
CYCLE TIME OPTIMIZATION BY TIMING DRIVEN PLACEMENT
WITH SIMULTANEOUS NETLIST TRANSFORMATIONS

Hendrik Hartje*, Ingmar Neumann
�

, Dominik Stoffel
�

, Wolfgang Kunz
�

*University of Potsdam
Fault Tolerant Computing Group

14415 Potsdam, Germany

�

University of Frankfurt
Electronic Design Automation Group
60054 Frankfurt am Main, Germany

ABSTRACT

We present new concepts to integrate logic synthesis and phys-
ical design. Our methodology uses general Boolean transforma-
tions as known from technology-independent synthesis, and a re-
cursive bi-partitioning placement algorithm. In each partitioning
step, the precision of the layout data increases. This allows effec-
tive guidance of the logic synthesis operations for cycle time opti-
mization. An additional advantage of our approach is that no com-
plicated layout corrections are needed when the netlist is changed.

1. INTRODUCTION

Cycle time optimization has become one of the most important
issues for the design of highly integrated circuits. A lot of per-
formance optimization techniques exist at all stages of the design
flow. However, during the last couple of years it has become appar-
ent that the exchange of technical data between the different design
levels is insufficient in conventional design flows. Optimization
algorithms often lack important information and therefore fail to
exploit the full optimization potential of the circuit.

During logic synthesis the interconnect delay is only approxi-
mated by rough net models. Layout data is not available at this
stage. However, with the advent of deep submicron technologies
the appropriate consideration of geometrical circuit data to esti-
mate interconnect delay has become key in circuit design. This is
why performance optimization at the logic synthesis stage cannot
be successful for deep submicron circuits. Errors in the approx-
imation could result in a design far off from an optimal one. In
order to better exploit the global optimization potential of a circuit
it is unavoidable to improve the interaction between the logical and
physical design stages.

Simple feedback loops between the stages of logic synthesis
and layout generation are not sufficient. They do not guarantee
convergence and tend to be very time-consuming. Only a more
intricate combination of suitable algorithms for logic synthesis and
layout generation can lead to effective solutions.

In this paper, we propose a new technique to directly integrate
general Boolean netlist transformations into a timing-driven place-
ment algorithm. By close interaction between logic synthesis and
placement we obtain accurate data for the wire delays to select
netlist transformations. Since logic transformations are performed
while the placement is generated and not after its completion we
can alter the logic circuit structure without additional layout cor-
rection steps.

2. PREVIOUS WORK

Recently, several approaches to improve the interaction between
logic synthesis and physical design have been published [2, 9, 11,
14–16].

We can roughly divide these approaches into two classes. The
first class of approaches is anchored in logic synthesis. No place-
ment has yet been generated. The interconnect delay is estimated
based on the netlist structure [16]. This approach permits full flex-
ibility of the logic transformations and can exploit the complete
spectrum of logic synthesis techniques. However, without any lay-
out data it is not easy to get good approximations for the intercon-
nect delays.

The second class of approaches starts with a physical design
so that an accurate post-layout delay model is obtained. It is at-
tempted to optimize the circuit by a restricted set of logical netlist
transformations. These transformations can be applied before the
routing process [15]. In this case the wire lengths are estimated
from the placement. The other possibility is to apply the transfor-
mations in a routed design with all wire lengths known [9].

Performing logical transformations in a completed physical de-
sign is a delicate issue. Most approaches only use local transfor-
mations to keep tight control on the changes in the netlist. Trans-
formations are often restricted to buffer insertion [14] or resyn-
thesis of small parts of the circuit. The method described in [3]
uses local decomposition and remapping as netlist transformation.
Some approaches also use layout transformations like gate siz-
ing [4] or wire sizing [5] that do not change the netlist. It is also
possible to combine optimizing transformations with technology
mapping [11, 13].

Jiang et al. [9] proposed a method for post-layout performance
improvement. They start with a complete circuit layout. For the
optimization algorithm they employ a redundancy addition and re-
moval technique in combination with an engineering change order
(ECO) layout tool.

