
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Masters Theses Graduate School

12-2006

Using Physical Compilation to Implement a
System on Chip Platform
Pradeep M. Chimakurthy
University of Tennessee - Knoxville

This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information,
please contact trace@utk.edu.

Recommended Citation
Chimakurthy, Pradeep M., "Using Physical Compilation to Implement a System on Chip Platform. " Master's Thesis, University of
Tennessee, 2006.
https://trace.tennessee.edu/utk_gradthes/1525

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Pradeep M. Chimakurthy entitled "Using Physical
Compilation to Implement a System on Chip Platform." I have examined the final electronic copy of this
thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements
for the degree of Master of Science, with a major in Electrical Engineering.

Donald Bouldin, Major Professor

We have read this thesis and recommend its acceptance:

Gregory Peterson, Itamar Elhanany

Accepted for the Council:
Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Pradeep M Chimakurthy entitled
“Using Physical Compilation to Implement a System on Chip Platform.” I have
examined the final electronic copy of this thesis for form and content and
recommend that it be accepted in partial fulfillment of the requirement for the
degree of Master of Science, with a major in Electrical Engineering.

 Donald Bouldin____
 Major Professor

We have read this thesis
and recommend its acceptance:

____Gregory Peterson______

____Itamar Elhanany_______

Accepted for the Council:
 _____Linda Painter______
Interim Dean of Graduate Studies

(Original signatures are on file with official student records.)

USING PHYSICAL COMPILATION TO

IMPLEMENT A SYSTEM ON CHIP PLATFORM

A Thesis

Presented for the

Master of Science Degree

The University of Tennessee, Knoxville

PRADEEP M CHIMAKURTHY

DECEMBER 2006

 ii

Acknowledgement

First, I would like to thank my advisor Dr. Donald Bouldin for his advice, constant

encouragement and quick response to all my queries. I am also thankful to him

for giving me access to a wide range of resources from a workshop to support

sessions and the flow scripts, all of which were very vital to this work. I would

also like to thank Dr. Gregory Peterson and Dr. Itamar Elhanany for agreeing to

serve on my committee.

I am extremely grateful to Dr. Jay Whelan and Ms. Julia Gouffon of the Affymetrix

Core Facility for partially supporting my education. Thanks, Julia for your

constant advice and help.

I would like to thank Tushti Marwah and Wei Jiang for sharing components of

their work on the SoC platform with me. I would also like to thank Synopsys, Inc.

and our Synopsys university representative Ms. Troy Wood for giving me access

to a workshop and the Galaxy Reference Flow scripts.

I would like to thank all my wonderful friends for their constant encouragement

and support. The wonderful dinners, enjoyable discussions and captivating drives

will always evoke pleasant memories. Each of you have thought me something

new.

Finally, I would like to thanks my parents Sri Chimakurthy Sri Krishna Mohan

Rao, Srimati Chimakurthy Vijayalakshmi and brother Prasanth without whom I

would have achieved nothing. This thesis is dedicated to them.

 iii

Abstract

The goal of this thesis was to setup a complete design flow involving physical

synthesis. The design chosen for this purpose was a system-on-chip (SoC)

platform developed at the University of Tennessee. It involves a Leon Processor

with a minimal cache configuration, an AMBA on-chip bus and an Advanced

Encryption Standard module which performs decryption.

 As transistor size has entered the deep submicron level, iterations involved in

the design cycle have increased due to the domination of interconnect delays

over cell delays. Traditionally, interconnect delay has been estimated through the

use of wire-load models. However, since there is no physical placement

information, the delay estimation may be ineffective and result in increased

iterations. Hence, placement-based synthesis has recently been introduced to

provide better interconnect delay estimation. The tool used in this thesis to

implement the system-on-chip design using physical synthesis is Synopsys

Physical Compiler. The flow has been setup through the use of the Galaxy

Reference Flow scripts obtained from Synopsys.

As part of the thesis, an analysis of the differences between a physically

synthesized design and a logically synthesized one in terms of area and delay is

presented.

 iv

TABLE OF CONTENTS

Chapter 1: Overview ... 1

1.1 Introduction.. 1

1.2 Project Motivation .. 2

1.3 Thesis Goals.. 3

1.4 Thesis Outline.. 4

Chapter 2: Background... 5

2.1 Traditional and Physical Design Cycles 5

2.2 Previous Work ... 6

Chapter 3: System on Chip Platform... 11

3.1 Leon Processor.. 11

3.2 Advanced Microprocessor Bus Architecture......................... 14

 3.2.1 Advanced High-performance Bus (AHB)........................ 15

 3.2.2 Advanced Peripheral Bus (APB) 16

 3.2.3 Bus Operation on Interfacing APB and AHB 17

3.3 Advanced Encryption Standard Block 17

3.4 Artisan RAM... 18

3.5 LEON/ERC32 GNU Cross- Compiler System (LECCS) 19

3.6 Volunteer SoC Integration.. 19

Chapter 4: Design Flow Components ... 22

4.1 Galaxy Reference Flow.. 22

4.2 Design Compiler .. 23

4.3 JupiterXT ... 24

4.4 Physical Compiler .. 25

4.5 Astro .. 26

 v

Chapter 5: Implementation.. 28

5.1 Milkyway Library Creation.. 28

5.2 Artisan RAM generation... 29

5.3 Leon Processor Configuration.. 30

5.4 Design Flow... 31

 5.4.1 Synthesis ... 32

 5.4.2 Physical Implementation .. 33

 5.4.3 Floorplanning and Macro Placement using JupiterXT 34

 5.4.4 Implementation using Physical Compiler and Astro 37

 5.4.5 Implementation using Astro.. 44

 5.4.6 Post Layout Simulation .. 48

Chapter 6: Conclusion .. 49

6.1 Results... 49

6.2 Conclusion... 50

6.3 Future Work... 50

List of References... 51

Vita ... 55

 vi

LIST OF TABLES

Table 2.1: Comparison between PDS and Placement Approach .. 8

Table 3.1: Selection of RAM Size ... 13

Table 3.2: AHB Address Allocation ... 21

Table 5.1: Artisan RAM Generator Parameters........................... 30

 vii

LIST OF FIGURES

Figure 1.1: Process Size and Normalized Delay Contributions ... 3

Figure 2.1: Slack and Area Comparison 10

Figure 3.1: Leon 2-1.0.30-xst Processor Block Diagram........... 12

Figure 3.2: Typical AMBA System .. 14

Figure 3.3: AHB Bus Cycle with Wait States............................. 15

Figure 3.4: Dual Port SRAM Read Cycle 18

Figure 3.5: Leon Processor Read Cycle 19

Figure 3.6: Analogy Between gcc and LECCS.......................... 20

Figure 3.7: SOC platform used for Physical Compilation 21

Figure 5.1: Design Flow.. 31

Figure 5.2: Post-Synthesis SDF Back Annotation 32

Figure 5.3: Post-Synthesis Simulation 33

Figure 5.4: Floorplan for the Physical Compiler Tool Flow 36

Figure 5.5: Floorplan for the Astro Only Tool Flow.................... 36

Figure 5.6: Input for Physical Compiler 38

Figure 5.7: Output from Physical Compiler 38

Figure 5.8: Input for Astro ... 40

Figure 5.9: Pre-CTS Clock Distribution 41

Figure 5.10: Post-CTS Clock Distribution.................................... 42

Figure 5.11: Layout after Routing in Astro................................... 43

Figure 5.12: Placed Design in Astro Only Flow........................... 45

Figure 5.13: Routed Design in Astro Only Flow 46

Figure 5.14: Error Browser to Check for DRC Errors 47

Figure 5.15: Post Layout Simulation with SDF Back Annotation . 48

 1

Chapter 1: Overview

1.1 Introduction

A fundamental observation in integrated electronics is Moore’s Law which

predicted that the components per chip or complexity would approximately

double every two years resulting in reduced cost per function and dramatic

improvement of system performance [1].

