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Abstract 

 
The goal of this thesis was to setup a complete design flow involving physical 

synthesis. The design chosen for this purpose was a system-on-chip (SoC) 

platform developed at the University of Tennessee. It involves a Leon Processor 

with a minimal cache configuration, an AMBA on-chip bus and an Advanced 

Encryption Standard module which performs decryption. 

 

 As transistor size has entered the deep submicron level, iterations involved in 

the design cycle have increased due to the domination of interconnect delays 

over cell delays. Traditionally, interconnect delay has been estimated through the 

use of wire-load models. However, since there is no physical placement 

information, the delay estimation may be ineffective and result in increased 

iterations. Hence, placement-based synthesis has recently been introduced to 

provide better interconnect delay estimation. The tool used in this thesis to 

implement the system-on-chip design using physical synthesis is Synopsys 

Physical Compiler. The flow has been setup through the use of the Galaxy 

Reference Flow scripts obtained from Synopsys. 

 

As part of the thesis, an analysis of the differences between a physically 

synthesized design and a logically synthesized one in terms of area and delay is 

presented.  
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Chapter 1: Overview 

 

1.1 Introduction 

 

A fundamental observation in integrated electronics is Moore’s Law which 

predicted that the components per chip or complexity would approximately 

double every two years resulting in reduced cost per function and dramatic 

improvement of system performance [1].  

  

Integrated circuits have gone from having a few transistors known as Small Scale 

Integration (SSI) to hundreds of thousands of transistors and beyond known as 

Very Large Scale Integration (VLSI) [2]. Integrated circuits are used to build a 

huge variety of applications ranging from high performance computers to low-

power handheld devices. 

 

As designer productivity began to lag behind the available chip capacity, reusing 

components from earlier designs and integrating multiple components together 

on a single chip became advantageous. This approach was helpful in handling 

the increased chip complexity by reducing the design cycle time which translated 

into a reduced time to market. However, initially the components of SoCs did not 

have standard interfaces or characterization. This led to the development of 

intellectual property (IP) cores which could be reused. These cores are 

extensively simulated and characterized resulting in a reduction of the time 

required to use them compared to designing them from scratch.  

 

A typical SoC architecture consists of a Central Processing Unit (CPU), 

Input/Output (I/O) interfaces, memory and peripherals along with a bus to enable 

communication among them [3]. A combination of this architecture along with a 

set of IP blocks is called a platform. Thus, a designer can easily derive a design 
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by choosing a set of components from the platform or setting parameters of the 

libraries’ reconfigurable components [4]. 

 

The numbers of transistors on a chip have increased due to a reduction in 

transistor size. This reduced size also has translated to an increase in the 

switching speeds because of lower threshold voltages. But once the minimum 

feature size is less than 0.35 µm (also referred to as a deep submicron process), 

implementation becomes an even greater challenge. Various effects are 

encountered including signal coupling between adjacent metal lines or crosstalk 

between metal layers, increased interconnect delay and lower operating voltage  

to limit power dissipation which results in higher leakage currents[5]. 

 

1.2  Project Motivation  

 

The process of converting a series of system specifications into a layout is called 

the design cycle. The traditional design cycle involved separate domains of 

logical and physical design. Initially, gate delays were a dominant portion of the 

total delay and hence the estimation of interconnect through statistical wire-load 

models was fine [5]. However, as we enter the deep submicron realm, 

interconnect becomes the dominating factor in the total delay as evidenced in 

Figure 1.1 [5]. 

 

Additionally, it has been shown that a wire-load model without any coarse 

placement information should have significant error. It was also shown that as 

the transistor size is reduced, the error in wire-load models impacts the stage 

delays to a greater extent. The major problem was shown to be weak drivers on 

long interconnects. Hence, placement data can help resolve this error in the 

interconnect estimation to an acceptable level [6]. 
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Figure 1.1:  Process Size and Normalized Delay Contributions  

 

In case of improper interconnect estimation, multiple iterations between the 

logical and physical domains will be required and achieving timing closure 

becomes harder. This in turn translates into an increase in the time to market. It 

has been estimated that a one-month increase in the time to market can result in 

a loss of ten percent of the potential revenue [7]
. Hence, it becomes very 

important to achieve timing closure quickly. 

 

Thus the use of physical synthesis, which is a combination of synthesis with 

placement, should result in a better interconnect estimation as physical 

information about the cells is known. This will allow appropriate drive strength 

selection for a particular cell. Hence, it should result in reduced design iterations. 

 

1.3  Thesis Goals  

 

The research for this thesis involved implementing a baseline SoC platform 

through both logic synthesis and physical synthesis. The baseline SoC platform 

developed as part of previous theses work is modified to include only the Leon 

processor and an Advanced Encryption Standard (AES) Block. The Galaxy 
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Reference Flow (GRF) scripts obtained from Synopsys were customized to 

implement the design flows.  

 

The design targeted the IBM7RF 180-nm process and hence the required 

Milkyway libraries had to be created and integrated into the Galaxy Reference 

Flow. Once both the logic and physical synthesis flows were implemented, a 

comparison of the two designs in terms of slack and area were determined. 

Finally a tutorial was prepared about using Synopsys tools in both the design 

flows.  

 

1.4  Thesis Outline  

 

In this chapter a brief introduction about the relevance and necessity of physical 

synthesis is presented. Chapter Two is a review of the literature that shows the 

advantages and design improvements when synthesis and placement are 

combined.  In Chapter Three, the Volunteer SoC platform and its components 

are discussed. In Chapter Four, the features of the Synopsys tools used to 

implement the design flow are presented.  Chapter Five has the implementation 

details.  Finally Chapter 6 concludes with the results and future goals. 
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Chapter 2: Background 

 

2.1 Traditional and Physical Design Cycles 

 

A hardware description language like VHDL (Very High-Speed Integrated Circuit 

Hardware Description Language) or Verilog may be used to describe a design 

from its specifications.  After verifying its functional operation through simulation, 

the design is mapped into a series of gates and optimized based on its 

technology library resulting in a gate-level net-list. However, the interconnect 

delays are unknown and hence are estimated through the use of statistical wire-

load models which are based on the fan-out of each net.  This conversion of the 

design into a gate-level net-list is called logic synthesis.  