In [15] Stenz et al. use global netlist transformations (signal
substitutions) together with an iterative placement algorithm. They
also start with a netlist after placement. For performance opti-
mization they propose a two-phase algorithm. The first phase re-
structures the netlist by signal substitutions. In the second phase
they legalize the perturbed placement by an iterative placement
improvement algorithm.

The main disadvantage of all these methods starting with a com-
plete layout description is that it is difficult to exploit the full
Boolean optimization potential. If the circuit is changed greatly,
the layout also changes significantly and convergence cannot be
guaranteed. Additionally, after each transformation a legaliza-
tion step is necessary to correct the layout. For this legalization
step ECO-algorithms [9] or other placement improvement algo-
rithms [15] are used.

0-7803-6685-9/01/$10.00©2001 IEEE
V-359

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Hochschulschriftenserver - Universität Frankfurt am Main

https://core.ac.uk/display/14502858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


3. THE PROPOSED APPROACH

To avoid the disadvantages of the described approaches, we pro-
pose a new method to merge logic synthesis and physical design.
Instead of performing logic transformations before or after place-
ment we perform them during placement generation. We integrate
netlist transformations in a recursive partitioning-based placement
algorithm. All layout information is used at the moment it be-
comes available. During the first iterations of the recursive parti-
tioning process our approach resembles the first class of methods
described in the previous section. Only a global placement exists
and the wire length estimations are still very rough. On the other
hand, there is almost unlimited freedom to apply Boolean circuit
transformations. As the procedure continues the circuit partitions
become smaller and the performance estimation becomes more ac-
curate. Boolean transformations are used incrementally to make
corrections according to the refined timing model. In this way we
attempt to combine the advantages of the approaches described in
the previous section while avoiding some of their disadvantages.

In our previous work [12], we have already experimented with
this paradigm and obtained promising results for speed optimiza-
tion. However, in [12] cell replication was the only logical trans-
formation being considered. Recently, in [6] it has been shown
that a large variety of local timing optimizations such as cloning,
remapping, gate sizing, buffer insertion and clock tree optimiza-
tion can also be integrated into such a framework. Our goal is
to demonstrate that general Boolean transformations as originally
developed for technology-independent logic synthesis can also be
performed during placement. We show that not only concepts for
local timing correction are suitable for this framework but that it
is beneficial to merge a general Boolean optimization phase into
placement generation.

3.1. Outline

The overall algorithm is shown in Fig. 1. The algorithm starts with
the netlist and a description of the standard cell library. In each
level of the algorithm two steps are performed.

calculation of edge weights

connectivity clustering

generation of cell rows

estimation of net lengths

FM-bipartitioning with

ne
xt

 r
eg

io
n

ne
xt

 le
ve

l

netlist transformations

step

step

1st

2nd

netlist, standard cell library

Figure 1: The overall placement algorithm

In the first step all regions containing more than one cell are bi-
partitioned into two child regions using the well-known Fiduccia-
Matthysis-algorithm [7]. As the child regions become smaller in
each level the locations of the cells are determined with increas-
ing precision and better estimations of the wire lengths can be ob-
tained. The bi-partitioning algorithm is described in more detail in
section 3.2.

In the second step, appropriate netlist transformations are per-
formed based on the current estimation of wire lengths. These
transformations are described in section 3.3.

As long as there exist regions containing more than one cell the
algorithm proceeds to the next level. Finally the cells are arranged
in rows. This changes the locations of the cells only marginally.

3.2. Partitioning-Based Timing-Driven Placement

In this section we briefly describe the timing-driven placement al-
gorithm and the delay cost function which we use in our approach.

The placement algorithm starts with a netlist generated by a
logic synthesis tool and the chip area that is available for place-
ment. For the placement process we use a recursive bi-partitioning
algorithm [1]. The algorithm iteratively bi-partitions so-called cir-
cuit regions. A region is a set of cells together with the chip area
allocated for placing the cells. In each recursion level of the al-
gorithm all current regions are bi-partitioned into two child re-
gions [7].

Additionally we use a connectivity clustering algorithm [8] for
improving both run time and quality of result. Before each bi-
partitioning step, the algorithm selects cells to be merged into clus-
ters according to their connectivity.