Integrated circuits have gone from having a few transistors known as Small Scale

Integration (SSI) to hundreds of thousands of transistors and beyond known as

Very Large Scale Integration (VLSI) [2]. Integrated circuits are used to build a

huge variety of applications ranging from high performance computers to low-

power handheld devices.

As designer productivity began to lag behind the available chip capacity, reusing

components from earlier designs and integrating multiple components together

on a single chip became advantageous. This approach was helpful in handling

the increased chip complexity by reducing the design cycle time which translated

into a reduced time to market. However, initially the components of SoCs did not

have standard interfaces or characterization. This led to the development of

intellectual property (IP) cores which could be reused. These cores are

extensively simulated and characterized resulting in a reduction of the time

required to use them compared to designing them from scratch.

A typical SoC architecture consists of a Central Processing Unit (CPU),

Input/Output (I/O) interfaces, memory and peripherals along with a bus to enable

communication among them [3]. A combination of this architecture along with a

set of IP blocks is called a platform. Thus, a designer can easily derive a design

 2

by choosing a set of components from the platform or setting parameters of the

libraries’ reconfigurable components [4].

The numbers of transistors on a chip have increased due to a reduction in

transistor size. This reduced size also has translated to an increase in the

switching speeds because of lower threshold voltages. But once the minimum

feature size is less than 0.35 µm (also referred to as a deep submicron process),

implementation becomes an even greater challenge. Various effects are

encountered including signal coupling between adjacent metal lines or crosstalk

between metal layers, increased interconnect delay and lower operating voltage

to limit power dissipation which results in higher leakage currents[5].

1.2 Project Motivation

The process of converting a series of system specifications into a layout is called

the design cycle. The traditional design cycle involved separate domains of

logical and physical design. Initially, gate delays were a dominant portion of the

total delay and hence the estimation of interconnect through statistical wire-load

models was fine [5]. However, as we enter the deep submicron realm,

interconnect becomes the dominating factor in the total delay as evidenced in

Figure 1.1 [5].

Additionally, it has been shown that a wire-load model without any coarse

placement information should have significant error. It was also shown that as

the transistor size is reduced, the error in wire-load models impacts the stage

delays to a greater extent. The major problem was shown to be weak drivers on

long interconnects. Hence, placement data can help resolve this error in the

interconnect estimation to an acceptable level [6].

 3

Figure 1.1: Process Size and Normalized Delay Contributions

In case of improper interconnect estimation, multiple iterations between the

logical and physical domains will be required and achieving timing closure

becomes harder. This in turn translates into an increase in the time to market. It

has been estimated that a one-month increase in the time to market can result in

a loss of ten percent of the potential revenue [7]
. Hence, it becomes very

important to achieve timing closure quickly.

Thus the use of physical synthesis, which is a combination of synthesis with

placement, should result in a better interconnect estimation as physical

information about the cells is known. This will allow appropriate drive strength

selection for a particular cell. Hence, it should result in reduced design iterations.

1.3 Thesis Goals

The research for this thesis involved implementing a baseline SoC platform

through both logic synthesis and physical synthesis. The baseline SoC platform

developed as part of previous theses work is modified to include only the Leon

processor and an Advanced Encryption Standard (AES) Block. The Galaxy

 4

Reference Flow (GRF) scripts obtained from Synopsys were customized to

implement the design flows.

The design targeted the IBM7RF 180-nm process and hence the required

Milkyway libraries had to be created and integrated into the Galaxy Reference

Flow. Once both the logic and physical synthesis flows were implemented, a

comparison of the two designs in terms of slack and area were determined.

Finally a tutorial was prepared about using Synopsys tools in both the design

flows.

1.4 Thesis Outline

In this chapter a brief introduction about the relevance and necessity of physical

synthesis is presented. Chapter Two is a review of the literature that shows the

advantages and design improvements when synthesis and placement are

combined. In Chapter Three, the Volunteer SoC platform and its components

are discussed. In Chapter Four, the features of the Synopsys tools used to

implement the design flow are presented. Chapter Five has the implementation

details. Finally Chapter 6 concludes with the results and future goals.

 5

Chapter 2: Background

2.1 Traditional and Physical Design Cycles

A hardware description language like VHDL (Very High-Speed Integrated Circuit

Hardware Description Language) or Verilog may be used to describe a design

from its specifications. After verifying its functional operation through simulation,

the design is mapped into a series of gates and optimized based on its

technology library resulting in a gate-level net-list. However, the interconnect

delays are unknown and hence are estimated through the use of statistical wire-

load models which are based on the fan-out of each net. This conversion of the

design into a gate-level net-list is called logic synthesis.

Following logic synthesis, the design is floorplanned to estimate positions of the

various blocks of the chip and its power structures. This stage is useful to fix the

positions of macros used in the design and to decide regions where no wires or

cells should be placed so as to avoid high congestion. Placement, which is the

next step, involves allocation of physical locations to the standard cells. This is

followed by clock distribution and the building of clock trees in the Clock Tree

Synthesis step. The next step involves actually laying down the metal

interconnect to connect the cells and is called routing. Finally, the parasitics of

the circuit are extracted and back-annotated to the routed net-list to verify design

operation at the required frequency. In case of a hierarchical design, each block

is separately taken through from logic synthesis to routing and finally all these

blocks are interconnected at the top level.

Unfortunately, once the entire design cycle is completed, there is an increased

chance that the design will not meet its timing constraints after routing. Hence,

the implemented design will have to be extracted and these values back-

 6

annotated to replace the wire-load models. But once the new net-list is taken

through physical design, the interconnect values between the gates change and

hence again an error may occur and multiple iterations may be required to

achieve timing sign-off.

The major difference in the physical design cycle is the introduction of physical

synthesis which is a combination of placement and synthesis. Once synthesis

using wire-load models is completed, the design is floorplanned and placed. But

as part of the placement, the physical synthesis tool will optimize the design

based on the physical location of the cells. Hence the design cycle is more likely

to require fewer iterations.

2.2 Previous Work

The concept of physical synthesis has been around for several years. This

section summarizes some of the results motivating the use of physical synthesis.

The summary of an early paper that discussed a Placement-Driven Synthesis

(PDS) approach is described below [8]. The wire capacitance models are used as

part of synthesis tools to estimate interconnect based on the fan-out. These

estimates differ before and after physical design. Thus, actual critical length

paths may be longer than expected leading to a negative slack and multiple

iterations between synthesis and placement. As part of their analysis, it was

shown that the estimated capacitance for a particular net cannot be precise as

there is a wide spread of actual capacitance.

Hence, the paper [8] suggests an approach where synthesis can run every time

placement is done but constrained so that it can change only the power levels of

the circuits based on the more accurate net capacitance available. At the time

the authors wrote this paper, wire and gate delays were close to each other and

 7

improvements were noted when placement-driven synthesis was used. It should

certainly be appropriate today when interconnect delays dominate gate delays [5].

Their results, shown in the Table 2.1, compare area and slack amongst other

factors between placement-driven synthesis and traditional synthesis and

placement approaches [8]. The authors noted that the two-fold increase in CPU

time was an acceptable tradeoff to improve the timing convergence of

microprocessors.

A later paper [9] discussed the use of placement transformations on partitions of a

mainframe processor with the goal of timing optimization. In the Transformational

Placement and Synthesis (TPS) approach, coarse optimization is done during

synthesis followed by detailed and aggressive optimization during placement.

