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Abstract

While COVID-19 is changing the world’s social profile, it is expected that the

telemedicine sector, which has not been activated due to low regulation and reliabil-

ity, will also undergo a major change. As COVID-19 spreads in the United States,

the US Department of Health & Human Services temporarily loosens the standards

for telemedicine, while enabling telemedicine using Facebook, Facebook Messenger-

based video chat, Hangouts, and Skype. The expansion of the telemedicine market

is expected to quickly transform the existing treatment-oriented hospital-led medical

market into a digital healthcare service market focused on prevention and manage-

ment through wearables, big data, and health records analysis. In this prevention and

management-oriented digital healthcare service, it is very important to develop a tech-

nology that can easily monitor a person’s health status. One of the vital signs that can

be used for personal health monitoring is blood pressure. High BP is a common and

dangerous condition. About 1 out of 3 adults in the U.S. (about 75 million people)

have high BP. This common condition increases the risk of heart disease and stroke,

two of the leading causes of death for Americans. High BP is called the “silent killer”

because it often has no warning signs or symptoms, and many people are not aware

they have it. For these reasons, it is important to develop a technology that can easily

and conveniently check BP regularly. In biomedical data analysis, various studies are

being attempted to effectively analyze by applying machine learning to biomedical

big data accumulated in large quantities. However, collecting blood pressure-related

data at the level of big data is very difficult and very expensive because it takes a lot

of manpower and time. So in this dissertation, we proposed a three-step strategy to

overcome these issues. First, we describe a BP prediction model with extraction and



concentration CNN architecture, to process publicly disclosed sequential ECG and

PPG dataset. Second, we evaluate the performance of the developed model by apply-

ing the developed model to privately measured data. To address the third issue, we

propose the knowledge distillation method and input pre-processing method to im-

prove the accuracy of the blood pressure prediction model. All the methods proposed

in this dissertation are based on a deep convolutional neural network (CNN). Unlike

other studies based on manual recognition of the features, by utilizing the advantage

of deep learning which automatically extracts features, raw biomedical signals are

used intact to reflect the inherent characteristics of the signals themselves.

keywords: machine learning, deep learning, cuff-less blood pressure measurement,

convolutional neural network, biomedical signal analysis

student number: 2016-30209
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Chapter 1

Introduction

Blood pressure (BP) is the pressure of circulating blood on the walls of blood vessels.

Most of this pressure is due to work done by the heart by pumping blood through the

circulatory system. BP is usually expressed in terms of the systolic blood pressure

(SBP, maximum during one heartbeat) over diastolic blood pressure (DBP, minimum

in between two heartbeats) and is measured in millimeters of mercury (mmHg), above

the surrounding atmospheric pressure. Mean arterial pressure (MAP) is another value

which represents the average BP in an individual during a single cardiac cycle [79].

BP is one of the vital signs, along with respiratory rate, heart rate, oxygen saturation,

and body temperature. Normal resting BP, in an adult is approximately 120 millime-

tres of mercury (16 kPa) systolic, and 80 millimetres of mercury (11 kPa) diastolic,

abbreviated "120/80 mmHg".

Disorders of BP control include hypertension, hypotension, and BP that shows

excessive or maladaptive fluctuation. New guidelines for BP classification published

by the American College of Cardiology and American Heart association in 2017 [71].

As can be seen in Table 1.1, normal BP is defined as a SBP of 90-119 mmHg or

a DBP of 60-79. Hypotension is defined as a BP lower than the normal range, and
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hypertension means a BP higher than the normal range. Arterial hypertension can be

an indicator of other problems and may have long-term adverse effects. Sometimes

it can be an acute problem, for example hypertensive emergency. Levels of arterial

pressure put mechanical stress on the arterial walls. Higher pressures increase heart

workload and progression of unhealthy tissue growth (atheroma) that develops within

the walls of arteries. The higher the pressure, the more stress that is present and the

more atheroma tend to progress and the heart muscle tends to thicken, enlarge and

become weaker over time.

High BP is a common and dangerous condition. About 1 out of 3 adults in the

U.S. (about 75 million people) have high BP. This common condition increases the

risk of heart disease and stroke, two of the leading causes of death for Americans [44,

76]. High BP is called the “silent killer” because it often has no warning signs or

symptoms, and many people are not aware they have it. Even moderate elevation of

arterial pressure leads to shortened life expectancy. At severely high pressures, mean

arterial pressures 50% or more above average, a person can expect to live no more

than a few years unless appropriately treated [24]. Hypotension is low blood pressure.

A SBP of less than 90 millimeters of mercury (mmHg) or DBP of less than 60 mm

Table 1.1: Blood Pressure classification in adults(Persons with systolic and diastolic
in different categories are assigned to the higher category) [71]

Category Systolic, mmHg Diastolic, mmHg
Hypotension <90 <60
Normal 90 - 119 60 - 79
Prehypertension
(high normal, elevated)

120 - 129 60 - 79

Stage 1 hypertension 130 - 139 80 - 89
Stage 2 hypertension >140 >90
Hypertensive crises >180 >120
Isolated systolic hypertension >160 <90 to 110

2



Hg is generally considered to be hypotension [41]. Hypotension is the opposite of

hypertension, which is high BP. Severely low BP can deprive the brain and other

vital organs of oxygen and nutrients, leading to a life-threatening condition called

shock. For these reasons, it is important to check BP regularly.

Traditional BP measurement is based on the cuff. When using this method, BP

cannot be re-measured until the occluded artery returns to its original position. It is

not suitable for continuous BP measurement or observation of long-term BP change.

The pressure of the cuff may also cause the subject to feel uncomfortable or to suffer

skin trauma. To overcome these shortcomings, improvements in cuffless and contin-

uous BP estimation methods have been an area of recent research [31, 66, 15, 21, 5].

Automated cuffless BP prediction is key to successful health care, but existing

methods based on biomedical signal processing lack flexibility. Existing techniques

are still being conducted to find additional features to help increase blood pressure

prediction accuracy. For this, more manual feature extraction must be performed.

Another problem is the lack of publicly available datasets. To the best of our

knowledge, there are two publicly published datasets. The first dataset, called PPG-

BP database, contains PPG sugnals collected along with BP values from patients in

china. It includes data collected from 219 subjects. Another dataset is the Multipa-

rameter Intelligent Monitoring in Intensive Care (MIMIC) Database, which contain

high resolution continuous recordings of physiological signals simultaneously col-

lected such as arterial blood pressure (ABP), photoplethysmography (PPG), electro-

cardiography (ECG).

Data-driven approaches in analyzing biomedical signals, based on deep learning

are being developed in areas such as nucleic acid sequence analysis [34, 46], elec-

troencephalogram (EEG) analysis for measuring brain activity [10, 11], electronic

medical record (EMR) [32, 47]. Convolutional neural network (CNN) surpasses the
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previous approach to biomedical signal analysis and is becoming the primary method

for biomedical signal analysis. However, collecting blood pressure related data at the

level of big data is very difficult and very expensive because it takes a lot of man-

power and time. In this dissertation, we proposed a three-step strategy to develop a

BP prediction model while solving dataset-related problems.

• In Chapter 3, we describe a BP prediction model with extraction and concen-

tration CNN architecture, to process publicly disclosed sequential ECG and

PPG dataset.

• In Chapter 4, we evaluate the performance of the developed model by applying

the developed model to privately measured data.

• In Chapter 5, we propose the knowledge distillation method and input pre-

processing method to improve the accuracy of blood pressure prediction model.

All the method proposed in this dissertation are based on a deep convolutional neural

network (CNN). Unlike other studies based on manual recognition of the features, by

utilizing the advantage of deep learning which automatically extracts features, raw

biomedical signals are used intact to reflect the inherent characteristics of the signals

themselves.
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Chapter 2

Background

Blood pressure is the pressure that blood exerts on blood vessels. The heart pumps

blood to circulate every beat. As blood passes through the blood vessels, the elastic

blood vessels expand to allow more blood to pass through each time the vessel wall

is hit. In the subsequent relief phase, blood spreads to the peripheral parts of the

body. Therefore, blood pressure is determined by the pumping power of the heart

and its elasticity with the blood. During blood pressure measurement, blood pressure

is measured as a periodic signal with maximum and minimum values depending on

the heart rate. Systolic blood pressure is the highest arterial blood pressure value

measured when the left ventricle contracts and the blood is pushed out of the heart

and occurs near the end of the heart cycle. Diastolic blood pressure is the minimum

arterial blood pressure value measured when the left ventricle is relaxed and the inside

of the ventricle is filled with blood, and occurs near the beginning of the heart cycle.

According to the World Health Organization WHO, an adult-based cardiac sys-

tolic value (highest blood pressure) of 120 or less and a cardiac relaxation value (low-

est blood pressure) of 80 or less are ideal. If your blood pressure value is over 140 or

90 over several days, you should consult a specialist. If hypertension is detected early,
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it can be treated by improving your diet and lifestyle or through medication. Regular

blood pressure measurement plays a critical role in early diagnosis. Blood pressure

fluctuates under the influence of the subject’s mental state or health status, so it is

advisable to check it frequently. In some cases, the psychological effects of blood

pressure measured at a medical institution and blood pressure measured at home or

at work may be significantly different.

Arterial blood pressure is usually measured through a sphygmomanometer. Sphyg-

momanometer is a biometric medical device aimed at measuring blood pressure. The

most relevant field of blood pressure measurement technology used today is illus-

trated in Figure 2.1. Sphygmomanometers traditionally used the height of the mer-

cury column used to reflect the pressure of blood circulating through the body, start-

ing from the heart. Although mercury is not used in devices or electronic devices that

use aneroid barometers, which are mainly used recently, blood pressure values are

still generally expressed in millimeters of mercury (mmHg). The sphygmomanome-

ter can be roughly divided into Cuff-based methods and Cuffless methods depending

on whether or not a cuff used for compressing blood vessels is used in measuring

blood pressure.

Cuff-based methods are classified into auscultation method, oscillometric method,

and tonometric method according to the measurement method. Auscultation method

is a method of measuring blood pressure according to the Korotkoff sound using a

stethoscope. A stethoscope is not necessary because the oscillometric method detects

the heartbeat by calculating the systolic and diastolic blood pressure using the mag-

nitude of the heartbeat from the blood vessel. Auscultation methods include mercury

sphygmomanometers, aneroid sphygmomanometers, and hybrid sphygmomanome-

ters. In cuff-based methods, to measure blood pressure, the cuff is worn on the fore-

arm or wrist to compress blood vessels. This causes the artery to stop flowing for a

6
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short time.

The pressure of the cuff may also cause the subject to feel uncomfortable or to

suffer skin trauma. There is a great demand for a cuffless BP measuring device that

can solve these shortcomings, and sufficient advanced technology is required to de-

velop it. The development of these devices allows us to measure blood pressure easily,

continuously and accurately. Cuffless BP measurement is an all-inclusive term for a

method that aims to measure BP without using a cuff. Current cuffless BP measure-

ment devices use optical sensors, similar to fitness trackers are widely used by many

people. The signal is usually measured by an optical sensor on the wrist or finger.

Using these measured signals, systolic and diastolic blood pressure values are calcu-

lated through mathematical modeling. The advantage of this method is that you can

measure blood pressure continuously without discomfort in your daily life. That’s

why it’s especially useful for measuring blood pressure in the elderly or people with

limited mobility. In addition, since most people own a smartphone equipped with a

camera and motion sensor, blood pressure measurement through mobile healthcare is

proposed as a solution for blood pressure management and early diagnosis.

8



2.1 Cuff-based BP measurement methods

2.1.1 Auscultatory method

A gold-standard method for non-invasive blood pressure measurement, developed

by Riva-Rocci and Korotkoff in the early 20th century [55]. Auscultatory method

measures blood pressure by the following method(Figure 2.2).

• After winding the cuff on the upper arm, apply pressure to the cuff to compress

the brachial artery, preventing blood flow to the brachial artery.

• Place the stethoscope directly over the artery in the cuff.

• Slowly deflating the upper arm cuff until the first sound is heard from the

stethoscope. The upper arm cuff pressure at this time is related to the systolic

pressure.

• Slowly deflating the upper arm cuff until the sound disappears completely from

the stethoscope. The upper arm cuff pressure at this time is related to the dias-

tolic pressure.

The pressure actually applied to the upper arm cuff is measured by a mercury sphyg-

Figure 2.2: Auscultation example. From [12]

9



momanometer. It is also measured using a circular aneroid sphygmomanometer or

an electronic pressure gauge. The auscultatory method requires the manipulation of a

professionally trained medical practitioner(cuff contraction, interpretation of the Ko-

rotkoff sound), and there may be differences in measurement values between opera-

tors, which reduces the accuracy of blood pressure measurement. Therefore, regular

operator training is required to achieve target measurement accuracy.