With every recursion level, the sizes of the regions decrease,
so that in each step the individual cell positions can be determined
with increasing accuracy. Recursive partitioning is performed until
every region consists of a single cell. For the final placement the
cells are arranged in rows, which changes the locations of the cells
only slightly.

For partitioning, the circuit is represented as a weighted hyper-
graph. The weights of the hyper-edges represent the circuit delay
and are calculated as follows:

Immediately before each bi-partitioning step, wire lengths are
estimated based on the current cell locations. The position of a cell
within a region is approximated by the region center point. As the
region sizes decrease with each recursion level, the approximation
becomes better. Using the approximate cell positions, wire lengths
are estimated for calculating the wire capacitances.

Next, the arrival time and the required time are calculated for
each signal using a static timing analysis. The arrival time for all
primary inputs is set to 0. The maximum path delay is the largest
arrival time among the primary outputs. It is used as the required
time for every primary output. The slack of a signal is the differ-
ence between its required time and its arrival time. From the slack
of a signal, an upper bound for the length of the corresponding
wire can be calculated.

The ratio between the maximally allowable wire length and the
minimally achievable wire length determines the edge weight used
in the cost function of the min-cut bi-partitioning algorithm.

3.3. Cycle Time Optimization by Netlist Transformations

In order to be able to integrate general Boolean optimization into
a placement algorithm, the logic transformations to be used must
fulfill some important requirements.

1. The optimization framework should not be restricted to
technology-independent circuit descriptions, but should fa-
cilitate optimization of mapped netlists.

2. The transformations should make maximum use of the exist-
ing optimization potential, i.e., they should not be restricted
to local netlist transformations.

3. Although the scope of the optimizations must not be local,
the optimization process as a whole should be decomposable
into a series of individual optimizing operations that each
affect only a limited number of gates.

In order to meet these requirements, we use so-called implicant-
based circuit transformations [10]. Each transformation consists
of the following two steps:

V-360



1. Calculation and insertion of implicants for a network func-
tion using an AND/OR reasoning technique called recursive
learning [10].

2. Identification and removal of redundancy using ATPG.

With these two steps, the structure of the circuitry implementing
an internal network function is modified, however, the logic func-
tion is not changed. Each transformation only affects a limited
number of gates. However, as can be proved [10], arbitrary circuit
transformations including the conventional synthesis techniques
such as functional decomposition, kerneling, transduction, can be
described using this two-step methodology. Implicant-based net-
work transformations have already been applied very effectively in
technology-independent multi-level logic optimization.

Fig. 2 shows an example how the delay of the critical path
(shown as bold lines) can be reduced by implicant-based network
transformations.

�� ��
����

�� 	
	�
b

a

region A region B region C

u

c v

w
x

d

y

���
���
�
�


(a) Original circuit with implication

x

d�� ��
����

���� ��b

a

region A region B region C

u

c v
w

X

X

(b) Adding the implicant

x

d��
�
��

��  !
b

a

region A region B region C

u

v

c

w

(c) Circuit after redundancy removal

Figure 2: Example circuit

Fig. 2(a) shows the original circuit. In the first step recursive
learning finds the implication "$#&%('*),+-"$./%('0) . The impli-
cant 1 is added to the function at . using an additional AND gate
(Fig. 2(b)). The logic function of the circuit does not change by
this modification.

In the second step, two gates are identified as redundant using
ATPG and removed (labeled ’X’ in Fig. 2(b)). The resulting circuit
is shown in Fig. 2(c). As can be seen, this transformation has made
the critical path significantly shorter.

