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1. Introduction

Fractional differential equation theory comes with fractional calculus and is an abstract form
of many engineering and physical problems. It has been widely used in system control, system
identification, grey system theory, fractal and porous media dispersion, electrolytic chemistry,
semiconductor physics, condensed matter physics, viscoelastic systems, biological mathematics,
statistics, diffusion and transport theory, chaos and turbulence and non-newtonian fluid mechanics.
Fractional differential equation theory has attracted the attention of the mathematics and natural science
circles at home and abroad, and has made a series of research results. It has become one of the
international hot research directions and has very important theoretical significance and application
value.

As an important research area of fractional differential equation, boundary value problems have
attracted a great deal of attention in the last ten years, especially in terms of the existence of positive
solutions, and have achieved a lot of results (see [1–20]). When the nonlinear term changes sign, the
research on the existence of positive solutions progresses slowly, and relevant research results are not
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many (see [21–33]).
In [21], using a fixed point theorem in a cone, Agarwal et al. obtained the existence of positive

solutions for the Sturm-Liouville boundary value problem
(p(t)u′(t))′ + λ f (t, u(t)) = 0, t ∈ (0, 1),
α1u(0) − β1 p(0)u′(0) = 0,
α2u(1) + β2 p(0)u′(1) = 0,

where λ > 0 is a parameter, p(t) ∈ C((0, 1), [0,∞)), αi, βi ≥ 0 for i = 1, 2 and α1α2 + α1β2 + α2β1 > 0;
f ∈ C((0, 1) × [0,∞),R) and f ≥ −M, for M > 0,∀t ∈ [0, 1], u ≥ 0 (M is a constant).

In [22], Weigao Ge and Jingli Ren studied the Sturm-Liouville boundary value problem
(p(t)u′(t))′ + λa(t) f (t, u(t)) = 0, t ∈ (0, 1),
α1u(0) − β1 p(0)u′(0) = 0,
α2u(1) + β2 p(0)u′(1) = 0,

where a(t) ≥ 0 and λ > 0 is a parameter. They removed the restriction f ≥ −M, using Krasnosel’skii
theorem, obtained some new existence theorems for the Sturm-Liouville boundary value problem.

In [23], Weigao Ge and Chunyan Xue studied the same Sturm-Liouville boundary value problem
again. Without the restriction that f is bounded below, by the excision principle and area addition
principle of degree, they obtained three theorems and extended the Krasnosel’skii’s compression-
expansion theorem in cones.

In [25], Yongqing Wang et al. considered the nonlinear fractional differential equation boundary
value problem with changing sign nonlinearity{

Dα0+u(t) + λ f (t, u(t)) = 0, t ∈ (0, 1),
u(0) = u′(0) = u(1) = 0,

where 2 < α ≤ 3, λ > 0 is a parameter, Dα0+ is the standard Riemann-Liouville fractional derivative.
f is allowed to change sign and may be singular at t = 0, 1 and −r(t) ≤ f ≤ z(t)g(x) for some given
nonnegative functions r, z, g. By using Guo-Krasnosel’skii fixed point theorem, the authors obtained
the existence of positive solutions.

In [28], J. Henderson and R. Luca studied the existence of positive solutions for a nonlinear
Riemann-Liouville fractional differential equation with a sign-changing nonlinearity

Dα0+u(t) + λ f (t, u(t)) = 0, t ∈ (0, 1),
u(0) = u′(0) · · · = u(n−2)(0) = 0,

Dp
0+u(t)

∣∣∣
t=1
=

m∑
i=1

aiD
q
0+u(t)

∣∣∣
t=ξi
,

where λ is a positive parameter, α ∈ (n−1, n], n ∈ N, n ≥ 3, ξi ∈ R for all i = 1, ... m, (m ∈ N), 0 < ξ1 <
ξ2 < · · · < ξm < 1, p, q ∈ R, p ∈ [1, n − 2], q ∈ [0, p], Dα0+ is the standard Riemann-Liouville fractional
derivative. With the restriction that f may be singular at t = 0, 1 and −r(t) ≤ f ≤ z(t)g(t, x) for some
given nonnegative functions r, z, g, applying Guo-Krasnosel’skii fixed point theorem, the existences of
positive solutions are obtained.
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In [31], Liu and Zhang studied the existence of positive solutions to the boundary value problem
for a high order fractional differential equation with delay and singularities including changing sign
nonlinearity 