The transformations included scan chain optimization to reduce the scan chain

length by connecting the scan chain based on the physical locations of the scan

cells. The results were then compared with a Synthesis-Placement and Re-

synthesis (SPR) approach. Their results showed an improvement in slack and

area. The other major observation in their paper was that timing improvement

and closure was achieved through the use of a single cycle for TPS relative to

multiple iterations for SPR.

A more recent comparison was done for a design fabricated in a 180-nm process

[10]. The physical synthesis methodology and additional optimizations used to

implement high-performance microprocessors are discussed. The chip was

divided into hierarchical blocks and after implementing each block, the noise and

timing information was passed up the hierarchy.

Initially wire-load models were used and once the blocks were stable, physical

synthesis was done to obtain optimal placement along with timing, area and

power optimization.

 8

Table 2.1: Comparison between PDS and Placement Approach

 Approach Area

(Gate

Size)

Worst

Slack(ps)

Electrical

Violations

Normalized

Wire length

w.r.t STSP

CPU

time

(sec)

Design 1 PDS

STSP

7078

7061

-437

-501

2

3

1.005

1.000

521

306

Design 2 PDS

STSP

21768

21653

-1154

-2528

32

190

1.01

1.00

2077

1092

Design 3 PDS

STSP

33051

32699

-1720

-3372

461

644

0.995

1.00

2695

1470

Design 4 PDS

STSP

30479

30443

-895

-1339

394

493

0.999

1.000

1488

885

Design 5 PDS

STSP

34957

35755

-1882

-2889

225

436

1.009

1.000

2619

1486

Design 6 PDS

STSP

3147

3145

-226

-274

4

3

1.017

1.00

177

85

Design 7 PDS

STSP

11007

11068

-484

-513

18

48

0.974

1.00

688

358

Design 8 PDS

STSP

29947

29525

-1090

-3119

272

535

1.007

1.00

2796

1340

 9

Low Vt gates were used to achieve higher performance on timing critical paths.

It is mentioned that the use of these optimizations can only be determined after

placement and hence could be used during physical synthesis when timing and

load estimates are precise.

Better interconnect estimation as part of physical synthesis is considered a result

of the placement information. Hence, the difference between a Steiner model

used to measure wiring distances and the final routing of nets has been

analyzed. It is shown that by removing the shortest 10-20% of the nets, large

error percentages disappear. The errors due to these short nets do not affect the

delay much. Hence, the Steiner length approximation is precise enough to be

used as part of the physical synthesis phase [10].

The authors also note that the clock consumes 70% of the power in the

processor due to the last clock driver stages which drive the latches but may

have been placed far away from them. This results in larger wire length and

hence increased capacitance leading to greater power consumption. After global

placement, an initial clock network is created by the authors’ physical synthesis

algorithm and then by moving the latches closer to the driver stages, power

optimization can be done. When this clock optimization is combined with

physical synthesis, the authors note that the logic can be optimized to account for

the placement changes made by the insertion of the clock buffers [10].

Another optimization typically used as part of physical synthesis is circuit

relocation wherein timing critical circuits are moved so that the net capacitance to

be driven is reduced and the buffer insertion on long wires is avoided by

redistributing distances between logic gates. Another frequently used

optimization is the remapping of the technology-mapped gates. Yet another

technique is to rebuild the buffer trees as part of physical synthesis since buffer

 10

insertion prior to placement can cause high congestion and degraded

performance due to the poor topology of the trees.

Figure 2.1 from their paper [10] is used to compare the slack and area results on

using physical synthesis and when alternating between placement and synthesis.

They conclude that a majority of the points show both slack and area

improvements and that sometimes allowing a small area penalty resulted in

significant slack improvement.

Figure 2.1: Slack and Area Comparison

 11

Chapter 3: System on Chip Platform

The Volunteer SoC Platform was developed as part of a graduate course at the

University of Tennessee, Knoxville. Initially, IP cores were obtained or generated

and verified individually. They were then modified to have standard interfaces so

that they could be integrated with a Leon processor model [11]. Some modules

were then integrated with the processor through its AMBA bus to create a

platform as part of a previous thesis [12]. This platform consisted of an open core

Advanced Encryption Standard (AES) block and Fast Fourier Transform and

Finite Impulse Response cores developed by other students. As part of a later

thesis [13], a baseline configuration was created using minimal cache and the

open core AES block replaced with one that was developed in-house as part of a

cryptographic project [14]. This baseline platform was used in this thesis to test the

physical synthesis flow.

3.1 Leon Processor

Leon is a SPARC V8 processor and its VHDL model can be obtained online for

free [11]. Its features include separate instruction and data caches, a hardware

multiplier and divider, interrupt controller, two UARTs (Universal Asynchronous

Receiver Transmitters), two timers, a memory controller and Ethernet and PCI

(Peripheral Control Interface) interfaces. It consists of two different buses from

the Advanced Microcontroller Bus Architecture (AMBA), namely the Advanced

High-performance Bus (AHB) and Advanced Peripheral Bus (APB) through which

new modules can be added to the processor. The model has been synthesized

and simulated using various tools for various technologies. The block diagram of

the Leon processor is shown in Figure 3.1 [11].

 12

Figure 3.1: Leon 2-1.0.30-xst Processor Block Diagram

The Leon model can be configured using a graphic configuration tool which

creates a device.vhd file in the Leon folder when the ‘make dep’ command is run.

This action combined with the config.vhd file setups the Leon for a particular

configuration. To obtain a baseline platform, a minimal cache size was chosen.

Also both the Ethernet and PCI interfaces were not enabled. Both the instruction

and data caches were configured to be direct-mapped having 8-bit line sizes.

We also needed to generate a cache tag RAM since each line in the cache has a

tag associated with it. Synchronous single-port RAM cells were used to

implement both the data and tag caches. The technology-mapping file to be used

for the caches and I/O with the IBM7RF technology was created as part of an

earlier thesis [15]. Table 3.1 provided in the Leon User Manual was used to

determine the cache sizes [11].

 13

Table 3.1: Selection of RAM Size

Cache Set Size Words / Line Tag Ram Data Ram

1Kbyte 8 32x30 256x32

1Kbyte 4 64x26 256x32

2Kbyte 8 64x29 512x32

2Kbyte 4 128x25 512x32

4Kbyte 8 128x28 1024x32

4Kbyte 4 256x24 1024x32

8Kbyte 8 256x27 2048x32

8Kbyte 4 512x23 2048x32

16Kbyte 8 512x26 4096x32

16Kbyte 4 1024x22 4096x32

For the Integer Unit, the default eight register windows were chosen. A register

is used to store the temporary values during the execution of a program. A group

of eight registers is called a window. Register windows allow multiple parts of the

program to access its own group of registers during procedure calls. Hence, the

program can have a chain of eight procedure calls deep without saving the

register contents to the memory. In the case of the SPARC architecture, any part

of the program can access 32 registers (8 global registers + 3 register windows).

A register window shifts by 16 registers for each procedure call since 8 registers

that are output in the previous level act as input registers for the current level [16].

Hence, the total number of registers required for the 8 register windows is 8 +

24*1+ 16*6 +8*1 = 136. Since the Integer Unit file requires one 32-bit write port

and two 32-bit read ports, we use two parallel dual-port RAM cells each with a

size of 136 x 32. Artisan RAM generators were used to generate both the single-

port and dual-port memories.