2.1.2 Oscillometric method

In order to overcome the shortcomings of the auscultation method, which had to be

measured by a professionally trained medical practitioner, products that automati-

cally measure blood pressure were introduced in the early 1970s [59]. The device,

called an oscillometric device, replaces the Korotkoff sound auscultation with digital

processing of pressure oscillations from the artery to the cuff. Oscillometric method

measures blood pressure by the following method(Figure 2.3).

• Similar to the auscultation method, the cuff is wound around the forearm and

then pressure is applied to prevent blood from flowing into the brachial artery.

• Slowly deflating the ambulatory cuff until there is diastolic pressure and record

Figure 2.3: Oscillometry example. From [12]

10



the pressure pulse from the brachial artery to the cuff.

• Systolic, diastolic, and mean blood pressure values are determined by time-

series analysis of the recorded pressure pulses and the pressure applied to the

cuff.

When reducing the pressure applied to the cuff, pressure pulses are maintained at sys-

tolic diastolic blood pressure, unlike the Korotkoff sound, which only sounds between

diastolic and systolic blood pressure. Therefore, unlike the auscultation method, the

oscillometric method cannot accurately measure systolic and diastolic arterial pres-

sure. Nevertheless, the oscillometric method is an innovative device that can easily

and repeatedly measure blood pressure without a well-trained and professional med-

ical practitioner.

2.1.3 Tonometric method

In measuring blood pressure, arterial blood vessels are based on partial occlusion

that only blocks a part of the artery, unlike the previous two methods, which must be

completely closed [16]. Tonometric method allows the arterial pressure waveform to

be continuously measured by well-positioning the sensing probe. First, the vessel is

applied to the center of the artery until the vessel begins to distort. At this point, based

on the linear spring model, the vertical displacement measured by the tonometer is

proportional to the arterial pressure. Lastly, by consistently locating the tonometer,

it is possible to continuously sense changes in the arterial pressure waveform. It is

attractive because tonometric method can measure arterial waveforms continuously

and accurately, but it has some limitations(Figure 2.4).

• The tonometry measures the vertical displacement value proportional to the ar-

terial pressure. Therefore, the arterial pressure waveform can be recorded con-

11



Figure 2.4: Tonometry example. From [65]

tinuously, but the absolute blood pressure value cannot be measured. Therefore,

tonometry is absolutely necessary to correct the blood pressure value measured

by the auscultatory and oscillometric devices.

• In addition, the tonometer must be accurately centered in the artery and is very

sensitive to subject movement.

Despite these drawbacks, it is considered a gold standard method to measure blood

pressure non-invasively because it can continuously measure arterial waveforms.

12



2.2 Biomedical signals used in cuffless BP prediction meth-

ods

This section summarizes the theoretical background and usage of cardiovascular pa-

rameters used to predict blood pressure without cuffs. Biomedical signals covered in

this section are electrocardiography (ECG), photo-plethysmography (PPG).

2.2.1 Electrocardiography (ECG)

Electrocardiogram (ECG) is a non-invasive bioelectric technology for observing the

electrical activity of the heart from the outside. ECG can identify the pathological

causes and nature of a heart by attaching several sets of electrodes to the skin’s surface
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Fig. 6.6. The conduction system of the heart. 

Because the intrinsic rate of the sinus node is the greatest, it sets the activation frequency of the whole 
heart. If the connection from the atria to the AV node fails, the AV node adopts its intrinsic frequency. If 
the conduction system fails at the bundle of His, the ventricles will beat at the rate determined by their 
own region that has the highest intrinsic frequency. The electric events in the heart are summarized in 
Table 6.1. The waveforms of action impulse observed in different specialized cardiac tissue are shown in 
Figure 6.7.  

 

 

 

 

 

 

 

Figure 2.5: Electrical conduction system of the heart. From [43]
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and observing the electrical properties produced by the heart cells during the heart

cycle. The depolarization-repolarization cycle of the heart cells propagates through

all heart tissue. The propagation of these electrical wave fronts is done through con-

ductive fibers, allowing the heart to perform optimal pumping functions by adjusting

the timing of contractions of different heart structures. A description of the heart’s

electrical delivery system is shown in Figure 2.5. The heart cycle is initiated by depo-

larization of the sinus node. At this point, electrical activation waves propagate to all

myocytes in the vicinity, causing both atria to contract. When the electrical activation

wave reaches the A-V node, the atrial-ventricular boundary, it is delivered to the bot-

tom of both ventricles through the bundle of His and the Purkinje fibers. Afterwards,

the contraction of ventricular myocytes moves upward. At various stages of the heart
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For example I is seen to lie oriented horizontally from the right arm to the left arm.  
In summary, VI, VII, and VIII are the three standard limb leads (or scalar leads) in 

electrocardiography. From Equation 11.18 one can confirm that the three lead vectors I, II, and III also 
form an equilateral triangle, the so-called Einthoven triangle, and these are shown in Figure 11.7.  

The limb lead voltages are not independent, since VI + VIII - VII = 0 , as can be verified by 
substituting for the left side of this equation the component potentials from Equation 11.18, namely (ΦL - 
ΦR) + (ΦF - ΦL) - (ΦF - ΦR), and noting that they do, in fact, sum to zero. The above relationship among 
the standard leads is also expressed by I·  + III·  - II·  = 0, according to Equation 11.18. Since is 
arbitrary, this can be satisfied only if I + III - II = 0, which means that the lead vectors form a closed 
triangle. We were already aware of this for the Einthoven lead vectors, but the demonstration here is 
completely general.  

 

Fig. 11.7. Einthoven triangle. Note the coordinate system that has been applied (the frontal plane 
coordinates are shown). It is described in detail in Appendix A. 

 
From the geometry of the equilateral (Einthoven) triangle, we obtain the following values for the 

three lead voltages. Please note that the coordinate system differs from that introduced by Einthoven. In 
this textbook, the coordinate system of Appendix is applied. In this coordinate system, the positive 
directions of the x-, y-, and z-axes point anteriorly, leftward, and superiorly, respectively.  

 

  

 

(11.19) 

Lead I

Lead II Lead III

Figure 2.6: Definition of electrical limb leads. From [43]
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cycle, the ionic currents produced by the heart propagates throughout the body. ECG

is a technology for detecting these ionic currents on the skin surface. In 1908, W.

Einthoven standardized a methodology for measuring these electrical signals. It was

especially difficult to obtain estimates of electrical signals in 3D space. So he pro-

posed a method to measure the projection of these vectors from three electrical limb

leads(Figure 2.6).

• Lead I is the voltage between the (positive) left arm (LA) electrode and right

arm (RA) electrode

• Lead II is the voltage between the (positive) left leg (LL) electrode and the

right arm (RA) electrode

• Lead III is the voltage between the (positive) left leg (LL) electrode and the left

arm (LA) electrode

Normally, cardiac function is tested through standard 12-lead ECG with 3 limb leads,

3 augmented limb leads (aVR, aVL, aVF) and 6 precordial leads (V1 to V6). Figure

2.7-2.10 shows the electrical characteristics of the heart projected onto three limb

leads according to the heart cycle.

15
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Once activation has reached the ventricles, propagation proceeds along the Purkinje fibers to the inner walls 
of the ventricles. The ventricular depolarization starts first from the left side of the interventricular septum, and 
therefore, the resultant dipole from this septal activation points to the right. Figure 15.3 shows that this causes a 
negative signal in leads I and II.  

In the next phase, depolarization waves occur on both sides of the septum, and their electric forces cancel. 
However, early apical activation is also occurring, so the resultant vector points to the apex.  

 

 

a. b.

Figure 2.7: Genesis of ECG signals during full cardiac cycle.
a. Atrial depolarization. b. Septal depolarization. From [43]
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c. d.

Figure 2.8: Genesis of ECG signals during full cardiac cycle.
c. Apical depolarization. b. Left ventricular depolarization. From [43]
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e. f.

Figure 2.9: Genesis of ECG signals during full cardiac cycle.
e. Late left ventricular depolarization. f. Ventricles depolarized. From [43]
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Fig. 15.3. The generation of the ECG signal in the Einthoven limb leads. (After Netter, 1971.) 

After a while the depolarization front has propagated through the wall of the right ventricle; when it first 
arrives at the epicardial surface of the right-ventricular free wall, the event is called breakthrough. 
Because the left ventricular wall is thicker, activation of the left ventricular free wall continues even after 
depolarization of a large part of the right ventricle. Because there are no compensating electric forces on 
the right, the resultant vector reaches its maximum in this phase, and it points leftward. The 
depolarization front continues propagation along the left ventricular wall toward the back. Because its 
surface area now continuously decreases, the magnitude of the resultant vector also decreases until the 
whole ventricular muscle is depolarized. The last to depolarize are basal regions of both left and right 
ventricles. Because there is no longer a propagating activation front, there is no signal either.  

Ventricular repolarization begins from the outer side of the ventricles and the repolarization front 
"propagates" inward. This seems paradoxical, but even though the epicardium is the last to depolarize, its 
action potential durations are relatively short, and it is the first to recover. Although recovery of one cell 
does not propagate to neighboring cells, one notices that recovery generally does move from the 
epicardium toward the endocardium. The inward spread of the repolarization front generates a signal with 
the same sign as the outward depolarization front, as pointed out in Figure 15.2 (recall that both direction 
of repolarization and orientation of dipole sources are opposite). Because of the diffuse form of the 
repolarization, the amplitude of the signal is much smaller than that of the depolarization wave and it lasts 

g. h.

Figure 2.10: Genesis of ECG signals during full cardiac cycle.
g. Ventricular repolarization. h. Ventricles repolarized. From [43]
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2.2.2 Photoplethysmography (PPG)

A photoplethysmogram (PPG) is a plethysmogram obtained using an optical method.

It is mainly used to detect changes in microvascular blood volume in tissues. PPG

is mainly measured using a pulse oximeter that illuminates the skin and measures

changes in the amount of light absorbed. At every heart rate cycle, the heart pumps

blood to external blood vessels outside the heart. This pressure pulse attenuates rather

than the initial state when it reaches the distal skin, but is sufficient to dilate blood

vessels in the tissue under the skin. The change in volume caused by this pressure

pulse can be detected by illuminates light on the skin using an light-emitting diode

(LED) and measuring the amount of light transmitted or reflected through the photo

detector. Because blood flow to the skin can be regulated by several different physio-

logical systems, PPG can be used to monitor heart rate and cardiac cycle, anesthesia

depth, breathing, hypoglycemia and hypertension, blood pressure, and other circula-

tory conditions. The PPG waveform varies depending on the subject being measured,

and also appears depending on the location and method of measurement.

20



2.3 Cuffless BP measurement methods

The classic method of measuring blood pressure without cuff is to find an indica-

tor that reflects the change in BP value and indirectly measure the change in BP

through measuring this indicator value. These indicators are non-invasive measur-

able features. For example, pulse transit time (PTT) is the most common indicator,

and numerous studies have reported the relationship between PTT and blood pres-

sure. There are many more indicators besides PTT. As shown in Table 2.1, algorithms

and mathematical models have been proposed and developed to optimize the regres-

sion process of BP prediction and calibration of the PWV features/BP [64]. However,

there are too many variables related to changes in blood pressure, and the relationship

between each variable and blood pressure is too complex to express through simple

physiologically-based mathematical modeling. Recently, as more data is available

and computing power becomes stronger, many studies have been attempted to model

the relationship between blood pressure-related indicators and blood pressure based

on machine learning and deep learning technologies. These can be classified into

two categories, PWV-based methods (with manual PWV features) and the non-PWV

based methods.
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2.3.1 PWV based BP prediction methods

Studies have been carried out to improve BP prediction performance using the PWV-

based features that were essential in traditional methods. BP refers to the pressure on

the arterial wall when sending blood from the heart to the entire body. These arteries

expand when the heart contracts (systole) and contract when the heart expands (dias-

tole). The degree of expansion and contraction depends on the elastic modulus of the

blood vessel. The following equation [62] expresses the relation between the elastic

modulus of the blood vessel and the BP.

E = E0e
αP (2.1)

In equation (2.1), E0 and α are subject-specific parameters of central artery, P is BP.

Assuming that the artery is a connected elastic tube through which blood flows,

the relationship between the velocity of the blood flowing along the artery and the

elastic modulus of the blood artery is calculated using the Moens-Kortweg equation

as follows:

PWV =
√
hE

ρd
(2.2)

In equation (2.2), h and d are the thickness and diameter of the artery, respec-

tively; ρ is the density of the blood.

Combining these two equations, we can obtain Bramwell-Hills and Moens-Kortweg’s

equation, explaining the relationship between BP and PWV, which is inversely pro-

portional to the “Time Delay” for an artery with a length of L [69].

PWV = L

TimeDelay
=
√
hE0eαP

ρd
(2.3)

These time delay values are known as PAT or PTT, and can be measured in a nonin-
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vasive manner with various biomedical signals.

