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Abstract. In this paper, we study the solvability and asymptotic properties of a recently derived
gyre model of nonlinear elliptic Schrödinger equation arising from the geophysical fluid flows. The
existence theorems and the asymptotic properties for radial positive solutions are established due to
space theory and analytical techniques, some special cases and specific examples are also given to
describe the applicability of model in gyres of geophysical fluid flows.
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1 Introduction

We study in this paper the solvability and asymptotic properties for the following model
of nonlinear Schrödinger equation from the study of the gyres of geophysical fluid flows
in a planar exterior domain:

∆v = −f
(
|z|, v, z · ∇v

)
, z ∈ Ω, (1)

where Ω = {z ∈ R2: |z| > 1}, f : [1,∞)× R2 → R is continuous.
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Nonlinear elliptic equations are closely related to many dynamic model arising from
physics, biology, geography and applied mathematics [2, 3, 5, 39, 40, 43]. In Eq. (1),
when the term z · ∇v disappears, Constantin and Johnson [5] model the large gyres of
geophysical fluid flows by using a shallow-water asymptotic solution of Euler’s equation
in spherical coordinates

∆v + 8ω
1− |z|2

(1 + |z|2)3
− 4F (v)

(1 + |z|2)2
= 0, (2)

where the Earth’s rotation velocity ω > 0 refers to in nondimensional units, the unknown
function v(z, y) stands for the stream function, the oceanic vorticity is defined by the
function F . In fact, the gyres are generated by the interaction between the wind stress
and the effect of the Earth’s rotation, thus it is not good approximation to describe large-
scale gyres in spherical geometry of the Earth by a β-plane [1]. Therefore, it is reasonable
to consider large-scale gyres in the spherical coordinates as the shallow-water approx-
imation. In brief, in spherical coordinates, suppose the polar angle is α ∈ [0, π) and
α − π/2 is the conventional angle of latitude, if α = 0, it corresponds to the south pole.
Let the azimuthal angle β ∈ [0, 2π) be the angle of longitude and Ψ be the vorticity of
the underlying motion of the ocean, v(α, β) = −ω cosα+ Ψ(α, β) stands for the stream
function. The horizontal flow on the spherical earth will form a gyre with the azimuthal
and polar velocity components vβsin−1 α, vα, respectively, and the gyre equation for Ψ
on the half-line is governed by

1

sin2 α
Ψββ + Ψα cotα+ Ψαα = F (Ψ − ω cosα). (3)

From the south pole to the plane of the equator make the stereographic projection

ξ = reiφ, r = cot
α

2
=

sinα

1− cosα
,

then gyre governed equation (3) is equivalent to the semilinear elliptic equation (2). Thus
for given F and ω, one can explore the semilinear Dirichlet boundary value elliptic
problem in a given planar region Ω

∆v + 8ω
1− |z|2

(1 + |z|2)3
− 4F (v)

(1 + |z|2)2
= 0, z ∈ Ω,

v = v0 on ∂Ω.
(4)

For obtaining the solvability and asymptotic properties of the gyre governed equation, by
using the stereographic projection for (4), Chu [3] found that the flow of an arctic gyre,
described by (3), can be equivalently formulated as the following second-order ordinary
differential equation:

v′′(z) =
F (v(z))

cosh2 z
− 2ω sinh z

cosh3 z
, z > z0, (5)
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subject to the asymptotic conditions

lim
z→∞

v(z) = v0 and lim
z→∞

{
v′(z) cosh z

}
= 0,

for some constant v0. In fact, Eq. (5) on the half-line is also related to the second ordinary
differential equation

v′′(z)− k2v(z) + f(z, v) = 0, z > 0,

v(0) = 0, lim
z→+∞

v(z) = 0.
(6)

By Krasnoselskii fixed point theorem on cone compression and expansion, Zima [46]
studied the existence of positive solutions for the above boundary value problem when
f : (0,+∞)× [0,+∞)→ [0,+∞) is continuous. In particular, by using suitable growth
condition and fixed point theorem, Yin [33], Constantin [4], Ertem and Zafer [8] presented
the existence and asymptotic behavior of positive solutions for an extended version of
Eq. (6), respectively. For other related work, we refer reader to [17, 18, 35, 36].