 14

3.2 Advanced Microprocessor Bus Architecture [17, 18]

Advanced Microprocessor Bus Architecture (AMBA) is the on-chip bus protocol

from ARM. Other bus protocols available are Core Connect from IBM and the

Wishbone bus from Silicore. AMBA consists of the following:

a) Advanced High-performance Bus (AHB) - It is a high performance bus used to

connect processors, on-chip memory and memory controllers.

b) Advanced System Bus (ASB) - It is an alternative system bus used when the

high performance features of AHB are not required. It does not have the burst

transfer and split transaction capabilities of the AHB. Burst transfer allows one or

more consistent width data transactions to an incremental region of address

space. Split transactions improve bus utilization by ensuring that the arbiter will

allow other masters to access the bus until the slave can complete a transfer.

c) Advanced Peripheral Bus (APB) - It is a low power and low performance bus

used for peripherals. The APB interface has reduced complexity.

Figure 3.2 illustrates a typical AMBA bus system.

Figure3.2: Typical AMBA System [17]

 15

One of the major specifications noted was that AMBA was derived to be

technology-independent so that it could be migrated across various processes. In

the case of the Leon processor model, the AHB and APB buses have been used.

Both the AHB and APB bus cycles are defined from one rising edge to the next

rising edge. The high bandwidth AHB and low bandwidth APB are linked via a

bridge which connects the master to the peripheral bus slaves.

3.2.1 Advanced High-performance Bus (AHB)

The AHB can have multiple bus masters and usually the processor is the master

on this bus. The APB bridge and internal memories are usually slaves on the

AHB. It has an arbiter which ensures that there is only one bus master at any

time and routes the address and control signals to all the slaves. A centralized

decoder controls the data reading and also selects appropriate signals for the

slave involved in the transfer. The bus has separate read (HRDATA) and write

(HWDATA) buses. The HWRITE signal is an active high signal used to indicate

the direction of data transfer. The bus master can also lock the bus with the

arbiter for a certain number of transfers. Figure 3.3 can be used to understand

the AHB bus cycle.

Figure 3.3: AHB Bus Cycle with Wait States [17]

 16

Initially, a master requests the bus and the arbiter decides which master is

assigned control of the bus. Normally a master can complete all the transfers

using a single burst but the arbiter has the ability to break the burst. The transfer

consists of a single cycle which cannot be extended and during this time, the

address and control signals are sent. This is followed by one or more data cycles

which can be extended using the HREADY signal. A high HREADY signal

indicates data transfer can be completed. When the HREADY signal is driven

low by a slave, wait states are introduced and the slaves can sample or read

data for extra time. While the bus master holds the data stable throughout the

extended cycle for a write operation, the read data is available just when the

transfer is about to complete. Pipelining is implemented as the address phase of

the current transfer occurs during the data transfer of the previous phase.

3.2.2 Advanced Peripheral Bus (APB)

The bridge is the only master on the APB and all other peripherals on it are

slaves. It converts data from the AHB bus into a suitable format for the APB

slaves and also generates the corresponding select signals for the slaves

(PSELx) based on the address. Its operation involves a Setup state in which it

remains for one cycle, following which it enters the Enable state which also lasts

a single cycle. In the Setup state, the PWRITE signal is made high or low

depending on the direction of transfer and the address is put onto PADDR. It has

a read (PRDATA) data bus which is driven when the PWRITE signal is low while

the write (PWDATA) data bus is driven when the PWRITE signal is high. The

PENABLE signal is asserted to indicate that the Enable state is taking place. The

address, data and control signals remain valid throughout the Enable state. The

PENABLE will be unasserted to indicate the end of the state. The PSELx will also

be unasserted unless there is another transfer to be made.

 17

3.2.3 Bus Operation on Interfacing APB and AHB

When the AHB is interfaced to the APB, the address is sampled by the bridge

and broadcast along with selecting the appropriate peripheral. During the Setup

cycle, the HREADY will be asserted low. Following the Setup cycle, the

PENABLE is made high and the data peripheral must provide the read data

during this enable cycle which can be routed back onto the AHB so that the bus

master can sample it at the fourth clock edge after transfer was initiated.

For high frequency systems, the read data is registered by the bridge and

transmitted on the AHB for the bus master during the fourth clock cycle

introducing an extra wait state. In the case of a write operation, the bridge will

sample the address and data and hold them for the peripheral throughout the

write cycle. It is also noted that the bridge requires two address registers so that

it can sample the next address on the AHB while the current write transfer occurs

on the peripheral bus [17].

3.3 Advanced Encryption Standard Block

AES is an encryption standard adopted by the US government. It has a fixed

block size of 128 bits and can have a key size of 128, 192 or 256 bits. This block

had been generated in-house as part of a cryptographic project [14] and had been

simulated and verified using the Xilinx Virtex 1000E FPGA. This is the only user

IP block integrated as part of the SoC in this thesis. A key size of 128 bits has

been used and only decryption was performed with the encrypted text given as

an input.

.

 18

3.4 Artisan RAM

The required synchronous block RAMs for the design were generated using

Artisan RAM generators. We needed the single-port RAM generator for the

cache and tag RAMs and the dual-port RAM generator for the integer unit. For

the Artisan RAM, the Chip ENable pin (CEN) needs to be low and then based on

the Write Enable (WEN) pin, a read (high) or write (low) occurs. As part of a

previous thesis [12], it was found that these RAMs cannot be directly integrated

with the Leon processor. In the case of the RAM cycles, the memory address

should already be present before the rising clock edge. However, the Leon

processor loads the address and data at the rising edge of the clock resulting in a

cache failure. This is illustrated using Figure 3.4 and Figure 3.5 respectively. To

avoid this, a wrapper was created which allows the RAM to be interfaced with the

processor without failing.

Figure 3.4: Dual Port SRAM Read Cycle [19]

 19

Figure 3.5: Leon Processor Read Cycle [11]

3.5 LEON/ERC32 GNU Cross- Compiler System (LECCS)

LECCS is a free multi-platform cross-compilation system provided by Gaisler

Research. It is based on gcc and the Real-Time Executive for Multiprocessor

Systems kernel and allows compilation of C/C++ programs so that they can be

run on Leon [20]. The C program to be run is compiled and loaded into ram.dat

which is then read by the test bench. Figure 3.6 shows the analogy between gcc

and LECCS.

3.6 Volunteer SoC Integration [12, 13]

For the IP block to be easily integrated, it was decided that the blocks would

have a 32-bit data and address width. The registers would be initialized using a

reset signal and there would be a GO signal to inform the IP to start its operation

and it would issue a DONE signal once it was done.

 20

Figure 3.6: Analogy Between gcc and LECCS [12]

The IP block was then interfaced to the AMBA bus through another wrapper that

would allow it to be either an AHB master or an APB slave. The ambacomp.vhd

file was modified so that the IP block could be added as an AMBA component.

From Table 3.2 it can be seen that the slaves on the APB need to mapped in the

address range 0x80000000 - 0x8FFFFFFF which corresponds to the APB bridge.

Hence the apbmst.vhd file was modified to map the AES block into the address

range 0x80000300 - 0x800003FF. In the mcore.vhd file, the AES block was

added such that it has a priority index of 1 on the AHB. The default master on the

AHB is the processor with an index of 0. Hence, the AES was assigned a higher

priority than Leon on the AHB.

The final derivative configuration of the Volunteer SoC platform used for physical

compilation is shown in Figure 3.7. Thus the AES block is setup so that it

receives control signals over the Advanced Peripheral Bus and transfers its data

on the Advanced High-Performance Bus.

