2,978 research outputs found

    Cycle time optimization by timing driven placement with simultaneous netlist transformations

    Get PDF
    We present new concepts to integrate logic synthesis and physical design. Our methodology uses general Boolean transformations as known from technology-independent synthesis, and a recursive bi-partitioning placement algorithm. In each partitioning step, the precision of the layout data increases. This allows effective guidance of the logic synthesis operations for cycle time optimization. An additional advantage of our approach is that no complicated layout corrections are needed when the netlist is changed

    Layout optimizations of operational amplifier in deep submicron

    Get PDF
    Abstract—Operational amplifies (op amps) are an integral part of many analog and mixed-signal systems. Op amps with vastly different levels of complexity are used to realize functions ranging from DC bias generation to high-speed amplification or filtering. The design of op amps continues to pose a challenge as the supply voltage and transistor channel lengths scale down with each generation of CMOS technologies. The thesis deals with the analysis, design and layout optimization of CMOS op amps in deep Submicron (DSM) from a study case. Finally, layout optimizations of op amps will be given, in which propose optimization techniques to mitigate these DSM effects in the place-and-route stage of VLSI physical design

    Generic radiation hardened photodiode layouts for deep submicron CMOS image sensor processes

    Get PDF
    Selected radiation hardened photodiode layouts, manufactured in a deep submicron CMOS Image Sensor technology, are irradiated by 60Co gamma-rays up to 2.2 Mrad(SiO2) and studied in order to identify the most efficient structures and the guidelines (recess distance, bias voltage) to follow to make them work efficiently in such technology. To do so, both photodiode arrays and active pixel sensors are used. After 2.2 Mrad(SiO2), the studied sensors are fully functional and most of the radiation hardened photodiodes exhibit radiation induced dark current values more than one order of magnitude lower than the standard photodiode

    A review of advances in pixel detectors for experiments with high rate and radiation

    Full text link
    The Large Hadron Collider (LHC) experiments ATLAS and CMS have established hybrid pixel detectors as the instrument of choice for particle tracking and vertexing in high rate and radiation environments, as they operate close to the LHC interaction points. With the High Luminosity-LHC upgrade now in sight, for which the tracking detectors will be completely replaced, new generations of pixel detectors are being devised. They have to address enormous challenges in terms of data throughput and radiation levels, ionizing and non-ionizing, that harm the sensing and readout parts of pixel detectors alike. Advances in microelectronics and microprocessing technologies now enable large scale detector designs with unprecedented performance in measurement precision (space and time), radiation hard sensors and readout chips, hybridization techniques, lightweight supports, and fully monolithic approaches to meet these challenges. This paper reviews the world-wide effort on these developments.Comment: 84 pages with 46 figures. Review article.For submission to Rep. Prog. Phy

    Using Physical Compilation to Implement a System on Chip Platform

    Get PDF
    The goal of this thesis was to setup a complete design flow involving physical synthesis. The design chosen for this purpose was a system-on-chip (SoC) platform developed at the University of Tennessee. It involves a Leon Processor with a minimal cache configuration, an AMBA on-chip bus and an Advanced Encryption Standard module which performs decryption. As transistor size has entered the deep submicron level, iterations involved in the design cycle have increased due to the domination of interconnect delays over cell delays. Traditionally, interconnect delay has been estimated through the use of wire-load models. However, since there is no physical placement information, the delay estimation may be ineffective and result in increased iterations. Hence, placement-based synthesis has recently been introduced to provide better interconnect delay estimation. The tool used in this thesis to implement the system-on-chip design using physical synthesis is Synopsys Physical Compiler. The flow has been setup through the use of the Galaxy Reference Flow scripts obtained from Synopsys. As part of the thesis, an analysis of the differences between a physically synthesized design and a logically synthesized one in terms of area and delay is presented

    Throughput-driven floorplanning with wire pipelining

    Get PDF
    The size of future high-performance SoC is such that the time-of-flight of wires connecting distant pins in the layout can be much higher than the clock period. In order to keep the frequency as high as possible, the wires may be pipelined. However, the insertion of flip-flops may alter the throughput of the system due to the presence of loops in the logic netlist. In this paper, we address the problem of floorplanning a large design where long interconnects are pipelined by inserting the throughput in the cost function of a tool based on simulated annealing. The results obtained on a series of benchmarks are then validated using a simple router that breaks long interconnects by suitably placing flip-flops along the wires

    Post-placement temperature reduction techniques

    Get PDF

    Overview of CMOS process and design options for image sensor dedicated to space applications

    Get PDF
    With the growth of huge volume markets (mobile phones, digital cameras…) CMOS technologies for image sensor improve significantly. New process flows appear in order to optimize some parameters such as quantum efficiency, dark current, and conversion gain. Space applications can of course benefit from these improvements. To illustrate this evolution, this paper reports results from three technologies that have been evaluated with test vehicles composed of several sub arrays designed with some space applications as target. These three technologies are CMOS standard, improved and sensor optimized process in 0.35µm generation. Measurements are focussed on quantum efficiency, dark current, conversion gain and noise. Other measurements such as Modulation Transfer Function (MTF) and crosstalk are depicted in [1]. A comparison between results has been done and three categories of CMOS process for image sensors have been listed. Radiation tolerance has been also studied for the CMOS improved process in the way of hardening the imager by design. Results at 4, 15, 25 and 50 krad prove a good ionizing dose radiation tolerance applying specific techniques

    Infrastructure for Detector Research and Development towards the International Linear Collider

    Full text link
    The EUDET-project was launched to create an infrastructure for developing and testing new and advanced detector technologies to be used at a future linear collider. The aim was to make possible experimentation and analysis of data for institutes, which otherwise could not be realized due to lack of resources. The infrastructure comprised an analysis and software network, and instrumentation infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture

    Optimization techniques for high-performance digital circuits

    Full text link
    The relentless push for high performance in custom dig-ital circuits has led to renewed emphasis on circuit opti-mization or tuning. The parameters of the optimization are typically transistor and interconnect sizes. The de-sign metrics are not just delay, transition times, power and area, but also signal integrity and manufacturability. This tutorial paper discusses some of the recently pro-posed methods of circuit optimization, with an emphasis on practical application and methodology impact. Circuit optimization techniques fall into three broad categories. The rst is dynamic tuning, based on time-domain simulation of the underlying circuit, typically combined with adjoint sensitivity computation. These methods are accurate but require the specication of in-put signals, and are best applied to small data- ow cir-cuits and \cross-sections " of larger circuits. Ecient sensitivity computation renders feasible the tuning of cir-cuits with a few thousand transistors. Second, static tuners employ static timing analysis to evaluate the per-formance of the circuit. All paths through the logic are simultaneously tuned, and no input vectors are required. Large control macros are best tuned by these methods. However, in the context of deep submicron custom de-sign, the inaccuracy of the delay models employed by these methods often limits their utility. Aggressive dy-namic or static tuning can push a circuit into a precip-itous corner of the manufacturing process space, which is a problem addressed by the third class of circuit op-timization tools, statistical tuners. Statistical techniques are used to enhance manufacturability or maximize yield. In addition to surveying the above techniques, topics such as the use of state-of-the-art nonlinear optimization methods and special considerations for interconnect siz-ing, clock tree optimization and noise-aware tuning will be brie y considered.
    corecore