Dα0+ x(t) + f (t, x(t − τ)) = 0, t ∈ (0, 1)\{τ},
x(t) = η(t), t ∈ [−τ, 0],
x′(0) = x′′(0) = · · · = x(n−2)(0) = 0, n ≥ 3,
x(n−2)(1) = 0,

where n − 1 < α ≤ n, n = [α] + 1,Dα0+ is the standard Riemann-Liouville fractional derivative. The
restriction on the nonlinearity f is as follows: there exists a nonnegative function ρ ∈ C(0, 1) ∩
L(0, 1), ρ(t) . 0, such that f (t, x) ≥ −ρ(t) and φ2(t)h2(x) ≤ f (t, v(t)x) + ρ(t) ≤ φ1(t)(g(x) + h1(x)),
for ∀ (t, x) ∈ (0, 1) × R+, where φ1, φ2 ∈ L(0, 1) are positive, h1, h2 ∈ C(R+0 ,R

+) are nondecreasing,
g ∈ C(R+0 ,R

+) is nonincreasing, R+0 = [0,+∞), and

v(t) =
{

1, t ∈ (0, τ],
(t − τ)α−2n+1, t ∈ (τ, 1).

By Guo-krasnosel’skii fixed point theorem and Leray-Schauder’s nonlinear alternative theorem,
some existence results of positive solutions are obtained, respectively.

In [33], Tudorache and Luca considered the nonlinear ordinary fractional differential equation with
sequential derivatives

Dβ0+(q(t)Dγ0+u(t)) = λ f (t, u(t)), t ∈ (0, 1),
u( j)(0) = 0, j = 0, 1 · · · , n − 2, Dγ0+u(0) = 0,

q(1)Dγ0+u(1) =
∫ 1

0
q(t)Dγ0+u(t)dη0(t), Dα0

0+u(1) =
p∑

i=1

∫ 1

0
Dαi

0+u(t)dηi(t),

where β ∈ (1, 2], γ ∈ (n − 1, n], n ∈ N, n ≥ 3, p ∈ N, αi ∈ R, i = 0, 1 · · · p, 0 ≤ α1 < α2 <

· · · < αp ≤ α0 < γ − 1, α0 ≥ 1, λ > 0, q : [0, 1]−→(0,∞) is a continuous function, f ∈ C((0, 1) ×
[0,∞),R) may be singular at t = 0 and/or t = 1, and there exist the functions ξ, ϕ ∈ C((0, 1), [0,∞)),
φ ∈ C((0, 1) × [0,∞), [0,∞)) such that −ξ(t) ≤ f (t, x) ≤ ϕ(t)φ(t, x), ∀t ∈ (0, 1), x ∈ (0,∞) with
0 <

∫ 1

0
ξ(s)ds < ∞, 0 <

∫ 1

0
ϕ(s)ds < ∞. By the Guo-Krasnosel’skii fixed point theorem, the existence

of positive solutions are obtained.
As can be seen from the above research results, fixed point theorems are still common tools to

solve the existence of positive solutions to boundary value problems with sign changing nonlinearity,
especially the Guo-Krasnosel’skii fixed point theorem. In addition, for boundary value problems
of ordinary differential equations, Weigao Ge et al. removed the restriction that the nonlinear item
bounded below. However, for fractional boundary value problems, from the existing literature, there
are still many restrictions on nonlinear terms.

Our purpose of this paper is to establish the existence of positive solutions of boundary value
problems (BVPs for short) of the nonlinear fractional differential equation as follows{

Dα0+u(t) + λ f (t, u(t)) = 0, t ∈ (0, 1),
u(0) = u′(0) · · · = u(n−2)(0) = u(n−2)(1) = 0, n ≥ 3,

(1.1)
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where n − 1 < α < n, λ > 0, f : [0, 1] × [0,+∞) → R is a known continuous nonlinear function and
allowed to change sign, and Dα0+ is the standard Riemann-Liouville fractional derivative.

In this paper, by the Guo-Krasnosel’skii fixed point theorem, the sufficient conditions for the
existence of positive solutions for BVPs (1.1) are obtained under a more relaxed condition compared
with the existing literature, as follows. Throughout this paper, we suppose that the following conditions
are satisfied.

