, Giovanni, Guarnieri, Massimo; Mattavelli, Paolo; Petrone, Giovanni;Guarnieri, Massimo; Mattavelli, Paolo; Petrone, Giovanni; Spagnuolo, Giovann

    Control and grid integration of MW-range wind and solar energy conversion systems

    Get PDF
    Solar-based energy generation has increased by more than ten times over the same period. In total, worldwide electrical energy consumption increased by approximately 6340 TWh from 2003 to 2013. To meet the challenges created by intermittent energy generation sources, grid operators have increasingly demanded more stringent technical requirements for the connection and operation of grid-connected intermittent energy systems, for instance concerning fault ride through capability, voltage and frequency support, and inertia emulation. Ongoing developments include new or improved high-voltage converters, power converters with higher power density, control systems to provide ride-through capability, implementation of redundancy schemes to provide more reliable generation systems, and the use of high-voltage direct current (HVdc) links for the connection of large off-shore intermittent energy systems

    Power Interface Design and System Stability Analysis for 400 V DC-Powered Data Centers

    Get PDF
    The demands of high performance cloud computation and internet services have increased in recent decades. These demands have driven the expansion of existing data centers and the construction of new data centers. The high costs of data center downtime are pushing designers to provide high reliability power supplies. Thus, there are significant research questions and challenges to design efficient and environmentally friendly data centers with address increasing energy prices and distributed energy developments. This dissertation work aims to study and investigate the suitable technologies of power interface and system level configuration for high efficiency and reliable data centers. A 400 V DC-powered data center integrated with solar power and hybrid energy storage is proposed to reduce the power loss and cable cost in data centers. A cascaded totem-pole bridgeless PFC converter to convert grid ac voltage to the 400 V dc voltage is proposed in this work. Three main control strategies are developed for the power converters. First, a model predictive control is developed for the cascaded totem-pole bridgeless PFC converter. This control provides stable transient performance and high power efficiency. Second, a power loss model based dual-phase-shift control is applied for the efficiency improvement of dual-active bridge converter. Third, an optimized maximum power point tracking (MPPT) control for solar power and a hybrid energy storage unit (HESU) control are given in this research work. The HESU consists of battery and ultracapacitor packs. The ultracapacitor can improve the battery lifetime and reduce any transients affecting grid side operation. The large signal model of a typical solar power integrated datacenter is built to analyze the system stability with various conditions. The MATLAB/Simulinkâ„¢-based simulations are used to identify the stable region of the data center power supply. This can help to analyze the sensitivity of the circuit parameters, which include the cable inductance, resistance, and dc bus capacitance. This work analyzes the system dynamic response under different operating conditions to determine the stability of the dc bus voltage. The system stability under different percentages of solar power and hybrid energy storage integrated in the data center are also investigated

    Power Interface Design and System Stability Analysis for 400 V DC-Powered Data Centers

    Get PDF
    The demands of high performance cloud computation and internet services have increased in recent decades. These demands have driven the expansion of existing data centers and the construction of new data centers. The high costs of data center downtime are pushing designers to provide high reliability power supplies. Thus, there are significant research questions and challenges to design efficient and environmentally friendly data centers with address increasing energy prices and distributed energy developments. This dissertation work aims to study and investigate the suitable technologies of power interface and system level configuration for high efficiency and reliable data centers. A 400 V DC-powered data center integrated with solar power and hybrid energy storage is proposed to reduce the power loss and cable cost in data centers. A cascaded totem-pole bridgeless PFC converter to convert grid ac voltage to the 400 V dc voltage is proposed in this work. Three main control strategies are developed for the power converters. First, a model predictive control is developed for the cascaded totem-pole bridgeless PFC converter. This control provides stable transient performance and high power efficiency. Second, a power loss model based dual-phase-shift control is applied for the efficiency improvement of dual-active bridge converter. Third, an optimized maximum power point tracking (MPPT) control for solar power and a hybrid energy storage unit (HESU) control are given in this research work. The HESU consists of battery and ultracapacitor packs. The ultracapacitor can improve the battery lifetime and reduce any transients affecting grid side operation. The large signal model of a typical solar power integrated datacenter is built to analyze the system stability with various conditions. The MATLAB/Simulinkâ„¢-based simulations are used to identify the stable region of the data center power supply. This can help to analyze the sensitivity of the circuit parameters, which include the cable inductance, resistance, and dc bus capacitance. This work analyzes the system dynamic response under different operating conditions to determine the stability of the dc bus voltage. The system stability under different percentages of solar power and hybrid energy storage integrated in the data center are also investigated