In comparison, model (2) was obtained in the case where the vertical motion of
the fluid was neglected. However, in the large-scale oceanic motion, saddle points and
singular points on the boundary are normally caused by a jet flowing toward or away
from the coastal line or the boundary, and near the saddle points and singular points, the
vertical motion of the fluid can not be neglected. Thus Eq. (1) is a general form of the
geophysical fluid flows model (2) describing the gyre flow of ocean in a larger scale with
the vertical motion. Motivated by the existing works, this paper focuses on the existence
of radial positive solutions and its asymptotic properties at boundary for the nonlinear
Schrödinger equation (1). Our work has some new features, firstly, model (1) promotes
and generalizes the gyre flow model proposed by Constantin, which can describe more
general gyre flow of ocean in a larger scale; secondly, some appropriate comparative
conditions are introduced for overcoming the influence of perpendicular vorticity, thirdly,
the asymptotical property of solution at infinity of model (1) performs as nonlinear be-
haviour, it is well known that the asymptotical property at boundary of nonoscillatory
solutions for most equations often behaves like a linear function such as [4,43], however,
the asymptotical property behaving like a nontrivial nonlinear function is also interesting
and important, which here can explain the interdependency of the ocean flows in arctic
gyres. On the other hand, although the study of the differential equations has a long
history [6, 8–14, 16, 19–34, 37–45], the geophysical fluid flows model (2) arising from
arctic gyres still presents some specific challenges.

2 Preliminaries and lemmas

In order to establish the existence and asymptotic behavior of radial solutions for the
general geophysical fluid flows model (1), we need to transform the model (1) to a more
convenient form.

Lemma 1. The following second-order differential equation is equivalent to Eq. (1):

w′′(x) = −e2xf
(
ex, w(x), w′(x)

)
, x ∈ [0,+∞). (7)
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Proof. Let v(|z|) = v(r), where r = |z| =
√
z21 + z22 , z ∈ Ω. Then one has

∂v

∂z1
=

dv

dr
· ∂r
∂z1

=
z1
r
· v′(r),

∂v

∂z2
=

dv

dr
· ∂r
∂z2

=
z2
r
· v′(r),

∂2v

∂z21
=

(
d2v

dr2
· ∂r
∂z1

)
z1
r

+
dv

dr

(
1

r
− z1
r2
· ∂r
∂z1

)
=
z21
r2
· v′′(r) +

(
1

r
− z21
r3

)
· v′(r),

∂2v

∂z22
=
z22
r2
· v′′(r) +

(
1

r
− z22
r3

)
· v′(r).

(8)

It follows from (8) that

∆v =
∂2v

∂z21
+
∂2v

∂z22
= v′′(r) +

1

r
v′(r),

z · ∇v = z1 ·
∂v

∂z1
+ z2 ·

∂v

∂z2
= rv′(r),

which imply

∆v = −f
(
|z|, v, z · ∇v

)
, z ∈ Ω

⇐⇒ rv′′(r) + v′(r) = −f
(
r, v(r), rv′(r)

)
, r > 1.

Next, let x = ln r, w(x) = v(r). So we have r = ex, w(x) = v(ex) and

w′(x) = v′
(
ex
)
ex = v′(r)r,

w′′(x) = v′′
(
ex
)
e2x + v′

(
ex
)
ex = v′′(r)r2 + v′(r)r.

(9)

Substituting (9) into (7), we get

w′′(x) = −e2xf
(
ex, w(x), w′(x)

)
, x > 0.

Remark 1. It follows from Lemma 1 that if w(x) is a positive solution of the second
differential equation (7), then v(|z|) = w(ln |z|) is a radial symmetric solutions of the
model (1). Thus in what follows, we only consider Eq. (7).

Now we are concerned with the solvability of Eq. (7) on [0,+∞). Firstly, let us
introduce the following function space:

X =
{
w ∈ C1

(
[0,+∞),R

)
: lim
x→+∞

w(x) and lim
x→+∞

{
w(x) + xw′(x)

}
exist

}
,

which is equipped with the usual maximum norm

‖w‖ = max
{

sup
x>0

∣∣w(x)
∣∣, sup
x>0

∣∣w(x) + xw′(x)
∣∣}.

Lemma 2. (See [33].) X is a Banach space.

http://www.journals.vu.lt/nonlinear-analysis

http://www.journals.vu.lt/nonlinear-analysis


Solvability and asymptotic properties for an elliptic geophysical fluid flows model 319

Lemma 3. (See [33].) Let X be defined as before and P ⊂ X. Then P is relatively
compact in X if the following conditions hold:

(i) The set P is uniformly bounded in X , i.e., there exists a positive constant M such
that for all w ∈ P and all x > 0, |w(x)| 6M and |w(x) + xw′(x)| 6M .

(ii) P is equicontinuous, i.e., for any ε > 0, there exists δ > 0 such that for all
|x1 − x2| < δ and all w ∈ P , |w(x1) − w(x2)| < ε and |w(x1) + x1w

′(x1) −
w(x2)− x2w′(x2)| < ε.