In our approach, these implicant-based logic circuit transfor-
mations are tightly integrated into the placement algorithm (see
Fig. 1). Fig. 3 shows the flowchart for the netlist transformation
algorithm.

yes
no

save in candidate set

perform best transformation

candidate set empty?

done

yes no
timing improved?

yes

redundancy?
no

find all implicants

check remaining candidates

select an implicant

fo
r 

al
l i

m
pl

ic
an

ts

Figure 3: The netlist transformation algorithm

First, for every signal in the circuit a set of implicants is cal-
culated and saved. Then, for each implicant, a circuit transfor-
mation following the above-mentioned two-step methodology is
performed. By inserting the implicant, additional redundancy may
be introduced which can occur anywhere in the circuit, not only in
the immediate vicinity of the implicant. All redundant connections
and gates are removed by ATPG-based redundancy elimination. It
is this step by which a delay improvement may be achieved. If
redundancy elimination removes gates or inputs to gates on the
critical path, the cycle time of the circuit may be improved. For
this reason, only transformations which yield redundancy are con-
sidered further. They are called transformation candidates.

Inserting an implicant either results in adding a single wire or
in adding a new cell with additional wires. In the former case,
the current placement is not changed. In the latter case, the new
cell is assigned to a region such that the corresponding wires have
minimal length.

In redundancy removal, wires as well as cells may be removed.
Again, removal of a wire does not change the placement. However,
if one or more cells have to be removed, they are also deleted from
their partitions.

After the insertion or removal of cells, the cell area allocated
for a partition does no longer correspond to the sum of the cell
sizes in the partition. Therefore, after a transformation, the new
region sizes have to be calculated. Note that this is the only layout
correction step needed in our algorithm.

For each transformation candidate, a static timing analysis is
performed and the maximum path delay is calculated. If a transfor-
mation reduces the maximum path delay, it is saved in the candi-
date set. From all transformation candidates, the one which yields
the greatest improvement in cycle time is performed and removed
from the set.

After a transformation has been performed, other transforma-
tions in the candidate set may become invalid, because the corre-
sponding implications no longer exist or the corresponding gates
have been removed from the circuit. Also, the cycle time may have
changed. Therefore, after a transformation, all remaining candi-
dates are checked for validity and are removed if invalid. Then,
using static timing analysis, the cycle time improvement is recal-
culated for the valid candidates. Transformation candidates yield-
ing no improvement are also removed from the set.

V-361



This loop is iterated until no more candidates are left that im-
prove the circuit performance. The placement algorithm then con-
tinues with the next recursion level. Note that in each recursion
level, new performance-improving transformation candidates may
be found, because cell positions have changed resulting in new es-
timations for wire capacitances and path delays.

4. EXPERIMENTAL RESULTS

To evaluate our new approach, we performed the following three
experiments with combinational ISCAS’85 benchmark circuits.
For physical design we used a ���������
	 CMOS library, which con-
tains all standard gates. Complex gates are not used in our current
implementation, but our method can be easily extended to use all
kinds of gates. The results of the experiments are given in table 1.

In the first experiment we generated a placement from the orig-
inal netlist. We used the timing driven bi-partitioning algorithm
described in section 3.2 with a static netlist. This experiment is
denoted by EX1. In the second experiment we performed the
implicant-based logical netlist transformations of section 3.3 to op-
timize the cycle time before the placement. Because in this logic
optimization phase no layout data exist, the algorithm does not use
any information about the net delay. After the logic optimization
we performed timing driven placement of the optimized netlist.
This experiment is called EX2 in the table. In the last experiment
we used our new method with logic transformations during the
timing driven placement generation. This experiment is labeled
EX3.

All delay results are calculated at the end of the placement pro-
cess. The cycle time is calculated from the estimated net lengths
based on the final placement. Routing algorithms are not consid-
ered in this paper.

EX1 EX2 EX3
no opt. conventional proposed

Circuit delay delay impr. delay impr.
[ns] [ns] [%] [ns] [%]

C432 4.443 4.639 -4.4 3.756 15.5
C499 4.060 3.687 9.2 3.689 9.1
C880 3.339 3.553 -6.4 3.167 5.2
C1355 3.648 3.498 4.1 3.296 9.6
C1908 5.059 5.317 -5.1 4.490 11.2
C2670 6.018 3.855 35.9 3.700 38.5
C3540 6.953 6.612 4.9 5.739 17.4
C6288 16.131 15.420 4.4 15.242 5.5
Avg. 5.3 14.0

Table 1: Experimental results

The results show that our new approach can reduce the cycle
time for all benchmark circuits. On the average, a reduction of
14% is achieved. With the second experiment we demonstrated
that the cycle time improvement is much smaller if we perform
the Boolean transformations before the layout process not using
any layout data. For some circuits the cycle time even increases
in this experiment because wrong decisions are made during logic
synthesis without the correct delay data from the layout.

