327 research outputs found

    Blood pressure estimation with complexity features from electrocardiogram and photoplethysmogram signals

    Get PDF
    A novel method for the continual, cuff-less estimation of the systolic blood pressure (SBP) and diastolic blood pressure (DBP) values based on signal complexity analysis of the photoplethysmogram (PPG) and the electrocardiogram (ECG) is reported. The proposed framework estimates the blood pressure (BP) values obtained from signals generated from 14 volunteers subjected to a series of exercise routines. Herein, the physiological signals were first pre-processed, followed by the extraction of complexity features from both the PPG and ECG. Subsequently the complexity features were used in regression models (artificial neural network (ANN), support vector machine (SVM) and LASSO) to predict the BP. The performance of the approach was evaluated by calculating the mean absolute error and the standard deviation of the predicted results and compared with the recommendations made by the British Hypertension Society (BHS) and Association for the Advancement of Medical Instrumentation. Complexity features from the ECG and PPG were investigated independently, along with the combined dataset. It was observed that the complexity features obtained from the combination of ECG and PPG signals resulted to an improved estimation accuracy for the BP. The most accurate DBP result of 5.15โ€‰ยฑโ€‰6.46 mmHg was obtained from ANN model, and SVM generated the most accurate prediction for the SBP which was estimated as 7.33โ€‰ยฑโ€‰9.53 mmHg. Results for DBP fall within recommended performance of the BHS but SBP is outside the range. Although initial results are promising, further improvements are required before the potential of this approach is fully realised

    Multimodal Photoplethysmography-Based Approaches for Improved Detection of Hypertension

    Get PDF
    Elevated blood pressure (BP) is a major cause of death, yet hypertension commonly goes undetected. Owing to its nature, it is typically asymptomatic until later in its progression when the vessel or organ structure has already been compromised. Therefore, noninvasive and continuous BP measurement methods are needed to ensure appropriate diagnosis and early management before hypertension leads to irreversible complications. Photoplethysmography (PPG) is a noninvasive technology with waveform morphologies similar to that of arterial BP waveforms, therefore attracting interest regarding its usability in BP estimation. In recent years, wearable devices incorporating PPG sensors have been proposed to improve the early diagnosis and management of hypertension. Additionally, the need for improved accuracy and convenience has led to the development of devices that incorporate multiple different biosignals with PPG. Through the addition of modalities such as an electrocardiogram, a final measure of the pulse wave velocity is derived, which has been proved to be inversely correlated to BP and to yield accurate estimations. This paper reviews and summarizes recent studies within the period 2010-2019 that combined PPG with other biosignals and offers perspectives on the strengths and weaknesses of current developments to guide future advancements in BP measurement. Our literature review reveals promising measurement accuracies and we comment on the effective combinations of modalities and success of this technology