(iii) The function from P is equiconvergent, i.e., for any given ε > 0, there exists
a T = T (ε) > 0 such that for all y, x > T and all w ∈ P , |w(x) − w(y)| < ε,
|w(x) + xw′(x)− w(y)− yw′(y)| < ε.

3 Main results

Before stating our main results, we firstly introduce the following assumptions:

(A1) There exists a continuous function F : [1,+∞) × R+ × R+ → R+, which
is nondecreasing with respect to the second and third arguments for each x ∈
[1,+∞) such that |f(x, u, v)| 6 F (x, |u|, |v|).

(A2) There exists a constant µ > 0 such that
∫ +∞
1

s2F (s, 2µ ln s, 2µ) ds 6 µ.

Theorem 1. Suppose that (A1) and (A2) hold. Then the general geophysical fluid flows
model (1) has at least a radial solution vµ with asymptotic properties

vµ(z) > 0, z ∈ Ω, vµ(z) = 0, z ∈ ∂Ω, and lim
|z|→+∞

vµ(|z|)
ln |z|

= µ.

Proof. We start our proof by studying the equivalent form (7) of model (1). To do this, by
the Lebesgue dominated convergence theorem, (A2) implies that there exists a positive
constant ε ∈ (0, µ) such that

+∞∫
1

s2F
(
s, (2µ− ε) ln s, 2µ− ε

)
ds 6 µ− ε. (10)

For the above ε > 0, define a subset of X

P =
{
w ∈ X: ε 6 w(x) 6 2µ− ε, ε 6 w(x) + xw′(x) 6 2µ− ε

}
,

notice that ε ∈ P , then P is nonempty bounded closed convex set. Now define a nonlinear
operator T : P → X by

(Tw)(x) = µ+
1

t

x∫
0

xe2xf
(
ex, xw(x), w(x) + xw′(x)

)
dx

+

+∞∫
x

e2xf
(
ex, xw(x), w(x) + xw′(x)

)
dx, x > 0. (11)
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Now we divide our proof into the following four steps.
Step 1. We firstly prove that TP ⊆ P .
In fact, by (10) and the monotonicity of F , for any x > 0 and w ∈ P , we have

∣∣(Tw)(x)− µ
∣∣ =

∣∣∣∣∣ 1x
x∫

0

se2sf
(
es, sw(s), w(s) + sw′(s)

)
ds

+

+∞∫
x

e2sf
(
es, sw(s), w(s) + sw′(s)

)
ds

∣∣∣∣∣
6

1

x

x∫
0

se2sF
(
es, sw(s), w(s) + sw′(s)

)
ds

+

+∞∫
x

e2sF
(
es, sw(s), w(s) + sw′(s)

)
ds

6

+∞∫
0

e2sF
(
es, sw(s), w(s) + sw′(s)

)
ds

6

+∞∫
0

e2sF
(
es,
(
2µ− ε

)
s, 2µ− ε

)
ds

=

+∞∫
1

s2F
(
s, (2µ− ε) ln s, 2µ− ε

)
ds

6 µ− ε, (12)

which implies that ε 6 (Tw)(x) 6 2µ− ε for any x > 0.
On the other hand, by (11), one has

(Tw)′(x) = − 1

x2

x∫
0

se2sf
(
es, sw(s), w(s) + sw′(s)

)
ds, x > 0, (13)

and
(Tw)′(0) = lim

x→0
(Tw)′(x) = −1

2
f
(
1, 0, w(0)

)
.

Substituting (13) and (11) into the following formula, we have∣∣(Tw)(x) + x(Tw)′(x)− µ
∣∣

6

+∞∫
0

e2sF
(
es, (2µ− ε)s, 2µ− ε

)
ds =

+∞∫
1

s2F
(
s, (2µ− ε) ln s, 2µ− ε

)
ds

6 µ− ε, (14)
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which implies that ε 6 (Tw)(x) + x(Tw)′(x) 6 2µ − ε for any x > 0. Thus TP ⊆ P
and T : P → P is well defined.

Step 2. We show that T (P ) is relatively compact inX by verifying that T (P ) satisfies
conditions of (i)–(iii) of Lemma 3. From (12) and (14) we know T (P ) is uniformly
bounded, i.e., condition (i) holds. In what follows, we prove that T (P ) is equicontinuous.
Let {w}n>1 is any sequence in P , by L’Hôspital rule and (10), we have

lim
x→0

∫ ex

1
s2F (s, (2µ− ε) ln s, 2µ− ε) ds

x
= F (1, 0, 2µ− ε),

lim
x→∞

∫ ex

1
s2F (s, (2µ− ε) ln s, 2µ− ε) ds

x
= 0.

