816 research outputs found

    Exploiting the Weak Generational Hypothesis for Write Reduction and Object Recycling

    Get PDF
    Programming languages with automatic memory management are continuing to grow in popularity due to ease of programming. However, these languages tend to allocate objects excessively, leading to inefficient use of memory and large garbage collection and allocation overheads. The weak generational hypothesis notes that objects tend to die young in languages with automatic dynamic memory management. Much work has been done to optimize allocation and garbage collection algorithms based on this observation. Previous work has largely focused on developing efficient software algorithms for allocation and collection. However, much less work has studied architectural solutions. In this work, we propose and evaluate architectural support for assisting allocation and garbage collection. We first study the effects of languages with automatic memory management on the memory system. As objects often die young, it is likely many objects die while in the processor\u27s caches. Writes of dead data back to main memory are unnecessary, as the data will never be used again. To study this, we develop and present architecture support to identify dead objects while they remain resident in cache and eliminate any unnecessary writes. We show that many writes out of the caches are unnecessary, and can be avoided using our hardware additions. Next, we study the effects of using dead data in cache to assist with allocation and garbage collection. Logic is developed and presented to allow for reuse of cache space found dead to satisfy future allocation requests. We show that dead cache space can be recycled at a high rate, reducing pressure on the allocator and reducing cache miss rates. However, a full implementation of our initial approach is shown to be unscalable. We propose and study limitations to our approach, trading object coverage for scalability. Third, we present a new approach for identifying objects that die young based on a limitation of our previous approach. We show this approach has much lower storage and logic requirements and is scalable, while only slightly decreasing overall object coverage

    Microarchitectural techniques to reduce energy consumption in the memory hierarchy

    Get PDF
    This thesis states that dynamic profiling of the memory reference stream can improve energy and performance in the memory hierarchy. The research presented in this theses provides multiple instances of using lightweight hardware structures to profile the memory reference stream. The objective of this research is to develop microarchitectural techniques to reduce energy consumption at different levels of the memory hierarchy. Several simple and implementable techniques were developed as a part of this research. One of the techniques identifies and eliminates redundant refresh operations in DRAM and reduces DRAM refresh power. Another, reduces leakage energy in L2 and higher level caches for multiprocessor systems. The emphasis of this research has been to develop several techniques of obtaining energy savings in caches using a simple hardware structure called the counting Bloom filter (CBF). CBFs have been used to predict L2 cache misses and obtain energy savings by not accessing the L2 cache on a predicted miss. A simple extension of this technique allows CBFs to do way-estimation of set associative caches to reduce energy in cache lookups. Another technique using CBFs track addresses in a Virtual Cache and reduce false synonym lookups. Finally this thesis presents a technique to reduce dynamic power consumption in level one caches using significance compression. The significant energy and performance improvements demonstrated by the techniques presented in this thesis suggest that this work will be of great value for designing memory hierarchies of future computing platforms.Ph.D.Committee Chair: Lee, Hsien-Hsin S.; Committee Member: Cahtterjee,Abhijit; Committee Member: Mukhopadhyay, Saibal; Committee Member: Pande, Santosh; Committee Member: Yalamanchili, Sudhaka

    Improving DRAM Performance by Parallelizing Refreshes with Accesses

    Full text link
    Modern DRAM cells are periodically refreshed to prevent data loss due to leakage. Commodity DDR DRAM refreshes cells at the rank level. This degrades performance significantly because it prevents an entire rank from serving memory requests while being refreshed. DRAM designed for mobile platforms, LPDDR DRAM, supports an enhanced mode, called per-bank refresh, that refreshes cells at the bank level. This enables a bank to be accessed while another in the same rank is being refreshed, alleviating part of the negative performance impact of refreshes. However, there are two shortcomings of per-bank refresh. First, the per-bank refresh scheduling scheme does not exploit the full potential of overlapping refreshes with accesses across banks because it restricts the banks to be refreshed in a sequential round-robin order. Second, accesses to a bank that is being refreshed have to wait. To mitigate the negative performance impact of DRAM refresh, we propose two complementary mechanisms, DARP (Dynamic Access Refresh Parallelization) and SARP (Subarray Access Refresh Parallelization). The goal is to address the drawbacks of per-bank refresh by building more efficient techniques to parallelize refreshes and accesses within DRAM. First, instead of issuing per-bank refreshes in a round-robin order, DARP issues per-bank refreshes to idle banks in an out-of-order manner. Furthermore, DARP schedules refreshes during intervals when a batch of writes are draining to DRAM. Second, SARP exploits the existence of mostly-independent subarrays within a bank. With minor modifications to DRAM organization, it allows a bank to serve memory accesses to an idle subarray while another subarray is being refreshed. Extensive evaluations show that our mechanisms improve system performance and energy efficiency compared to state-of-the-art refresh policies and the benefit increases as DRAM density increases.Comment: The original paper published in the International Symposium on High-Performance Computer Architecture (HPCA) contains an error. The arxiv version has an erratum that describes the error and the fix for i