    ๋Œ€๊ทœ๋ชจ ์ธ๊ตฌ ๋ชจ๋ธ๊ณผ ๋‹จ์ผ ๊ฐ€์Šด ์ฐฉ์šฉํ˜• ์žฅ์น˜๋ฅผ ํ™œ์šฉํ•œ ๋น„์นจ์Šต์  ์—ฐ์† ๋™๋งฅ ํ˜ˆ์•• ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ๋ฐ”์ด์˜ค์—”์ง€๋‹ˆ์–ด๋ง์ „๊ณต, 2021. 2. ๊น€ํฌ์ฐฌ.์ตœ๊ทผ ์ˆ˜์‹ญ ๋…„ ๋™์•ˆ ๋น„์นจ์Šต์  ์—ฐ์† ํ˜ˆ์•• ๋ชจ๋‹ˆํ„ฐ๋ง์— ๋Œ€ํ•œ ํ•„์š”์„ฑ์ด ์ ์ฐจ ๋Œ€๋‘๋˜๋ฉด์„œ ๋งฅํŒŒ ์ „๋‹ฌ ์‹œ๊ฐ„, ๋งฅํŒŒ ๋„๋‹ฌ ์‹œ๊ฐ„, ๋˜๋Š” ๊ด‘์šฉ์ ๋งฅํŒŒ์˜ ํŒŒํ˜•์œผ๋กœ๋ถ€ํ„ฐ ์ถ”์ถœ๋œ ๋‹ค์–‘ํ•œ ํŠน์ง•๋“ค์„ ์ด์šฉํ•œ ํ˜ˆ์•• ์ถ”์ • ์—ฐ๊ตฌ๋“ค์ด ์ „์„ธ๊ณ„์ ์œผ๋กœ ํ™œ๋ฐœํ•˜๊ฒŒ ์ง„ํ–‰๋˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ๋Œ€๋ถ€๋ถ„์˜ ์—ฐ๊ตฌ๋“ค์€ ๊ตญ์ œ ํ˜ˆ์•• ํ‘œ์ค€์„ ๋งŒ์กฑ์‹œํ‚ค์ง€ ๋ชปํ•˜๋Š” ๋งค์šฐ ์ ์€ ์ˆ˜์˜ ํ”ผํ—˜์ž๋“ค ๋งŒ์„ ๋Œ€์ƒ์œผ๋กœ ์ฃผ๋กœ ํ˜ˆ์•• ์ถ”์ • ๋ชจ๋ธ์„ ๊ฐœ๋ฐœ ๋ฐ ๊ฒ€์ฆํ•˜์˜€๊ธฐ ๋•Œ๋ฌธ์— ์„ฑ๋Šฅ์˜ ์ •ํ™•๋„๊ฐ€ ์ ์ ˆํ•˜๊ฒŒ ๊ฒ€์ฆ๋˜์ง€ ๋ชปํ–ˆ๋‹ค๋Š” ํ•œ๊ณ„์ ์ด ์žˆ์—ˆ๊ณ , ๋˜ํ•œ ํ˜ˆ์•• ์ถ”์ • ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ถœ์„ ์œ„ํ•œ ์ƒ์ฒด ์‹ ํ˜ธ๋“ค์„ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•ด ๋Œ€๋ถ€๋ถ„ ๋‘ ๊ฐœ ์ด์ƒ์˜ ๋ชจ๋“ˆ์„ ํ•„์š”๋กœ ํ•˜๋ฉด์„œ ์‹ค์šฉ์„ฑ ์ธก๋ฉด์—์„œ ํ•œ๊ณ„์ ์ด ์žˆ์—ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ๋Œ€๊ทœ๋ชจ ์ƒ์ฒด์‹ ํ˜ธ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋“ค์„ ๋ถ„์„ํ•จ์œผ๋กœ์จ ์ž„์ƒ์ ์œผ๋กœ ํ—ˆ์šฉ ๊ฐ€๋Šฅํ•œ ์ˆ˜์ค€์˜ ์ •ํ™•๋„๊ฐ€ ์ ์ ˆํžˆ ๊ฒ€์ฆ๋œ ํ˜ˆ์•• ์ถ”์ • ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ์ง„ํ–‰๋˜์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” 1376๋ช…์˜ ์ˆ˜์ˆ  ์ค‘ ํ™˜์ž๋“ค์˜ ์•ฝ 250๋งŒ ์‹ฌ๋ฐ• ์ฃผ๊ธฐ์— ๋Œ€ํ•ด ์ธก์ •๋œ ๋‘ ๊ฐ€์ง€ ๋น„์นจ์Šต์  ์ƒ์ฒด์‹ ํ˜ธ์ธ ์‹ฌ์ „๋„์™€ ๊ด‘์šฉ์ ๋งฅํŒŒ๋ฅผ ํ™œ์šฉํ•œ ํ˜ˆ์•• ์ถ”์ • ๋ฐฉ์‹๋“ค์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋งฅํŒŒ ๋„๋‹ฌ ์‹œ๊ฐ„, ์‹ฌ๋ฐ•์ˆ˜, ๊ทธ๋ฆฌ๊ณ  ๋‹ค์–‘ํ•œ ๊ด‘์šฉ์ ๋งฅํŒŒ ํŒŒํ˜• ํ”ผ์ฒ˜๋“ค์„ ํฌํ•จํ•˜๋Š” ์ด 42 ์ข…๋ฅ˜์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋“ค์„ ๋Œ€์ƒ์œผ๋กœ ํ”ผ์ฒ˜ ์„ ํƒ ๊ธฐ๋ฒ•๋“ค์„ ์ ์šฉํ•œ ๊ฒฐ๊ณผ, 28๊ฐœ์˜ ํ”ผ์ฒ˜๋“ค์ด ํ˜ˆ์•• ์ถ”์ • ํŒŒ๋ผ๋ฏธํ„ฐ๋กœ ๊ฒฐ์ •๋˜์—ˆ๊ณ , ํŠนํžˆ ๋‘ ๊ฐ€์ง€ ๊ด‘์šฉ์ ๋งฅํŒŒ ํ”ผ์ฒ˜๋“ค์ด ๊ธฐ์กด์— ํ˜ˆ์•• ์ถ”์ • ํŒŒ๋ผ๋ฏธํ„ฐ๋กœ ๊ฐ€์žฅ ์ฃผ์š”ํ•˜๊ฒŒ ํ™œ์šฉ๋˜์—ˆ๋˜ ๋งฅํŒŒ ๋„๋‹ฌ ์‹œ๊ฐ„๋ณด๋‹ค ์šฐ์›”ํ•œ ํŒŒ๋ผ๋ฏธํ„ฐ๋“ค๋กœ ๋ถ„์„๋˜์—ˆ๋‹ค. ์„ ์ •๋œ ํŒŒ๋ผ๋ฏธํ„ฐ๋“ค์„ ํ™œ์šฉํ•˜์—ฌ ํ˜ˆ์••์˜ ๋‚ฎ์€ ์ฃผํŒŒ์ˆ˜ ์„ฑ๋ถ„์„ ์ธ๊ณต์‹ ๊ฒฝ๋ง์œผ๋กœ ๋ชจ๋ธ๋งํ•˜๊ณ , ๋†’์€ ์ฃผํŒŒ์ˆ˜ ์„ฑ๋ถ„์„ ์ˆœํ™˜์‹ ๊ฒฝ๋ง์œผ๋กœ ๋ชจ๋ธ๋ง ํ•œ ๊ฒฐ๊ณผ, ์ˆ˜์ถ•๊ธฐ ํ˜ˆ์•• ์—๋Ÿฌ์œจ 0.05 ยฑ 6.92 mmHg์™€ ์ด์™„๊ธฐ ํ˜ˆ์•• ์—๋Ÿฌ์œจ -0.05 ยฑ 3.99 mmHg ์ •๋„์˜ ๋†’์€ ์ •ํ™•๋„๋ฅผ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค. ๋˜ ๋‹ค๋ฅธ ์ƒ์ฒด์‹ ํ˜ธ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์—์„œ ์ถ”์ถœํ•œ 334๋ช…์˜ ์ค‘ํ™˜์ž๋“ค์„ ๋Œ€์ƒ์œผ๋กœ ๋ชจ๋ธ์„ ์™ธ๋ถ€ ๊ฒ€์ฆํ–ˆ์„ ๋•Œ ์œ ์‚ฌํ•œ ๊ฒฐ๊ณผ๋ฅผ ํš๋“ํ•˜๋ฉด์„œ ์„ธ ๊ฐ€์ง€ ๋Œ€ํ‘œ์  ํ˜ˆ์•• ์ธก์ • ์žฅ๋น„ ๊ธฐ์ค€๋“ค์„ ๋ชจ๋‘ ๋งŒ์กฑ์‹œ์ผฐ๋‹ค. ํ•ด๋‹น ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ ํ˜ˆ์•• ์ถ”์ • ๋ชจ๋ธ์ด 1000๋ช… ์ด์ƒ์˜ ๋‹ค์–‘ํ•œ ํ”ผํ—˜์ž๋“ค์„ ๋Œ€์ƒ์œผ๋กœ ์ ์šฉ ๊ฐ€๋Šฅํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋‘ ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ผ์ƒ ์ƒํ™œ ์ค‘ ์žฅ๊ธฐ๊ฐ„ ๋ชจ๋‹ˆํ„ฐ๋ง์ด ๊ฐ€๋Šฅํ•œ ๋‹จ์ผ ์ฐฉ์šฉํ˜• ํ˜ˆ์•• ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜๋Š” ๊ฒƒ์„ ๋ชฉ์ ์œผ๋กœ ์ง„ํ–‰๋˜์—ˆ๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ ๊ธฐ์กด ํ˜ˆ์•• ์ถ”์ • ์—ฐ๊ตฌ๋“ค์€ ํ˜ˆ์•• ์ถ”์ • ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ถœ์„ ์œ„ํ•ด ํ•„์š”ํ•œ ์ƒ์ฒด์‹ ํ˜ธ๋“ค์„ ์ธก์ •ํ•˜๊ธฐ ์œ„ํ•ด ๋‘ ๊ตฐ๋ฐ ์ด์ƒ์˜ ์‹ ์ฒด ์ง€์ ์— ๋‘ ๊ฐœ ์ด์ƒ์˜ ๋ชจ๋“ˆ์„ ๋ถ€์ฐฉํ•˜๋Š” ๋“ฑ ์‹ค์šฉ์„ฑ ์ธก๋ฉด์—์„œ ํ•œ๊ณ„๋ฅผ ๋‚˜ํƒ€๋ƒˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์‹ฌ์ „๋„์™€ ๊ด‘์šฉ์ ๋งฅํŒŒ๋ฅผ ๋™์‹œ์— ์—ฐ์†์ ์œผ๋กœ ์ธก์ •ํ•˜๋Š” ๋‹จ์ผ ๊ฐ€์Šด ์ฐฉ์šฉํ˜• ๋””๋ฐ”์ด์Šค๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€๊ณ , ๊ฐœ๋ฐœ๋œ ๋””๋ฐ”์ด์Šค๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์ด 25๋ช…์˜ ๊ฑด๊ฐ•ํ•œ ํ”ผํ—˜์ž๋“ค๋กœ๋ถ€ํ„ฐ ๋ฐ์ดํ„ฐ๋ฅผ ํš๋“ํ•˜์˜€๋‹ค. ์†๊ฐ€๋ฝ์—์„œ ์ธก์ •๋œ ๊ด‘์šฉ์ ๋งฅํŒŒ์™€ ๊ฐ€์Šด์—์„œ ์ธก์ •๋œ ๊ด‘์šฉ์ ๋งฅํŒŒ ๊ฐ„ ํŒŒํ˜•์˜ ํŠน์„ฑ์— ์œ ์˜๋ฏธํ•œ ์ฐจ์ด๊ฐ€ ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๊ฐ€์Šด์—์„œ ์ธก์ •๋œ ๊ด‘์šฉ์ ๋งฅํŒŒ์—์„œ ์ถ”์ถœ๋œ ํ”ผ์ฒ˜๋“ค์„ ๋Œ€์‘๋˜๋Š” ์†๊ฐ€๋ฝ์—์„œ ์ธก์ •๋œ ๊ด‘์šฉ์ ๋งฅํŒŒ ํ”ผ์ฒ˜๋“ค๋กœ ํŠน์„ฑ์„ ๋ณ€ํ™˜ํ•˜๋Š” ์ „๋‹ฌ ํ•จ์ˆ˜ ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. 25๋ช…์œผ๋กœ๋ถ€ํ„ฐ ํš๋“ํ•œ ๋ฐ์ดํ„ฐ์— ์ „๋‹ฌ ํ•จ์ˆ˜ ๋ชจ๋ธ์„ ์ ์šฉ์‹œํ‚จ ํ›„ ํ˜ˆ์•• ์ถ”์ • ๋ชจ๋ธ์„ ๊ฒ€์ฆํ•œ ๊ฒฐ๊ณผ, ์ˆ˜์ถ•๊ธฐ ํ˜ˆ์•• ์—๋Ÿฌ์œจ 0.54 ยฑ 7.47 mmHg์™€ ์ด์™„๊ธฐ ํ˜ˆ์•• ์—๋Ÿฌ์œจ 0.29 ยฑ 4.33 mmHg๋กœ ๋‚˜ํƒ€๋‚˜๋ฉด์„œ ์„ธ ๊ฐ€์ง€ ํ˜ˆ์•• ์ธก์ • ์žฅ๋น„ ๊ธฐ์ค€๋“ค์„ ๋ชจ๋‘ ๋งŒ์กฑ์‹œ์ผฐ๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ž„์ƒ์ ์œผ๋กœ ํ—ˆ์šฉ ๊ฐ€๋Šฅํ•œ ์ˆ˜์ค€์˜ ์ •ํ™•๋„๋กœ ์žฅ๊ธฐ๊ฐ„ ์ผ์ƒ ์ƒํ™œ์ด ๊ฐ€๋Šฅํ•œ ๋น„์นจ์Šต์  ์—ฐ์† ๋™๋งฅ ํ˜ˆ์•• ๋ชจ๋‹ˆํ„ฐ๋ง ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜๊ณ  ๋‹ค์ˆ˜์˜ ๋ฐ์ดํ„ฐ์…‹์„ ๋Œ€์ƒ์œผ๋กœ ๊ฒ€์ฆํ•จ์œผ๋กœ์จ ๊ณ ํ˜ˆ์•• ์กฐ๊ธฐ ์ง„๋‹จ ๋ฐ ์˜ˆ๋ฐฉ์„ ์œ„ํ•œ ๋ชจ๋ฐ”์ผ ํ—ฌ์Šค์ผ€์–ด ์„œ๋น„์Šค์˜ ๊ฐ€๋Šฅ์„ฑ์„ ํ™•์ธํ•˜์˜€๋‹ค.As non-invasive continuous blood pressure monitoring (NCBPM) has gained wide attraction in the recent decades, many studies on blood pressure (BP) estimation using pulse transit time (PTT), pulse arrival time (PAT), and characteristics extracted from the morphology of photoplethysmogram (PPG) waveform as indicators of BP have been conducted. However, most of the studies have used small homogeneous subject pools to generate models of BP, which led to inconsistent results in terms of accuracy. Furthermore, the previously proposed modalities to measure BP indicators are questionable in terms of practicality, and lack the potential for being utilized in daily life. The first goal of this thesis is to develop a BP estimation model with clinically valid accuracy using a large pool of heterogeneous subjects undergoing various surgeries. This study presents analyses of BP estimation methods using 2.4 million cardiac cycles of two commonly used non-invasive biosignals, electrocardiogram (ECG) and PPG, from 1376 surgical patients. Feature selection methods were used to determine the best subset of predictors from a total of 42 including PAT, heart rate, and various PPG morphology features. BP estimation models were constructed using linear regression, random forest, artificial neural network (ANN), and recurrent neural network (RNN), and the performances were evaluated. 