 

Following logic synthesis, the design is floorplanned to estimate positions of the 

various blocks of the chip and its power structures.  This stage is useful to fix the 

positions of macros used in the design and to decide regions where no wires or 

cells should be placed so as to avoid high congestion.  Placement, which is the 

next step, involves allocation of physical locations to the standard cells. This is 

followed by clock distribution and the building of clock trees in the Clock Tree 

Synthesis step. The next step involves actually laying down the metal 

interconnect to connect the cells and is called routing.  Finally, the parasitics of 

the circuit are extracted and back-annotated to the routed net-list to verify design 

operation at the required frequency.  In case of a hierarchical design, each block 

is separately taken through from logic synthesis to routing and finally all these 

blocks are interconnected at the top level.              

 

Unfortunately, once the entire design cycle is completed, there is an increased 

chance that the design will not meet its timing constraints after routing. Hence, 

the implemented design will have to be extracted and these values back-
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annotated to replace the wire-load models. But once the new net-list is taken 

through physical design, the interconnect values between the gates change and 

hence again an error may occur and multiple iterations may be required to 

achieve timing sign-off.  

                     

The major difference in the physical design cycle is the introduction of physical 

synthesis which is a combination of placement and synthesis. Once synthesis 

using wire-load models is completed, the design is floorplanned and placed. But 

as part of the placement, the physical synthesis tool will optimize the design 

based on the physical location of the cells. Hence the design cycle is more likely 

to require fewer iterations.  

 

2.2 Previous Work 

 

The concept of physical synthesis has been around for several years. This 

section summarizes some of the results motivating the use of physical synthesis.  

 

The summary of an early paper that discussed a Placement-Driven Synthesis 

(PDS) approach is described below [8]. The wire capacitance models are used as 

part of synthesis tools to estimate interconnect based on the fan-out. These 

estimates differ before and after physical design. Thus, actual critical length 

paths may be longer than expected leading to a negative slack and multiple 

iterations between synthesis and placement. As part of their analysis, it was 

shown that the estimated capacitance for a particular net cannot be precise as 

there is a wide spread of actual capacitance. 

 

Hence, the paper [8] suggests an approach where synthesis can run every time 

placement is done but constrained so that it can change only the power levels of 

the circuits based on the more accurate net capacitance available.  At the time 

the authors wrote this paper, wire and gate delays were close to each other and 
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improvements were noted when placement-driven synthesis was used.  It should 

certainly be appropriate today when interconnect delays dominate gate delays [5]. 

Their results, shown in the Table 2.1, compare area and slack amongst other 

factors between placement-driven synthesis and traditional synthesis and 

placement approaches [8]. The authors noted that the two-fold increase in CPU 

time was an acceptable tradeoff to improve the timing convergence of 

microprocessors. 

 

A later paper [9] discussed the use of placement transformations on partitions of a 

mainframe processor with the goal of timing optimization. In the Transformational 

Placement and Synthesis (TPS) approach, coarse optimization is done during 

synthesis followed by detailed and aggressive optimization during placement. 

The transformations included scan chain optimization to reduce the scan chain 

length by connecting the scan chain based on the physical locations of the scan 

cells. The results were then compared with a Synthesis-Placement and Re-

synthesis (SPR) approach. Their results showed an improvement in slack and 

area. The other major observation in their paper was that timing improvement 

and closure was achieved through the use of a single cycle for TPS relative to 

multiple iterations for SPR. 

 

A more recent comparison was done for a design fabricated in a 180-nm process 

[10]. The physical synthesis methodology and additional optimizations used to 

implement high-performance microprocessors are discussed. The chip was 

divided into hierarchical blocks and after implementing each block, the noise and 

timing information was passed up the hierarchy.  

 

Initially wire-load models were used and once the blocks were stable, physical 

synthesis was done to obtain optimal placement along with timing, area and 

power optimization.  
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Table 2.1: Comparison between PDS and Placement Approach  

 

 

 Approach Area 

(Gate 

Size) 

Worst 

Slack(ps) 

Electrical 

Violations 

Normalized 

Wire length 

w.r.t STSP 

CPU 

time 

(sec) 

Design 1 PDS 

STSP 

7078 

7061 

-437 

-501 

2 

3 

1.005 

1.000 

521 

306 

Design 2 PDS 

STSP 

21768 

21653 

-1154 

-2528 

32 

190 

1.01 

1.00 

2077 

1092 

Design 3 PDS 

STSP 

33051 

32699 

-1720 

-3372 

461 

644 

0.995 

1.00 

2695 

1470 

Design 4 PDS 

STSP 

30479 

30443 

-895 

-1339 

394 

493 

0.999 

1.000 

1488 

885 

Design 5 PDS 

STSP 

34957 

35755 

-1882 

-2889 

225 

436 

1.009 

1.000 

2619 

1486 

Design 6 PDS 

STSP 

3147 

3145 

-226 

-274 

4 

3 

1.017 

1.00 

177 

85 

Design 7 PDS 

STSP 

11007 

11068 

-484 

-513 

18 

48 

0.974 

1.00 

688 

358 

Design 8 PDS 

STSP 

29947 

29525 

-1090 

-3119 

272 

535 

1.007 

1.00 

2796 

1340 
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Low Vt gates were used to achieve higher performance on timing critical paths.  

It is mentioned that the use of these optimizations can only be determined after 

placement and hence could be used during physical synthesis when timing and 

load estimates are precise.  

 

Better interconnect estimation as part of physical synthesis is considered a result 

of the placement information. Hence, the difference between a Steiner model 

used to measure wiring distances and the final routing of nets has been 

analyzed. It is shown that by removing the shortest 10-20% of the nets, large 

error percentages disappear.  The errors due to these short nets do not affect the 

delay much.  Hence, the Steiner length approximation is precise enough to be 

used as part of the physical synthesis phase [10]. 

 

The authors also note that the clock consumes 70% of the power in the 

processor due to the last clock driver stages which drive the latches but may 

have been placed far away from them.   This results in larger wire length and 

hence increased capacitance leading to greater power consumption.  After global 

placement, an initial clock network is created by the authors’ physical synthesis 

algorithm and then by moving the latches closer to the driver stages, power 

optimization can be done.  When this clock optimization is combined with 

physical synthesis, the authors note that the logic can be optimized to account for 

the placement changes made by the insertion of the clock buffers [10]. 

 

Another optimization typically used as part of physical synthesis is circuit 

relocation wherein timing critical circuits are moved so that the net capacitance to 

be driven is reduced and the buffer insertion on long wires is avoided by 

redistributing distances between logic gates. Another frequently used 

optimization is the remapping of the technology-mapped gates.  Yet another 

technique is to rebuild the buffer trees as part of physical synthesis since buffer 
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insertion prior to placement can cause high congestion and degraded 

performance due to the poor topology of the trees.  