Kachuee [31] and Su [66] conducted a study to predict BP using PWV features

as the main feature along with many other features extracted from biomedical sig-

nals. Kachuee extracted features from ECG and PPG signals and performed a study

to predict BP in ECG and PPG signals using machine learning techniques, such as

regularized linear regression (RLR), support vector machines (SVMs), decision tree

regression, adaptive boosting (AdaBoost), and random forest regression (RFR). Mean

absolute error (MAE) is used as an evaluation metric. The accuracy of BP prediction

was found to be SBP 11.17 ± 10.09 and DBP 5.35 ± 6.14 for calibration-free, and

SBP 8.21 ± 5.45 and DBP 4.31 ± 3.52 for calibration-based, respectively. Su ex-

tracted features from the ECG and PPG signals and performed a study to predict BP

in ECG and PPG signals through recurrent networks (LSTM), which achieved SBP

3.73 and DBP 2.43 based on the root-mean-square error (RMSE).

2.3.2 Machine learning based pulse wave analysis methods

The non-PWV based method is a method of predicting the BP by analyzing the PWV

signal itself, unlike the PWV-based method of extracting PTT-related features from

the PWV in predicting the BP. So, it is usually called "pulse wave analysis". In the

past, research has been conducted to find more suitable features for predicting BP in

addition to PTT features. In recent years, as the amount of available data has increased

and computing power has increased, as shown in table 2.2, many studies have been

attempted to model the relationship between BP-related features and BP based on

machine learning. Furthermore, studies are being conducted to predict BP at one time

without extracting BP specific features using deep learning with end-to-end manner.

There are studies on predicting the BP value or the Hypertension stage in the PPG

and/or ECG signal using non-PWV based methods.
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Table 2.2: Summary of the studies using machine learning-based

cuffless BP prediction

Machine
learning Training

Reference Input features algorithm and test Performance

Xing et al. Spectrum amplitude Artificial neural 69 subjects SBP: 0.06±7.08 mmHg
[74] and phase of PPG network with SBP: 0.01±4.66 mmHg

waveform one hidden
layer

Sun et al. PPG and ECG Multiple linear 19 subjects SBP: 0.43±13.52 mmHg
[67] signals, PAT and 18 regression reference:

PPG features from Volume-
PPG and ECG signals clamp method

Leave-on
subject-out
cross
validation

Jain et al. 32 parameters Sparse Training: 99 SBP: MAD: 4.43 mmHg
[29] extracted from ECG regression (to subjects (SD: 4.90 mmHg)

and PPG trim the Test: 10 DBP: MAD: 2.46 mmHg
redundant subjects (SD: 3.31 mmHg)
features) Reference:

OMRON
HBP1300

Duan et al. 11 out 56 features Support vector 57 subjects SBP: 4.77±7.68 mmHg
[17] from PPG signal machine DBP: 3.67±5.69 mmHg

regression MBP: 3.85±5.87 mmHg

He et al. 18 features from ECG Random Forest One-hour SBP: 8.29±5.84
[25] and PPG signals continuous

BP:1246
pairs DBP
1260 pairs
SBP
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Table 2.2 continued from previous page

Machine
learning Training

Reference Input features algorithm and test Performance

Shobitha 18 features extracted Relevance 26 subjects SBP: Kappa score=0.99
et al.[63] from PPG signal vector machine DBP: Kappa score=0.99

Miao et al. 14 features extracted Multiple linear 73 subjects SBP:-0.00±3.10 mmHg
[45] from ECG and PPG regression DBP:

Support vector -0.00±2.20 mmHg
regression

Lin et al. 19 PPG indicators Linear 22 subjects Combination of PPG and
[39] and PTT regression PTT achieves a better

method performance than
PTT-based method

Su et al. 7 features extracted 4 layer deep 84 healthy SBP: 3.73 mmHg
[66] from ECG and PPG RNN (LSTM) subjects (RMSE)

signals DBP: 2.43 mmHg
(RMSE)

Ertugrul ECG and PPG Extreme UCI dataset SBP: 6.93 mmHg (MAE)
et al.[19] signals learning MBP: 8.86 mmHg (MAE)

machine DBP: 19.43 mmHg
(MAE)

Radha Activity features A sequence-to- 120 subjects SBP: 5.65 mmHg
et al.[58] Heart rate variability sequence (RMSE)

PPG morphology model:
features perceptron +

LSTM

Wang Spectral and Artificial neural 72 subjects: SBP:4.02±2.79 mmHg
et al.[70] morphological network (one 70% training DBP:2.27±1.82 mmHg

features from PPG hidden layer) 15%
signal validation

15 % testing

Ghosh ECG and PPG LSTM 50 health SBP 0.02 ±4.8 mmHg
et al.[22] subjects 1.5±3.7 mmHg
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Table 2.2 continued from previous page

Machine
learning Training

Reference Input features algorithm and test Performance

Polinski PTT, RR interval, and Single layer 21 subjects SBP: 1.06 mmHg(MAE)
et al.[56] respiration signal recurrent neural DBP: 0.63 mmHg(MAE)

network

Wu et al. Waveform Eight hidden 85 subjects SBP: 3.63 mmHg(MAD)
[73] information layer deep DBP: 2.45 mmHg(MAD)

handcrafted features neural
and personal features networks
from ECG and PPG
signals

Mousavi Whole base features Adaptive 441 subjects SBP:-0.05±8.90 mmHg
et al.[48] from PPG boosting MBP:0.07±4.91 mmHg

regression DBP:0.19±4.17 mmHg

Khalid [33] extracted features from only PPG signals and performed a study

to predict BP using machine learning techniques such as multiple linear regression

(MLR), SVM, and decision tree regression. The accuracy of BP prediction was found

to be SBP 4.82 ± 4.31 and DBP 3.25 ± 4.17. Wang [70] segments a single PPG sig-

nal from the raw PPG signal, extracts morphological and spectral features from the

signal, and performs experiments to predict SBP and DBP through artificial neu-

ral networks (ANN), which achieved SBP 4.02 ± 2.79 and DBP 2.27 ± 1.82. Er-

tugrul [19] uses a spectrogram, which is the magnitude squared of the short-time

Fourier transform (STFT) of a PPG and/or ECG signal, and then performed a study

to predict BP through the extreme learning machine method (ELM). The accuracy

of BP prediction was found to be SBP 4.37 and DBP 3.95. Zhang [78] also ex-

tracted features from a PPG signal and performed a study to predict BP using the

SVM method, which achieved SBP 11.64± 8.20 and DBP 7.62± 6.78. Tanveer [68]
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proposed a waveform-based hierarchical artificial neural network–long short-term

memory (ANN–LSTM) model for BP estimation that automatically learns features

from ECG and PPG signals through ANN and then uses them as inputs to LSTM to

predict BP. Liang [38] transforms the PPG signal to a scalogram, which is a plotted

RGB image as a graph of time and frequency, using a continuous wavelet transform.

Hypertension classification was conducted using the pre-trained CNN (GoogLeNet).

This study obtained superior hypertension classification performance compared to

the studies considering PWV based features.

2.4 Deep learning for sequential biomedical data

Machine learning is a general-purpose artificial intelligence that can learn the rela-

tionship between data without considering the priority from data. It have the advan-

tages that can derive a predictive model without a complete assumption about mecha-

nisms that are usually hidden behind unknown or insufficiently defined mechanisms.

In order to build a machine learning system, an engineering process or domain exper-

tise were essential to convert raw data into a representation suitable for the learning

system. Deep learning differs from traditional machine learning in the way that rep-

resentaion is learned from raw data. The most differences between deep learning and

traditional artificial neural networks are the number of hidden hidden layers, the con-

nections between those hidden layers, and the ability to learn meaningful abstract

concepts from inputs. It is different from traditional artificial neural networks, which

are usually organized into three or so hierarchies and trained to obtain supervised

representations by optimizing only for specific non-general tasks. All layers of the

deep learning system optimize local non-supervised standards to express observed

patterns based on data received as input from the lower layers. The main aspect of
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deep learning is that these functional layers are not designed by human engineers,

but are trained on data using universal learning procedures. In fact, deep learning

was well suited to finding complex structures in high-level sequential data in medical

domains such as genomics and biomedical signal processing, and natural language

processing domains such as speech recognition, natural language understanding, and

translation, and has achieved excellent performance. The deep architecture applied to

each domain is mainly based on convolutional neural networks and recurrent neural

networks.

2.4.1 Convolutional neural networks

Convolutional Neural Networks (CNN) has been mainly used in image related fields

based on convolution precess and weight shared structure. The convolution layer per-

forms convolution on the sub-sample layer using an arbitrary filter on the input signal,

and then passes the result to the next layer. The next filtering is performed in the next

layer, and through this process, it converge into a feature map that best reflects the

characteristics of the input signal. In each convolution layer, a sub-region of the input

is scanned through a learnable feature map called as filters. Through these learned fil-

ters, it is possible to find features that are locally related regardless of their location.

Then, the features of the sub layer are concentrated and summarized through each

pooling layer. CNNs are known to work effectively with all data with grid topology,

as well as 2D data, such as video and image data. CNN shows excellent performance

in the research using 2-dimentional data such as images and videos, as well as in

the research using 1-dimentional form, such as studies predicting chromatin marks

in DNA sequences [80] and studies predicting congestive heart failure in long-term

electronic health records [7]. In particular, as in the case of TCN, prior studies have

achieved good performance by applying a CNN to sequential 1D data.
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2.4.2 Recurrent neural networks

Recurrent Neural Networks (RNN) is a type of artificial neural network that is con-

nected by a directed (one-way) connection between hidden nodes unlike feed forward

neural networks. Typically, an RNN consists of one network that does the same for

all elements in the sequence, and each output value depends on previous calcula-

tions. Therefore, hidden nodes can affect all sub hidden nodes, and RNN can obtain

long-term dependency between long data of sequential data. Based on these structural

characteristics, it is known to show excellent performance as a model suitable for pro-

cessing sequential data such as speech recognition, natural language understanding,

and translation. In addition, to prevent vanishing and exploding gradient problems

that can occur as time t increases, RNNs with gated recurrent unit (GRU) and RNNs

with long short-term memory (LSTM) with gated state or memory have been de-

veloped. RNN shows excellent performance in studies dealing with sequential type

biomedical data such as research predicting diagnoses and medications in patient his-

tory using RNNs with gated recurrent unit (GRU) [9] and research predicting future

medical outcomes in current illness states using RNNs with long short-term memory

(LSTM) hidden units [53].
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Chapter 3

End-to-end blood pressure

prediction via fully convolutional

networks

Cardiovascular disease is the leading cause of death in the world. It is vital to prevent

it by rapid diagnosis and appropriate management through periodic blood pressure

(BP) measurement. Recently, many studies have been conducted on methods to mea-

sure BP without a cuff. One of the most common methods of predicting BP without

a cuff is to use the correlation between pulse wave velocity (PWV) and BP. Studies

that predict BP through PWV have two problems to overcome: 1) Additional efforts

are required to extract PWV features manually from various biomedical signals, such

as electrocardiogram (ECG) and photoplethysmogram (PPG); and 2) in predicting

BP using biomedical signals from other people, individual periodic calibration is re-

quired because the correlation between PWV and BP differs from person to person.

In this study, we proposed a cuffless BP prediction method based on a deep convo-

lutional neural network (CNN) that can overcome the problems mentioned above.

33



The proposed CNN method 1) can use raw signals for training without PWV feature

extraction; and 2) automatically learns the characteristics of biomedical signals from

other people to predict BP accurately without calibration. We propose two schemes:

extraction through multiple dilated convolution, and concentration through strided

convolution with a large kernel, to process sequential ECG and PPG signals through

CNN. BP prediction performance was the best when both ECG and PPG signals

were used together. To this end, we conducted extensive experiments on the different

settings of the proposed method and constructed an effective learning model. The

proposed method achieved excellent performance in predicting both systolic blood

pressure and diastolic blood pressure over other known approaches. We also verified

that the performance of our method fulfills international standard protocols, AAMI,

and BHS.
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3.1 Introduction

High blood pressure (BP) is a common and dangerous condition. About 1 out of 3

adults in the U.S. (about 75 million people) have high BP. This common condition

increases the risk of heart disease and stroke, two of the leading causes of death for

Americans [44], [76]. High BP is called the “silent killer” because it often has no

warning signs or symptoms, and many people are not aware they have it. For this

reason it is important to check BP regularly.

Traditional BP measurement is based on the cuff. When using this method, BP

cannot be re-measured until the occluded artery returns to its original position. It is

not suitable for continuous BP measurement or observation of long-term BP change.

The pressure of the cuff may also cause the subject to feel uncomfortable or to suffer

skin trauma. To overcome these shortcomings, improvements in cuffless and contin-

uous BP estimation methods have been an area of recent research.

Cuffless BP measurement is an all-inclusive term for a method that aims to mea-

sure BP without using a cuff. The most common method for cuffless BP measurement

is based on manual examination of pulse wave velocity (PWV) features [31], [66].