(15)

Thus according to (10), (13) and (15), one gets

∣∣(Twn)′(x)
∣∣ =

∣∣∣∣∣− 1

x2

x∫
0

se2sf
(
es, swn(s), wn(s) + sw′n(s)

)
ds

∣∣∣∣∣
6

1

x2

x∫
0

se2s
∣∣F (es, swn(s), wn(s) + sw′n(s)

)∣∣∣∣∣ds
6

1

x

x∫
0

e2s
∣∣F (es, (2µ− ε)s, 2µ− ε

)∣∣ds
=

1

x

ex∫
1

s2F
(
s, (2µ− ε) ln s, 2µ− ε

)
ds

6M, x > 0, n > 1, (16)

for some M > 0. From (16) and the mean value theorem one gets that for any n > 1,∣∣(Twn)(x1)− (Twn)(x2)
∣∣ 6M |x1 − x2|, x1, x2 > 0.

On the other hand, it follows from (10) and (13) that∣∣(Twn)(x1) + x1(Twn)′(x1)− (Twn)(x2)− x2(Twn)′(x2)
∣∣

6

x2∫
x1

e2s
∣∣F (es, swn(s), wn(s) + sw′n(s)

)∣∣ds
6

x1∫
x2

e2sF
(
es, (2µ− ε)s, 2µ− ε

)
ds→ 0 as x1 → x2, x1, x2 > 0.

Consequently, {Twn}n>1 is equicontinuous in X . Thus condition (ii) of Lemma 3 is
satisfied.
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https://doi.org/10.15388/namc.2021.26.21202


322 X. Zhang et al.

Now we check condition (iii). In fact, by (12) and (14), we have∣∣(Twn)(x)− µ
∣∣

6
1

x

x∫
0

se2sF
(
es, (2µ−ε)s, 2µ−ε

)
ds+

+∞∫
x

e2sF
(
es, (2µ−ε)s, 2µ−ε

)
ds

6

+∞∫
1

s2F
(
s, (2µ−ε) ln s, 2µ−ε

)
ds < +∞ (17)

and ∣∣(Twn)(x) + x(Twn)′(x)− µ
∣∣

6

+∞∫
x

e2sF
(
es, swn(s), wn(s)+sw′n(s)

)
ds

6

+∞∫
x

e2sF
(
es, (2µ−ε)s, 2µ−ε

)
ds =

+∞∫
ex

s2F
(
s, (2µ−ε) ln s, 2µ−ε

)
ds

6

+∞∫
1

s2F
(
s, (2µ−ε) ln s, 2µ−ε

)
ds < +∞. (18)

By (17) and L’Hôspital rule, we get

lim
x→∞

∫ x
0
se2sF (es, (2µ−ε)s, 2µ−ε) ds+ x

∫ +∞
x

e2sF (es, (2µ−ε)s, 2µ−ε) ds

x

= lim
x→∞

+∞∫
ex

s2F (s, (2µ−ε) ln s, 2µ−ε) ds = 0. (19)

(17)–(19) imply that for any ε > 0, there exists M > 0 such that∣∣(Twn)(x)− µ
∣∣ 6 ε,

∣∣(Twn)(x) + x(Twn)′(x)− µ
∣∣ < ε, x >M, n > 1.

Thus {Twn}n>1 is equiconvergence in X . According to Lemma 3, T (P ) is relatively
compact in X .

Step 3. We check that T : P → P is continuous.
It follows from (A2) and the integral absolutely continuity that for any ε > 0, there

exits some x∗ > 0 such that

+∞∫
ex∗

s2F (s, 2µ ln s, 2µ) ds <
ε

3
. (20)
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On the other hand, by the continuity of f , the function e2τf(eτ , u, v) : [0, x∗] ×
[0, (2µ − ε)x∗] × [ε, (2µ − ε)] → R is uniformly continuous. Thus for the above ε > 0,
there exists δ > 0 such that∣∣e2τf(eτ , u1, v1)− e2τf

(
eτ , u2, v2

)∣∣ < ε

3x∗
(21)

for all τ ∈ [0, x∗], u1, u2 ∈ [0, (2µ − ε)x∗], v1, v2 ∈ [ε, (2µ − ε)] with |u1 − u2| < δ,
|v1 − v2| < δ, respectively. Notice that for any w1, w2 ∈ P with ‖w1 − w2‖ <
min{δ, δ/x∗}, one has∣∣sw1(s)− sw2(s)

∣∣ 6 x∗
∣∣w1(s)− w2(s)

∣∣ 6 x∗‖w1 − w2‖ < δ, s ∈ [0, x∗],∣∣w1(s)− w2(s) + sw′1(s)− sw′2(s)
∣∣ 6 ‖w1 − w2‖ < δ, s ∈ [0, x∗].