 

Figure 2.1 from their paper [10] is used to compare the slack and area results on 

using physical synthesis and when alternating between placement and synthesis. 

They conclude that a majority of the points show both slack and area 

improvements and that sometimes allowing a small area penalty resulted in 

significant slack improvement. 

 

 

 

Figure 2.1: Slack and Area Comparison 
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Chapter 3: System on Chip Platform 

 

The Volunteer SoC Platform was developed as part of a graduate course at the 

University of Tennessee, Knoxville.  Initially, IP cores were obtained or generated 

and verified individually. They were then modified to have standard interfaces so 

that they could be integrated with a Leon processor model [11]. Some modules 

were then integrated with the processor through its AMBA bus to create a 

platform as part of a previous thesis [12]. This platform consisted of an open core 

Advanced Encryption Standard (AES) block and Fast Fourier Transform and 

Finite Impulse Response cores developed by other students.  As part of a later 

thesis [13], a baseline configuration was created using minimal cache and the 

open core AES block replaced with one that was developed in-house as part of a 

cryptographic project [14]. This baseline platform was used in this thesis to test the 

physical synthesis flow. 

 

3.1 Leon Processor 

 

Leon is a SPARC V8 processor and its VHDL model can be obtained online for 

free [11]. Its features include separate instruction and data caches, a hardware 

multiplier and divider, interrupt controller, two UARTs (Universal Asynchronous 

Receiver Transmitters), two timers, a memory controller and Ethernet and PCI 

(Peripheral Control Interface) interfaces.  It consists of two different buses from 

the Advanced Microcontroller Bus Architecture (AMBA), namely the Advanced 

High-performance Bus (AHB) and Advanced Peripheral Bus (APB) through which 

new modules can be added to the processor. The model has been synthesized 

and simulated using various tools for various technologies. The block diagram of 

the Leon processor is shown in Figure 3.1 [11].   
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Figure 3.1: Leon 2-1.0.30-xst Processor Block Diagram 

 

The Leon model can be configured using a graphic configuration tool which 

creates a device.vhd file in the Leon folder when the ‘make dep’ command is run. 

This action combined with the config.vhd file setups the Leon for a particular 

configuration. To obtain a baseline platform, a minimal cache size was chosen. 

Also both the Ethernet and PCI interfaces were not enabled.  Both the instruction 

and data caches were configured to be direct-mapped having 8-bit line sizes.  

We also needed to generate a cache tag RAM since each line in the cache has a 

tag associated with it.  Synchronous single-port RAM cells were used to 

implement both the data and tag caches. The technology-mapping file to be used 

for the caches and I/O with the IBM7RF technology was created as part of an 

earlier thesis [15]. Table 3.1 provided in the Leon User Manual was used to 

determine the cache sizes [11].  
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Table 3.1: Selection of RAM Size 

 

Cache Set Size Words / Line Tag Ram Data Ram 

1Kbyte 8 32x30 256x32 

1Kbyte 4 64x26 256x32 

2Kbyte 8 64x29 512x32 

2Kbyte 4 128x25 512x32 

4Kbyte 8 128x28 1024x32 

4Kbyte 4 256x24 1024x32 

8Kbyte 8 256x27 2048x32 

8Kbyte 4 512x23 2048x32 

16Kbyte 8 512x26 4096x32 

16Kbyte 4 1024x22 4096x32 

   

For the Integer Unit, the default eight register windows were chosen.  A register 

is used to store the temporary values during the execution of a program.  A group 

of eight registers is called a window.  Register windows allow multiple parts of the 

program to access its own group of registers during procedure calls.  Hence, the 

program can have a chain of eight procedure calls deep without saving the 

register contents to the memory. In the case of the SPARC architecture, any part 

of the program can access 32 registers (8 global registers + 3 register windows). 

A register window shifts by 16 registers for each procedure call since 8 registers 

that are output in the previous level act as input registers for the current level [16]. 

Hence, the total number of registers required for the 8 register windows is 8 + 

24*1+ 16*6 +8*1 = 136.   Since the Integer Unit file requires one 32-bit write port 

and two 32-bit read ports, we use two parallel dual-port RAM cells each with a 

size of 136 x 32.  Artisan RAM generators were used to generate both the single-

port and dual-port memories. 
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3.2 Advanced Microprocessor Bus Architecture [17, 18]  

 

Advanced Microprocessor Bus Architecture (AMBA) is the on-chip bus protocol 

from ARM. Other bus protocols available are Core Connect from IBM and the 

Wishbone bus from Silicore.  AMBA consists of the following: 

 

a) Advanced High-performance Bus (AHB) - It is a high performance bus used to 

connect processors, on-chip memory and memory controllers. 

 

b) Advanced System Bus (ASB) - It is an alternative system bus used when the 

high performance features of AHB are not required. It does not have the burst 

transfer and split transaction capabilities of the AHB.  Burst transfer allows one or 

more consistent width data transactions to an incremental region of address 

space. Split transactions improve bus utilization by ensuring that the arbiter will 

allow other masters to access the bus until the slave can complete a transfer. 

 

c) Advanced Peripheral Bus (APB) - It is a low power and low performance bus 

used for peripherals. The APB interface has reduced complexity.  

 

Figure 3.2 illustrates a typical AMBA bus system.  

 

 

Figure3.2: Typical AMBA System [17] 
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One of the major specifications noted was that AMBA was derived to be 

technology-independent so that it could be migrated across various processes. In 

the case of the Leon processor model, the AHB and APB buses have been used.  

Both the AHB and APB bus cycles are defined from one rising edge to the next 

rising edge. The high bandwidth AHB and low bandwidth APB are linked via a 

bridge which connects the master to the peripheral bus slaves.  

 

3.2.1 Advanced High-performance Bus (AHB)  

 

The AHB can have multiple bus masters and usually the processor is the master 

on this bus. The APB bridge and internal memories are usually slaves on the 

AHB. It has an arbiter which ensures that there is only one bus master at any 

time and routes the address and control signals to all the slaves. A centralized 

decoder controls the data reading and also selects appropriate signals for the 

slave involved in the transfer. The bus has separate read (HRDATA) and write 

(HWDATA) buses. The HWRITE signal is an active high signal used to indicate 

the direction of data transfer. The bus master can also lock the bus with the 

arbiter for a certain number of transfers. Figure 3.3 can be used to understand 

the AHB bus cycle. 