 21

Table3.2: AHB Address Allocation [11]

Address Range Size Mapping Module

0x00000000 - 0x1FFFFFFF 512M PROM Memory Controller

0x20000000 - 0x3FFFFFFF 512M Memory Bus I/O Memory Controller

0x40000000 - 0x7FFFFFFF 1G SRAM / SDRAM Memory Controller

0x80000000 - 0x8FFFFFFF 256M On-Chip Registers APB Bridge

0x90000000 - 0x9FFFFFFF 256M Debug Support Unit DSU

0xB0000000 - 0xB001FFFF 128M Ethernet registers Ethernet

Figure 3.7: SOC Platform Used for Physical Compilation

 22

Chapter 4: Design Flow Components

4.1 Galaxy Reference Flow

The Galaxy Reference Flow (GRF) is a reference design flow that allows a

Register Transfer Level (RTL) design to be taken through physical design using

an automated set of customizable scripts [21]. It can be used to implement the

best methodologies and harness the features of the below main tools.

1) Design Compiler for synthesis and DFT insertion using DFT Compiler

2) JupiterXT for generating multiple floor-plans, macro placement and power

planning

3) Physical Compiler for placement and optimization

4) Astro for Clock Tree Synthesis (CTS) and routing

5) IC-Compiler for placement, CTS and routing

The IC-Compiler tool can be used to replace the Physical Compiler and Astro

tools in the design flow. It also can be used to work with additional helper tools

such as Formality for formal verification, Prime Power for gate-level power

analysis, Star-RXCT for extraction and Prime Time for static timing analysis and

sign-off at various stages of the design flow. The GRF can be used in either the

full or stand-alone modes. The full mode consists of multiple tools including

helper tools while the stand-alone mode is used for working with a single tool as

a subset of the Galaxy flow. As part of this thesis, we used version 2.1 of the

GRF with version 2005-09 of the main tools. The GRF requires the Milkyway

database for the libraries, which can be used by all the tools and hence they

needed to be created prior to the first usage.

 23

4.2 Design Compiler

Design Compiler (DC) is a standard synthesis tool from Synopsys which is widely

used across the Application Specific Integrated Circuit (ASIC) industry. It is used

to convert the Hardware Description Language (HDL) code into an optimized

gate-level net-list. The HDL files in our case were read in using the Presto HDL

compiler which is the newer version and the only 64-bit implementation for the

HDL compiler.

The HDL code is first mapped into a technology-independent generic library

(GTECH) which consists of basic logic gates and flip-flops and the DesignWare

library which contains complex cells such as adders and comparators [22].The

net-list is then optimized to achieve minimum area and to comply with user-

defined constraints while mapping the logic gates to those defined in the

technology library. It has the ability to perform power optimization using clock

gating through the use of Power Compiler and Design for Test insertion using

DFT compiler.

The traditional way of estimating interconnect was through the use of statistical

wire-load models which could be used to apply a certain model based on the

area of the design block. Hence while writing the constraints for the tool they

were about 15-20% more stringent than the required implementation constraints.

This is followed by performing the physical implementation of the design and

then re-synthesizing the design using the back-annotated parasitics. This was

followed by using the physical database as an input while performing synthesis.

The latest Design Compiler Ultra uses topographical technology which it shares

with IC-Compiler as part of synthesis to build a virtual layout and avoids the use

of any wire-load models. This helps achieve a logic net-list that has a good

correlation in timing and area with a post-layout net-list. It has the ability to read

 24

in a floorplan or can use floorplan constraints given by the user. The ability to use

a virtual layout allows better scan chain reordering and helps reduce congestion.

DC-Ultra also has the capability to perform virtual clock-tree synthesis which

provides more accurate power estimation [23]. The physical library information is

provided in the Milkyway Database format.

4.3 JupiterXT

JupiterXT is a design planning tool from Synopsys that allows a fast exploration

of the design and can obtain a detailed and optimized floorplan for both flat and

hierarchical design styles [24]. It can apply its virtual flat placement algorithms to

gate-level net-lists to place macros and standard cells simultaneously. “It shares

its placement, routing and timing analysis engines with Physical Compiler and

Astro ensuring faster convergence in obtaining correct floorplans” [24]. As part of

its Virtual Flat Placement (VFP), we can use the explore mode which generates

multiple output views that can be analyzed prior to deciding the final location of

the macro placement. JupiterXT can also use In-Place Optimization to provide

an early assessment of whether timing can be met.

The Power Network Synthesis (PNS) capability can be used to estimate the

electromigration and voltage drop problems that can be encountered later in the

tool flow and avoid signal integrity issues. This can be used after the die size is

determined to formulate the power plan structure involving power rings and

straps so that the design meets the power budget requirement. However, power

pad information is crucial when running PNS [25].

The tool has an additional command search_die which can be used after the

initial floorplanning and virtual flat placement to search different die size

estimates based on the core/cell utilization and determine the minimal die size for

 25

a design net-list. If the design is easy to route, it reduces the die size else if the

design is not routable the core size is increased [24].

JupiterXT can also be used to perform clock planning and then estimate the

insertion delays and skew of clock nets. Finally it can perform prototype global

routing to estimate the wire-length and routing resource usage and check

whether the design is routable.

4.4 Physical Compiler

Physical Compiler is the physical synthesis tool from Synopsys which integrates

both placement and synthesis to achieve quicker convergence, thus reducing the

design cycle time as the iterations between synthesis and placement are

reduced. It extends synthesis by performing location based optimization and

timing driven placement together [26]. It uses Steiner routing as part of its routing

estimation to ensure better timing information and it also reduces routing

congestion.

The parasitic RC (Resistance Capacitance) for interconnect is estimated through

the use of TLU+ models, generated using STAR-RCXT an extraction tool from

synopsys. TLU+ contains resistance and capacitance look up tables and model

ultra deep submicron process effects. The Distributed Physical Synthesis (DPS)

capability allows a large design to be automatically split into partitions and run

simultaneously on multiple systems to achieve quicker results.

A floorplan is required for the physical synthesis tool and can be read in using

either the Design Exchange Format (DEF) or the Physical Design Exchange

Format (PDEF). Alternatively, a basic floorplan can be created using its RTL

performance prototyping capability through its minimum physical constraints [27].

 26

Thus Physical Compiler can achieve a placed-gates design from either HDL code

or a gate-level netlist.

Initially as part of DFT insertion, scan chains are connected based on their

instance names which can cause the chain length to be longer than required and

result in congestion if two nearby instances are placed far apart. Physical

Compiler combined with DFT compiler has the ability to disconnect these before

placement and re-stitch the scan chains based on order or placement. This

reduces the scan chain length and also helps improve congestion.

It can perform power optimization as it is integrated with Power Compiler. This

can be done through the use of clock gating. Another approach is the use of

Multi-Threshold Voltage cells for reducing the leakage or static power. Thus low

threshold cells which have a large leakage current but switch quickly can be used

for timing critical parts while high threshold cells are used for the non critical

paths ensuring power savings. It can perform dynamic power optimization when

switching activity information is provided.

4.5 Astro

This physical implementation tool from Synopsys can perform placement and

optimization, Clock Tree Synthesis and Routing [28]. It can address affects such

as crosstalk, IR (current-resistance) drop and electromigration. Astro can

perform distributed routing and hence reduce implementation time. It can also

handle multiple voltage designs during implementation. It also uses TLU+

models to address ultra deep submicron process effects [29]. Astro also has the

capability to generate a floorplan and perform power planning.

The methodology recommended by Synopsys for Astro allows the user to setup

an automatic flow through the use of customizable scripts [28]. Astro can also

 27

perform placement-based scan chain re-ordering which reduces the scan chain

length and improves congestion. Astro can initially remove wire-load model

effects by downsizing gates and removing buffers along paths with positive slack

and then uses virtual Steiner routing to estimate timing and optimize the net-list.

During congestion analysis after placement, it can use global routing to check the

demand for wire tracks and achieve more accurate estimation.