PWV is the velocity of the pressure wave flowing through the blood vessels. This

PWV based method can predict the blood pressure value by using the relationship

between the time required for the blood to move between two points and the distance

between these points. To measure the time value in a noninvasive manner, various

biomedical signals, such as electrocardiogram (ECG), photoplethysmogram (PPG),

ballistocardiogram (BCG) and seismocardiogram (SCG) are used [50]. A number of

studies have shown that ECG and PPG signals are the most commonly used to ef-

fectively predict BP. The time values are referred to as pulse arrival time (PAT) or

pulse transit time (PTT). PAT refers to the time difference between the R-peak of
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the ECG signal and the PPG peak, and is usually obtained from the ECG signal and

the PPG signal measured at one of the wrists, ankles, or other in vitro sites. PTT

refers to the time it takes for a blood pressure-induced waveform to travel between

two points in the artery, usually measured through PPG sensor signals. However, as

described earlier in this paper, the PWV-based method requires recognizing features

from the signal waveforms, and thus additional effort. This method also requires ei-

ther a combination of simultaneously measured ECG and PPG or two simultaneously

measured PPGs, which is inconvenient and cumbersome. Furthermore, the PWV-

based method usually requires an elaborate individual calibration process using a

sphygmomanometer with a cuff because the correlation between PWV features and

BP varies from person to person [15], [21], [5] and thus cannot be used as a replace-

ment for a cuff sphygmomanometer. There are some limitations with collecting ECG

and PPG simultaneously using a mobile device.

As another way to predict BP without a cuff, some researchers have attempted to

predict BP using a single raw biomedical signal or transform rather than the PWV-

based feature [33], [70], [19], [78]. The concept of predicting BP using a single signal

measurement such as ECG or PPG appears to be more appropriate for mobile devices

such as smartphones and smart watches. A non-PWV based method can be relatively

accurate without calibration because the method finds the characteristics which can

predict BP in the biomedical signal itself without using the correlation between PWV

and BP which is different from person to person. However, it is difficult to obtain high

BP prediction accuracy using this method.

In this paper, we devised a method of BP prediction based on a deep convolutional

neural network (CNN). The proposed method can overcome the drawbacks of feature

recognition of the PWV-based method and the low BP prediction accuracy of non-

PWV based method. It can take advantage of being a non-PWV based method with
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relatively high BP prediction accuracy without calibration. Unlike other studies based

on manual recognition of PWV features, by utilizing the advantage of deep learning

which automatically extracts features, raw ECG and PPG signals are used intact to

reflect the inherent characteristics of the signals themselves. It is also possible to

predict relatively accurate BP without individual calibration.

The main contributions of our work are summarized as follows:

• We proposed a novel end-to-end method of predicting blood pressure using

only raw signals with no hand-made features.

• Based on the architecture of CNN, our method has the flexibility to deal with

input variations (PPG/ECG, Time/Frequency) and applicability to real-world

situations.

• The proposed method achieved excellent performance in predicting both sys-

tolic and diastolic blood pressure using the MIMIC II dataset compared with

other known approaches.
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3.2 Method

We propose fully convolutional networks constructed using only 1D convolution for

BP prediction. The proposed end-to-end 1D CNN model can predict SBP and DBP

directly from raw signals without any additional manual feature extraction process,

particularly PWV features.

A common deep learning approach for handling sequence data is to use recurrent-

based neural networks. However, the signals related to BP (e.g., PPG, ECG, ABP)

have a certain periodicity and pattern repetition, and so can be assumed to be grid

topology data with wide range locality apart from long term time dependency. There-

fore, we constructed a 1D convolution based neural networks to extract wide ranged

local features from fixed length input signals and to regress the real numbered targets.

The Extraction-Concentration blocks are key components of the proposed model, ob-

tained by combining multiple dilated convolution and strided convolution using large

kernel sizes [18]. It is possible to extract and concentrate features from the periodic

signals.

The proposed BP estimation method consists of the following steps. 1) Data

preparation: Prepare data pair (x,y) from the given database D for CNN training;

2) CNN based prediction model: Feature extraction through proposed Extraction-

Concentration blocks and prediction with joint loss Ltotal.

3.2.1 Data preparation

Data sampling

The database D contains a set of raw PPG, ECG, and arterial blood pressure (ABP)

signals Ri = (rPPG
i , rECG

i , rABP
i ), where i is the subject index and each Ri has a

different length. For preparing the training dataset, we sampled random segments
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Figure 3.1: Examples of ABP signal for data sampling. (a) Illustration of the sampling
constraints. (b) Examples of the false cases.

Si from the raw signals to make all datasets the same length lseg. Note that lseg =

1000 for the experiments. During the sampling process, we applied two constraints

to ABP signals (the true value of the estimation) for minimum refinement. According

to NIH/WHO BP classification standard [8], we first apply the BP range criteria,

90 ≤ max(sABP) < 180, 60 ≤ min(sABP) < 120. Next, we exclude abnormal

ABP signals through peak analysis, with the peak constraints defined as len(p) ≥

5,StdVar(∆px) < 5, StdVar(py) < 5, where peak p = (p1, .., pn), pix is the time

stamp and piy is the ABP value of the ith peak. Fig. 3.1 shows the sampling constraints

and examples of excluded cases.

Preprocessing

Given segments S from the sampling process, we conducted the preprocessing steps

to create adequate input and output data pairs for our method. Three preprocessing

techniques are used: random cropping, fast Fourier transform (FFT), and increasing

input depth using its derivatives. The preprocessing flow is illustrated in Fig. 3.2.

To increase the input variation, we use a randomly cropped signal Xt with length

lin in the lseg-length segment S. Random cropping allows the model to learn signals
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Figure 3.2: Data sampling and preprocessing flow.

at various points in the segment S and to reduce reliance on synchronization between

signals. Note that we set lin = 512 in the experiments. Since our model takes both

time and frequency domain inputs, the original signal needs to be converted to the

frequency domain. FFT is used at this stage; we use Fourier spectrum Xf from the

original signal Xt as the input for the frequency encoder. Next, for time domain

signals, we increase the input depth by concatenating the input signal’s 1st and 2nd

derivatives as follows [37].

Xt = Xt ⊕∆Xt ⊕∆2Xt (3.1)

The accuracy difference according to the input signal’s derivative are shown in chap-

ter 3.3.2.

After the preprocessing step, we end up with a prepared dataset (Xt, Xf , Y ) from

which we take a mini-batch (xt, xf , y) for model training. The dimensions of the

prepared dataset in the experiments are m × 6 × 512, m × 2 × 256, m × 2 with
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mini-batch size m for xt, xf , y, respectively.

3.2.2 CNN based prediction model

The overall architecture of the proposed method is shown in Fig. 3.3. It consists of

three parts: a time encoder, a frequency encoder, and three predictors for time, fre-

quency, and combined feature matrices. The time encoder ht(·) learns representative

features in time-series inputs xt, and outputs the corresponding feature matrix zt. In

parallel with the time encoder, the frequency encoder hf (·) outputs feature matrix zf

for the frequency domain inputs xf . Each encoder is composed by stacking two core

modules named Extraction and Concentration blocks, which are designed to learn

effective latent features from the data with periodicity.
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Figure 3.3: Overview of the proposed BP prediction model based on fully convolu-
tional neural networks.
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Extraction-Concentration Blocks

For CNN to handle periodic sequential data, such as PPG and ECG, the main issue

is how the model can learn the relationship between neighboring data points with

different intervals unlike images. Two components, multiple dilated convolution and

strided convolution with a large kernel, are the main features of our method. We

illustrate the detailed structure of Extraction and Concentration blocks in Fig. 3. 4.

In the Extraction blockE(·) : RD×W → RD×W , whereD is the input dimension,

and W is the size of input, we use four parallel dilated convolutions with pre-defined

kernel size kEXT and dilation factors of [1, 2, 3, 4]. A model can learn the various re-

lationships between different neighboring pixels within the 4× (kEXT−1)+1 range

+

d=1 d=2 d=3 d=4
Dilated
conv

Concat

Conv1

BN

ReLU

Dropout

x

Strided conv

BN

ReLU

Dropout
y

Extraction
Block

Concentration
Block

kEXT

kCON

Figure 3.4: Detailed architectures of Extraction and Concentration blocks.
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through multiple dilated convolution. Each output from the multiple dilated convo-

lutions is concatenated together and reduced to the initial dimension by convolution

with filter size 1. We use the residual connection, which is a well-known technique

to allow better gradient flow. As with temporal convolutional networks (TCN), the

combination of batch normalization (BN), ReLU non-linearity, and dropout layer is

placed after the residual connection [2].

In the Concentration block C(·) : RD×W → RD′×W
2 , where D is the input

dimension, D′ is the output dimension, and W is the input size. The model can con-

centrate the outputs from the Extraction block and increase the depth of the features

to gain better representations, which lie in a lower dimension space. A typical choice

for this concentration is max pooling, but we use a strided convolution with kernel

size kCON as an alternative. The reason for this is because there is much information

loss by pooling when we apply a large kernel size. We compare the performance be-

tween pooling and strided convolution through the experiment in chapter 3.3.2. After

the strided convolution, the BN+ReLU+Dropout combination layer is placed in the

same way as the Extraction block.

Both the time encoder and the frequency encoder consist of four Extraction +

Concentration combinations. Another important factor here is the receptive field size.

Even though the network is deeply stacked to increase the receptive field, the actual

network has a characteristic of focusing on local regions [42]. Therefore, we chose

to increase the kernel size instead of deeply configuring the network. Considering

the possible heart rate range, an input signal of more than 4 seconds can contain at

least 2 periods of the signal, which implies that the input needs to have 500 pixels

when using a 125 Hz sampling frequency. The proposed model should therefore have

a receptive field size of more than 500 pixels. More precisely, since the inputs to our

model have sizes of 512 and 256 for the time and frequency domain respectively, the
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kernel sizes of each Extraction (kEXT) and Concentration blocks (kCON) are needed

to satisfy these constraints. Possible combinations of the filter sizes for our 4-EC

stacked networks are (3, 27, 25), (5, 19, 17) and (7, 11, 9) for (kEXT, k
t
CON, k

f
CON),

where ktCON and kfCON are the filter sizes of the Concentration block for time and fre-

quency flow. We selected (7, 11, 9) for the experiments, and related results regarding

filter sizes will be described in chapter 3.3.2.

Prediction and Training

After feature extraction through both time and frequency encoders, we can define the

combined feature matrix zc = zt⊕zf . The combined predictor fc(·) : RDc×W → R2,

where Dc is the dimension of zc and W is the size of zc, consists of a double stacked

convolution layer, global average pooling, and a dimension reduction convolution

layer. The output ŷc of fc(·) is two real numbers which indicate SBP and DBP. The

objective of the prediction is to minimize the distance between the target y and the

prediction yc. L1 and L2 distance are the typical error measurements; we compared

the performance of both cases applying the L1 or L2 distance in chapter 3.3.2. The

objective to minimize is defined as:

Lc = d(yc, ŷc), (3.2)

where d can be any distance metric between real numbers, L1 and L2 in this case.

In addition to this, we added two auxiliary flows from the predictors ft(·) and

ff (·) which take the pre-concatenated features zt and zf as inputs, respectively. Both

auxiliary predictors have a simpler structure which consists of one convolution layer,

global average pooling, and a dimension reduction convolution layer. Auxiliary loss

is a well-known technique to help the model’s gradient flow in the back-propagation
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phase, and will improve performance. We introduce the importance factor α to both

losses Lt and Lf . Our final loss is defined as follows:

Ltotal = Lc + α(Lt + Lf ) (3.3)

The effect of auxiliary loss will be described in chapter 3.3.2. We can update the

model parameters by mini-batch gradient descent with respect to the current model

weight. Training details for the experiments will be outlined in chapter 3.3.1.