H0: There exists a known function ω ∈ C(0, 1) ∩ L(0, 1) with ω(t) > 0, t ∈ (0, 1) and
∫ 1

0
(1 −

s)α−2ω(s)ds < +∞, such that f (t, u) > −ω(t), for t ∈ (0, 1), u ∈ R.
This paper is organized as follows. In Section 2, we introduce some definitions and lemmas to

prove our major results. In Section 3, some sufficient conditions for the existence of at least one and
two positive solutions for BVPs (1.1) are investigated. As applications, some examples are presented
to illustrate our major results in Section 4.

2. Preliminaries

In this section, we give out some important definitions, basic lemmas and the fixed point theorem
that will be used to prove the major results.
Definition 2.1. (see [1]) Let φ(x) ∈ L1(a, b). The integrals

(Iαa+φ)(x)
de f
=

1
Γ(α)

∫ x

a
(x − t)α−1φ(t) dt, x > a,

(Iαb−φ)(x)
de f
=

1
Γ(α)

∫ b

x
(t − x)α−1φ(t) dt, x < a,

where α > 0, are called the Riemann-Liouville fractional integrals of the order α. They are sometimes
called left-sided and right-sided fractional integrals respectively.
Definition 2.2. (see [1]) For functions f (x) given in the interval [a, b], each of the expressions

(Dαa+ f )(x) =
1

Γ(n − α)
(

d
dx

)n
∫ x

a
(x − t)n−α−1 f (t) dt, n = [α] + 1,

(Dαb− f )(x) =
(−1)n

Γ(n − α)
(

d
dx

)n
∫ b

x
(t − x)n−α−1 f (t) dt, n = [α] + 1

is called Riemann-Liouville derivative of order α, α > 0, left-handed and right-handed respectively.
Definition 2.3. (see [2]) Let E be a real Banach space. A nonempty, closed, and convex set P ⊂ E is
called a cone if the following two conditions are satisfied:
(1) if x ∈ P and µ ≥ 0, then µx ∈ P;
(2) if x ∈ P and −x ∈ P, then x = 0.

Every cone P ⊂ E induces the ordering in E given by x1 ≤ x2 if and only if x2 − x1 ∈ P.
Lemma 2.1. (see [3]) Let α > 0, assume that u,Dα0+u ∈ C(0, 1) ∩ L1(0, 1), then,

Iα0+Dα0+u(t) = u(t) +C1tα−1 +C2tα−2 + · · · +Cntα−n

holds for some Ci ∈ R, i = 1, 2, . . . , n, where n = [α] + 1.
Lemma 2.2. Let y ∈ C[0, 1] and n − 1 < α < n. Then, the following BVPs
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{
Dα0+u(t) + y(t) = 0, 0 < t < 1,
u(0) = u′(0) · · · = u(n−2)(0) = u(n−2)(1) = 0, n ≥ 3

(2.1)

has a unique solution

u(t) =
∫ 1

0
G(t, s)y(s)ds,

where

G(t, s) =
1
Γ(α)

{
tα−1(1 − s)α−n+1 − (t − s)α−1, 0 ≤ s ≤ t ≤ 1,
tα−1(1 − s)α−n+1, 0 ≤ t ≤ s ≤ 1.

(2.2)

Proof. From Definitions 2.1 and 2.2, Lemma 2.1, we know

u(t) = −Iα0+y(t) +C1tα−1 +C2tα−2 + · · · +Cntα−n

= −
1
Γ(α)

∫ t

0
(t − s)α−1y(s)ds +C1tα−1 +C2tα−2 + · · · +Cntα−n,

where Ci ∈ R, i = 1, 2 · · · n.
From u(0) = u′(0) · · · = u(n−2)(0) = 0, we get Ci = 0, i = 2, 3 · · · n, such that

u(n−2)(t) = −
1

Γ(α − n + 2)

∫ t

0
(t − s)α−n+1y(s)ds +C1

Γ(α)
Γ(α − n + 2)

tα−n+2,

u(n−2)(1) = −
1

Γ(α − n + 2)

∫ 1

0
(1 − s)α−n+1y(s)ds +C1

Γ(α)
Γ(α − n + 2)

.