 

 

 

Figure 3.3: AHB Bus Cycle with Wait States [17] 
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Initially, a master requests the bus and the arbiter decides which master is 

assigned control of the bus. Normally a master can complete all the transfers 

using a single burst but the arbiter has the ability to break the burst. The transfer 

consists of a single cycle which cannot be extended and during this time, the 

address and control signals are sent. This is followed by one or more data cycles 

which can be extended using the HREADY signal. A high HREADY signal 

indicates data transfer can be completed.  When the HREADY signal is driven 

low by a slave, wait states are introduced and the slaves can sample or read 

data for extra time.  While the bus master holds the data stable throughout the 

extended cycle for a write operation, the read data is available just when the 

transfer is about to complete.  Pipelining is implemented as the address phase of 

the current transfer occurs during the data transfer of the previous phase.  

 

3.2.2 Advanced Peripheral Bus (APB) 

 

The bridge is the only master on the APB and all other peripherals on it are 

slaves. It converts data from the AHB bus into a suitable format for the APB 

slaves and also generates the corresponding select signals for the slaves 

(PSELx) based on the address. Its operation involves a Setup state in which it 

remains for one cycle, following which it enters the Enable state which also lasts 

a single cycle. In the Setup state, the PWRITE signal is made high or low 

depending on the direction of transfer and the address is put onto PADDR. It has 

a read (PRDATA) data bus which is driven when the PWRITE signal is low while 

the write (PWDATA) data bus is driven when the PWRITE signal is high. The 

PENABLE signal is asserted to indicate that the Enable state is taking place. The 

address, data and control signals remain valid throughout the Enable state. The 

PENABLE will be unasserted to indicate the end of the state. The PSELx will also 

be unasserted unless there is another transfer to be made.   
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3.2.3 Bus Operation on Interfacing APB and AHB 

 

When the AHB is interfaced to the APB, the address is sampled by the bridge 

and broadcast along with selecting the appropriate peripheral. During the Setup 

cycle, the HREADY will be asserted low.  Following the Setup cycle, the 

PENABLE is made high and the data peripheral must provide the read data 

during this enable cycle which can be routed back onto the AHB so that the bus 

master can sample it at the fourth clock edge after transfer was initiated. 

 

For high frequency systems, the read data is registered by the bridge and 

transmitted on the AHB for the bus master during the fourth clock cycle 

introducing an extra wait state.  In the case of a write operation, the bridge will 

sample the address and data and hold them for the peripheral throughout the 

write cycle.  It is also noted that the bridge requires two address registers so that 

it can sample the next address on the AHB while the current write transfer occurs 

on the peripheral bus [17]. 

 

3.3 Advanced Encryption Standard Block 

 

AES is an encryption standard adopted by the US government. It has a fixed 

block size of 128 bits and can have a key size of 128, 192 or 256 bits. This block 

had been generated in-house as part of a cryptographic project [14] and had been 

simulated and verified using the Xilinx Virtex 1000E FPGA. This is the only user 

IP block integrated as part of the SoC in this thesis. A key size of 128 bits has 

been used and only decryption was performed with the encrypted text given as 

an input. 

. 
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3.4 Artisan RAM 

 

The required synchronous block RAMs for the design were generated using 

Artisan RAM generators. We needed the single-port RAM generator for the 

cache and tag RAMs and the dual-port RAM generator for the integer unit.  For 

the Artisan RAM, the Chip ENable pin (CEN) needs to be low and then based on 

the Write Enable (WEN) pin, a read (high) or write (low) occurs. As part of a 

previous thesis [12], it was found that these RAMs cannot be directly integrated 

with the Leon processor. In the case of the RAM cycles, the memory address 

should already be present before the rising clock edge. However, the Leon 

processor loads the address and data at the rising edge of the clock resulting in a 

cache failure. This is illustrated using Figure 3.4 and Figure 3.5 respectively. To 

avoid this, a wrapper was created which allows the RAM to be interfaced with the 

processor without failing. 

 

 

 

Figure 3.4: Dual Port SRAM Read Cycle [19]  
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Figure 3.5: Leon Processor Read Cycle [11]  

 
 
3.5 LEON/ERC32 GNU Cross- Compiler System (LECCS) 
 

LECCS is a free multi-platform cross-compilation system provided by Gaisler 

Research. It is based on gcc and the Real-Time Executive for Multiprocessor 

Systems kernel and allows compilation of C/C++ programs so that they can be 

run on Leon [20]. The C program to be run is compiled and loaded into ram.dat 

which is then read by the test bench.  Figure 3.6 shows the analogy between gcc 

and LECCS. 

 

3.6 Volunteer SoC Integration [12, 13] 

 

For the IP block to be easily integrated, it was decided that the blocks would 

have a 32-bit data and address width. The registers would be initialized using a 

reset signal and there would be a GO signal to inform the IP to start its operation 

and it would issue a DONE signal once it was done. 
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Figure 3.6: Analogy Between gcc and LECCS [12] 

    

The IP block was then interfaced to the AMBA bus through another wrapper that 

would allow it to be either an AHB master or an APB slave. The ambacomp.vhd 

file was modified so that the IP block could be added as an AMBA component. 

From Table 3.2 it can be seen that the slaves on the APB need to mapped in the 

address range 0x80000000 - 0x8FFFFFFF which corresponds to the APB bridge. 

Hence the apbmst.vhd file was modified to map the AES block into the address 

range 0x80000300 - 0x800003FF.  In the mcore.vhd file, the AES block was 

added such that it has a priority index of 1 on the AHB. The default master on the 

AHB is the processor with an index of 0.  Hence, the AES was assigned a higher 

priority than Leon on the AHB.   

 

The final derivative configuration of the Volunteer SoC platform used for physical 

compilation is shown in Figure 3.7. Thus the AES block is setup so that it 

receives control signals over the Advanced Peripheral Bus and transfers its data 

on the Advanced High-Performance Bus. 
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Table3.2: AHB Address Allocation [11] 

 

Address Range Size Mapping Module 

0x00000000 - 0x1FFFFFFF 512M PROM Memory Controller 

0x20000000 - 0x3FFFFFFF 512M Memory Bus I/O Memory Controller 

0x40000000 - 0x7FFFFFFF 1G SRAM / SDRAM Memory Controller 

0x80000000 - 0x8FFFFFFF 256M On-Chip Registers APB Bridge 

0x90000000 - 0x9FFFFFFF 256M Debug Support Unit DSU 

0xB0000000 - 0xB001FFFF 128M Ethernet registers Ethernet 

 

 

 

 

 

Figure 3.7: SOC Platform Used for Physical Compilation 
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Chapter 4: Design Flow Components   

 

4.1 Galaxy Reference Flow 

 

The Galaxy Reference Flow (GRF) is a reference design flow that allows a 

Register Transfer Level (RTL) design to be taken through physical design using 

an automated set of customizable scripts [21]. It can be used to implement the 

best methodologies and harness the features of the below main tools. 