(22)

Similar to (12), for any w1, w2 ∈ P with ‖w1 − w2‖ < min{δ, δ/x∗}, by (20)–(22), we
have ∣∣(Tw1)(x)− (Tw2)(x)

∣∣
6

x∗∫
0

∣∣e2sf(es, sw1(s), w1(s) + sw′1(s)
)

− e2sf
(
es, sw2(s), w2(s) + sw′2(s)

)∣∣ ds
+

∞∫
x∗

[
e2s
∣∣f(es, sw1(s), w1(s) + sw′1(s)

)∣∣
+ e2s

∣∣f(es, sw2(s), w2(s) + sw′2(s)
)∣∣]ds

6 x∗
ε

3x∗
+ 2

∞∫
x∗

e2sF
(
es, s(2µ− ε), 2µ− ε

)
ds

6
ε

3
+ 2

∞∫
ex∗

s2F (s, 2µ ln s, 2µ) ds < ε (23)

and ∣∣(Tw1)(x) + x(Tw1)′(x)− (Tw2)(x)− x(Tw2)′(x)
∣∣

6

∞∫
x

∣∣e2sf(es, sw1(s), w1(s) + sw′1(s)
)

− e2sf
(
es, sw2(s), w2(s) + sw′2(s)

)∣∣ ds
6

∞∫
x

∣∣e2sf(es, sw1(s), w1(s) + sw′1(s)
)

− e2sf
(
es, sw2(s), w2(s) + sw′2(s)

)∣∣ ds
< ε. (24)
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Hence (23) and (24) yield

‖Tw1 − Tw2‖ 6 max
{

sup
x>0

∣∣(Tw1)(x)− (Tw2)(x)
∣∣,

sup
x>0

∣∣(Tw1)(x) + x(Tw1)′(x)− (Tw2)(x)− x(Tw2)′(x)
∣∣}

< ε.

Thus T : P → P is a continuous operator. According to Schauder’s fixed point theorem,
T has a fixed point wµ in P , i.e., Twµ = wµ.

Step 4. In the end, we consider the solvability and asymptotic properties of Eq. (1).
Set wµ(x) = xwµ(x), x > 0, then we have

wµ(0) = 0, wµ(x) > 0, w′µ(x) = wµ(x) + xw′µ(x) > 0 for x > 0,

and for x > 0,

wµ(x) = µx+

x∫
0

xe2xf
(
ex, wµ(x), w′µ(x)

)
dx

+ x

+∞∫
x

e2xf
(
ex, wµ(x), w′µ(x)

)
dx. (25)

Differentiating (25) with respect to x, we have Eq. (7), and thus wµ(x) is a positive
solution of Eq. (7). By Lemma 1, we get that vµ(|z|) = wµ(ln |z|), z ∈ Ω, is a radial
solution of Eq. (1). Moreover, in view of (17)–(19), we have

vµ(z) = 0, z ∈ ∂Ω, vµ(z) > 0, z ∈ Ω,
and

lim
|z|→+∞

(
vµ(|z|)
ln |z|

− µ
)

= lim
|z|→+∞

(
w(ln |z|)

ln |z|
− µ

)
= lim
x→+∞

(
wµ(x)

x
− µ

)
= lim
x→+∞

(
vµ(x)− µ

)
= 0.

Thus we complete the proof of Theorem 1.

Corollary 1. Assume that the following conditions hold:

(A3) There exist two functions p, q : [1,+∞)→ R+such that for each t ∈ [1,+∞),
|f(x, u, v)| 6 p(x)|u|+ q(x)|v|.

(A4)
∫ +∞
1

s2
[
p(s) ln s+ q(s)] ds 6 1/2.

Then for any µ > 0, Eq. (1) has at least a radial solution vµ with asymptotic properties

vµ(z) > 0, z ∈ Ω, vµ(z) = 0, z ∈ ∂Ω, and lim
|z|→+∞

vµ(|z|)
ln |z|

= µ.
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Proof. Let F (x, |u|, |v|) = p(x)|u| + q(x)|v|, we prove that (A4) implies (A2). In fact,
for any fixed µ > 0, we have

+∞∫
1

s2F (s, 2µ ln s, 2µ) ds =

+∞∫
1

s2
[
2µp(s) ln s+ 2µq(s)

]
ds 6 µ.

According to Theorem 1, the conclusion of Corollary 1 holds.