From u(n−2)(1) = 0, we get C1 =
1
Γ(α)

∫ 1

0
(1 − s)α−n+1y(s)ds, so that

u(t) = −
1
Γ(α)

∫ t

0
(t − s)α−1y(s)ds +

tα−1

Γ(α)

∫ 1

0
(1 − s)α−n+1y(s)ds

=
1
Γ(α)

∫ t

0
[tα−1(1 − s)α−n+1 − (t − s)α−1]y(s)ds +

1
Γ(α)

∫ 1

t
tα−1(1 − s)α−n+1y(s)ds

=

∫ 1

0
G(t, s)y(s)ds.

The proof is completed. □

Lemma 2.3. Let n − 1 < α < n. The function G(t, s) defined by (2.2) is continuous on [0, 1] × [0, 1]
and satisfies 0 ≤ G(t, s) ≤ G(1, s) and G(t, s) ≥ tα−1G(1, s) for t, s ∈ [0, 1].

Proof. From the definition (2.2), it’s easy to know G(t, s) is continuous on [0, 1] × [0, 1]. Next, we
prove that G(t, s) satisfies 0 ≤ G(t, s) ≤ G(1, s).

For 0 ≤ s ≤ t ≤ 1,

∂G(t, s)
∂t

=
1
Γ(α)

(α − 1)(t − s)α−2[
tα−2(1 − s)α−n+1

tα−2(1 − s
t )
α−2 − 1]
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≥
1
Γ(α)

(α − 1)(t − s)α−2[(1 − s)3−n − 1]

≥ 0(n ≥ 3).

For 0 ≤ t ≤ s ≤ 1, obviously, ∂G(t,s)
∂t ≥ 0. Such that, G(t, s) is an increasing function of t and satisfies

0 ≤ G(t, s) ≤ G(1, s).
At last, we prove that G(t, s) satisfies G(t, s) ≥ tα−1G(1, s).
For 0 ≤ s ≤ t ≤ 1,

G(t, s) − tα−1G(1, s)

=
1
Γ(α)

[tα−1(1 − s)α−n+1 − (t − s)α−1] −
tα−1

Γ(α)
[(1 − s)α−n+1 − (1 − s)α−1]

=
1
Γ(α)

[(t − ts)α−1 − (t − s)α−1]

≥ 0.

For 0 ≤ t ≤ s ≤ 1,

G(t, s)
G(1, s)

=
tα−1(1 − s)α−n+1

(1 − s)α−n+1 − (1 − s)α−1 ≥
tα−1(1 − s)α−n+1

(1 − s)α−n+1 = tα−1.

The proof is completed. □

At the end of this section, we present the Guo-Krasnosel’skii fixed point theorem that will be used
in the proof of our main results.
Lemma 2.4. (see [34]) Let X be a Banach space, and let P ⊂ X be a cone in X. Assume Ω1, Ω2 are
open subsets of X with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2. Let F : P → P be a comletely continuous operator such
that either
1) ∥Fx∥ ≤ ∥x∥, x ∈ P ∩ ∂Ω1, ∥Fx∥ ≥ ∥x∥, x ∈ P ∩ ∂Ω2; or
2) ∥Fx∥ ≥ ∥x∥, x ∈ P ∩ ∂Ω1, ∥Fx∥ ≤ ∥x∥, x ∈ P ∩ ∂Ω2;
holds. Then, F has a fixed point in P ∩ (Ω2 \Ω1).

3. Existence of the positive solution

By a positive solution of BVPs (1.1), we mean a function u : [0, 1] → [0,+∞) such that u(t)
satisfies (1.1) and u(t) > 0 for t ∈ (0, 1).

Let Banach space E = C[0, 1] be endowed with ∥x∥ = max
t∈[0,1]
|x(t)|. Let I = [0, 1], define the cone

P ⊂ E by

P = {x ∈ E : x(t) ≥ tα−1∥x∥, t ∈ I}.

Lemma 3.1. Let λ > 0, ω ∈ C(0, 1) ∩ L(0, 1) with ω(t) > 0 on (0, 1), and n − 1 < α < n. Then, the
following boundary value problem of fractional differential equation{

Dα0+v(t) + λω(t) = 0, 0 < t < 1,
v(0) = v′(0) · · · = v(n−2)(0) = v(n−2)(1) = 0, n ≥ 3

(3.1)
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has a unique solution

v(t) = λ
∫ 1

0
G(t, s)ω(s)ds (3.2)

and
0 ≤ v(t) ≤ λtα−1M, (3.3)

where

M = 1
Γ(α)

∫ 1

0
(1 − s)α−n+1ω(s) ds.