 

1) Design Compiler for synthesis and DFT insertion using DFT Compiler 

2) JupiterXT for generating multiple floor-plans, macro placement and power 

planning 

3) Physical Compiler for placement and optimization 

4) Astro for Clock Tree Synthesis (CTS) and routing  

5) IC-Compiler for placement, CTS and routing 

 

The IC-Compiler tool can be used to replace the Physical Compiler and Astro 

tools in the design flow. It also can be used to work with additional helper tools 

such as Formality for formal verification, Prime Power for gate-level power 

analysis, Star-RXCT for extraction and Prime Time for static timing analysis and 

sign-off at various stages of the design flow. The GRF can be used in either the 

full or stand-alone modes. The full mode consists of multiple tools including 

helper tools while the stand-alone mode is used for working with a single tool as 

a subset of the Galaxy flow. As part of this thesis, we used version 2.1 of the 

GRF with version 2005-09 of the main tools. The GRF requires the Milkyway 

database for the libraries, which can be used by all the tools and hence they 

needed to be created prior to the first usage.  
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4.2 Design Compiler 

 

Design Compiler (DC) is a standard synthesis tool from Synopsys which is widely 

used across the Application Specific Integrated Circuit (ASIC) industry. It is used 

to convert the Hardware Description Language (HDL) code into an optimized 

gate-level net-list. The HDL files in our case were read in using the Presto HDL 

compiler which is the newer version and the only 64-bit implementation for the 

HDL compiler.  

 

The HDL code is first mapped into a technology-independent generic library 

(GTECH) which consists of basic logic gates and flip-flops and the DesignWare 

library which contains complex cells such as adders and comparators [22].The 

net-list is then optimized to achieve minimum area and to comply with user-

defined constraints while mapping the logic gates to those defined in the 

technology library. It has the ability to perform power optimization using clock 

gating through the use of Power Compiler and Design for Test insertion using 

DFT compiler. 

 

The traditional way of estimating interconnect was through the use of statistical 

wire-load models which could be used to apply a certain model based on the 

area of the design block. Hence while writing the constraints for the tool they 

were about 15-20% more stringent than the required implementation constraints. 

This is followed by performing the physical implementation of the design and 

then re-synthesizing the design using the back-annotated parasitics. This was 

followed by using the physical database as an input while performing synthesis.  

 

The latest Design Compiler Ultra uses topographical technology which it shares 

with IC-Compiler as part of synthesis to build a virtual layout and avoids the use 

of any wire-load models. This helps achieve a logic net-list that has a good 

correlation in timing and area with a post-layout net-list. It has the ability to read 
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in a floorplan or can use floorplan constraints given by the user. The ability to use 

a virtual layout allows better scan chain reordering and helps reduce congestion. 

DC-Ultra also has the capability to perform virtual clock-tree synthesis which 

provides more accurate power estimation [23]. The physical library information is 

provided in the Milkyway Database format. 

 

4.3 JupiterXT 

 

JupiterXT is a design planning tool from Synopsys that allows a fast exploration 

of the design and can obtain a detailed and optimized floorplan for both flat and 

hierarchical design styles [24].  It can apply its virtual flat placement algorithms to 

gate-level net-lists to place macros and standard cells simultaneously. “It shares 

its placement, routing and timing analysis engines with Physical Compiler and 

Astro ensuring faster convergence in obtaining correct floorplans” [24]. As part of 

its Virtual Flat Placement (VFP), we can use the explore mode which generates 

multiple output views that can be analyzed prior to deciding the final location of 

the macro placement.  JupiterXT can also use In-Place Optimization to provide 

an early assessment of whether timing can be met.  

 

The Power Network Synthesis (PNS) capability can be used to estimate the 

electromigration and voltage drop problems that can be encountered later in the 

tool flow and avoid signal integrity issues. This can be used after the die size is 

determined to formulate the power plan structure involving power rings and 

straps so that the design meets the power budget requirement.  However, power 

pad information is crucial when running PNS [25].  

 

The tool has an additional command search_die which can be used after the 

initial floorplanning and virtual flat placement to search different die size 

estimates based on the core/cell utilization and determine the minimal die size for 
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a design net-list. If the design is easy to route, it reduces the die size else if the 

design is not routable the core size is increased [24].  

 

JupiterXT can also be used to perform clock planning and then estimate the 

insertion delays and skew of clock nets. Finally it can perform prototype global 

routing to estimate the wire-length and routing resource usage and check 

whether the design is routable. 

 

4.4 Physical Compiler 

 

Physical Compiler is the physical synthesis tool from Synopsys which integrates 

both placement and synthesis to achieve quicker convergence, thus reducing the 

design cycle time as the iterations between synthesis and placement are 

reduced. It extends synthesis by performing location based optimization and 

timing driven placement together [26]. It uses Steiner routing as part of its routing 

estimation to ensure better timing information and it also reduces routing 

congestion.  

 

The parasitic RC (Resistance Capacitance) for interconnect is estimated through 

the use of TLU+ models, generated using STAR-RCXT an extraction tool from 

synopsys. TLU+ contains resistance and capacitance look up tables and model 

ultra deep submicron process effects. The Distributed Physical Synthesis (DPS) 

capability allows a large design to be automatically split into partitions and run 

simultaneously on multiple systems to achieve quicker results. 

 

A floorplan is required for the physical synthesis tool and can be read in using 

either the Design Exchange Format (DEF) or the Physical Design Exchange 

Format (PDEF).  Alternatively, a basic floorplan can be created using its RTL 

performance prototyping capability through its minimum physical constraints [27]. 
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Thus Physical Compiler can achieve a placed-gates design from either HDL code 

or a gate-level netlist. 

 

Initially as part of DFT insertion, scan chains are connected based on their 

instance names which can cause the chain length to be longer than required and 

result in congestion if two nearby instances are placed far apart. Physical 

Compiler combined with DFT compiler has the ability to disconnect these before 

placement and re-stitch the scan chains based on order or placement. This 

reduces the scan chain length and also helps improve congestion.  