Corollary 2. Assume that the following conditions hold:

(A5) f satisfies locally Lipschitz condition in [1,∞) × R2, i.e., there exist constants
a, b > 0 such that |f(x, u1, v1) − f(x, u2, v2)| 6 a|u1 − u2| + b|v1 − v2|,
u1, u2, v1, v2 ∈ R, for any x ∈ [1,∞).

(A6) 0 <
∫ +∞
1

s2[1 + ln s+ |f(s, 0, 0)|] ds 6 1/(2(a+ b+ 1)).

Then for any µ > 1/2, Eq. (1) has at least a radial solution vµ with asymptotic properties

vµ(z) > 0, z ∈ Ω, vµ(z) = 0, z ∈ ∂Ω, and lim
|z|→+∞

vµ(|z|)
ln |z|

= µ.

Proof. By (A5), for any x ∈ [1,∞), we have |f(x, u, v)
∣∣ 6 a|u| + b|v| +

∣∣f(x, 0, 0)|,
u, v ∈ R. Let F (x, |u|, |v|) = a|u|+ b|v|+ |f(x, 0, 0)|, we prove that (A6) also implies
(A2). In fact, for any fixed µ > 1/2, it follows from (A6) that

+∞∫
1

s2F (s, 2µ ln s, 2µ) ds =

+∞∫
1

s2
[
2µa ln s+ 2µb+

∣∣f(s, 0, 0)
∣∣] ds

6

+∞∫
1

s2
[
2µa ln s+ 2µb+ 2µ

∣∣f(s, 0, 0)
∣∣]ds

6 µ.

According to Theorem 1, the conclusion of Corollary 2 is also true.

Corollary 3. Suppose that (A1) holds and

(A2∗) There exists a constant µ > 0 such that
∫ +∞
1

s2F (s, 2µ ln s, 2µ) ds < +∞.

Then there exists r > 0 such that Eq. (1) in Ωr+1 = {z ∈ RN: |z| > r + 1} has a radial
solution vµ with asymptotic properties

vµ(z) = 0, z ∈ ∂Ωr+1, vµ(z) > 0, z ∈ Ωr+1, and lim
|z|→+∞

vµ(|z|)
ln |z|

= µ.
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Proof. From (A2∗) we take r>0 large enough such that
∫ +∞
r+1

s2F (s, 2µ ln s, 2µ) ds < µ.
Since Eq. (7) on [r,+∞) is equivalent to the equation z′′ = e2(x+r)f(ex+r, z(x), z(x))
on [0,+∞) with z(x) = w(x+ r) and

+∞∫
1

(s+ r)F (s+ r, 2µ ln s, 2µ) ds 6

+∞∫
1

(s+ r)F
(
s+ r, 2µ ln(s+ r), 2µ

)
ds

6

+∞∫
r+1

s2F (s, 2µ ln s, 2µ) ds < µ,

according to Theorem 1, the conclusion of Corollary 3 is valid.

In the following, we consider the existence of positive solutions and its asymptotic
properties for the following separated type geophysical fluid flows model:

∆v = f
(
|z|, v

)
+ g
(
|z|, z · ∇v

)
, z ∈ Ω, (26)

where f, g : [1,∞)× R→ R are continuous and Ω = {z ∈ R2: |z| > 1}.

Theorem 2. Assume that the following conditions hold:

(B1) There exist two continuous functions F1, G1 : [1,+∞) × R+ → R+, which
are nondecreasing with respect to the second independent variable for each x ∈
[1,+∞), respectively, such that |f(x, u)| 6 F1(x, |u|), |g(x, v)| 6 G1(x, |v|).

(B2) There exists a constant µ>0 such that
∫ +∞
1

s2[F1(s, 2µ ln s)+G1(s, 2µ)] ds6µ.

Then Eq. (26) has a radial solution vµ, and the following asymptotic properties are valid:

vµ(z) = 0, z ∈ ∂Ω, vµ(z) > 0, z ∈ Ω, and lim
|z|→+∞

vµ(|z|)
ln |z|

= µ.

Proof. Let for x ∈ [1,+∞) and u, v ∈ R,

f̃(x, u, v) = g(x, v) + f(x, u), F
(
x, |u|, |v|

)
= G1

(
x, |v|

)
+ F1

(
x, |u|

)
.

Obviously, ∣∣f̃(x, u, v)
∣∣ 6 F

(
x, |u|, |v|

)
, s ∈ [1,+∞), u, v ∈ R,

and for any µ > 0,

+∞∫
1

s2F (s, 2µ ln s, 2µ) ds =

+∞∫
1

s2
[
F1(s, 2µ ln s) +G1(s, 2µ)

]
ds 6 µ.