Proof. From Lemma 2.2, let y(t) = λω(t), we have (3.2) immediately. In view of Lemma 2.3, we
obtain

0 ≤ v(t) = λ
∫ 1

0
G(t, s)ω(s)ds

= λ
tα−1

Γ(α)

∫ 1

0
(1 − s)α−n+1ω(s) ds − λ

1
Γ(α)

∫ t

0
(t − s)α−1ω(s) ds

≤ λ
tα−1

Γ(α)

∫ 1

0
(1 − s)α−n+1ω(s) ds

= λtα−1M. (3.4)

From (3.4), (3.3) holds.
The proof is completed. □

Lemma 3.2. Suppose that v = v(t) is the solution of BVPs (3.1) and define the function g(t, u(t)) by

g(t, u(t)) = f (t, u(t)) + ω(t). (3.5)

Then, u(t) is the solution of BVPs (1.1), if and only if x(t) = u(t) + v(t) is the solution of the following
BVPs {

Dα0+ x(t) + λg(t, x(t) − v(t)) = 0
x(0) = x′(0) · · · = x(n−2)(0) = x(n−2)(1) = 0, n ≥ 3.

(3.6)

And when x(t) > v(t), u(t) is a positive solution of BVPs(1.1).

Proof. In view of Lemma 2.2, if u(t) and v(t) are the solutions of BVPs (1.1) and BVPs (3.1),
respectively, we have

Dα0+
(
u(t) + v(t)

)
= Dα0+u(t) + Dα0+v(t)
= −λ f (t, u(t)) − λω(t)
= −λ[ f (t, u(t)) + ω(t)]
= −λg(t, u(t)),

such that

Dα0+
(
u(t) + v(t)

)
+ λg(t, u(t)) = 0.

Let x(t) = u(t) + v(t), we have u(t) = x(t) − v(t) and
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Dα0+ x(t) + λg(t, x(t) − v(t)) = 0.

It is easily to obtain x(0) = x′(0) = x′(1) = 0 from the boundary conditions of BVPs (1.1) and
BVPs (3.1).

Hence, x(t) is the solution of BVPs (3.6).
On the other hand, if v(t) and x(t) are the solution of BVPs (3.1) and BVPs (3.6), respectively.

Similarly, u(t) = x(t) − v(t) is the solution of BVPs (1.1). Obviously, when x(t) > v(t), u(t) > 0 is a
positive solution of BVPs (1.1).

The proof is completed.
□

Lemma 3.3. Let T : P→ E be the operator defined by

T x(t) := λ
∫ 1

0
G(t, s)g(s, x(s) − v(s))ds. (3.7)

Then, T : P→ P is comletely continuous.

Proof. In view of the definition of the function g(t, u(t)), we know that g(t, x(t)−v(t)) > 0 is continuous
from the continuity of x(t) and v(t).

By Lemma 2.3, we obtain

∥T x∥ = max
t∈[0,1]
|λ

∫ 1

0
G(t, s)g(s, x(s) − v(s))ds| = λ

∫ 1

0
G(1, s)g(s, x(s) − v(s))ds.

So that, for t ∈ [0, 1] ,

T x(t) = λ
∫ 1

0
G(t, s)g(s, x(s) − v(s))ds ≥ tα−1λ

∫ 1

0
G(1, s)g(s, x(s) − v(s))ds = tα−1∥T x∥.

Thus, T (P) ⊂ P.
As the continuity and nonnegativeness of G(t, s) and H0 implies T is a continuous operator.
Let Ω ⊂ P be bounded, there exists a positive constant r > 0, such that |x| ≤ r, for all x ∈ Ω. Set

M0 = max
0≤x≤r,t∈I

| f (t, x(t) − v(t)) |, then,

|g(t, x(t) − v(t))| ≤ | f (t, x(t) − v(t))| + |ω(t)| ≤ M0 + ω(t).