 

It can perform power optimization as it is integrated with Power Compiler. This 

can be done through the use of clock gating. Another approach is the use of 

Multi-Threshold Voltage cells for reducing the leakage or static power.  Thus low 

threshold cells which have a large leakage current but switch quickly can be used 

for timing critical parts while high threshold cells are used for the non critical 

paths ensuring power savings. It can perform dynamic power optimization when 

switching activity information is provided. 

 

4.5 Astro 

 

This physical implementation tool from Synopsys can perform placement and 

optimization, Clock Tree Synthesis and Routing [28]. It can address affects such 

as crosstalk, IR (current-resistance) drop and electromigration.  Astro can 

perform distributed routing and hence reduce implementation time. It can also 

handle multiple voltage designs during implementation.  It also uses TLU+ 

models to address ultra deep submicron process effects [29]. Astro also has the 

capability to generate a floorplan and perform power planning.  

 

The methodology recommended by Synopsys for Astro allows the user to setup 

an automatic flow through the use of customizable scripts [28]. Astro can also 
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perform placement-based scan chain re-ordering which reduces the scan chain 

length and improves congestion. Astro can initially remove wire-load model 

effects by downsizing gates and removing buffers along paths with positive slack 

and then uses virtual Steiner routing to estimate timing and optimize the net-list. 

During congestion analysis after placement, it can use global routing to check the 

demand for wire tracks and achieve more accurate estimation.  

 

After placement, Astro can perform power optimization by removing and sizing 

the buffers. Astro then uses Clock Tree Synthesis (CTS) to build clock trees for 

minimum skew and if required can use its useful skew optimization feature to 

increase or decrease the size of clock buffers in the positive slack paths to meet 

setup timing.  It has a clock tree browser for viewing the clock tree structures [28].  

 

After CTS, Astro can perform routing, followed by search and repair to fix design 

rule violations, post-route optimization and finally Engineering Change Order 

(ECO) routing. Once routing is completed it can also be used to optimize the 

design by reducing the wire-length and the number of vias. Astro can perform 

design rule checking for designs above 130-nm using a subset of the design 

rules used by the Synopsys Hercules tool and uses advanced design rule 

checking for designs below 90-nm.    
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Chapter 5: Implementation 

 

5.1 Milkyway Library Creation 

                    

The required details to setup a Milkyway Library have been obtained from the 

Synopsys Milkyway Manual [30] and Synopsys Solvnet Articles [31]. The library 

creation was done using Astro. The basic files for any technology are given 

below: 

 

a) Layout Exchange File (lef) 

b) Technology File (tf) 

c) lef_layer_tf_number_map.pl –script that maps the lef file and the tech file 

to find the Milkyway layer number for a particular layer in the lef [31]. The 

Milkyway layer number is usually defined in the tech file. This prints out 

only the routing layer and poly numbers but we can associate other 

members as the script prints them out from the tech file earlier. 

 

The process for creating a Milkyway Library in brief using Astro is given 

below: 

 

a) Choose Data Prep in the Astro menu and then Create Library. In the form 

enter library name, technology file name and remember to set the case 

sensitive option. 

b) Open the Library and in the scheme command enter read_lef. This is an 

automated series of steps in the library creation. In this form enter the 

name of the tech lef file (if the lef file contains technology information), cell 

lef file (lef file name) and the layer mapping file obtained using the perl 

script. The series of steps involved are Extracting blockage, Pin and via 

(to create the abstracted view), setting P & R boundary and finally defining 

wire tracks. If the wire tracks information is not present enter information 
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about the metal layer offsets, metal directions (axgDefineWireTracks). 

Finally one can check the wire track information (axgCheckWireTrack). 

c) Attach the Logic Models (.db) files using read_lib command and then 

selecting logical. Then browse and select the maximum, typical and 

minimum logic model files to import. 

 

Additional files used are the Tluplus models which can be generated using the 

Interconnect Technology File (itf) which can be extracted from the .nxtgrd file 

used as input for Star-RCXT. Additionally a mapping file between the tech file 

and the itf file is to be created by the user for the below two headings: 

conducting_layers 

via_layers 

Then using the grdgenxo script available with Star-RCXT one can generate the 

models. To generate models for a particular corner instead of typical we just 

need to include a one line format file with the –f option of grdgenxo which just 

mentions the operating condition (ex: OPCOND MAX).The usage is given below:  

 

grdgenxo -itf2TLUPlus -i <itf_file> [-f <format_file>] -o <TLUPlus_file> 

     

Once the Tluplus models have been generated they can be attached to the 

Milkyway library by including the mapping file. Thus the reference library created 

as a Milkyway database can be used with the JupiterXT, Physical Compiler and 

Astro tools. 

 

5.2 Artisan RAM generation 

 

As discussed in Chapter-3 we require synchronous RAMs to implement our 

register file and caches. These are generated using the Dual and Single port 

RAM generators from Artisan. The required parameters to generate them are 

provided in Table 5.1.  
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Table 5.1:  Artisan RAM Generator Parameters [13]   

 

Field IU Rams Cache Ram Tag Ram 
Instance name dpram136x32_inst ram256x32_inst ram32x30_inst 
Words 136 256 32 
Bits 32 32 30 
Frequency (MHz) 50 50 50 
Multiplexer 4 8 4 
Library Name DPRAM1 RAM3 RAM2 
 
 

For each of the above block memories we generate the verilog model, tlf, 

synopsys lib models which will then be converted into Synopsys db files and the 

vclef footprint, used to create the physical Milkyway database. 

 

5.3 Leon Processor Configuration 

 

The processor can be configured using a graphical configuration tool based on 

linux kernel tkconfig scripts [11].  As part of the configuration we use caches of 

size 1KB with line size of 8 bits. We also do not use the multiplier and divider. As 

we will target the IBM7RF 180-nm process, we have to modify the target 

technology in the generated device.vhd file which contains the configuration. Also 

we change the number of masters on the AHB bus to two while having the Leon 

processor as the default master. The IBM process is added in the target.vhd file 

as a target technology. Additionally a file that had been created previously [15] 

and contains information about the RAMs and I/O required for the IBM7RF 

process is used.  Also, since we decided to implement the SoC without any pads 

in this thesis, the leon.vhd was modified to remove the I/O pad instances and the 

clock generator since we are not dividing the clock. Then the makefile required 

for simulation was modified accordingly to use the appropriate Leon and AES 

files. 
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5.4 Design Flow  

 

The SoC implementation was done using a flat flow instead of a hierarchical one. 