3.2.3 Detailed architecture

Table 3. 1 shows detailed information about the proposed architecture. It contains the

layer structure, input/output dimension, size of kernel/stride/dilation and the receptive

fields at each layer.
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Table 3.1: Model architecture details

Arch Layer Operation Size Out Kernel Stride Dilation
Recep.
field

Time

Ext.1
Multi-conv 6x512 6 7 1 [1,2,3,4]

25
BN+ReLU+Dropout

Con.1
Conv 6x512 32 11 2 1

35
BN+ReLU+Dropout

Ext.2
Multi-conv 32x256 32 7 1 [1,2,3,4]

83
BN+ReLU+Dropout

Con.2
Conv 32x256 64 11 2 1

103
BN+ReLU+Dropout

Ext.3
Multi-conv 64x128 64 7 1 [1,2,3,4]

199
BN+ReLU+Dropout

Con.3
Conv 64x128 128 11 2 1

239
BN+ReLU+Dropout

Ext.4
Multi-conv 128x64 128 7 1 [1,2,3,4]

431
BN+ReLU+Dropout

Con.4
Conv 128x64 256 11 2 1

511
BN+ReLU+Dropout

Freq

Ext.1
Multi-conv 2x256 2 7 1 [1,2,3,4]

25
BN+ReLU+Dropout

Con.1
Conv 2x256 32 9 1 1

33
BN+ReLU+Dropout

Ext.2
Multi-conv 32x256 32 7 1 [1,2,3,4]

57
BN+ReLU+Dropout

Con.2
Conv 32x256 64 9 2 1

65
BN+ReLU+Dropout

Ext.3
Multi-conv 64x128 64 7 1 [1,2,3,4]

113
BN+ReLU+Dropout

Con.3
Conv 64x128 128 9 2 1

129
BN+ReLU+Dropout

Ext.4
Multi-conv 128x64 128 7 1 [1,2,3,4]

225
BN+ReLU+Dropout

Con.4
Conv 128x64 256 9 2 1

257
BN+ReLU+Dropout

Comb

Layer1
Conv 512x32 512 3 1 1

BN+ReLU+Dropout

Layer2
Conv 512x32 512 3 1 1

BN+ReLU+Dropout

Layer3
GAP 512x32 512x1
Conv 512x1 2 1 1 1
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3.3 Experimental results

3.3.1 Setup

In the experiments, the Cuffless Blood Pressure Estimation dataset is used as a source

of the ECG, PPG, and ABP signals. This dataset was generated by Kachuee [30], ini-

tially collecting ECG, PPG and ABP signals from the Physionet’s Multi-parameter

Intelligent Monitoring in Intensive Care (MIMIC) II (version 3, accessed on Sept.

2015) online waveform database [61] and then preprocessing to remove the deteri-

oration effects of noise and artifacts from the raw signals. The dataset consists of

12,000 records with all of the ECG, PPG, and ABP signals in hierarchical data for-

mat. Each record consists of three rows, with each row corresponding to one signal

channel: 125Hz ECG from channel II (ECG lead II), 125Hz PPG from a fingertip,

125Hz invasive ABP. After the data preparation process described in chapter 3.3.1.,

the entire dataset contains 1,912 records from 942 different subjects. We split the

dataset into training (70%, 1,340), validation (10%, 193), and test (20%, 379) sets.

For training, we use the Adam optimizer with β1 = 0.9, β2 = 0.999, a mini-

batch size of 100, and no weight decay. The initial learning rate is 0.001 decayed by

0.2 after 800 epochs. The dropout rate is set to 0.2 for the entire networks.
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3.3.2 Model evaluation & selection

To investigate the effect of model parameters, we performed prediction error analysis

with changes in different components (e.g., loss metric change, the weight of aux-

iliary loss, type of pooling, kernel size). Fig. 3.5, 3.6, 3.7. shows the difference in

prediction error value according to loss metric change (L1, L2), weight of auxiliary

loss (0, 0.2, 0.4, 0.6), type of pooling (Strided Conv, MaxPool, AvgPool), and kernel

size (filter combination).

As can be seen in Fig. 3.5, in the case of using L1 loss, the prediction error is

lower than that using L2 loss. In the case of auxiliary loss weight α, a small auxiliary

loss weight helps the model’s gradient flow in the back propagation phase, which

reduces the prediction error. If a large weight is used, however, the prediction error is

increased because Lt and Lf have a greater impact on Ltotal than Lc.
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Figure 3.5: BP prediction error analysis according to the model component changes.
The best performing model is marked with a red dotted line. (a) BP prediction error
due to loss metric and auxiliary weight variation.
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The results of the prediction error measurement depending on the pooling type

and the kernel size can be seen in Fig. 3.6. In the case of the pooling type, it can be

confirmed that the prediction error when using Strided Conv is lower than that when

using MaxPool or AvgPool. This is due to the information loss by pooling when we

apply a large kernel size. In the case of the combination of filter sizes, we conducted

an experiment to compare prediction error for three combinations. It was confirmed

that the prediction error of the kEXT, k
t
CON, k

f
CON = 7, 11, 9 combination with the

largest kEXT is the lowest because the model can learn the relationship between pixels

in a larger neighborhood through a large kEXT.

The results of the BP prediction error test with and without input signal‘s deriva-

(b)
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Figure 3.6: BP prediction error analysis according to the model component changes.
The best performing model is marked with a red dotted line. (b) BP prediction error
according to pooling type and kernel size.
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tive are shown in Fig. 3.7. BP prediction error is lowest when input signal’s first and

second derivatives are used together with the original signal regardless of the cali-

bration. Through prediction error analysis with component changes, SBP and DBP

prediction performance are the best when using L1 loss, a weight of auxiliary loss α

= 0.2, Strided Conv, and a combination of kEXT, k
t
CON, k

f
CON = 7, 11, 9. BP predic-

tion performance results are shown in Table 3.2 with the calibration-based results to

be covered in the next chapter.
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Figure 3.7: BP prediction error analysis according to the model component changes.
The best performing model is marked with a red dotted line. (c) BP prediction error
due to the use of derivatives of the input signals.
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3.3.3 Calibration-based method

The proposed method in this study does not need any calibration to predict BP. How-

ever, when using a smart device, such as a telephone or a watch, to repeatedly mea-

sure data to estimate the BP, it is possible to improve the accuracy of BP prediction

by calibrating the pre-trained models using partial personal data. To confirm the im-

provement of the BP prediction accuracy of the calibration based method, test data

was divided into several non-overlapping sections. Half of the divided data is used

for calibrating the pre-trained model and the remaining data is used to evaluate the

BP predictive ability of the calibration-based model.

Fig. 3.8. presents the scatter plots for calibration-free and calibration-based meth-

ods, when using the best performance model as selected in the previous chapter.

SBP
Cal-free

r = 0.68

DBP
Cal-free

r = 0.51

SBP
Cal-based

r = 0.89

DBP
Cal-based

r = 0.80

Figure 3.8: Scatter plots for calibration-free and calibration-based models. The x-axis
represents the reference value and the y-axis represents the predicted value.
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When comparing the graphs before and after calibration, the scattered points on the

graph converge to a straight line through calibration, which can also be confirmed

by comparing Pearson’s correlation coefficient (r) values before and after calibration

in both SBP and DBP. In particular, calibration-based model showed a high Pear-

son’s correlation coefficient of SBP 0.89, DBP 0.80, which are higher than those

shown in other experiments using PWV features (PAT, PTT and so on) and MIMIC

dataset [36]. The Pearson’s correlation coefficient between blood pressure and PWV

features was reported as a value between −0.28 and −0.71. We have confirmed that

the features extracted automatically through CNN proposed in this paper are more

suitable for predicting blood pressure without cuff than the features extracted manu-

ally from other studies.

3.3.4 Performance comparison

Table 3.2 shows the comparison of BP prediction accuracy between the proposed

method and previous studies. Most studies used mean absolute error (MAE) as an

evaluation metric of BP prediction accuracy, and we also compared the results using

MAE.

Training without consideration of train/test data split by subject would result in an

abnormally high BP prediction accuracy because the subject data used in the training

phase may be used in the test phase. For a fair comparison, we did not compare

the performance with the results of studies not considering train/test data split by

subject [66], [33], [70], [19] and the study using private dataset [66]. We compared

only the results obtained under the same conditions in this study.

From the results in Table 3.2, we can confirm that both the calibration-free and

calibration-based BP prediction methods in this study show the best performance

compared with other studies. In calibration-free settings, the performances of both
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ECG+PPG and PPG only improve significantly compared with previous studies:

SBP 16.7% (11.17→9.30) and DBP 4.3% (5.35→5.12) with ECG+PPG, SBP 6.7%

(11.64→10.86) and DBP 21.9% (7.62→5.95) with PPG only. These results show

that the proposed CNN method can work flexibly with various input combinations.

An in-depth analysis of this will be described in chapter 3.3.6. Notably, It is encour-

aging that the improvement with calibration is much more substantial (SBP 35.2%,

DBP 21.6%) than the result without calibration. This is due to the strong approxi-

mation performance of CNN compared to other machine learning methods. From an

application perspective, we can expect that the proposed method will be robust with

a wearable device, which requires personalized calibration.

3.3.5 Verification using international standards for BP measurement

grading criteria

Association for the Advancement of Medical Instrumentation (AAMI)

Table 3.3 presents the verification results of the proposed method using CNN based

estimation model with the AAMI standard. The criteria for fulfilling the AAMI pro-

tocol are that the test device must not differ from the mercury standard by a mean

error (ME) of ≤5 mmHg or a standard deviation (STD) of ≤8 mmHg. According

Table 3.3: Verification with the AAMI Standard

Diffrence between standard
and predicted value(mmHg)

ME STD Subjects

Proposed
Cal-free

DBP 0.13 7.54

379
SBP -1.23 12.80

Cal-based
DBP -0.48 5.08
SBP -1.29 7.58

AAMI SBP/DBP ≤ 5 ≤ 8 ≥85
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to the AAMI grading criteria, almost all of the calibration-free and calibration-based

methods proposed in this study satisfy the AAMI criteria for both BSP and DBP. The

standard deviation value of the SBP is slightly over the AAMI standard limit[51].

British Hypertension Society (BHS)

Table 3.4 presents the verification results of the proposed method using CNN based

estimation model with the BHS standard. The BHS grading criteria represent the

cumulative percentage of readings falling within 5 mmHg, 10 mmHg, and 15 mmHg

of the mercury standard. All three percentages must be greater than or equal to the

values shown for a specific grade to be awarded. The criteria for fulfilling the BHS

protocol are that devices must achieve at least grade B (where A denotes the greatest

agreement with mercury standard and D denotes least agreement) for systolic and for

diastolic pressures. Mean arterial pressure (MAP) is defined as the average pressure

in a patient’s arteries during one cardiac cycle. It can be calculated from the SBP and

Table 3.4: Verification with the BHS Standard

Absolute difference
Grade

≤ 5 ≤ 10 ≤ 15

Proposed

Cal-free
DBP 64.1% 87.1% 95.0% A
SBP 40.6% 67.5% 80.2% D

MAP 62.0% 87.1% 95.8% A

Cal-based
DBP 79.2% 95.3% 97.9% A
SBP 59.6% 87.3% 93.7% B

MAP 79.7% 96.0% 99.2% A

BHS
grade A 60% 85% 95%
grade B 50% 75% 90%
grade C 40% 65% 85%
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the DBP using the formula [13]:

MAP = SBP + 2(DBP )
3 (3.4)

According to the BHS grading criteria, the proposed calibration-free method achieved

A grade in the prediction of DBP and B grade in the prediction of MAP value. In the

case of calibration-free method, for SBP, the proposed method achieved a grade lower

than B. After considering the calibration-based method actually in use the proposed

method achieved an A grade in DBP and a B grade in SBP predictions. The pro-

posed method satisfies the BHS standard completely except for SBP in the case of

calibration-free method [51].

3.3.6 Performance comparison by the input signal combinations

The concept of estimating BP using a single biomedical signal such as PPG or ECG

that can be easily measured from a mobile device such as a smartphone or a watch

seems to be promising. The same experiment was conducted using a single PPG or

ECG signal as the input for the development of the wearable product.

Table 3.5 presents the accuracy of the experiment for different input signal com-

binations. The accuracy is the best when both the time and frequency encoders of

PPG+ECG inputs are used. In the case of using a single ECG or PPG signal, the BP

prediction performance is lower than the case of using both input signals together.

However, as shown in Table 3.2, this result shows superior BP prediction perfor-

mance compared with other previous experiments using the same input signal. In all

three cases using ECG+PPG, PPG, and ECG as inputs, it can be seen that the accu-

racy is higher when time and frequency signals are used together than when only a

time or a frequency signal is used. The performance improvement due to the corre-
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Table 3.5: Performance comparison by the input signal combinations

Cal-free Cal-based
SBP DBP SBP DBP

MAE STD MAE STD MAE STD MAE STD

Time
+

Freq.