So, for x ∈ Ω and t ∈ [0, 1], we have

|T x(t)| =

∣∣∣∣∣∣λ
∫ 1

0
G(t, s)g(s, x(s) − v(s))ds

∣∣∣∣∣∣
≤ λ

(
M0

∫ 1

0
G(1, s)ds+

∫ 1

0
G(1, s)ω(s)ds

)
≤ λ

(
M0

∫ 1

0
G(1, s)ds+

1
Γ(α)

∫ 1

0
ω(s)ds

)
.
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Hence, T is uniformly bounded.
On the other hand, since G(t, s) ∈ C([0, 1] × [0, 1]), for ε > 0, exists δ > 0, for t1, t2 ∈ [0, 1] with

| t1 − t2 |≤ δ, implies |G(t1, s) −G(t2, s)| < ε

λ
(
M0+

∫ 1
0 ω(s)ds

) , for s ∈ [0, 1].

Then, for all x ∈ Ω:

|T x(t1) − T x(t2)|
=

∣∣∣∣λ ∫ 1

0
G(t1, s)g(s, x(s) − v(s))ds − λ

∫ 1

0
G(t2, s)g(s, x(s) − v(s))ds

∣∣∣∣
=

∣∣∣∣λ ∫ 1

0
(G(t1, s) −G(t2, s))g(s, x(s) − v(s))ds

∣∣∣∣
≤ λ

∫ 1

0
|G(t1, s) −G(t2, s)| |g(s, x(s) − v(s))|ds

≤ λ
∫ 1

0
|G(t1, s) −G(t2, s)| (M0 + ω(s)) ds

< λ
∫ 1

0
ε

λ
(
M0+

∫ 1
0 ω(s)ds

) (M0 + ω(s)) ds

≤ λ ε

λ
(
M0+

∫ 1
0 ω(s)ds

) ∫ 1

0
(M0 + ω(s)) ds = ε.

Hence, T (Ω) is equicontinuous. By Arzelà-Ascoli theorem, we have T : P → P is completely
continuous.

The proof is completed. □

A function x(t) is said to be a solution of BVPs (3.6) if x(t) satisfies BVPs (3.6). In addition, if
x(t) > 0, for t ∈ (0, 1), x(t) is said to be a positive solution of BVPs (3.6). Obviously, if x(t) ∈ P, and
x(t) , 0 is a solution of BVPs (3.6), by x(t) ≥ tα−1|x|, then x(t) is a positive solution of BVPs (3.6). By
Lemma 3.2, if x(t) > v(t), u(t) = x(t) − v(t) is a positive solution of BVPs (1.1).

Next, we give some sufficient conditions for the existence of positive solutions.
Theorem 3.1. For a given 0 < η < 1, let Iη = [η, 1]. If
H1: lim

x→+∞
inf
t∈Iη

f (t,x)
x = +∞

holds, there exists λ∗ > 0, for any 0 < λ < λ∗, the BVPs (1.1) has at least one positive solution.

Proof. By Lemma 3.2, if BVPs (3.6) has a positive solution x(t) and x(t) > v(t), BVPs (1.1) has a
positive solution u(t) = x(t) − v(t). We will apply Lemma 2.4 to prove the theorem.

In view of the definition of g(t, u(t)), we have g(t, u(t)) ≥ 0, so that BVPs (3.6) has a positive
solution, if and only if the operator T has a fixed point in P.

Define

g1(r1) = sup
t∈I,0≤x≤r1

g(t, x),

where r1 > 0.
By the definition of g1(r1) and H1, we have

lim
r1→+∞

r1
g1(r1) = 0.

Then, there exists R1 > 0, such that

R1
g1(R1) = max

r1>0

r1
g1(r1) .
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Let L = g1(R1), λ∗ = min{R1
M ,

(α−1)Γ(α+1)R1
L }, where

∫ 1

0
G(1, s)ds = 1

(α−1)Γ(α+1) .
In order to apply Lemma 2.4, we separate the proof into the following two steps.

Step 1:
For every 0 < λ < λ∗, t ∈ I let Ω1 = {x ∈ E : ∥x∥ < R1}. Suppose x ∈ P ∩ ∂Ω1, we obtain

R1 ≥ x(t) − v(t) ≥ tα−1∥x∥ − λtα−1M

> tα−1R1 −
R1

M
tα−1M

> 0.