After placement, Astro can perform power optimization by removing and sizing

the buffers. Astro then uses Clock Tree Synthesis (CTS) to build clock trees for

minimum skew and if required can use its useful skew optimization feature to

increase or decrease the size of clock buffers in the positive slack paths to meet

setup timing. It has a clock tree browser for viewing the clock tree structures [28].

After CTS, Astro can perform routing, followed by search and repair to fix design

rule violations, post-route optimization and finally Engineering Change Order

(ECO) routing. Once routing is completed it can also be used to optimize the

design by reducing the wire-length and the number of vias. Astro can perform

design rule checking for designs above 130-nm using a subset of the design

rules used by the Synopsys Hercules tool and uses advanced design rule

checking for designs below 90-nm.

 28

Chapter 5: Implementation

5.1 Milkyway Library Creation

The required details to setup a Milkyway Library have been obtained from the

Synopsys Milkyway Manual [30] and Synopsys Solvnet Articles [31]. The library

creation was done using Astro. The basic files for any technology are given

below:

a) Layout Exchange File (lef)

b) Technology File (tf)

c) lef_layer_tf_number_map.pl –script that maps the lef file and the tech file

to find the Milkyway layer number for a particular layer in the lef [31]. The

Milkyway layer number is usually defined in the tech file. This prints out

only the routing layer and poly numbers but we can associate other

members as the script prints them out from the tech file earlier.

The process for creating a Milkyway Library in brief using Astro is given

below:

a) Choose Data Prep in the Astro menu and then Create Library. In the form

enter library name, technology file name and remember to set the case

sensitive option.

b) Open the Library and in the scheme command enter read_lef. This is an

automated series of steps in the library creation. In this form enter the

name of the tech lef file (if the lef file contains technology information), cell

lef file (lef file name) and the layer mapping file obtained using the perl

script. The series of steps involved are Extracting blockage, Pin and via

(to create the abstracted view), setting P & R boundary and finally defining

wire tracks. If the wire tracks information is not present enter information

 29

about the metal layer offsets, metal directions (axgDefineWireTracks).

Finally one can check the wire track information (axgCheckWireTrack).

c) Attach the Logic Models (.db) files using read_lib command and then

selecting logical. Then browse and select the maximum, typical and

minimum logic model files to import.

Additional files used are the Tluplus models which can be generated using the

Interconnect Technology File (itf) which can be extracted from the .nxtgrd file

used as input for Star-RCXT. Additionally a mapping file between the tech file

and the itf file is to be created by the user for the below two headings:

conducting_layers

via_layers

Then using the grdgenxo script available with Star-RCXT one can generate the

models. To generate models for a particular corner instead of typical we just

need to include a one line format file with the –f option of grdgenxo which just

mentions the operating condition (ex: OPCOND MAX).The usage is given below:

grdgenxo -itf2TLUPlus -i <itf_file> [-f <format_file>] -o <TLUPlus_file>

Once the Tluplus models have been generated they can be attached to the

Milkyway library by including the mapping file. Thus the reference library created

as a Milkyway database can be used with the JupiterXT, Physical Compiler and

Astro tools.

5.2 Artisan RAM generation

As discussed in Chapter-3 we require synchronous RAMs to implement our

register file and caches. These are generated using the Dual and Single port

RAM generators from Artisan. The required parameters to generate them are

provided in Table 5.1.

 30

Table 5.1: Artisan RAM Generator Parameters [13]

Field IU Rams Cache Ram Tag Ram
Instance name dpram136x32_inst ram256x32_inst ram32x30_inst
Words 136 256 32
Bits 32 32 30
Frequency (MHz) 50 50 50
Multiplexer 4 8 4
Library Name DPRAM1 RAM3 RAM2

For each of the above block memories we generate the verilog model, tlf,

synopsys lib models which will then be converted into Synopsys db files and the

vclef footprint, used to create the physical Milkyway database.

5.3 Leon Processor Configuration

The processor can be configured using a graphical configuration tool based on

linux kernel tkconfig scripts [11]. As part of the configuration we use caches of

size 1KB with line size of 8 bits. We also do not use the multiplier and divider. As

we will target the IBM7RF 180-nm process, we have to modify the target

technology in the generated device.vhd file which contains the configuration. Also

we change the number of masters on the AHB bus to two while having the Leon

processor as the default master. The IBM process is added in the target.vhd file

as a target technology. Additionally a file that had been created previously [15]

and contains information about the RAMs and I/O required for the IBM7RF

process is used. Also, since we decided to implement the SoC without any pads

in this thesis, the leon.vhd was modified to remove the I/O pad instances and the

clock generator since we are not dividing the clock. Then the makefile required

for simulation was modified accordingly to use the appropriate Leon and AES

files.

 31

5.4 Design Flow

The SoC implementation was done using a flat flow instead of a hierarchical one.

Functional simulation was done using ModelSim at the pre-synthesis, post-

synthesis and post-layout stages. At the post-synthesis and post-layout stages,

SDF back-annotation was done. Design Compiler was used for synthesis,

Jupiter-XT for floor-planning, power planning and macro placement, Physical

Compiler for physical synthesis and finally Astro for placement, CTS and routing.

To compare the results with and without the presence of the physical synthesis

tool, two paths were taken in the design flow. In one path, placement combined

with synthesis (Physical Synthesis) is done using Physical Compiler. As part of

the second flow, placement involving net-list optimization was done in Astro. In

both of the flows, Clock Tree Synthesis and Routing are done in Astro. The

design flows implemented are shown in Figure 5.1.

Figure 5.1: Design Flow

 32

5.4.1 Synthesis

As part of synthesis, the operating condition was set for both the maximum and

minimum conditions. The synthesis script was customized from the one provided

with the Leon processor [11]. The target library for the design during synthesis

was the slow corner library. Initially the RAM VHDL interfaces were synthesized

using the RAM db files. Then the Leon processor was synthesized using these

interfaced Verilog files. We had to enable the use presto variable to read in the

VHDL. Initially, synthesis was attempted for a frequency of 111.11 MHz but

timing was not met. Hence, the design was targeted for a frequency of 100 MHz.

The Standard Delay Format (SDF) file and Verilog net-list were produced by

Design Compiler. This SDF was then modified using a perl script provided by

Artisan so that it could be simulated with the Artisan Verilog models. The back-

annotation and simulation are shown in Figure 5.2 and Figure 5.3.

Figure 5.2: Post-Synthesis SDF Back Annotation

 33

Figure 5.3: Post-Synthesis Simulation

5.4.2 Physical Implementation

From this stage we used the Galaxy Reference Flow scripts for the remaining

implementation. Hence the steps to setup the GRF scripts are listed below [21].

1. Untar the downloaded file [gtar xvfz G.tar]

2. Copy the modified setup.csh which points to the tool executables and licenses.

3. The .grf_reference_files/ASTRO/starxt/cmd directory is missing the file named

14.extract_handoff_sta_starxt.txt as the flow command language file in the

Astro.fcl file requires this to proceed with the setup. Copy it from the extracted

directory into the above location.

4. Source the setup.csh and then use the below command to setup the

directories for any or multiple modules:

 grf_utilities/grf_setup module

 34

5. Once the tools are setup using the grf_utilities/grf_setup command, one has to

select variables for the tool. A list and description for the variables associated

with each tool in the GRF can be obtained from the help using the command

gh –var variable name. The suggested workflow from the GRF User Guide is to

setup the initial variables (gep –i). After that I would use (gep –t all) to setup other

variables.

6. Use the project_setup file provided for each tool. If a variable is defined in the

project_setup file, it is used instead of the default value in project_setup.defaults

file.

7. Hence to implement the above design flow, four GRF directories will be

required. Two directories will be used for JupiterXT, the third for Physical

compiler and Astro while the last is just for Astro.