5. CONCLUSIONS

In this paper, we presented a new approach to integrate general
Boolean transformations into a placement algorithm. With our
placement framework we show that network transformations orig-
inally developed for technology-independent logic synthesis can

also be performed for optimization during placement. By this in-
teraction between logic synthesis and placement we can use the
layout data at the moment it becomes available.

Compared to the performance-driven placement of the original
netlist, we can reduce the cycle time of the benchmark circuits by
14% on the average.

In our experiments, the same logic transformations without any
layout data could not improve the circuit cycle time considerably.
This shows that a close interaction between logic synthesis and
layout generation is indeed necessary.

6. REFERENCES

[1] M. A. Breuer. A class of min-cut placement algorithms. In Design
Automation Conference (DAC), pages 284–290, 1977.

[2] S.-C. Chang, K.-T. Cheng, N.-S. Woo, and M. Marek-Sadowska.
Postlayout logic restructuring using alternative wires. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
16(6):587–596, June 1997.

[3] C. Changfan, Y.-C. Hsu, and F.-S. Tsai. Timing optimization on
routed designs with incremental placement and routing characteri-
zation. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 19(2):188–196, February 2000.

[4] W. Chen, C.-T. Hsieh, and M. Pedram. Simultaneous gate sizing
and placement. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 19(2):206–214, February 2000.

[5] C.C.N. Chu and D.F. Wong. A new approach to simultaneous buffer
insertion and wire sizing. In International Conference on Computer
Aided Design (ICCAD-97), pages 614–622, November 1997.

[6] W. Donath, P. Kudva, L. Stok, P. Villarrubia, L. Reddy, A. Sullivan,
and K. Chakraborty. Transformational placement and synthesis. In
Design Automation and Test in Europe (DATE-2000), pages 194–
201, 2000.

[7] C.M. Fiduccia and R. Mattheyses. A linear-time heuristic for im-
proving network partitions. In 19th Design Automation Conference
(DAC), pages 175–181, July 1982.

[8] S. Hauck and G. Borriello. An evaluation of bipartitioning tech-
niques. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 16(8):849–866, August 1997.

[9] Y.-M. Jiang, A. Krstic, K.-T. Cheng, and M. Marek-Sadowska. Post-
layout logic restructuring for performance optimization. In 34th De-
sign Automation Conference, pages 662–665, Anaheim, CA, USA,
June 1997.

[10] W. Kunz and D. Stoffel. Reasoning in Boolean Networks. Kluwer
Academic Publishers, 1997.

[11] A. Lu, H. Eisenmann, G. Stenz, and F. M. Johannes. Combining tech-
nology mapping with post-placement resynthesis for performance
optimization. In IEEE International Conference on Computer De-
sign (ICCD), 1998.

[12] I. Neumann, D. Stoffel, H. Hartje, and W. Kunz. Cell replication
and redundancy elimination during placement for cycle time opti-
mization. In International Conference on Computer Aided Design
(ICCAD), pages 25–30, San Jose, November 1999.

[13] M. Pedram and N. Bhat. Layout driven technology mapping. In 28th
Design Automation Conference, pages 99–105, 1991.

[14] K. Sato and M. Kawarabayashi. Post-layout optimization for deep
submicron design. In 33rd Design Automation Conference (DAC),
pages 740–745, Las Vegas, NV, USA, June 1996.

[15] G. Stenz, B. M. Riess, B. Rohfleisch, and F. M. Johannes. Perfor-
mance optimization by interacting netlist transformations and place-
ment. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 19(3):350–358, March 2000.

[16] H. Vaishnav and M. Pedram. Logic extraction based on normalized
netlengths. In IEEE International Conference on Computer Design
(ICCD), pages 658–663, October 1995.

V-362