PPG+ECG 9.30 8.85 5.12 5.52 5.32 5.54 3.38 3.82

PPG only 10.86 9.54 5.95 5.60 7.16 6.79 4.48 4.60

ECG only 11.46 9.73 5.72 5.55 7.29 6.87 4.39 4.49

Time
only

PPG+ECG 10.13 9.48 5.45 5.34 5.93 6.13 3.63 3.83

PPG only 11.15 9.82 5.71 5.98 7.41 7.02 4.32 4.50

ECG only 11.57 10.78 5.81 6.00 7.00 6.82 4.14 4.43

Freq.
only

PPG+ECG 11.66 10.65 5.95 5.60 9.49 9.14 5.02 5.04

PPG only 12.43 11.43 6.17 6.14 11.25 10.15 5.85 5.53

ECG only 11.79 10.30 5.70 5.61 9.33 8.62 4.92 4.55

lation is larger when the time signal is used than the frequency signal. In addition,

PPG signal does not seem to be helpful for learning when only frequency domain

of PPG signal is used. To verify this result, an ablation experiment was conducted

using the input combination where only the frequency encoder of PPG is removed

from the best combination (both the time and frequency encoders of PPG+ECG in-

puts are used). The accuracy of BP prediction was found to be SBP 9.60 ± 9.53 and

DBP 5.14± 5.10 for calibration-free, and SBP 5.98± 6.17 and DBP 3.81± 3.96 for

calibration-based, respectively. This result is worse than those of the best combina-

tion. This result shows that any relation between time and frequency input contributes

to the improvement of BP prediction performance. Our proposed model can learn this

relationship to improve accuracy.
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3.3.7 An ablation study of each architectural component of extraction-

concentration blocks

The ablation experiment was conducted using both the time and frequency encoders

of PPG+ECG signals together as inputs, to verify the effectiveness of each architec-

tural component on the final accuracy. To verify the effectiveness of each architec-

tural component, we conducted three types of experiment. First, we directly excluded

the residual connection inside the Extraction block to observe the network perfor-

mance. Second, we directly excluded the Extraction block. Third, we conducted the

experiment without the Concentration block. However, if the Concentration block is

removed entirely, down-sampling will not be possible. Hence, we switched the Con-

centration block to the maxpool layer instead of directly excluding the Concentration

block.

Table 3.6 presents the accuracy of the experiment excluding each architectural

component. When the Extraction block is removed altogether, the drop-in accuracy

is greater than when only the residual connection inside the Extraction block is

removed. The proposed model can learn the various relationships between differ-

ent neighboring pixels through the Extraction block, which is concatenated with

each output of multiple dilated convolutions, simultaneously. Furthermore, the use

Table 3.6: Performance comparison by excluding architectural components of
extraction-concentration blocks

Cal-free
SBP DBP

MAE STD MAE STD

Final model 9.30 8.85 5.12 5.52

w/o residual connection 9.87 9.41 5.69 6.61

w/o extraction block 10.47 9.88 6.19 6.86

w/o concentration block 11.51 10.35 6.42 7.22
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of strided convolution with a large kernel inside the Concentration block has the

greatest effect on accuracy improvement. This result shows that considering a wide

range of multiple pixels together in the down-sampling step through strided convo-

lution with a large kernel size, instead of pooling in the Concentration block, has a

significant effect on the improvement of accuracy.

3.3.8 Preprocessing of input signal to improve blood pressure predic-

tion performance

In order to improve the final performance of the blood pressure prediction model

created through several experiments previously, preprocessing of the input signal was

performed. First, for frequency domain input, we increase the frequency input depth

by concatenating the input signal’s phase term. Next, normalization was performed

on the training dataset, and the values in the distribution were shifted to the standard

deviation unit and displayed again. It can be calculated using the formula:

x = x−m
σ

(m : average, σ : standard deviation) (3.5)

Third, we exclude abnormal input signals through peak analysis, with the peak con-

straints defined as len(p) ≥ 5,StdVar(∆px) < 5, StdVar(py) < 5, where peak

p = (p1, .., pn), pix is the time stamp and piy is the input value of the ith peak. After

detecting the peak of PPG, signal alignment was performed so that the signal starting

from the peak of PPG can be used for training. Table 3.7 presents the accuracy of

the BP prediction model after performing the input preprocessing. The performances

of input signal preprocessing improve compared with previous studies: SBP 2.4%

(9.30→9.08) and DBP 0.8% (5.12→5.08) with phase term, SBP 2.9% (9.30→9.03)

and DBP 1.2% (5.12→5.06) with normalization, SBP 7.6% (9.30→8.59) and DBP
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Table 3.7: Performance comparison by performing input signal preprocessing

Cal-free
SBP DBP

MAE STD MAE STD

Final model 9.30 8.85 5.12 5.52

w/ phase 9.08 8.79 5.08 5.38

w/ normalization 9.03 8.71 5.06 5.38

w/ constraint 8.59 8.31 4.90 4.82

w/ all preprocessing 8.41 8.12 4.83 4.81

4.3% (5.12→4.90) with constraint, SBP 9.6% (9.30→8.41) and DBP 5.7% (5.12→4.83)

with all preprocessing. These results show that increasing the frequency input depth

by connecting the phase of the input signal and rescaling the input signal through

normalization helps a little in training the model. Furthermore, it is considered that

removing the abnormal input signal through constraints and conducting the training

is very helpful in improving the performance of the BP prediction model.
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3.4 Discussion

In this paper, we designed the filter size to consider wide range which is different

from the general filter structure (k = 3) used mainly in the field of vision. We believe

that the large receptive field due to the wide filter size is more effective in solving

the regression problem of the sequential signal than the small receptive field of the

general CNN structure. In particular, a multi-dilated convolution based extraction

block designed to consider various values (when k = 7, 7∼25 pixels around, up to

0.2 seconds) based on a reference pixel has played an important role in improving BP

prediction accuracy.

The proposed method can be easily applied to an on-device application for several

reasons: 1) It is possible to train and predict BP values using a short time duration

(about 8 seconds); 2) It is possible to combine various inputs such as ECG and/or

PPG signals to utilize the measurable biomedical signal according to the conditions

of the device; 3) It uses the raw signal as input without unique feature extraction. No-

tably, an on-device application has the advantage that there is no need for additional

equipment or special conditions (synchronization, etc.) for feature extraction.

We applied two constraints to the ABP signal, which is the target value of pre-

diction as a minimum refinement for proper training. No constraints were applied to

ECG and PPG used as inputs to training. In other words, we did not exclude any ab-

normal inputs for training, which allowed us to create a model that is robust to signal

measurement errors and noise.

The MIMIC II database used in this paper has several potential limitations on

performance improvements: 1) Sampling rate of MIMIC II database is very low for

today’s minimum recommended 1000 Hz sampling rate [35]. It is expected that the

performance improvement will be possible when using data with a higher sampling
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rate. However, it should be verified whether the proposed model structure and data

preprocessing method are still valid. If necessary, it would be possible to propose

a new model structure that is effective for high sampling rate data through further

studies. 2) It was obtained from intensive care units (ICU), which means that the

average age and BP value of subjects are higher than average age and BP value of the

total population. We will conduct experiments using large amounts of unbiased data

through consultation with medical experts to improve performance.

We propose fully convolutional networks constructed using only 1D convolution

for BP prediction. Based on the architecture of CNN, our method has a flexibility

to deal with input variations and can predict BP without much consideration of the

relationship with previous sequence. Future work will include a detailed inspection

of other possible deep architectures for potentially improving the initial results with

CNN. From a wearable application perspective, it is essential to calibrate the pre-

trained model to fit each individual. In this study, we show that the BP prediction per-

formance of the model is improved through basic calibration using a public dataset.

It will become more necessary to study precise calibration technology which is more

personalized. Future research will focus on improving personalized BP prediction

performance by using private data on the pre-trained model using a public dataset.

62



3.5 Summary

In this paper, we have developed a calibration-free, cuffless BP prediction method

based on the deep CNN model. BP measurement is important in monitoring health

conditions to prevent heart disease and stroke. In this method, we can predict BP us-

ing ECG and PPG signals that can be easily measured through various sensors with-

out the inconvenience of wearing cuffs. Unlike many previous studies, we have shown

that BP can be estimated better than in previous studies by directly using raw signals

without any unnecessary preprocessing procedure to extract features from ECG and

PPG signals. The performance of this model was verified by comparing with the ac-

curacy of other researchers’ previous studies and various international standards for

BP measurement grading criteria. Through comparison with international standards,

we confirmed that BP prediction accuracy of the method proposed in this paper is

sufficiently high to recommend for clinical use.
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Chapter 4

Blood pressure prediction by a

smartphone sensor using fully

convolutional networks

Heart disease and stroke are the leading causes of death worldwide. High blood pres-

sure greatly increases the risk of heart disease and stroke. Therefore, it is important to

control blood pressure (BP) through regular BP monitoring; as such, it is necessary to

develop a method to accurately and conveniently predict BP in a variety of settings.

In this paper, we propose a method for predicting BP without feature extraction using

fully convolutional neural networks (CNNs). We measured single multi-wave photo-

plethysmography (PPG) signals using a smartphone. To find an effective wavelength

of PPG signals for the generation of accurate BP measurements, we investigated the

BP prediction performance by changing the combinations of the input PPG signals.

Our CNN-based BP predictor yielded the best performance metrics when a green

PPG time signal was used in combination with an instantaneous frequency signal.

This combination had an overall mean absolute error (MAE) of 5.28 and 4.92 mmHg
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for systolic and diastolic BP, respectively. Thus, our CNN-based approach achieved

comparable results to other approaches that use a single PPG signal.
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4.1 Introduction

High blood pressure, clinically referred to as hypertension, is known as a “silent

killer” due to its inconspicuous symptoms and potentially life-threatening complica-

tions. It is therefore important for individuals to control their blood pressure (BP)

through regular BP measurements. However, BP may increase or decrease temporar-

ily depending on an individual’s situation, such as their location and the time of day

when BP is measured. “Masked hypertension” occurs when the individual’s BP is

actually high but is measured as normal in a doctor’s office. This phenomenon is

present in approximately 10% of normal adults and may cause more damage to the

heart or other organs than clinically detected normal, thus requiring more thorough

BP control [54]. Conversely, “white coat hypertension” occurs when the patient is

nervous when seeing a doctor and therefore their BP increases despite their actual

BP being normal. This phenomenon is reported to occur in approximately 15% of

the general population and in approximately one-third of patients diagnosed with hy-

pertension [23]. Medication should be given to patients with white coat hypertension

who also have damage to organs such as the heart, brain, and kidneys and those who

are at high risk for cardiovascular disease. Therefore, in order to make an accurate di-

agnosis, it is important to self-measure BP periodically in a relaxed state in addition to

regularly having BP measurements performed by a medical professional in a clinical

setting. Periodic self-measurement of BP is highly reproducible and provides clini-

cally important information in the diagnosis and treatment of hypertension, which is

very useful for long-term BP management. Furthermore, self-measurement is bene-

ficial for the evaluation of BP changes over time, and reduces the inconvenience and

cost of regular visits to medical institutions for monitoring.

Despite the many advantages of self-measurement of BP, the conventional com-
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mercially available autonomous BP measuring devices are difficult to carry and use

outside the home, and are challenging to use during walking. Therefore, it is neces-

sary to develop a method for accurate, comfortable and convenient BP self-measurement

that can be used in a variety of settings. Recently, various studies have been conducted

regarding the prediction of BP through single photoplethysmography (PPG) signals

measured by one PPG sensor [78, 27, 33, 38, 58]. In addition, multi-wavelength PPG

detection technology has been shown to be superior to single-wavelength PPG, and

it has been considered a powerful method for measuring PPG signals [4]. It has

also been noted that PPG sensing light sources of different wavelengths are rec-

ommended for different skin tones [75]. Previous studies on BP prediction using

PPG signals generally consist of feature extraction followed by machine learning or

regression-based prediction. A variety of combinations of PPG signal features, in-

cluding time-domain, frequency-domain, and entropy-based features, among others,

have been used to date as key features for BP prediction. Recently, in BP predic-

tion research using electrocardiography (ECG) in conjunction with PPG signals, an

end-to-end approach with self-generated features using deep-learning technology has

been used [68, 1].

In this paper, we propose a method for predicting BP without feature extrac-

tion using only PPG signals measured by smartphone using the convolutional neural

networks (CNN) model proposed in the previous study [1]. Instead of using addi-

tional physiological cardiovascular signals, multiple wavelengths of PPG (infrared,

red, green, blue) signals were measured using the smartphone’s heart rate monitor

sensor and analyzed to determine the optimal combination of PPG signals for pre-

dicting systolic BP (SBP) and diastolic BP (DBP). The main contributions of our

work are summarized as follows:

• We proposed a novel end-to-end method of predicting BP using only a single
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PPG signal without manual feature extraction.

• We optimized BP prediction performance by testing various combinations of

PPG signal wavelengths to maximize prediction accuracy.

• Our CNN-based approach achieved comparable results to other approaches that

require a single PPG signal.
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4.2 Method

The BP prediction process involved acquiring multiple wavelengths of PPG signals

from a smartphone, PPG signal preprocessing, data preparation, and BP predictions

using a CNN-based prediction model. A schematic of the methodology is depicted in

Fig. 4.1.
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4.2.1 Data acquisition

PPG data were acquired using the heart rate sensor of the Samsung Galaxy Note8

smartphone. The sampling frequency was 100 Hz and four multi-wavelength PPG

signals were used: infrared (IR), red (R), green (G), and blue (B). The data was col-

lected from 26 volunteers. In all experiments, informed consent was obtained from

all subjects and the data were used anonymously only for the intended research pur-

pose. Also, the principles outlined in the Helsinki Declaration were followed. The

PPG data was collected 23 times in 90 s length under various conditions including

resting, exercising and sleeping. In the resting condition, the subject was seated and

the reference BP measurement and PPG signal gathering was performed simultane-

ously in 2 minute intervals. During the exercise condition—which was intended to

induce an increase in BP—the subject performed the leg press exercise with a weight

in the range of 5 to 40 kg depending on their exercise abilities. After the exercise ses-

sion, the subject was asked to sleep for 2 hours to decrease their BP. For the reference

BP reading, two trained nurses measured BP simultaneously using the auscultatory

method. The nurses’ values for each reference reading were averaged unless the val-

ues had a difference of greater than 4 mmHg.