    Mitigation of power quality issues due to high penetration of renewable energy sources in electric grid systems using three-phase APF/STATCOM technologies: a review.

    Get PDF
    This study summarizes an analytical review on the comparison of three-phase static compensator (STATCOM) and active power filter (APF) inverter topologies and their control schemes using industrial standards and advanced high-power configurations. Transformerless and reduced switch count topologies are the leading technologies in power electronics that aim to reduce system cost and offer the additional benefits of small volumetric size, lightweight and compact structure, and high reliability. A detailed comparison of the topologies, control strategies and implementation structures of grid-connected high-power converters is presented. However, reducing the number of power semiconductor devices, sensors, and control circuits requires complex control strategies. This study focuses on different topological devices, namely, passive filters, shunt and hybrid filters, and STATCOMs, which are typically used for power quality improvement. Additionally, appropriate control schemes, such as sinusoidal pulse width modulation (SPWM) and space vector PWM techniques, are selected. According to recent developments in shunt APF/STATCOM inverters, simulation and experimental results prove the effectiveness of APF/STATCOM systems for harmonic mitigation based on the defined limit in IEEE-519

    Design and Control of Power Converters for High Power-Quality Interface with Utility and Aviation Grids

    Get PDF
    Power electronics as a subject integrating power devices, electric and electronic circuits, control, and thermal and mechanic design, requires not only knowledge and engineering insight for each subarea, but also understanding of interface issues when incorporating these different areas into high performance converter design.Addressing these fundamental questions, the dissertation studies design and control issues in three types of power converters applied in low-frequency high-power transmission, medium-frequency converter emulated grid, and high-frequency high-density aviation grid, respectively, with the focus on discovering, understanding, and mitigating interface issues to improve power quality and converter performance, and to reduce the noise emission.For hybrid ac/dc power transmission,• Analyze the interface transformer saturation issue between ac and dc power flow under line unbalances.• Proposed both passive transformer design and active hybrid-line-impedance-conditioner to suppress this issue.For transmission line emulator,• Propose general transmission line emulation schemes with extension capability.• Analyze and actively suppress the effects of sensing/sampling bias and PWM ripple on emulation considering interfaced grid impedance.• Analyze the stability issue caused by interaction of the emulator and its interfaced impedance. A criterion that determines the stability and impedance boundary of the emulator is proposed.For aircraft battery charger,• Investigate architectures for dual-input and dual-output battery charger, and a three-level integrated topology using GaN devices is proposed to achieve high density.• Identify and analyze the mechanisms and impacts of high switching frequency, di/dt, dv/dt on sensing and power quality control; mitigate solutions are proposed.• Model and compensate the distortion due to charging transition of device junction capacitances in three-level converters.• Find the previously overlooked device junction capacitance of the nonactive devices in three-level converters, and analyze the impacts on switching loss, device stress, and current distortion. A loss calculation method is proposed using the data from the conventional double pulse tester.• Establish fundamental knowledge on performance degradation of EMI filters. The impacts and mechanisms of both inductive and capacitive coupling on different filter structures are understood. Characterization methodology including measuring, modeling, and prediction of filter insertion loss is proposed. Mitigation solutions are proposed to reduce inter-component coupling and self-parasitics
    • …
    corecore