So that

g(t, x(t) − v(t)) ≤ g1(R1) = L

and

T x(t) = λ
∫ 1

0
G(t, s)g(s, x(x) − v(s))ds

≤ λ

∫ 1

0
G(1, s)g(s, x(s) − v(s))ds

≤ λ∗
∫ 1

0
G(1, s)g1(R1)ds = λ∗L

∫ 1

0
G(1, s)ds

<
(α − 1)Γ(α + 1)R1

L
L

(α − 1)Γ(α + 1)
= R1.

Therefore,

∥T x∥ < ∥x∥, x ∈ P ∩ ∂Ω1.

Step 2:
From H1, we know that

lim
x→+∞

inf
t∈Iη

g(t,x)
x = lim

x→+∞
inf
t∈Iη

f (t,x)+ω(t)
x = +∞.

Then, there exists R2 > (1 + η1−α)R1 > R1, such that for all t ∈ Iη, when x > R2
1+η1−α ,

g(t, x) > δx,

where δ > 1+η1−α

λN > 0, N =
∫ 1

η
G(1, s)ds.

Let Ω2 = {x ∈ E : ∥x∥ < R2}, for all x ∈ P ∩ ∂Ω2, t ∈ Iη we have

x(t) − v(t) ≥ tα−1R2 − λtα−1M

> tα−1R2 − λ
∗tα−1M

≥ tα−1R2 − tα−1R1

≥ ηα−1(R2 − R1)
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=
R2

1 + η1−α > 0.

So that

g(t, x(t) − v(t)) > δ(x(t) − v(t)) > δ R2
1+η1−α

and

∥T x∥ = max
t∈I
λ

∫ 1

0
G(t, s)g(s, x(s) − v(s))ds

= λ

∫ 1

0
G(1, s)g(s, x(s) − v(s))ds

> λ

∫ 1

η

G(1, s)g(s, x(s) − v(s))ds

> λδ
R2

1 + η1−α

∫ 1

η

G(1, s)ds

= λδ
R2

1 + η1−αN

> λ
1 + η1−α

λN
R2

1 + η1−αN

= R2.

Thus, ∥T x∥ > ∥x∥, for x ∈ P ∩ ∂Ω2.
Therefore, by the Lemma 2.4, the BVPs (3.6) has at least one positive solution x ∈ P ∩ (Ω2 \ Ω1),

and R1 ≤ ∥x∥ ≤ R2. From x(t) − v(t) > 0, we know that BVPs (1.1) has at least one positive solution
u(t) = x(t) − v(t).

The proof is completed. □

Theorem 3.2. Suppose
H2: lim

x→+∞
inf
t∈Iη

f (t, x) = +∞;

H3: lim
x→+∞

sup
t∈I

f (t,x)
x = 0;

hold, there exists λ∗ > 0, for all λ > λ∗, the BVPs (1.1) has at least one positive solution.

Proof. Let σ = 2 M
N . From H2, we have

lim
x→+∞

inf
t∈Iη

g(t, x) = lim
x→+∞

inf
t∈Iη

( f (t, x) + ω(t)) = +∞,

such that for the above σ, there exists X > 0, when x > X, for all t ∈ Iη, we obtain

g(t, x) > σ.
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Let λ∗ = max{ N
ηα−1 M ,

X
M }, R1 = 2λMη1−α, where λ > λ∗. Let Ω1 = {x ∈ E : ∥x∥ < R1}, if x ∈ P∩ ∂Ω1,

t ∈ Iη, we have

x(t) − v(t) ≥ tα−1R1 − λtα−1M

= ηα−1R1 − λM

= ηα−1 · 2λMη1−α − λM = λM

> λ∗M ≥ X,

such that

g(t, x(t) − v(t)) > σ

and

∥T x∥ = max
t∈I
λ

∫ 1

0
G(t, s)g(s, x(s) − v(s))ds

= λ

∫ 1

0
G(1, s)g(s, x(s) − v(s))ds

> λ

∫ 1

η

G(1, s)g(s, x(s) − v(s))ds

= λNσ = 2λ
M
N

N = 2λM > R1

= ∥x∥.