4.2.2 Preprocessing of the PPG signals

The PPG signal was first resampled at a sampling rate of 250 Hz and detrended to

remove direct current components. Next, a bandpass filter with a passband of 0.4-8

Hz was applied to separate out the noise components.

4.2.3 PPG signal selection

To investigate the influence of the four multi-wavelength PPG signals on the perfor-

mance of the BP prediction method, we investigated 15 PPG signal combinations

71



as follows: IR, R, G, B, IR+R, IR+G, IR+B, R+G, R+B, G+B, IR+R+G, IR+R+B,

IR+G+B, R+G+B, IR+R+G+B.

4.2.4 Data preparation for CNN model training

The dataset contained a set of 90 s of raw IR, red, green, blue PPG signal data in

the form Pi = (pIR
i , p

Red
i , pGreen

i , pBlue
i ), with SBP and DBP values denoted by Yi =

(ySBP
i , yDBP

i ), where i is the subject index. The PPG signal data was separated into

training (60 s), validation (10 s), and test (20 s) datasets. The data was prepared

as input and output data pairs (x,y) suitable for CNN model training. Three data

preparation techniques were used: random cropping, increasing input depth using its

derivatives, and fast Fourier transform (FFT). Random cropping allows the model

to learn signals from multiple points of input. Since our model required both time

and frequency components as input signals, we concatenated the first and second

derivatives of the time-domain signal to the original time-domain signal to increase

the depth of the input signal as follows [37]:

Xt = Xt ⊕∆Xt ⊕∆2Xt (4.1)

Finally, we converted the original time-domain signal to a frequency-domain signal

using FFT. Thus, the dataset (Xt, Xf , Y ) was prepared for CNN model training.

4.2.5 Network architectures

To learn the frequency characteristics as well as time features from the original PPG,

we proposed a CNN-based BP prediction model. It consists of three parts: a time

encoder, a frequency encoder, and three predictors for time, frequency, and com-

bined feature matrices. The time encoder ht(·) learns representative features from
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time-series inputs xt, and outputs the corresponding feature matrix zt. In parallel

with the time encoder, the frequency encoder hf (·) outputs the feature matrix zf

for the frequency domain inputs, xf . Each encoder is composed of two stacked core

modules named the extraction and concentration blocks, which are designed to effec-

tively learn latent features from the periodic data. The extraction block can learn the

various relationships between different neighboring pixels through multiple dilated

convolutions, whereas the concentration block can consider a wide range of multiple

pixels together in the down-sampling step through strided convolution. Both the time

encoder and the frequency encoder consist of four extraction+concentration combi-

nations. After feature extraction through both the time and frequency encoders, the

combined feature matrix zc = zt ⊕ zf can be defined. The combined predictor fc(·)

consists of a double stacked convolution layer, global average pooling, and a dimen-

sion reduction convolution layer. The output ŷc of fc(·) is two real numbers which

indicate SBP and DBP. The prediction minimizes the distance between the target y

and the prediction yc. The minimization objective is defined as

Lc = d(yc, ŷc), (4.2)

where d can be any distance metric between real numbers; in this case, L1. In addition

to this, two auxiliary flows from the predictors ft(·) and ff (·) were added which take

the pre-concatenated features zt and zf as inputs, respectively. Both auxiliary predic-

tors have a simpler structure which consists of one convolution layer, global average

pooling, and a dimension reduction convolution layer. Auxiliary loss is a well-known

technique to help the model’s gradient flow in the back-propagation phase and im-

prove performance. We introduce the importance factor α to both losses Lt and Lf .
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Our final loss is then defined as follows:

Ltotal = Lc + α(Lt + Lf ), (4.3)

where the weight of auxiliary loss α = 0.2, in this case.
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4.3 Experimental results

4.3.1 Implementation details

The CNN-based model was implemented in Python with Pytorch [52] based on a

deep learning framework, which was trained with a maximum of 50 epochs. The

Adam optimizer with β1 = 0.9, β2 = 0.999, and no weight decay was used. The

initial learning rate was 0.0001 and the dropout rate was set to 0.2 for the entire

network. In this study, the model was run on a machine with six central processing

units (CPUs; Intel i7-6850K CPU @ 3.6GHz) on an Ubuntu 16.04 platform. Four

graphic processing units (GPUs; NVIDIA RTX 2080 Ti) were also used to accelerate

the processing of the experiments.

4.3.2 Effect of PPG combination on BP prediction

Evaluations on the different input combinations of PPG signals for the CNN were

conducted. The model was trained using only the selected PPG signals according to

the specified input combination. Table 4.1 shows the BP prediction accuracy of the

CNN-based BP prediction for different input PPG signal combinations. As shown in

Table 4.1, using only the green signal as an input yielded the best performance on

average compared to other input signal combinations. This indicates that the green

PPG signal has the most required information for accurate BP prediction. In most

subjects, the highest accuracy was achieved with the green PPG signal only as an

input, but higher accuracy was observed for some subjects with a blue signal as input.

Reflecting the most accurate results for each subject, the BP prediction errors are SBP

4.47 and DBP 4.03, which are 15.3% and 18.1% better than the green signal alone as

an input, respectively.
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Table 4.1: BP prediction performance by the input PPG combinations

SBP DBP

MAE† STD‡ MAE STD

Infrared 5.69 1.64 5.02 1.79

Red 6.24 2.40 5.74 2.98

Green 5.28 1.80 4.92 2.42

Blue 5.53 1.77 4.92 2.05

Infrared+Red 6.02 1.91 5.42 2.25

Infrared+Green 5.92 2.49 5.32 2.04

Infrared+Blue 5.67 2.20 5.36 2.51

Red+Green 5.38 1.73 5.10 2.16

Red+Blue 5.56 1.86 5.29 2.93

Green+Blue 5.56 2.06 5.44 2.46

Infrared+Red+Green 6.03 4.17 5.58 2.66

Infrared+Red+Blue 5.78 2.27 5.63 2.49

Infrared+Green+Blue 5.81 2.13 5.34 2.54

Red+Green+Blue 5.68 1.80 5.21 2.38

Infrared+Red+Green+Blue 5.32 1.49 5.32 2.49

†MAE = mean absolute error, ‡ STD = standard deviation

4.3.3 Performance comparison with other related works

Table 4.2 shows the comparison of BP prediction accuracy between the proposed

method and previous studies. From Table 4.2, it can be seen that the CNN-based

BP prediction method in this study showed comparable performance to other studies

using a single PPG signal. In addition, it can be seen that the performance are equiv-

alent when compared with the end-to-end BP prediction study using both ECG and

PPG. From an application perspective, we can expect that the proposed method will

be robust for a wearable device, which limits the use of multiple sensors.
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Table 4.2: Comparison of BP prediction accuracy to other works

SBP DBP

MAE STD MAE STD

Y. Zhang [78] 11.64 8.20 7.62 6.78

S. Khalid [33] 4.82 4.31 3.25 4.17

M. Radha† [58] 7.86 1.57 6.49 1.59

S. Baek‡ [1] 5.32 5.54 3.38 3.82

Ours (Green) 5.28 1.80 4.92 2.42

Ours (Best) 4.47 1.53 4.03 1.48

† Root-mean-square-error (RMSE)
‡ End-to-end BP prediction using ECG, PPG

4.3.4 Verification using international standards for BP measurement

grading criteria

Association for the Advancement of Medical Instrumentation (AAMI)

Table 4.3 presents the verification results of the proposed method using CNN based

estimation model with the AAMI standard. The criteria for fulfilling the AAMI pro-

tocol are that the test device must not differ from the mercury standard by a mean

error (ME) of ≤5 mmHg or a standard deviation (STD) of ≤8 mmHg. According

to the AAMI grading criteria, our method proposed in this study satisfy the AAMI

criteria for both BSP and DBP[51].

Table 4.3: Verification with the AAMI Standard

Diffrence between standard
and predicted value(mmHg)
ME STD Subjects

Ours
DBP 1.34 7.12

90
SBP 1.47 6.42

AAMI SBP/DBP ≤ 5 ≤ 8 ≥85
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British Hypertension Society (BHS)

Table 4.4 presents the verification results of the proposed method using CNN based

estimation model with the BHS standard. The BHS grading criteria represent the

cumulative percentage of readings falling within 5 mmHg, 10 mmHg, and 15 mmHg

of the mercury standard. All three percentages must be greater than or equal to the

values shown for a specific grade to be awarded. The criteria for fulfilling the BHS

protocol are that devices must achieve at least grade B (where A denotes the greatest

agreement with mercury standard and D denotes least agreement) for systolic and for

diastolic pressures. Mean arterial pressure (MAP) is defined as the average pressure

in a patient’s arteries during one cardiac cycle. It can be calculated from the SBP and

the DBP using the formula [13]:

MAP = SBP + 2(DBP )
3 (4.4)

According to the BHS grading criteria, the proposed method achieved C grade in the

prediction of DBP, A grade in the prediction of SBP and B grade in the prediction of

MAP value. The proposed method satisfies the BHS standard completely except for

DBP [51].

Table 4.4: Verification with the BHS Standard

Absolute difference
Grade

≤ 5 ≤ 10 ≤ 15

Ours
DBP 49.6% 82.1% 94.5% C
SBP 62.4% 86.9% 95.3% A

MAP 52.2% 78.7% 91.8% B

BHS
grade A 60% 85% 95%
grade B 50% 75% 90%
grade C 40% 65% 85%
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4.3.5 Preprocessing of input signal to improve blood pressure predic-

tion performance

In order to improve the final performance of the blood pressure prediction model

created through several experiments previously, several preprocessing of the input

signal was performed. First, for frequency domain input, we increase the frequency

input depth by concatenating the input signal’s phase term. Next, normalization was

performed on the training dataset, and the values in the distribution were shifted to the

standard deviation unit and displayed again. It can be calculated using the formula:

x = x−m
σ

(m : average, σ : standard deviation) (4.5)

Third, we exclude abnormal input signals through peak analysis, with the peak con-

straints defined as len(p) ≥ 5,StdVar(∆px) < 5, StdVar(py) < 5, where peak

p = (p1, .., pn), pix is the time stamp and piy is the input value of the ith peak. After

detecting the peak of PPG, signal alignment was performed so that the signal starting

from the peak of PPG can be used for training. Table 4.5 presents the accuracy of

the BP prediction model after performing the input preprocessing. The performances

of input signal preprocessing improve compared with previous studies: SBP 0.4%

Table 4.5: Performance comparison by performing input signal preprocessing

SBP DBP

MAE STD MAE STD

Ours (Green) 5.28 1.80 4.92 2.42

w/ phase 5.26 1.78 4.93 2.42

w/ normalization 5.07 1.82 4.80 2.37

w/ constraint 4.82 1.73 4.61 2.29

w/ all preprocessing 4.74 1.69 4.53 2.21

79



(5.28→5.26) and DBP -0.2% (4.92→4.93) with phase term, SBP 4.0% (5.28→5.07)

and DBP 2.4% (4.92→4.80) with normalization, SBP 8.7% (5.28→4.82) and DBP

6.3% (4.92→4.61) with constraint, SBP 10.2% (5.28→4.74) and DBP 7.9% (4.92→4.53)

with all preprocessing. These results show that rescaling the input signal through nor-

malization helps to train the model. Furthermore, it is considered that removing the

abnormal input signal through constraints and conducting the training is very helpful

in improving the performance of the BP prediction model.
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4.4 Discussion

Our CNN-based BP prediction method achieved the best performance in most cases

using a green PPG time signal in combination with an instantaneous frequency signal.

It used the raw PPG signal as an input without unique feature extraction. Notably, an

on-device application is advantageous as there is no need for additional equipment or

special conditions for feature extraction. Interestingly, some subjects had greater BP

prediction accuracy with the blue PPG signal as the input. In BP estimation, a red or

IR PPG light is often used because the long wavelength is able to penetrate deeper

into the skin and is more capable of detecting signals from the deep arteries [60].