    Soft-error resilient on-chip memory structures

    Get PDF
    Soft errors induced by energetic particle strikes in on-chip memory structures, such as L1 data/instruction caches and register files, have become an increasing challenge in designing new generation reliable microprocessors. Due to their transient/random nature, soft errors cannot be captured by traditional verification and testing process due to the irrelevancy to the correctness of the logic. This dissertation is thus focusing on the reliability characterization and cost-effective reliable design of on-chip memories against soft errors. Due to various performance, area/size, and energy constraints in various target systems, many existing unoptimized protection schemes on cache memories may eventually prove significantly inadequate and ineffective. This work develops new lifetime models for data and tag arrays residing in both the data and instruction caches. These models facilitate the characterization of cache vulnerability of the stored items at various lifetime phases. The design methodology is further exemplified by the proposed reliability schemes targeting at specific vulnerable phases. Benchmarking is carried out to showcase the effectiveness of these approaches. The tag array demands high reliability against soft errors while the data array is fully protected in on-chip caches, because of its crucial importance to the correctness of cache accesses. Exploiting the address locality of memory accesses, this work proposes a Tag Replication Buffer (TRB) to protect information integrity of the tag array in the data cache with low performance, energy and area overheads. To provide a comprehensive evaluation of the tag array reliability, this work also proposes a refined evaluation metric, detected-without-replica-TVF (DOR-TVF), which combines the TVF and access-with-replica (AWR) analysis. Based on the DOR-TVF analysis, a TRB scheme with early write-back (TRB-EWB) is proposed, which achieves a zero DOR-TVF at a negligible performance overhead. Recent research, as well as the proposed optimization schemes in this cache vulnerability study, have focused on the design of cost-effective reliable data caches in terms of performance, energy, and area overheads based on the assumption of fixed error rates. However, for systems in operating environments that vary with time or location, those schemes will be either insufficient or over-designed for the changing error rates. This work explores the design of a self-adaptive reliable data cache that dynamically adapts its employed reliability schemes to the changing operating environments in order to maintain a target reliability. The experimental evaluation shows that the self-adaptive data cache achieves similar reliability to a cache protected by the most reliable scheme, while simultaneously minimizing the performance and power overheads. Besides the data/instruction caches, protecting the register file and its data buses is crucial to reliable computing in high-performance microprocessors. Since the register file is in the critical path of the processor pipeline, any reliable design that increases either the pressure on the register file or the register file access latency is not desirable. This work proposes to exploit narrow-width register values, which represent the majority of generated values, for making the duplicates within the same register data item. A detailed architectural vulnerability factor (AVF) analysis shows that this in-register duplication (IRD) scheme significantly reduces the AVF in the register file compared to the conventional design. The experimental evaluation also shows that IRD provides superior read-with-duplicate (RWD) and error detection/recovery rates under heavy error injection as compared to previous reliability schemes, while only incurring a small power overhead. By integrating the proposed reliable designs in data/instruction caches and register files, the vulnerability of the entire microprocessor is dramatically reduced. The new lifetime model, the self-adaptive design and the narrow-width value duplication scheme proposed in this work can also provide guidance to architects toward highly efficient reliable system design

    Buffer Controlled Cache for Low Power Multicore Processors

    Get PDF
    This thesis proposes a buffered dual access mode cache to reduce power consumption in multicore caches for embedded systems. This cache is called Buffer Controlled Cache (BCC cache). The proposed scheme introduces a pre-cache buffer to determine how to access the cache. The proposed cache shows better prediction rates and lower power consumption than conventional caches, such as Phased cache and Way-prediction cache. For single core implementation, Simplescalar and Cacti simulators have been used for these simulations using SPEC2000 benchmark programs. The experimental results show that the proposed cache improves the power consumption by 37%-42% over the conventional caches. Multi2Sim and McPAT simulators have been used for the multicore simulations using the Parsec benchmark programs. The experimental results show that the proposed cache improves the power consumption by as much as 54% over conventional caches

    DeNovo: rethinking the memory hierarchy for disciplined parallelism

    Get PDF
    As multicore systems become widespread, both software and hardware face a major challenge in efficiently exploiting and implementing parallelism. While shared–memory remains a popular programming model due to its global address space, it is plagued with undisciplined programming practices that allow implicit communication and unstructured non-determinism. Such “wild” shared-memory behavior not only makes it difficult to test and maintain software but also complicates hardware, preventing it from scaling in a power-efficient manner. Recent research has proposed replacing the wild shared-memory programming models with a more disciplined approach. The DeNovo project asks the following question: if software is more disciplined, can we build more power-, performance-, and complexity-efficient shared-memory hardware? Focusing on deterministic programs as a discipline to drive DeNovo, we first show that coherence and communication can be made much simpler and more efficient than the current state of the art. The resulting protocol is without transient states, invalidation traffic, directory sharer–lists, or false sharing - all significant sources of inefficiencies in existing protocols. Widening the software space further, we then show how DeNovo can support software with disciplined non-determinism without giving up its benefits for deterministic programs. The remaining challenge is supporting synchronization accesses that are inherently “racy” on DeNovo without writer-initiated invalidation. We show that arbitrary synchronization can be supported on DeNovo with a simple yet efficient hardware mechanism, a big step toward our eventual goal of supporting legacy programs. Finally, we explore the potential for a comprehensive coherence solution that merges all previous DeNovo coherence mechanisms and adaptively switches between them depending on the level of “discipline” of software. In summary, DeNovo shows the potential for commercially viable software-driven shared-memory systems with higher complexity-, performance-, and energy-efficiency than today’s software-oblivious hardware
    • …
    corecore