Thus according to Theorem 1, the conclusion of Theorem 2 holds.
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Remark 2. The model possesses separated oceanic vorticity which can describe two dif-
ferent vorticities gyres. Theorem 2 is also valid for the special semilinear elliptic equation
∆v + f(z, v) + g(|z|)z · ∇v = 0 in an exterior domain under assumption (B1).

For (26), if f(t, u) ≡ 0 or g(t, v) ≡ 0, then it will reduce to the following form in
a planar exterior domain:

∆v = f
(
|z|, v

)
, z ∈ Ω, (27)

or
∆v =

(
|z|, z · ∇v

)
, z ∈ Ω, (28)

where f, g : [1,∞) × R → R are continuous. From Theorem 2 we have the following
corollaries.

Corollary 4. Assume that the following conditions are satisfied:

(B1∗) There exists a continuous function F1 : [1,+∞)×R+ → R+, which is nonde-
creasing with respect to the second independent variable for each t ∈ [1,+∞)
such that |f(x, u)

∣∣ 6 F1

(
x, |u|).

(B2∗) There exists a constant µ > 0 such that
∫ +∞
1

s2F1(s, 2µ ln s) ds 6 µ.

Then Eq. (27) has a radial solution vµ, and the following asymptotic properties hold:

vµ(z) = 0, z ∈ ∂Ω, vµ(z) > 0, z ∈ Ω, and lim
|z|→+∞

vµ(|z|)
ln |z|

= µ.

Corollary 5. Suppose that the following conditions hold:

(B1∗∗) There exists a continuous function G1 : [1,+∞)× R+ → R+, which is non-
decreasing with respect to the second independent variable for each t ∈
[1,+∞) such that |g(x, u)| 6 G1(x, |u|).

(B2∗∗) There exists a constant µ > 0 such that
∫ +∞
1

s2G1(s, 2µ) ds 6 µ.

Then Eq. (28) has a radial solution vµ, and the following asymptotic properties hold:

vµ(z) = 0, z ∈ ∂Ω, vµ(z) > 0, z ∈ Ω, and lim
|z|→+∞

vµ(|z|)
ln |z|

= µ.

4 Examples

Example 1. Consider the following gyres model of nonlinear Schrödinger equation for
geophysical fluid flows:

∆v =
v + sin(z · ∇v)

4|z|4(1 + ln |z|)
, z ∈ Ω, (29)

where Ω = {z ∈ R2: |z| > 1}.
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Let

f(x, u, v) =
u+ sin v

4x4(1 + lnx)
, F

(
x, |u|, |v|

)
=

|u|+ |v|
4x4(1 + lnx)

,

x ∈ [1,+∞), u, v ∈ R, then we have∣∣f(x, u, v)
∣∣ 6 F

(
x, |u|, |v|

)
, s ∈ [1,+∞), u, v ∈ R,

and for any µ > 0,

+∞∫
1

s2F (s, 2µ ln s, 2µ) ds =

+∞∫
1

s(2µ ln s+ 2µ)

4s3(1 + ln s)
ds < µ.

Thus all conditions of Theorem 1 are verified. From Theorem 1, for any µ > 0, Eq. (29)
has a radial solution vµ with the asymptotic properties

vµ(z) > 0, z ∈ Ω, vµ(z) = 0, z ∈ ∂Ω, and lim
|z|→+∞

vµ(|z|)
ln |z|

= µ.

Example 2. Consider the following gyres model of nonlinear Schrödinger equation for
geophysical fluid flows:

∆v =
(v + sin |z|)(z · ∇v)5

8|z|5(ln |z|+ 1)(1 + (z · ∇v)2)
, z ∈ Ω, (30)

where Ω = {z ∈ R2: |z| > 1}.
Let

f(x, u, v) =
(u+ 1)v5

8(1 + v2)x5(1 + lnx)
, F

(
x, |u|, |v|

)
=

(|u|+ 1)v4

16x5(1 + lnx)
,

x ∈ [1,+∞), u, v ∈ R, then we have∣∣f(x, u, v)
∣∣ 6 F

(
x, |u|, |v|

)
, s ∈ [1,+∞), u, v ∈ R,

and for any µ ∈ [1/2, 1),

+∞∫
1

s2F (s, 2µ ln s, 2µ) ds =

+∞∫
1

(2µ ln s+ 1)(2µ)4

16s3(1 + ln s)
ds < µ.