Functional simulation was done using ModelSim at the pre-synthesis, post-

synthesis and post-layout stages. At the post-synthesis and post-layout stages, 

SDF back-annotation was done. Design Compiler was used for synthesis, 

Jupiter-XT for floor-planning, power planning and macro placement, Physical 

Compiler for physical synthesis and finally Astro for placement, CTS and routing. 

To compare the results with and without the presence of the physical synthesis 

tool, two paths were taken in the design flow. In one path, placement combined 

with synthesis (Physical Synthesis) is done using Physical Compiler. As part of 

the second flow, placement involving net-list optimization was done in Astro.  In 

both of the flows, Clock Tree Synthesis and Routing are done in Astro. The 

design flows implemented are shown in Figure 5.1.  

 

 

 

    

Figure 5.1: Design Flow 
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5.4.1 Synthesis 

 

As part of synthesis, the operating condition was set for both the maximum and 

minimum conditions. The synthesis script was customized from the one provided 

with the Leon processor [11]. The target library for the design during synthesis 

was the slow corner library.  Initially the RAM VHDL interfaces were synthesized 

using the RAM db files. Then the Leon processor was synthesized using these 

interfaced Verilog files. We had to enable the use presto variable to read in the 

VHDL.  Initially, synthesis was attempted for a frequency of 111.11 MHz but 

timing was not met.  Hence, the design was targeted for a frequency of 100 MHz. 

The Standard Delay Format (SDF) file and Verilog net-list were produced by 

Design Compiler. This SDF was then modified using a perl script provided by 

Artisan so that it could be simulated with the Artisan Verilog models. The back-

annotation and simulation are shown in Figure 5.2 and Figure 5.3. 

 

 

 

Figure 5.2:  Post-Synthesis SDF Back Annotation 
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Figure 5.3:  Post-Synthesis Simulation  

 

5.4.2 Physical Implementation 

 

From this stage we used the Galaxy Reference Flow scripts for the remaining 

implementation. Hence the steps to setup the GRF scripts are listed below [21].  

 

1. Untar the downloaded file [gtar xvfz G.tar] 

2. Copy the modified setup.csh which points to the tool executables and licenses. 

3. The .grf_reference_files/ASTRO/starxt/cmd directory is missing the file named 

14.extract_handoff_sta_starxt.txt as the flow command language file in the 

Astro.fcl file requires this to proceed with the setup. Copy it from the extracted 

directory into the above location. 

4. Source the setup.csh and then use the below command to setup the 

directories for any or multiple modules:    

    grf_utilities/grf_setup module  
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5. Once the tools are setup using the grf_utilities/grf_setup command, one has to 

select variables for the tool. A list and description for the variables associated 

with each tool in the GRF can be obtained from the help using the command  

gh –var variable name. The suggested workflow from the GRF User Guide is to 

setup the initial variables (gep –i). After that I would use (gep –t all) to setup other 

variables. 

6. Use the project_setup file provided for each tool. If a variable is defined in the 

project_setup file, it is used instead of the default value in project_setup.defaults 

file. 

7. Hence to implement the above design flow, four GRF directories will be 

required. Two directories will be used for JupiterXT, the third for Physical 

compiler and Astro while the last is just for Astro.  

 

5.4.3 Floorplanning and Macro Placement using JupiterXT 

 

1. Create the GRF directories for JupiterXT using grf_utilities/grf_setup jxt 

2. Copy the 4.initial_place_jxt.scheme and 6.feasibility_jxt.scheme given into the 

cmd.user directory of the JXT directory 

3. Copy the project_setup file into the GRF2.1.release.without_examples 

directory of Jupiter. The only difference between the two provided project_setup 

is the values of height and width for the core. In case of the physical compiler 

and astro flow, the core is defined as 1425µ x1425µ while for the astro flow it is 

1485µ x 1485µ. 

4. Copy the netlist file leon.v and the design constraints leon.sdc files from the 

design compiler directory into the JXT/input_data.                                         
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5. Running the gmake default command in the JXT directory will perform the 

following steps: 

a) Create a Milkyway Library for the design and a .scheme file with tool variables 

b) Generate a floor-plan for the design 

 

c) Perform an initial and incremental placement so that the design can be placed 

and ensuring that the floorplan parameters are sufficient. 

d) As part of the feasibility script, we will create the power structures and also 

perform a trial CTS (clock tree synthesis) and routing without modifying the 

placed design. Finally the floor-plan is dumped out with only the macro cells and 

power structures. The floorplans used are shown in Figure 5.4 and Figure 5.5.  

 

The difference from the GRF scripts in this section was that the congestion 

driven option was chosen for the virtual flat placement (VFP) in JupiterXT. Initially 

while iterating with the explore mode that provides multiple floorplan candidates, 

congestion driven would always give the best results in our case compared with 

the other options. Additionally Power Network Synthesis which can estimate 

power requirement and build the power rings and stripes was not used.  

 

The power rings for macros were built according to the floorplan and the 

commands to build them were added into the scripts. The approach for 

floorplanning involved decreasing the utilization value from 95% until placement 

could be achieved. Using information from a solvnet article to improve routing 

performance in Astro, the Global Route Cell overflow information after placement 

which helps analyze congestion was used to decide which floorplan can be used 

to proceed further. The above information is available in the place and route 

summary created by the GRF in the JXT/report directory after incremental 

placement namely incremental_place.sum. 
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Figure 5.4: Floorplan for the Physical Compiler Tool Flow 

 

 

Figure 5.5: Floorplan for the Astro Only Tool Flow 
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5.4.4 Implementation using Physical Compiler and Astro 

 

1. Create directories for Physical Compiler using the command    

   grf_utilities/grf_setup pc astro 

2. Copy the given 2.physopt_pc.tcl into the cmd.user directory of the PC 

directory. The cmd.user directory is first checked for any customized user scripts 

before scripts are read from the default cmd directory. 

3. Copy the project_setup file into the GRF2.1.release.without_examples 

directory of Physical Compiler.  

