9 research outputs found

    Solvability for a system of Hadamard fractional multi-point boundary value problems

    Get PDF
    In this paper, we study a system of Hadamard fractional multi-point boundary value problems. We first obtain triple positive solutions when the nonlinearities satisfy some bounded conditions. Next, we also obtain a nontrivial solution when the nonlinearities can be asymptotically linear growth. Furthermore, we provide two examples to illustrate our main results

    The uniqueness and iterative properties of solutions for a general Hadamard-type singular fractional turbulent flow model

    Get PDF
    In this paper, we consider the iterative properties of positive solutions for a general Hadamard-type singular fractional turbulent flow model involving a nonlinear operator. By developing a double monotone iterative technique we firstly establish the uniqueness of positive solutions for the corresponding model. Then we carry out the iterative analysis for the unique solution including the iterative schemes converging to the unique solution, error estimates, convergence rate and entire asymptotic behavior. In addition, we also give an example to illuminate our results

    An upper-lower solution method for the eigenvalue problem of Hadamard-type singular fractional differential equation

    Get PDF
    In this paper, we are concerned with the eigenvalue problem of Hadamard-type singular fractional differential equations with multi-point boundary conditions. By constructing the upper and lower solutions of the eigenvalue problem and using the properties of the Green function, the eigenvalue interval of the problem is established via Schauder’s fixed point theorem. The main contribution of this work is on tackling the nonlinearity which possesses singularity on some space variables

    Fractional Differential Equations, Inclusions and Inequalities with Applications

    Get PDF
    During the last decade, there has been an increased interest in fractional differential equations, inclusions, and inequalities, as they play a fundamental role in the modeling of numerous phenomena, in particular, in physics, biomathematics, blood flow phenomena, ecology, environmental issues, viscoelasticity, aerodynamics, electrodynamics of complex medium, electrical circuits, electron-analytical chemistry, control theory, etc. This book presents collective works published in the recent Special Issue (SI) entitled "Fractional Differential Equation, Inclusions and Inequalities with Applications" of the journal Mathematics. This Special Issue presents recent developments in the theory of fractional differential equations and inequalities. Topics include but are not limited to the existence and uniqueness results for boundary value problems for different types of fractional differential equations, a variety of fractional inequalities, impulsive fractional differential equations, and applications in sciences and engineering

    Solvability and asymptotic properties for an elliptic geophysical fluid flows model in a planar exterior domain

    Get PDF
    In this paper, we study the solvability and asymptotic properties of a recently derived gyre model of nonlinear elliptic Schrödinger equation arising from the geophysical fluid flows. The existence theorems and the asymptotic properties for radial positive solutions are established due to space theory and analytical techniques, some special cases and specific examples are also given to describe the applicability of model in gyres of geophysical fluid flows

    Existence of positive solutions for singular p-Laplacian Hadamard fractional differential equations with the derivative term contained in the nonlinear term

    Get PDF
    In this paper, based on the properties of Green function and the eigenvalue of a corresponding linear operator, the existence of positive solutions is investigated by spectral analysis for a infinite-points singular p-Laplacian Hadamard fractional differential equation boundary value problem, and an example is given to demonstrate the validity of our main results

    The existence of positive solutions for high order fractional differential equations with sign changing nonlinearity and parameters

    Get PDF
    By constructing an auxiliary boundary value problem, the difficulty caused by sign changing nonlinearity terms is overcome by means of the linear superposition principle. Using the Guo-Krasnosel'skii fixed point theorem, the results of the existence of positive solutions for boundary value problems of high order fractional differential equation are obtained in different parameter intervals under a more relaxed condition compared with the existing literature. As an application, we give two examples to illustrate our results

    Positive Solutions for a System of Hadamard-Type Fractional Differential Equations with Semipositone Nonlinearities

    No full text
    In this paper, we use the fixed-point index and nonnegative matrices to study the existence of positive solutions for a system of Hadamard-type fractional differential equations with semipositone nonlinearities
    corecore