391 research outputs found

    Rapid inversion: running animals and robots swing like a pendulum under ledges.

    Get PDF
    Escaping from predators often demands that animals rapidly negotiate complex environments. The smallest animals attain relatively fast speeds with high frequency leg cycling, wing flapping or body undulations, but absolute speeds are slow compared to larger animals. Instead, small animals benefit from the advantages of enhanced maneuverability in part due to scaling. Here, we report a novel behavior in small, legged runners that may facilitate their escape by disappearance from predators. We video recorded cockroaches and geckos rapidly running up an incline toward a ledge, digitized their motion and created a simple model to generalize the behavior. Both species ran rapidly at 12-15 body lengths-per-second toward the ledge without braking, dove off the ledge, attached their feet by claws like a grappling hook, and used a pendulum-like motion that can exceed one meter-per-second to swing around to an inverted position under the ledge, out of sight. We discovered geckos in Southeast Asia can execute this escape behavior in the field. Quantification of these acrobatic behaviors provides biological inspiration toward the design of small, highly mobile search-and-rescue robots that can assist us during natural and human-made disasters. We report the first steps toward this new capability in a small, hexapedal robot

    Sprawl Angle in Simplified Models of Vertical Climbing: Implications for Robots and Roaches

    Get PDF
    Empirical data taken from fast climbing sprawled posture animals reveals the presence of strong lateral forces with significant pendulous swaying of the mass center trajectory in a manner captured by a recently proposed dynamical template. In this simulation study we explore the potential benefits of pendulous dynamical climbing in animals and in robots by examining the stability and power advantages of variously more and less sprawled limb morphologies when driven by conventional motors in contrast with animal-like muscles. For open loop models of gait generation inspired by the neural-deprived regimes of high stride-frequency animal climbing, our results corroborate earlier hypotheses that sprawled posture may be required for stability. For quadratic-in- velocity power output actuation models typical of commercially available electromechanical actuators, our results suggest the new hypothesis that sprawled posture may confer significant energetic advantage. In notable contrast, muscle-powered climbers do not experience an energetic benefit from sprawled posture due to their sufficiently distinct actuator characteristics and operating regimes. These results suggest that the potentially significant benefits of sprawled posture climbing may be distinctly different depending upon the details of the climber\u27s sensorimotor endowment. They offer a cautionary instance against mere copying of biology by engineers or rote study of physical models by biologists through this reminder of how even simple questions addressed by simple models can yield nuanced answers that only begin to hint at the complexity of biological designs and behaviors

    Force Sensors in Hexapod Locomotion

    Get PDF

    Towards understanding of climbing, tip-over prevention and self-righting behaviors in Hexapoda

    Get PDF
    Die vorliegende Dissertation mit dem Titel “Towards understanding of climbing, tip-over prevention and self-righting behaviors in Hexapoda” untersucht in drei Studien exemplarisch, wie (i) Wüstenameisen ihre Beine einsetzen um An- und Abstiege zu überwinden, wie (ii) Wüsten- und Waldameisen ein Umkippen an steilen Anstiegen vermeiden, und wie sich (iii) Madagaskar-Fauchschaben, Amerikanische Großschaben und Blaberus discoidalis Audinet-Servill, 1839 aus Rückenlagen drehen und aufrichten. Neuartige biomechanischen Beschreibungen umfassen unter anderem: Impuls- und Kraftwirkungen einzelner Ameisenbeine auf den Untergrund beim Bergauf- und Bergabklettern, Kippmomente bei kletternden Ameisen, Energiegebirge-Modelle (energy landscapes) zur Quantifizierung der Körperform für die funktionelle Beschreibung des Umdrehens aus der Rückenlage

    Biologically – Plausible Load Feedback from Dynamically Scaled Robotic Model Insect Legs