4. Copy the netlist file leon.v from the design compiler directory and the provided 

leon.sdc constraints file for Physical Compiler into the PC/input_data.                                         

5. Running the gmake default command in the PC directory will perform the 

following steps: 

a) Create a Milkyway Library for the design after reading the floorplan as shown 

in Figure 5.6. 

b) Perform Physical Synthesis and optimization which involves Automatic High 

Fan-out Synthesis to rebuild the buffer trees. The placed design is shown in 

Figure 5.7. 

c) It can perform placement based scan optimization and Power Optimization as 

part of this flow by setting the following variables namely 

ENABLE_POWER_OPT and ENABLE_SCAN_FLOW to true. However we do 

not do either as part of this SOC flow. However the scan flow was used to create 

a test-ready design for another internal tutorial. 

d) Writes out the verilog netlist leon.v as the data mode is set to ASCII, and the 

placed design leon.def in the PC/output_data directory 
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Figure 5.6: Input for Physical Compiler 

 

 

Figure 5.7: Output from Physical Compiler 
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6. In the top directory, namely GRF2.1.release.without_examples, run the 

following command to propagate the input data for astro: gp astro  

7. Copy the provided design constraints file for astro leon.sdc into 

astro/input_data. 

8. Copy 6.route_design_astro.scheme and 7.post_route_astro.scheme into the 

astro/cmd.user directory 

9. Running the next command in the astro directory will perform the following 

functions: gmake write_verilog_astro 

a) Creates the Milkyway view for the design as shown in Figure 5.8 and a 

.scheme file with the tool variables  

b) Repairs the hierarchy and avoids placement as it has been done in Physical 

Compiler 

c) Performs Clock Tree Synthesis to achieve minimum skew and then optimizes 

to correct hold time violations and meet setup timing. The distribution of the clock 

before and after clock tree synthesis as shown with the clock browser is shown in 

Figure 5.9 and Figure 5.10. 

d) Once Post-CTS optimization is done, routing is performed in the following 

sequence. First the clock nets are routed followed by global routing during which 

nets are assigned to metal layers and global routing cells. This is followed by 

track assignment during which metal traces are laid down. After this detail routing 

is done to fix the DRC violations by working on fixed size segments called 

Sboxes and then Search and Repair fixes the remaining DRC violations by 

varying the size of the S-box [32]. Finally post route optimization and Engineering 

Change Order Routing is performed. The routed design is shown in Figure 5.11.  

e) Writes out the verilog netlist leon.v which we use for post-layout simulation. 

10. Use the command “load sdc-out.cmd” after opening Astro to dump out the 

SDF file. 
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Figure 5.8: Input for Astro 
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Figure 5.9: Pre-CTS Clock Distribution 
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Figure 5.10: Post-CTS Clock Distribution 
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Figure 5.11: Layout after Routing in Astro 
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5.4.5 Implementation using Astro 

 

1. Create directories for Astro using grf_utilities/grf_setup astro 

2. Copy the provided files astro_setup.scheme, 6.route_design_astro.scheme 

and 7.post_route_astro.scheme into the astro/cmd.user directory 

3. Copy the project_setup file into the GRF2.1.release.without_examples 

directory of Astro.  

4. Copy the netlist file leon.v from the design compiler directory and the provided 

leon.sdc constraints file for Astro into the astro/input_data.                                         

5. Running the gmake write_verilog_astro command in the ASTRO directory will 

perform the following steps: 

a) Create a Milkyway View for the design after reading the floorplan and repairs 

hierarchy information.  

b) Perform placement and optimization by initially removing the WLM effects by 

setting the RC to zero and again performing logic synthesis and removing buffers 

along positive setup paths. High fan-out buffer trees are built on the basis of a 

quick placement. It then performs placement on the basis of Virtual routing and 

does optimization to meet setup timing and also introduces buffers to meet the 

transition and capacitance constraints [32].The design after placement in Astro is 

shown in Figure 5.12. 

c) Performs Clock tree synthesis followed by routing as in the earlier design flow. 

d) The routed design is shown in Figure 5.13. 

e) Finally the verilog netlist is written out and again the SDF is dumped out using 

the sdc-out.cmd.  

 

In case of both the design flows a Design Rule Check (DRC) was performed, the 

rules used are a subset of the Hercules runset. The Error browser used to check 

for any errors in the layout implemented using Astro is shown in Figure 5.14. 
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Figure 5.12: Placed Design in Astro Only Flow 
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Figure 5.13: Routed Design in Astro Only Flow 
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Figure 5.14: Error Browser to Check for DRC Errors 
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5.4.6 Post Layout Simulation 

 

Once the SDF files were dumped from Astro, they were sent through the Artisan 

perl script. Finally the SDF was sent through another perl script that removes the 

RECOVERY timing check in the SDF as the timing check was not found in the 

verilog simulation files. Back annotation was successful for both maximum and 

minimum operating conditions. The post layout simulation is shown in Figure 

5.15. 

 

 

 

Figure 5.15: Post Layout Simulation with SDF Back Annotation 
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Chapter 6: Conclusion 

 

6.1 Results 

 

As the physical design flow was being setup, an attempt was made to compare 

the two designs in terms of delay and area. The design could be implemented for 

a frequency of 100 MHz in both of the flows. Hence the only remaining parameter 

left was area. Also this meant there were no iterations between synthesis and 

physical implementation in our case. While the design implemented using 

physical synthesis used a total core area of ~2.02 mm2, the second flow required 

a minimum area of ~2.2 mm2. Hence the physical synthesis flow was 

implemented using 8% less core area than for the second flow. This also meant 

that the design implementation time was less for the physical synthesis flow as 

the second flow required a greater number of physical implementation iterations. 

 

The total macro cell area comprised ~0.73 mm2 for the four macros used. 

Additionally the physical synthesis flow with 34,613 standard cell instances used 

372,506 transistors and required an area of ~0.82 mm2 compared to the 

traditional flow which used 34,419 standard cell instances with   373,745 

transistors and an area of ~0.83 mm2.  However, the total interconnect length for 

the physical synthesis flow was 2.7 mm compared to 2.47 mm for an increase of 

about 10%.   

 

Hence the physical synthesis flow resulted in a design with reduced area and 

transistor count along with lesser iterations. 
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6.2 Conclusion 

 

Thus the following tasks were completed as part of this thesis. 

 

• Setup the physical synthesis flow using the Galaxy Reference Flow scripts 

from Synopsys. 

• Created the Milkyway library for the IBM7RF technology. 

• Implemented the physical and logic synthesis flows for a small design and 

for a system-on-chip. 

• Compared the designs generated by the two flows. 

• Prepared a tutorial to help universities setup and use the physical 

synthesis flow.     

  

 

6.3 Future Work 

 

It would be interesting to use the design implementation for much smaller feature 

sizes such as 90-nm and in a hierarchical approach. This would permit 

optimization of each block before integration and result in a more thorough flow 

comparison. Power optimization could also be considered as well as addressing 

other effects such as electromigration, IR drop and crosstalk.  Primetime could 

be integrated with the above flow to perform static timing analysis.   
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