28 features out of 42 were determined as suitable for BP estimation, in particular two PPG morphology features outperformed PAT, which has been conventionally seen as the best non-invasive indicator of BP. By modelling the low frequency component of BP using ANN and the high frequency component using RNN with the selected predictors, mean errors of 0.05 ยฑ 6.92 mmHg for systolic blood pressure (SBP), and -0.05 ยฑ 3.99 mmHg for diastolic blood pressure (DBP) were achieved. External validation of the model using another biosignal database consisting of 334 intensive care unit patients led to similar results, satisfying three international standards concerning the accuracy of BP monitors. The results indicate that the proposed method can be applied to large number of subjects and various subject phenotypes. The second goal of this thesis is to develop a wearable BP monitoring system, which facilitates NCBPM in daily life. Most previous studies used two or more modules with bulky electrodes to measure biosignals such as ECG and PPG for extracting BP indicators. In this study, a single wireless chest-worn device measuring ECG and PPG simultaneously was developed. Biosignal data from 25 healthy subjects measured by the developed device were acquired, and the BP estimation model developed above was tested on this data after applying a transfer function mapping the chest PPG morphology features to the corresponding finger PPG morphology features. The model yielded mean errors of 0.54 ยฑ 7.47 mmHg for SBP, and 0.29 ยฑ 4.33 mmHg for DBP, again satisfying the three standards for the accuracy of BP monitors. The results indicate that the proposed system can be a stepping stone to the realization of mobile NCBPM in daily life. In conclusion, the clinical validity of the proposed system was checked in three different datasets, and it is a practical solution to NCBPM due to its non-occlusive form as a single wearable device.Abstract i Contents iv List of Tables vii List of Figures viii Chapter 1 General Introduction 1 1.1 Need for Non-invasive Continuous Blood Pressure Monitoring (NCBPM) 2 1.2 Previous Studies for NCBPM 5 1.3 Issues with Previous Studies 9 1.4 Thesis Objectives 12 Chapter 2 Non-invasive Continuous Arterial Blood Pressure Estimation Model in Large Population 14 2.1 Introduction 15 2.1.1 Electrocardiogram (ECG) and Photoplethysmogram (PPG) Features for Blood Pressure (BP) Estimation 15 2.1.2 Description of Surgical Biosignal Databases 16 2.2 Feature Analysis 19 2.2.1 Data Acquisition and Data Pre-processing 19 2.2.2 Feature Extraction 25 2.2.3 Feature Selection 35 2.3 Construction of the BP Estimation Models 44 2.3.1 Frequency Component Separation 44 2.3.2 Modelling Algorithms 47 2.3.3 Summary of Training and Validation 52 2.4 Results and Discussion 54 2.4.1 Feature Analysis 54 2.4.1.1 Pulse Arrival Time versus Pulse Transit Time 54 2.4.1.2 Feature Selection 57 2.4.2 Optimization of the BP Estimation Models 63 2.4.2.1 Frequency Component Separation 63 2.4.2.2 Modelling Algorithms 66 2.4.2.3 