5.4.3 Floorplanning and Macro Placement using JupiterXT

1. Create the GRF directories for JupiterXT using grf_utilities/grf_setup jxt

2. Copy the 4.initial_place_jxt.scheme and 6.feasibility_jxt.scheme given into the

cmd.user directory of the JXT directory

3. Copy the project_setup file into the GRF2.1.release.without_examples

directory of Jupiter. The only difference between the two provided project_setup

is the values of height and width for the core. In case of the physical compiler

and astro flow, the core is defined as 1425µ x1425µ while for the astro flow it is

1485µ x 1485µ.

4. Copy the netlist file leon.v and the design constraints leon.sdc files from the

design compiler directory into the JXT/input_data.

 35

5. Running the gmake default command in the JXT directory will perform the

following steps:

a) Create a Milkyway Library for the design and a .scheme file with tool variables

b) Generate a floor-plan for the design

c) Perform an initial and incremental placement so that the design can be placed

and ensuring that the floorplan parameters are sufficient.

d) As part of the feasibility script, we will create the power structures and also

perform a trial CTS (clock tree synthesis) and routing without modifying the

placed design. Finally the floor-plan is dumped out with only the macro cells and

power structures. The floorplans used are shown in Figure 5.4 and Figure 5.5.

The difference from the GRF scripts in this section was that the congestion

driven option was chosen for the virtual flat placement (VFP) in JupiterXT. Initially

while iterating with the explore mode that provides multiple floorplan candidates,

congestion driven would always give the best results in our case compared with

the other options. Additionally Power Network Synthesis which can estimate

power requirement and build the power rings and stripes was not used.

The power rings for macros were built according to the floorplan and the

commands to build them were added into the scripts. The approach for

floorplanning involved decreasing the utilization value from 95% until placement

could be achieved. Using information from a solvnet article to improve routing

performance in Astro, the Global Route Cell overflow information after placement

which helps analyze congestion was used to decide which floorplan can be used

to proceed further. The above information is available in the place and route

summary created by the GRF in the JXT/report directory after incremental

placement namely incremental_place.sum.

 36

Figure 5.4: Floorplan for the Physical Compiler Tool Flow

Figure 5.5: Floorplan for the Astro Only Tool Flow

 37

5.4.4 Implementation using Physical Compiler and Astro

1. Create directories for Physical Compiler using the command

 grf_utilities/grf_setup pc astro

2. Copy the given 2.physopt_pc.tcl into the cmd.user directory of the PC

directory. The cmd.user directory is first checked for any customized user scripts

before scripts are read from the default cmd directory.

3. Copy the project_setup file into the GRF2.1.release.without_examples

directory of Physical Compiler.

4. Copy the netlist file leon.v from the design compiler directory and the provided

leon.sdc constraints file for Physical Compiler into the PC/input_data.

5. Running the gmake default command in the PC directory will perform the

following steps:

a) Create a Milkyway Library for the design after reading the floorplan as shown

in Figure 5.6.

b) Perform Physical Synthesis and optimization which involves Automatic High

Fan-out Synthesis to rebuild the buffer trees. The placed design is shown in

Figure 5.7.

c) It can perform placement based scan optimization and Power Optimization as

part of this flow by setting the following variables namely

ENABLE_POWER_OPT and ENABLE_SCAN_FLOW to true. However we do

not do either as part of this SOC flow. However the scan flow was used to create

a test-ready design for another internal tutorial.

d) Writes out the verilog netlist leon.v as the data mode is set to ASCII, and the

placed design leon.def in the PC/output_data directory

 38

Figure 5.6: Input for Physical Compiler

Figure 5.7: Output from Physical Compiler

 39

6. In the top directory, namely GRF2.1.release.without_examples, run the

following command to propagate the input data for astro: gp astro

7. Copy the provided design constraints file for astro leon.sdc into

astro/input_data.

8. Copy 6.route_design_astro.scheme and 7.post_route_astro.scheme into the

astro/cmd.user directory

9. Running the next command in the astro directory will perform the following

functions: gmake write_verilog_astro

a) Creates the Milkyway view for the design as shown in Figure 5.8 and a

.scheme file with the tool variables

b) Repairs the hierarchy and avoids placement as it has been done in Physical

Compiler

c) Performs Clock Tree Synthesis to achieve minimum skew and then optimizes

to correct hold time violations and meet setup timing. The distribution of the clock

before and after clock tree synthesis as shown with the clock browser is shown in

Figure 5.9 and Figure 5.10.

d) Once Post-CTS optimization is done, routing is performed in the following

sequence. First the clock nets are routed followed by global routing during which

nets are assigned to metal layers and global routing cells. This is followed by

track assignment during which metal traces are laid down. After this detail routing

is done to fix the DRC violations by working on fixed size segments called

Sboxes and then Search and Repair fixes the remaining DRC violations by

varying the size of the S-box [32]. Finally post route optimization and Engineering

Change Order Routing is performed. The routed design is shown in Figure 5.11.

e) Writes out the verilog netlist leon.v which we use for post-layout simulation.

10. Use the command “load sdc-out.cmd” after opening Astro to dump out the

SDF file.

 40

Figure 5.8: Input for Astro

 41

Figure 5.9: Pre-CTS Clock Distribution

 42

Figure 5.10: Post-CTS Clock Distribution

 43

Figure 5.11: Layout after Routing in Astro

 44

5.4.5 Implementation using Astro

1. Create directories for Astro using grf_utilities/grf_setup astro

2. Copy the provided files astro_setup.scheme, 6.route_design_astro.scheme

and 7.post_route_astro.scheme into the astro/cmd.user directory

3. Copy the project_setup file into the GRF2.1.release.without_examples

directory of Astro.

4. Copy the netlist file leon.v from the design compiler directory and the provided

leon.sdc constraints file for Astro into the astro/input_data.

5. Running the gmake write_verilog_astro command in the ASTRO directory will

perform the following steps:

a) Create a Milkyway View for the design after reading the floorplan and repairs

hierarchy information.

b) Perform placement and optimization by initially removing the WLM effects by

setting the RC to zero and again performing logic synthesis and removing buffers

along positive setup paths. High fan-out buffer trees are built on the basis of a

quick placement. It then performs placement on the basis of Virtual routing and

does optimization to meet setup timing and also introduces buffers to meet the

transition and capacitance constraints [32].The design after placement in Astro is

shown in Figure 5.12.

c) Performs Clock tree synthesis followed by routing as in the earlier design flow.

d) The routed design is shown in Figure 5.13.

e) Finally the verilog netlist is written out and again the SDF is dumped out using

the sdc-out.cmd.

In case of both the design flows a Design Rule Check (DRC) was performed, the

rules used are a subset of the Hercules runset. The Error browser used to check

for any errors in the layout implemented using Astro is shown in Figure 5.14.

 45

Figure 5.12: Placed Design in Astro Only Flow

 46

Figure 5.13: Routed Design in Astro Only Flow

 47

Figure 5.14: Error Browser to Check for DRC Errors

 48

5.4.6 Post Layout Simulation

Once the SDF files were dumped from Astro, they were sent through the Artisan

perl script. Finally the SDF was sent through another perl script that removes the

RECOVERY timing check in the SDF as the timing check was not found in the

verilog simulation files. Back annotation was successful for both maximum and

minimum operating conditions. The post layout simulation is shown in Figure

5.15.

Figure 5.15: Post Layout Simulation with SDF Back Annotation

 49

Chapter 6: Conclusion

6.1 Results

As the physical design flow was being setup, an attempt was made to compare

the two designs in terms of delay and area. The design could be implemented for

a frequency of 100 MHz in both of the flows. Hence the only remaining parameter

left was area. Also this meant there were no iterations between synthesis and

physical implementation in our case. While the design implemented using

physical synthesis used a total core area of ~2.02 mm2, the second flow required

a minimum area of ~2.2 mm2. Hence the physical synthesis flow was

implemented using 8% less core area than for the second flow. This also meant

that the design implementation time was less for the physical synthesis flow as

the second flow required a greater number of physical implementation iterations.