However, since the light also travels through the epidermis and dermis, the variation

in the detected light is a complex result of the concurrent changes in the volume of the

arteries, arterioles, capillaries, and veins. In other words, signals such as green and

blue, which have low skin penetration depth, have information that is most relevant

to predicting BP. Since the amount of data used in the experiment was small and

no additional information such as skin color was identified, the explanation of the

improved accuracy of the blue PPG signal for some subjects cannot be confirmed,

but it is possible that this effect was due to variations in skin tone. Of course, the

accuracy of blood pressure prediction of methods using time delays such as PTT and

PAT is very high. However, in order to obtain this time delay, ECG and PPG should be

measured simultaneously or PPG at two points. Since it is difficult to know this time

delay in terms of measuring blood pressure comfortably through a wearable device,

it is very important to predict the blood pressure by analyzing signals such as PPG

and ECG itself. With deep learning, various features of the signal itself can be well

extracted, making it possible to accurately predict blood pressure values without the

inconvenience of finding appropriate features. This method can be useful for patients
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who do not tolerate traditional blood pressure monitoring because the cuff is not

used and there is less interference to the patient. It can also be especially useful in

cases where an evaluation that does not interfere with sleep is important, such as

breathing disorders, as it does not interfere with the patient’s sleep when measuring

blood pressure. Future research will focus on improving personalized BP prediction

performance by using PPG light combinations tailored for each individual.
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4.5 Summary

In this paper, we proposed a method for predicting BP without feature extraction us-

ing a single PPG signal measured by smartphone using fully convolutional networks.

The concept of estimating BP using a single biomedical signal such as PPG that can

be easily measured from a mobile device without the inconvenience of wearing a cuff

is promising for self-monitoring of BP. Unlike many previous studies, we have shown

that BP can be estimated directly from raw signals without preprocessing to extract

features from the PPG signal. Our study was limited given that data acquisition was

from only 26 volunteers and no other additional information such as skin color was

recorded. We plan to expand our research, including by acquiring data that can be

verified by IEEE Standard 1708-2014, a universal standard for the validation of BP

measuring devices.
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Chapter 5

Improving accuracy of blood

pressure prediction by distilling

the knowledge of neural networks

This paper proposes a method to improve the accuracy of predicting blood pressure

by using only photoplethysmogram. Specifically, the proposed approach distills the

training knowledge of the teacher model, which predicts the BP using both photo-

plethysmogram and electrocardiogram, into a student model, which predicts the BP

using only photoplethysmogram, while simultaneously training the two models. The

accuracy of the model using only photoplethysmogram to predict the systolic and di-

astolic blood pressure was improved by 5.4% and 10.4%, respectively, compared to

the accuracy before using the knowledge distillation process.
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5.1 Introduction

Hypertension is a condition in which the pressure of blood flowing through blood

vessels, that is, the blood pressure (BP) level continuously indicates a systolic of

140 mmHg or diastolic or more than 90 mmHg. Hypertension itself is not scary,

but long-term neglect that it may be a severe hypertensive patient can lead to many

life-threatening complications. In order to prevent such complications, regular blood

pressure (BP) measurement is very important, and research is being conducted on

ways to easily measure BP without cuff. These studies predict BP by analyzing the

relationship between bio signals, such as ECG and PPG, or the characteristics of each

signal itself. In general, it is known that the combination of ECG and PPG shows

higher BP prediction accuracy than that of the PPG signal alone[1]. The BP is ap-

plied to the blood vessels by the heartbeat generated by the heart’s special excitement

conduction system, which causes blood flow in the blood vessels and blood flow to

the peripheral blood vessels. At this time, the signal represented by the vector sum of

the action potentials of the heart is the ECG, and the signal that measures the blood

flow of the peripheral blood vessels through the optical sensor is PPG. While measur-

ing ECG requires 4 to 12 electrodes, PPG is much easier to measure using only LEDs

and photosensors. In this paper, we suggest the structure that improve the ability to

predict BP using only PPG by distilling well-trained knowledge of the teacher model

into a student model while simultaneously training two models, a teacher model that

predicts BP using PPG and ECG, and a student model that predicts BP using PPG.

Through the knowledge distillation (KD), the knowledge of the teacher model that

learned from ECG and PPG together is transferred to the student model that is trained

with only the PPG, thereby improving the BP prediction performance of the student

model. In addition, it has the advantage of being able to inference with PPG without
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ECG while showing high performance. Although hypertension itself is not a criti-

cal condition, long-term neglect in a patient with severe hypertension may lead to

many life-threatening complications. To prevent such complications, the blood pres-

sure (BP) must be regularly monitored, and extensive research is being performed

to easily measure the BP without using cuffs. In general, the BP is predicted by an-

alyzing the relationship between the bio signals, such as electrocardiogram (ECG)

and photoplethysmogram (PPG), or the characteristics of each signal. Using both

the ECG and PPG to predict the BP leads to a higher prediction accuracy than that

when using only the PPG signal [1]. However, measuring the ECG requires 4–12

electrodes, whereas PPG can be easily measured using only LEDs and photosensors.

Considering these aspects, this paper proposes a structure to improve the BP predic-

tion accuracy when using only the PPG. Specifically, the proposed approach distills

the training knowledge of the teacher model, which predicts the BP using both the

PPG and ECG, into a student model, which predicts the BP using only PPG, while

simultaneously training the two models. This knowledge distillation (KD) process is

expected to improve the BP prediction performance of the student model.
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5.2 Methods

A schematic of the proposed structure is presented in Fig. 5.1. The data preparation

approach and convolutional neural network based prediction model reported in a pre-

vious work [1] were utilized, and the basic output transfer distillation method was

used to realize the KD [26]. In contrast to the loss obtained by comparing the pre-

dicted and ground truth values of the model, the cross-entropy between the outputs

of the teacher and student models was used as the loss:

L(n) = J(σ(ft(xn)
T

), σ(fs(xn)
T

)) (5.1)

PPG

ECG

Teacher output

Cross-entropy

��

Student output

��

Teacher

Student

Figure 5.1: Schematic of BP prediction methodology.
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5.3 Experimental results

Table 5.1 lists the BP prediction accuracies pertaining to the type of signal used for

training and the utilization or lack thereof of KD. The teacher model is notably more

accurate than the student model. However, when KD is employed, the BP prediction

errors for systolic and diastolic BP are 10.27 and 5.33, respectively, which represent

an improvement of 5.4% and 10.4% compared to the accuracy obtained when using

the PPG signal alone as an input, respectively.

Table 5.1: BP Prediction performance for different models

SBP(mmHg) DBP(mmHg)
MAE STD MAE STD

model w/ PPG & ECG 9.30 8.85 5.12 5.52

model w/ PPG 10.86 9.54 5.95 5.60
model w/ PPG + KD 10.27 9.28 5.33 5.34
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5.4 Discussion & Summary

The proposed method can improve the accuracy of BP prediction using only PPG

by employing KD. Future research will focus on improving the BP prediction per-

formance by using other types of KD known to perform better, such as feature and

sample transfer.
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Chapter 6

Conclusion

In this dissertation, we introduced the various issues that exist in the study of pre-

dicting blood pressure using deep learning and how to solve them. In this chapter, we

will summarize each issue introduced above and the contributions proposed to solve

these issues, and introduce the expected effects and future work to further develop

research.

Chapter 3 introduced a study to predict blood pressure from publicly available

ECG and PPG datasets through a blood pressure prediction model with extraction

and concentration CNN architecture. We proposed a novel end-to-end method of pre-

dicting blood pressure using only raw signals with no hand-made features. Based

on the architecture of CNN, our method has the flexibility to deal with input vari-

ations (PPG/ECG, Time/Frequency) and applicability to real-world situations. Also

the proposed method achieved excellent performance in predicting both systolic and

diastolic blood pressure using the MIMIC II dataset compared with other known ap-

proaches.

In Chapter 4, we confirmed the performance of the BP prediction model devel-

oped by applying the PPG-BP dataset measured directly to the CNN-based BP pre-
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diction model developed using the public dataset. We proposed a novel end-to-end

method of predicting BP using only a single PPG signal without manual feature ex-

traction. We optimized BP prediction performance by testing various combinations of

PPG signal wavelengths to maximize prediction accuracy. Our CNN-based approach

achieved comparable results to other approaches that require a single PPG signal.

In Chapter 5, we propose the knowledge distillation method to improve the ac-

curacy of predicting blood pressure by using only photoplethysmogram. Specifically,

the proposed approach distills the training knowledge of the teacher model, which

predicts the BP using both photo-plethysmogram and electrocardiogram, into a stu-

dent model, which predicts the BP using only photoplethysmogram, while simulta-

neously training the two models. The accuracy of the model using only photoplethys-

mogram to predict the systolic and diastolic blood pressure was improved by 5.4%

and 10.4%, respectively, compared to the accuracy before using the knowledge dis-

tillation process.
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6.1 Future work

There are several possible continuities in our proposed study, and will continue to

be explored in the future. First, the method proposed in this paper can be used for

wearable devices. Various studies have been conducted to easily and accurately mea-

sure biomedical signals such as ECG and PPG using wearable devices such as smart

watches and smart rings. From the point of view of wearable application, it is essen-

tial to calibrate the blood pressure prediction model to be optimized for the individual

after acquiring data for several hours and situations for each individual. Research into

precise calibration techniques that tailor BP prediction models trained using various

people’s data to fit individuals using private data is expected to increase in the future.

Second, it is possible to improve the performance of the blood pressure prediction

model by securing data with a wide range of blood pressure values. A person’s blood

pressure is usually concentrated in a normal range, and in the case of general blood

pressure data, the distribution of data forms a normal distribution, and the distribution

is uneven for all range. In this case, the blood pressure prediction model is trained

toward increasing the performance for the majority even if the performance for the

minority is lowered. In future studies, it is expected that the blood pressure prediction

performance can be improved through the design of the model considering the data

distribution of these input signals. Third, we think that the performance of the blood

pressure prediction model can be improved by applying different kinds of knowledge

distillation method. The proposed method can improve the accuracy of BP prediction

using only PPG by employing the most basic output transfer knowledge distillation

method. Future research will focus on improving the BP prediction performance by

using other types of knowledge distillation method known to perform better, such as

feature and sample transfer.
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초록

코로나 19에의한전세계의사회적프로필변화로,규제와신뢰성이낮기때문

에활성화되지않은원격의료분야도큰변화를겪을것으로예상됩니다.코로나

19가 미국에 퍼짐에 따라 미국 보건복지부는 원격 진료의 표준을 일시적으로 완

화하면서 페이스북, 페이스북 메신저 기반 화상 채팅, 행아웃, 스카이프를 사용한

원격 진료를 가능하게 했습니다. 원격의료 시장의 확장은 기존의 치료중심 병원

주도의의료시장을웨어러블,빅데이터및건강기록분석을통한예방및관리에

중점을 둔 디지털 의료 서비스 시장으로 빠르게 변화시킬 것으로 예상됩니다. 이

러한예방및관리중심의디지털헬스케어서비스에서는사람의건강상태를쉽게

모니터링할수있는기술개발이매우중요한데혈압은개인건강모니터링에사

용될수있는필수징후중하나입니다.

고혈압은아주흔하고위험한질환입니다.미국성인 3명중 1명(약 7,500만명)

이 고혈압을 가지고 있습니다. 이는 미국인의 주요 사망 원인 중 두가지인 심장

질환과 뇌졸중의 위험을 증가 시킵니다. 고혈압은 신체에 경고 신호나 자각 증상

이 없어 많은 사람들이 자신이 고혈압인 것을 인지하지 못하기 때문에 "사일런트

킬러"라 불리웁니다. 이러한 이유로 정기적으로 쉽고 편리하게 혈압을 확인할 수

있는 기술의 개발이 매우 중요합니다. 생체의학 데이터 분석 분야에서는 머신 러

닝을대량으로수집된생체의학빅데이터에적용하는다양한연구가효과적으로

이루어지고 있습니다. 그러나 빅 데이터 수준으로 다량의 혈압 관련 데이터를 수

집하는것은많은전문적인인력들이오랜시간을필요로하기때문에매우어렵고

비용 또한 많이 필요합니다. 따라서 본 학위논문에서는 이러한 문제를 극복하기

위한 3단계전략을제안했습니다.

먼저누구나시용할수있도록공개되어있는심전도,광용적맥파데이터셋을

이용, 순차적인 심전도, 광용적맥파 신호에서 혈압을 잘 예측하도록 고안된 추출
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및농축작업을반복하는함성곱신경망구조를제안했습니다.두번째로제안된합

성곱신경망모델을개인에게서측정한광용적맥파신호를이용해제안된함성곱

신경망모델의성능을평가했습니다.세번째로혈압예측모델의정확성을높이기

위해 지식 증류법과 입력신호 전처리 방법을 제안했습니다. 이 논문에서 제안된

모든 혈압예측 방법은 합성곱 신경망을 기반으로 합니다. 혈압 예측에 필요한 특

징들을수동으로추출해야하는다른연구들과다르게특징을자동으로추출하는

딥러닝의장점을활용,아무런처리도하지않은원래그대로의생체신호에서신호

자체의고유한특징을반영할수있습니다.

주요어:머신러닝,딥러닝,커프리스혈압측정,합성곱신경망,생체의학신호분석

학번: 2016-30209
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