Comparison against Different Modelling Settings 68 2.4.3 Performance of the Best-case BP Estimation Model 69 2.4.4 Limitations 75 2.5 Conclusion 78 Chapter 3 Development of the Single Chest-worn Device for Non-invasive Continuous Arterial Blood Pressure Monitoring 80 3.1 Introduction 81 3.2 Development of the Single Chest-worn Device 84 3.2.1 Hardware Development 84 3.2.2 Software Development 90 3.2.3 Clinical Trial 92 3.3 Development of the Transfer Function 95 3.3.1 Finger PPG versus Chest PPG 95 3.3.2 The Concept of the Transfer Function 97 3.3.3 Data Acquisition for Modelling of the Transfer Function 98 3.4 Results and Discussion 100 3.4.1 Construction of the Transfer Function 100 3.4.2 Test of the BP Estimation Model 101 3.4.3 Comparison with the Previous Study using the Single Chest-worn Device 104 3.4.4 Limitations 106 3.5 Conclusion 108 Chapter 4 Thesis Summary and Future Direction 109 4.1 Summary and Contributions 110 4.2 Future Work 113 Bibliography 115 Abstract in Korean 129 Acknowledgement 132Docto

    Breathing Rate Estimation From the Electrocardiogram and Photoplethysmogram: A Review.

    Get PDF
    Breathing rate (BR) is a key physiological parameter used in a range of clinical settings. Despite its diagnostic and prognostic value, it is still widely measured by counting breaths manually. A plethora of algorithms have been proposed to estimate BR from the electrocardiogram (ECG) and pulse oximetry (photoplethysmogram, PPG) signals. These BR algorithms provide opportunity for automated, electronic, and unobtrusive measurement of BR in both healthcare and fitness monitoring. This paper presents a review of the literature on BR estimation from the ECG and PPG. First, the structure of BR algorithms and the mathematical techniques used at each stage are described. Second, the experimental methodologies that have been used to assess the performance of BR algorithms are reviewed, and a methodological framework for the assessment of BR algorithms is presented. Third, we outline the most pressing directions for future research, including the steps required to use BR algorithms in wearable sensors, remote video monitoring, and clinical practice

    Cuffless Blood Pressure Estimation

    Get PDF
    The blood pressure is an important factor in the diagnosis and evaluation of several diseases, such as acute myocardial infarction and stroke. This way, continuous monitorization of this parameter is crucial to a correct health evaluation. The current methods, like the oscillometric method, have some major drawbacks, that can influence the output values or even make the measurements impossible. One example is the high frequency evaluation of the blood pressure, in the standard used methods the process of measuring can take up to 3 minutes, and a waiting time is necessary between consecutive measurements. This dissertation presents two different cuffless solution to solve those problems. One based on physical models of the human body, and the other using machine learning techniques. In the first solution seven models that correlate pulse transit time and blood pressure, deducted by different authors, were tested to evaluate