    Get PDF
    Researchers have been studying the mechanisms underlying animal motor control for many years using computational models and biomimetic robots. Since testing some theories in animals can be challenging, this approach can enable unique contributions to the field. An example of a system that benefits from this modeling and robotics approach is the campaniform sensillum (CS), a kind of sensory organ used to detect the loads exerted on an insect\u27s legs. The CS on the leg are found in groups on high-stress areas of the exoskeleton and have a major influence on the adaptation of walking behavior. The challenge for studying these sensors is recording CS output from freely walking insects, which would show what the sensors detect during behavior. To address this difficulty, 3 dynamically scaled robotic models of the middle leg of the stick insect Carausius morosus (C. morosus) and the fly Drosophila melanogaster (D. melanogaster) were constructed. Two of the robotic legs model the C. morosus and are scaled to a stick insect at a ratio of 15:1 and 25:1. The robotic fly leg is scaled 400:1 to the leg of the D. melanogaster. Strain gauges are affixed to locations and orientations that are analogous to those of major CS groups. The legs were attached to a linear guide to simulate weight and they stepped on a treadmill to mimic walking. Using these robotic models, it is possible to shed light on how the nervous system of insects detects load feedback, examine the effect of different tarsi designs on load feedback, and compare the CS measurement capabilities of different insects. As mentioned earlier, robotic legs allow for any experiment to be conducted, and strain data can still be recorded, unlike animals. I subjected the 15:1 stick leg to a range of stepping conditions, including various static loading, transient loading, and leg slipping. I then processed the strain data through a previously published dynamic computational model of CS discharge. This demonstrated that the CS signal can robustly signal increasing forces at the beginning of the stance phase and decreasing forces at the end of the stance phase or when the foot slips. The same model leg can then be further expanded upon, allowing us to test how different tarsus designs affect load feedback. To isolate various morphological effects, these tarsi were developed with differing degrees of compliance, passive grip, and biomimetic structure. These experiments demonstrated that the tarsus plays a distinct role in loading the leg because of the various effects each design had on the strain. In the final experiment, two morphologically distinct insects with homologous CS groups were compared. The 400:1 robotic fly middle leg and the 25:1 robotic stick insect middle leg were used for these tests. The measured strains were notably influenced by the leg morphology, stepping kinematics, and sensor locations. Additionally, the sensor locations were lacking in one species in comparison to the other measured strains that were already being measured by the present sensors. These findings contributed to the understanding of load sensing in animal locomotion, effects of tarsal morphology, and sensory organ morphology in motor control

    An Overview of Legged Robots

    Get PDF
    The objective of this paper is to present the evolution and the state-of-theart in the area of legged locomotion systems. In a first phase different possibilities for mobile robots are discussed, namely the case of artificial legged locomotion systems, while emphasizing their advantages and limitations. In a second phase an historical overview of the evolution of these systems is presented, bearing in mind several particular cases often considered as milestones on the technological and scientific progress. After this historical timeline, some of the present day systems are examined and their performance is analyzed. In a third phase are pointed out the major areas for research and development that are presently being followed in the construction of legged robots. Finally, some of the problems still unsolved, that remain defying robotics research, are also addressed.N/

    Feedback Control as a Framework for Understanding Tradeoffs in Biology

    Full text link
    Control theory arose from a need to control synthetic systems. From regulating steam engines to tuning radios to devices capable of autonomous movement, it provided a formal mathematical basis for understanding the role of feedback in the stability (or change) of dynamical systems. It provides a framework for understanding any system with feedback regulation, including biological ones such as regulatory gene networks, cellular metabolic systems, sensorimotor dynamics of moving animals, and even ecological or evolutionary dynamics of organisms and populations. Here we focus on four case studies of the sensorimotor dynamics of animals, each of which involves the application of principles from control theory to probe stability and feedback in an organism's response to perturbations. We use examples from aquatic (electric fish station keeping and jamming avoidance), terrestrial (cockroach wall following) and aerial environments (flight control in moths) to highlight how one can use control theory to understand how feedback mechanisms interact with the physical dynamics of animals to determine their stability and response to sensory inputs and perturbations. Each case study is cast as a control problem with sensory input, neural processing, and motor dynamics, the output of which feeds back to the sensory inputs. Collectively, the interaction of these systems in a closed loop determines the behavior of the entire system.Comment: Submitted to Integr Comp Bio
    corecore