The total macro cell area comprised ~0.73 mm2 for the four macros used.

Additionally the physical synthesis flow with 34,613 standard cell instances used

372,506 transistors and required an area of ~0.82 mm2 compared to the

traditional flow which used 34,419 standard cell instances with 373,745

transistors and an area of ~0.83 mm2. However, the total interconnect length for

the physical synthesis flow was 2.7 mm compared to 2.47 mm for an increase of

about 10%.

Hence the physical synthesis flow resulted in a design with reduced area and

transistor count along with lesser iterations.

 50

6.2 Conclusion

Thus the following tasks were completed as part of this thesis.

• Setup the physical synthesis flow using the Galaxy Reference Flow scripts

from Synopsys.

• Created the Milkyway library for the IBM7RF technology.

• Implemented the physical and logic synthesis flows for a small design and

for a system-on-chip.

• Compared the designs generated by the two flows.

• Prepared a tutorial to help universities setup and use the physical

synthesis flow.

6.3 Future Work

It would be interesting to use the design implementation for much smaller feature

sizes such as 90-nm and in a hierarchical approach. This would permit

optimization of each block before integration and result in a more thorough flow

comparison. Power optimization could also be considered as well as addressing

other effects such as electromigration, IR drop and crosstalk. Primetime could

be integrated with the above flow to perform static timing analysis.

 51

LIST OF REFERENCES

 52

 [1] Moore, G.E., “Progress in digital integrated electronics”, Electron Devices

 Meeting, 1975 International Volume 21, 1975 Page(s):11 – 13

[2] Integrated circuit, [online] Available:

 http://en.wikipedia.org/wiki/Integrated_circuit

[3] Bergamaschi, R.A.; Cohn, J., “The A to Z of SoCs”

 IEEE/ACM International Conference on Computer Aided Design 2002,

 10 - 14 Nov. 2002, Page(s):791 - 798

[4] Sangiovanni-Vincentelli, A.; Martin, G., “Platform-based design and software

 design methodology for embedded systems”, Design & Test of Computers,

 IEEE Volume 18, Issue 6, Nov.-Dec. 2001 Page(s):23 - 33

[5] Kurt Keutzer; A. Richard Newton; Narendra Shenoy,

 “The future of logic synthesis and physical design in deep-submicron

 process geometries”, Proceedings of the 1997 International Symposium on

 Physical Design, April 1997, Page(s):218-224

 [6] Padmini Gopalakrishnan; Altan Odabasioglu; Lawrence Pileggi; Salil Raje,

 “Overcoming wire-load model uncertainty during physical design”,

 Proceedings of the 2001 international symposium on Physical design, 2001

 Page(s): 182 - 189

[7] Smith, M. J. S., “Application-Specific Integrated Circuits,” Reading.

 Addison - Wesley, Boston, MA, 1997.

[8] Hojat, S.; Villarrubia, P., “An integrated placement and synthesis approach

 for timing closure of PowerPC microprocessors”, Proceedings of the 1997

 International Conference on Computer Design, 1997, 12-15 Oct. 1997,

 Page(s):206 – 210

[9] Donath, W.; Kudva, P.; Stok, L.; Villarrubia, P.; Reddy, L.; Sullivan, A.,

 “Transformational placement and synthesis”, Proceedings of the 2000

 Design, Automation and Test in Europe Conference and Exhibition, 2000,

 27-30 March 2000 Page(s):194 - 201

 53

[10] Yiu-Hing Chan; Kudva, P.; Lacey, L.; Northrop, G.; Rosser, T., “Physical

 synthesis methodology for high performance microprocessors”, Proceedings

 of the Design Automation Conference, 2003, 2-6 June 2003,

 Page(s):696 – 701

[11] Jiri Gaisler, Gaisler Research. The LEON-2 Processor: User’s Manual.

 [Online]. Available: http://www.gaisler.com/.

[12] Srivastava, R.,”Development of An Open Core System-on-Chip Platform”,

 M.S. Thesis, University of Tennessee, August 2004.

[13] Jiang, W.,”Enhancing System-on-Chip Verification using Embedded Test

 Structures”, M.S. Thesis, University of Tennessee, December 2005.

[14] Fields, S., “Hardware Design and Implementation of Role-Based

 Cryptography'', M.S. Thesis, University of Tennessee, Dec. 2005.

[15] Marwah, T., “System-on-Chip Design and Test with Embedded Debug

 Capabilities'', M.S. Thesis, University of Tennessee, August, 2006.

[16] Register Window, [Online] Available:

 http://en.wikipedia.org/wiki/Register_window

[17] AMBA Specifications Rev 2.0, ARM Limited, (1999). [Online] Available:

 http://www.arm.com/products/solutions/AMBA_Spec.html

[18] AMBA Bus System, [Online] Available:

 http://www.elecdesign.com/Articles/Index.cfm?AD=1&ArticleID=4165

[19] Artisan Standard Library 0.13um - 0.25um SRAM Generator User Manual,

 ARM Limited, June 2005, Revision 2005q2v3.

[20] LECCS Manual, [Online]

 Available:http://www.gaisler.com/doc/leccs-1.1.5.pdf

[21] Galaxy Reference Flow User Guide Version 2.1, Synopsys Inc., April 2006.

[22] Design Compiler User Guide, Synopsys Inc., Version Y-2006.06, June 2006

 54

[23] Priti Vijayvargiya, “Design Compiler Topographical Technology: Enhancing

 Synthesis Predictability and Productivity”, Synopsys Insight Volume 1,

 Issue 2, AUGUST - SEPTEMBER, 2006. [Online] Available:

 http://www.synopsys.com/news/pubs/insight/2006/art3_dctopo_v1s2.html?

 NLC-insight&Link=Aug06_V1-I2_Art3

[24] JupiterXT, [Online] Available:

 http://synopsys.com/products/jupiterxt/jupiterxt.html

[25] JupiterXT Virtual Flat Flow User Guide, Synopsys Inc., Version Y-2006.06,

 June 2006

[26] Physical Compiler User Guide, Volume 1, Synopsys Inc., Version X-2005.09,

 December 2005

[27] Physical Compiler Data Sheet, [Online] Available:

 http://synopsys.com/products/unified_synthesis/unified_synthesis_ds.pdf

[28] Astro Data Sheet, [Online] Available:

 http://www.synopsys.com/products/astro/astro_ds.pdf

[29] Astro User Guide, Synopsys Inc., Version X-2005.09, September 2005

[30] Milkyway Environment Data Preparation User Guide Version X-2005.09,

 September 2005

[31] Solvnet, [Online] Available: www.solvnet.synopsys.com

[32] Astro1 Workshop Student Guide, 2005-09, Synopsys Customer Education

 Services

 55

Vita

Pradeep M Chimakurthy was born in Kakinada, India on November 29th 1981. He

received his Bachelor of Engineering degree in Electronics and Communication

from the University of Madras in December 2003. He joined the University of

Tennessee, Knoxville in August 2004 and received his Master of Science degree

in Electrical Engineering in December 2006 under the guidance of Dr. Donald

Bouldin. His areas of interest include Digital VLSI design, Computer Architecture

and Digital Communications.

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	12-2006

	Using Physical Compilation to Implement a System on Chip Platform
	Pradeep M. Chimakurthy
	Recommended Citation

	Microsoft Word - final_30-Oct.doc