which one performed better. The testes were performed in a custom dataset acquired at Fraunhofer AICOS and in clinical environment, with two different devices (low cost device and medical grade device). The results indicate that pulse transit time can be used to track blood pressure, the developed device/method was evaluated as grade A based in the Standard IEEE 1708-2014. The second solution itโ€™s a proof of concept using a public database and three different machine learning methods (Random Forest, Neural Network and AdaBoost). Two sets of features are calculated from the ECG and PPG signals, one using TSFEL (spectral, frequency and time domain features) and a total of 15 custom features. The proposed method outperforms the methods presented in bibliography with mean absolute error of 3.6 mmHg and 2.0 mmHg to systolic and diastolic blood pressure respectively

    The 2023 wearable photoplethysmography roadmap

    Get PDF
    Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology

    ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ํ˜ˆ์•• ์˜ˆ์ธก ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2020. 8. ์œค์„ฑ๋กœ.While COVID-19 is changing the world's social profile, it is expected that the telemedicine sector, which has not been activated due to low regulation and reliability, will also undergo a major change. As COVID-19 spreads in the United States, the US Department of Health \& Human Services temporarily loosens the standards for telemedicine, while enabling telemedicine using Facebook, Facebook Messenger-based video chat, Hangouts, and Skype. The expansion of the telemedicine market is expected to quickly transform the existing treatment-oriented hospital-led medical market into a digital healthcare service market focused on prevention and management through wearables, big data, and health records analysis. In this prevention and management-oriented digital healthcare service, it is very important to develop a technology that can easily monitor a person's health status. One of the vital signs that can be used for personal health monitoring is blood pressure. High BP is a common and dangerous condition. About 1 out of 3 adults in the U.S. (about 75 million people) have high BP. This common condition increases the risk of heart disease and stroke, two of the leading causes of death for Americans. High BP is called the silent killer because it often has no warning signs or symptoms, and many people are not aware they have it. For these reasons, it is important to develop a technology that can easily and conveniently check BP regularly. In biomedical data analysis, various studies are being attempted to effectively analyze by applying machine learning to biomedical big data accumulated in large quantities. However, collecting blood pressure-related data at the level of big data is very difficult and very expensive because it takes a lot of manpower and time. So in this dissertation, we proposed a three-step strategy to overcome these issues. First, we describe a BP prediction model with extraction and concentration CNN architecture, to process publicly disclosed sequential ECG and PPG dataset. Second, we evaluate the