Thus all conditions of Theorem 1 are verified. By Theorem 1, for any µ ∈ [1/2, 1),
Eq. (30) has a radial solution vµ, and

vµ(z) > 0, z ∈ Ω, vµ(z) = 0, z ∈ ∂Ω, and lim
|z|→+∞

vµ(|z|)
ln |z|

= µ.
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Example 3. Let Ω = {z ∈ R2: |z| > 1}, consider the following gyres model of geo-
physical fluid flows:

∆v = 8ω
|z|2 − 1

|z|2(1 + |z|2)3
+

4F (v)

(1 + |z|2)2
, z ∈ Ω. (31)

If there exists a continuous nondecreasing function F1 : R+ → R+ and a constant µ > 0
such that ∣∣F (v)

∣∣ 6 F1

(
|v|
)

and

+∞∫
1

s2F1(2µ ln s)

(1 + s2)2
ds 6

µ− ω
4

.

Then the gyre flow model (2) has a radial solution vµ, which possesses the following
asymptotic properties:

vµ(z) > 0, z ∈ Ω, vµ(z) = 0, z ∈ ∂Ω, and lim
|z|→+∞

vµ(|z|)
ln |z|

= µ. (32)

Let

f(x, v) = 8ω
x2 − 1

x2(1 + x2)3
+

4F (v)

(1 + x2)2
,

F
(
x, |v|

)
= 8ω

x2 − 1

x2(1 + x2)3
+

4F1(|v|)
(1 + x2)2

,

(x, v) ∈ [1,+∞)× R, then for any (x, v) ∈ [1,+∞)× R, we have∣∣f(x, v)
∣∣ 6 8ω

x2 − 1

x2(1 + x2)3
+

4|F (v)|
(1 + x2)2

6 8ω
x2 − 1

x2(1 + x2)3
+

4F1(|v|)
(1 + x2)2

6 F
(
x, |v|

)
.

Thus
+∞∫
1

s2F (s, 2µ ln s) ds =

+∞∫
1

[
8ω

s2 − 1

(1 + s2)3
+

4s2F1(2µ ln s)

(1 + s2)2

]
ds < µ.

By Corollary 2, the gyre flow model (31) has a radial solution vµ with the asymptotic
properties (32).

Remark 3. Normally, if the oceanic vorticity contribution disappears, i.e, F ≡ 0, then the
gyre flow model (2) describes that the flow field is irrotational, Example 3 can be applied.
But, for long waves in oceanic vorticity, since the averaged vorticity plays dynamically
the dominant role (see [7]), the flow behaves like nonzero constant vorticity F = a when
a 6 (µ − ω)/2, we still can use Example 3 to govern the behaviour of long waves
in oceanic vorticity. In addition, it is reasonable to model Coriolis vorticities [15] by
Example 3 when the prime sources of vorticity in the oceans continues to increase in the
form of the tidal currents.
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Example 4. Consider the semilinear elliptic equation in the domainΩ={z∈R2: |z| > 1}

∆v = f
(
|z|, v

)
+ h
(
|z|
)
z · ∇v, (33)

where f ∈ C([1,+∞)×R,R), g ∈ C([1,+∞),R). Let there exists a continuous function
F1 : [1,+∞)×R+ → R+ nondecreasing with respect to the second independent variable
for each t ∈ [1,+∞) such that |f(x, u)| 6 F1(x, |u|), and there exists a constant µ > 0

such that
∫ +∞
1

s2[F1(s, 2µ ln s) + 2µ|h(s)|] ds 6 µ. Then Eq. (33) has a radial solution
vµ, which possesses the asymptotic properties

vµ(z) > 0, z ∈ Ω, vµ(z) = 0, z ∈ ∂Ω, lim
|z|→+∞

vµ(|z|)
ln |z|

= µ. (34)

Let

G1

(
x, |v|

)
=
∣∣h(x)

∣∣|v| and
∣∣g(x, v)

∣∣ = h(x)v, x ∈ [1,+∞), v ∈ R.

Obviously, ∣∣g(x, v)
∣∣ 6 G1

(
x, |v|

)
, x ∈ [1,+∞), v ∈ R,

which implies that all conditions of Theorem 1 are verified. From Theorem 2, the Schrö-
dinger equation (33) has a radial solution vµ with the asymptotic properties (34).

5 Conclusion

In this paper, we study the solvability and asymptotic properties of a recently derived
general nonlinear gyre of geophysical fluid flows model. In a general way, there are two
factors (the spin vorticity 2ω cosα and the oceanic vorticity F (Ψ −ω cosα)) to influence
the vorticity of geophysical flows because the earth rotates and ocean motions (for detail,
see [3,5]). The spin vorticity is completely confirmed by the features of planets, however
for the motion of the ocean, one may choose the suitable vorticity associated with the
movement of the ocean and coupled to the earth’s rotation [5] to express a special gyre.
In this paper, the oceanic vorticity F is a general nonlinear function, which can be chosen
properly according to the actual situation, this makes the model have more extensive
application value and significance.
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