performance of the developed model by applying the developed model to privately measured data. To address the third issue, we propose the knowledge distillation method and input pre-processing method to improve the accuracy of the blood pressure prediction model. All the methods proposed in this dissertation are based on a deep convolutional neural network (CNN). Unlike other studies based on manual recognition of the features, by utilizing the advantage of deep learning which automatically extracts features, raw biomedical signals are used intact to reflect the inherent characteristics of the signals themselves.์ฝ”๋กœ๋‚˜ 19์— ์˜ํ•œ ์ „ ์„ธ๊ณ„์˜ ์‚ฌํšŒ์  ํ”„๋กœํ•„ ๋ณ€ํ™”๋กœ, ๊ทœ์ œ์™€ ์‹ ๋ขฐ์„ฑ์ด ๋‚ฎ๊ธฐ ๋•Œ๋ฌธ์— ํ™œ์„ฑํ™” ๋˜์ง€ ์•Š์€ ์›๊ฒฉ ์˜๋ฃŒ ๋ถ„์•ผ๋„ ํฐ ๋ณ€ํ™”๋ฅผ ๊ฒช์„ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋ฉ๋‹ˆ๋‹ค. ์ฝ”๋กœ๋‚˜ 19๊ฐ€ ๋ฏธ๊ตญ์— ํผ์ง์— ๋”ฐ๋ผ ๋ฏธ๊ตญ ๋ณด๊ฑด๋ณต์ง€๋ถ€๋Š” ์›๊ฒฉ ์ง„๋ฃŒ์˜ ํ‘œ์ค€์„ ์ผ์‹œ์ ์œผ๋กœ ์™„ํ™”ํ•˜๋ฉด์„œ ํŽ˜์ด์Šค๋ถ, ํŽ˜์ด์Šค๋ถ ๋ฉ”์‹ ์ € ๊ธฐ๋ฐ˜ ํ™”์ƒ ์ฑ„ํŒ…, ํ–‰์•„์›ƒ, ์Šค์นด์ดํ”„๋ฅผ ์‚ฌ์šฉํ•œ ์›๊ฒฉ ์ง„๋ฃŒ๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ–ˆ์Šต๋‹ˆ๋‹ค. ์›๊ฒฉ์˜๋ฃŒ ์‹œ์žฅ์˜ ํ™•์žฅ์€ ๊ธฐ์กด์˜ ์น˜๋ฃŒ์ค‘์‹ฌ ๋ณ‘์›์ฃผ๋„์˜ ์˜๋ฃŒ์‹œ์žฅ์„ ์›จ์–ด๋Ÿฌ๋ธ”, ๋น… ๋ฐ์ดํ„ฐ ๋ฐ ๊ฑด๊ฐ•๊ธฐ๋ก ๋ถ„์„์„ ํ†ตํ•œ ์˜ˆ๋ฐฉ ๋ฐ ๊ด€๋ฆฌ์— ์ค‘์ ์„ ๋‘” ๋””์ง€ํ„ธ ์˜๋ฃŒ ์„œ๋น„์Šค ์‹œ์žฅ์œผ๋กœ ๋น ๋ฅด๊ฒŒ ๋ณ€ํ™”์‹œํ‚ฌ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์˜ˆ๋ฐฉ ๋ฐ ๊ด€๋ฆฌ ์ค‘์‹ฌ์˜ ๋””์ง€ํ„ธ ํ—ฌ์Šค์ผ€์–ด ์„œ๋น„์Šค์—์„œ๋Š” ์‚ฌ๋žŒ์˜ ๊ฑด๊ฐ• ์ƒํƒœ๋ฅผ ์‰ฝ๊ฒŒ ๋ชจ๋‹ˆํ„ฐ๋ง ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ˆ  ๊ฐœ๋ฐœ์ด ๋งค์šฐ ์ค‘์š”ํ•œ๋ฐ ํ˜ˆ์••์€ ๊ฐœ์ธ ๊ฑด๊ฐ• ๋ชจ๋‹ˆํ„ฐ๋ง์— ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ํ•„์ˆ˜ ์ง•ํ›„ ์ค‘ ํ•˜๋‚˜ ์ž…๋‹ˆ๋‹ค. ๊ณ ํ˜ˆ์••์€ ์•„์ฃผ ํ”ํ•˜๊ณ  ์œ„ํ—˜ํ•œ ์งˆํ™˜์ž…๋‹ˆ๋‹ค. ๋ฏธ๊ตญ ์„ฑ์ธ 3๋ช…์ค‘ 1๋ช…(์•ฝ 7,500๋งŒ๋ช…)์ด ๊ณ ํ˜ˆ์••์„ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๋ฏธ๊ตญ์ธ์˜ ์ฃผ์š” ์‚ฌ๋ง ์›์ธ ์ค‘ ๋‘๊ฐ€์ง€์ธ ์‹ฌ์žฅ์งˆํ™˜๊ณผ ๋‡Œ์กธ์ค‘์˜ ์œ„ํ—˜์„ ์ฆ๊ฐ€ ์‹œํ‚ต๋‹ˆ๋‹ค. ๊ณ ํ˜ˆ์••์€ ์‹ ์ฒด์— ๊ฒฝ๊ณ  ์‹ ํ˜ธ๋‚˜ ์ž๊ฐ ์ฆ์ƒ์ด ์—†์–ด ๋งŽ์€ ์‚ฌ๋žŒ๋“ค์ด ์ž์‹ ์ด ๊ณ ํ˜ˆ์••์ธ ๊ฒƒ์„ ์ธ์ง€ํ•˜์ง€ ๋ชปํ•˜๊ธฐ ๋•Œ๋ฌธ์— "์‚ฌ์ผ๋ŸฐํŠธ ํ‚ฌ๋Ÿฌ"๋ผ ๋ถˆ๋ฆฌ์›๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ด์œ ๋กœ ์ •๊ธฐ์ ์œผ๋กœ ์‰ฝ๊ณ  ํŽธ๋ฆฌํ•˜๊ฒŒ ํ˜ˆ์••์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ˆ ์˜ ๊ฐœ๋ฐœ์ด ๋งค์šฐ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. ์ƒ์ฒด์˜ํ•™ ๋ฐ์ดํ„ฐ ๋ถ„์„ ๋ถ„์•ผ์—์„œ๋Š” ๋จธ์‹  ๋Ÿฌ๋‹์„ ๋Œ€๋Ÿ‰์œผ๋กœ ์ˆ˜์ง‘๋œ ์ƒ์ฒด์˜ํ•™ ๋น… ๋ฐ์ดํ„ฐ์— ์ ์šฉํ•˜๋Š” ๋‹ค์–‘ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํšจ๊ณผ์ ์œผ๋กœ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋น… ๋ฐ์ดํ„ฐ ์ˆ˜์ค€์œผ๋กœ ๋‹ค๋Ÿ‰์˜ ํ˜ˆ์•• ๊ด€๋ จ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜๋Š” ๊ฒƒ์€ ๋งŽ์€ ์ „๋ฌธ์ ์ธ ์ธ๋ ฅ๋“ค์ด ์˜ค๋žœ์‹œ๊ฐ„์„ ํ•„์š”๋กœ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋งค์šฐ ์–ด๋ ต๊ณ  ๋น„์šฉ ๋˜ํ•œ ๋งŽ์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ 3๋‹จ๊ณ„ ์ „๋žต์„ ์ œ์•ˆํ–ˆ์Šต๋‹ˆ๋‹ค. ๋จผ์ € ๋ˆ„๊ตฌ๋‚˜ ์‹œ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ณต๊ฐœ๋˜์–ด ์žˆ๋Š” ์‹ฌ์ „๋„, ๊ด‘์šฉ์ ๋งฅํŒŒ ๋ฐ์ดํ„ฐ์…‹์„ ์ด์šฉ, ์ˆœ์ฐจ์ ์ธ ์‹ฌ์ „๋„, ๊ด‘์šฉ์ ๋งฅํŒŒ ์‹ ํ˜ธ์—์„œ ํ˜ˆ์••์„ ์ž˜ ์˜ˆ์ธกํ•˜๋„๋ก ๊ณ ์•ˆ๋œ ์ถ”์ถœ ๋ฐ ๋†์ถ• ์ž‘์—…์„ ๋ฐ˜๋ณตํ•˜๋Š” ํ•จ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ๋ฅผ ์ œ์•ˆํ–ˆ์Šต๋‹ˆ๋‹ค. ๋‘๋ฒˆ์งธ๋กœ ์ œ์•ˆ๋œ ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง ๋ชจ๋ธ์„ ๊ฐœ์ธ์—๊ฒŒ์„œ ์ธก์ •ํ•œ ๊ด‘์šฉ์ ๋งฅํŒŒ ์‹ ํ˜ธ๋ฅผ ์ด์šฉํ•ด ์ œ์•ˆ๋œ ํ•จ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ–ˆ์Šต๋‹ˆ๋‹ค. ์„ธ๋ฒˆ์งธ๋กœ ํ˜ˆ์••์˜ˆ์ธก ๋ชจ๋ธ์˜ ์ •ํ™•์„ฑ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ์ง€์‹ ์ฆ๋ฅ˜๋ฒ•๊ณผ ์ž…๋ ฅ์‹ ํ˜ธ ์ „์ฒ˜๋ฆฌ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆ๋œ ๋ชจ๋“  ํ˜ˆ์••์˜ˆ์ธก ๋ฐฉ๋ฒ•์€ ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•ฉ๋‹ˆ๋‹ค. ํ˜ˆ์•• ์˜ˆ์ธก์— ํ•„์š”ํ•œ ํŠน์ง•๋“ค์„ ์ˆ˜๋™์œผ๋กœ ์ถ”์ถœํ•ด์•ผ ํ•˜๋Š” ๋‹ค๋ฅธ ์—ฐ๊ตฌ๋“ค๊ณผ ๋‹ค๋ฅด๊ฒŒ ํŠน์ง•์„ ์ž๋™์œผ๋กœ ์ถ”์ถœํ•˜๋Š” ๋”ฅ๋Ÿฌ๋‹์˜ ์žฅ์ ์„ ํ™œ์šฉ, ์•„๋ฌด๋Ÿฐ ์ฒ˜๋ฆฌ๋„ ํ•˜์ง€ ์•Š์€ ์›๋ž˜ ๊ทธ๋Œ€๋กœ์˜ ์ƒ์ฒด ์‹ ํ˜ธ์—์„œ ์‹ ํ˜ธ ์ž์ฒด์˜ ๊ณ ์œ ํ•œ ํŠน์ง•์„ ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.1 Introduction 1 2 Background 5 2.1 Cuff-based BP measurement methods 9 2.1.1 Auscultatory method 9 2.1.2 Oscillometric method 10 2.1.3 Tonometric method 11 2.2 Biomedical signals used in cuffless BP prediction methods 13 2.2.1 Electrocardiography (ECG) 13 2.2.2 Photoplethysmography (PPG) 20 2.3 Cuffless BP measurement methods 21 2.3.1 PWV based BP prediction methods 25 2.3.2 Machine learning based pulse wave analysis methods 26 2.4 Deep learning for sequential biomedical data 30 2.4.1 Convolutional neural networks 31 2.4.2 Recurrent neural networks 32 3 End-to-end blood pressure prediction via fully convolutional networks 33 3.1 Introduction 35 3.2 Method 38 3.2.1 Data preparation 38 3.2.2 CNN based prediction model 41 3.2.3 Detailed architecture 45 3.3 Experimental results 47 3.3.1 Setup 47 3.3.2 Model evaluation & selection 48 3.3.3 Calibration-based method 51 3.3.4 Performance comparison 52 3.3.5 Verification using international standards for BP measurement grading criteria 54 3.3.6 Performance comparison by the input signal combinations 56 3.3.7 An ablation study of each architectural component of extraction-concentration blocks 58 3.3.8 Preprocessing of input signal to improve blood pressure prediction performance 59 3.4 Discussion 61 3.5 Summary 63 4 Blood pressure prediction by a smartphone sensor using fully convolutional networks 64 4.1 Introduction 66 4.2 Method 69 4.2.1 Data acquisition 71 4.2.2 Preprocessing of the PPG signals 71 4.2.3 PPG signal selection 71 4.2.4 Data preparation for CNN model training 72 4.2.5 Network architectures 72 4.3 Experimental results 75 4.3.1 Implementation details 75 4.3.2 Effect of PPG combination on BP prediction 75 4.3.3 Performance comparison with other related works 76 4.3.4 Verification using international standards for BP measurement grading criteria 77 4.3.5 Preprocessing of input signal to improve blood pressure prediction performance 79 4.4 Discussion 81 4.5 Summary 83 5 Improving accuracy of blood pressure prediction by distilling the knowledge of neural networks 84 5.1 Introduction 85 5.2 Methods 87 5.3 Experimental results 88 5.4 Discussion & Summary 89 6 Conclusion 90 6.1 Future work 92 Bibliography 93 Abstract (In Korean) 106Docto
    • โ€ฆ
    corecore