Hence, ∥T x∥ > ∥x∥, x ∈ P ∩ ∂Ω1.
On the other hand, from H3, we know that there exists ε0 =

(α−1)Γ(α+1)
2λ > 0, R0 > R1, for t ∈ [0, 1],

x > R0, f (t, x) < ε0x holds.
Because of f ∈ C([0, 1] × [0,+∞),R), let M = max

(t,x)∈I×[0,R0]
{ f (t, x)}, then, for t ∈ [0, 1], x ∈ [0,+∞),

f (t, x) ≤ M + ε0x holds.

Let R2 > max

R0, λM,
2λ

(
M+

∫ 1
0 ω(s)ds

)
Γ(α)

, Ω2 = {x ∈ E : ∥x∥ < R2}, for x ∈ P ∩ ∂Ω2 and t ∈ [0, 1], we

have

x(t) − v(t) ≥ tα−1R2 − λtα−1M=tα−1(R2 − λM) ≥ 0.

So that,

g(t, x(t) − v(t))= f (t, x(t) − v(t)) + ω(t)
≤ M + ε0 (x(t) − v(t)) + ω(t)
≤ M + ε0x(t) + ω(t).
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Therefore,

∥T x∥ = max
t∈I
λ
∫ 1

0
G(t, s)g(s, x(s) − v(s))ds = λ

∫ 1

0
G(1, s)g(s, x(s) − v(s))ds

≤ λ
∫ 1

0
G(1, s)

(
M + ε0x(s) + ω(s)

)
ds

≤ λε0R2

∫ 1

0
G(1, s)ds + λ

∫ 1

0
G(1, s)

(
M + ω(s)

)
ds

≤ λε0R2
1

(α−1)Γ(α+1) +
λ
Γ(α)

(
M +

∫ 1

0
ω(s)ds

)
< λR2

(α−1)Γ(α+1)
(α−1)Γ(α+1)

2λ + R2
2

= R2

= ∥x∥ .

So, we get

∥T x∥ < ∥x∥, x ∈ P ∩ ∂Ω2.

Hence, from Lemma 2.4, we know that the operator T has at least one fixed point x, which satisfies
x ∈ P ∩ (Ω2 \ Ω1) and R1 ≤ ∥x∥ ≤ R2. From x(t) − v(t) > 0, we know that BVPs (1.1) has at least one
positive solution u(t) = x(t) − v(t).

The proof is completed. □

4. Examples

In this section, we provide two examples to demonstrate the applications of the theoretical results
in the previous sections.
Example 4.1. Consider the following BVPs D

5
2
0+u + λ(u

2 − esin t − 3t − 2e) = 0,
u(0) = u′(0) = u′(1) = 0.

(4.1)

where α = 5
2 , f (t, u) = u2 − esin t − 2e, ω(t) = esin 10−1

√
10

t
−1
2 + 12e.

Let η = 10−1, then,

g(t, u) = u2 − esin t +
esin 10−1

√
10

t
−1
2 + 10e,

g1(r) = sup
t∈Iη,0≤u≤r

g(t, u) = r2 + 10e,

and
lim

r→+∞

r
g1(r)

= lim
r→+∞

r
r2 + 10e

= 0,

R1 =
√

10e, L = g1(R1) = 20e, M = 16.7716, N = 0.26667, R1
M = 0.310866, (α−1)Γ(α+1)R1

L = 0.478069,
λ∗ = 0.310866, R2 = 170.086, N = 0.196967.

We can check that the condition of Theorem 3.1 is satisfied. Therefore, there exists at least one
positive solution.
Example 4.2. Consider the following BVPs
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 D
7
3
0+u + λ(e

−tu
2
3 − t − 10) = 0,

u(0) = u′(0) = u′(1) = 0.
(4.2)

where α = 7
3 , f (t, u) = e−tu

2
3 − t − 10, ω(t) = t

−2
3 + 10.

Let η = 0.3, such that
g(t, u) = e−tu

2
3 + t

−2
3 − t,

and M = 8.52480, N = 0.219913, σ = 2M
N = 77.5290, N

ηα−1 M = 0.128451, R1 = 2λMη−
4
3 = 84.8957λ >

10.9049.
We can check that the conditions of Theorem 3.2 are satisfied. Therefore, there exists at least one

positive solution.

5. Conclusions

In this paper, the constraint on the nonlinear term is weakened to f (t, u) > −ω(t)(where ω(t) > 0).
Under similar conditions, by constructing an auxiliary boundary value problem and using the principle
of linear superposition, the difficulty caused by sign-change of nonlinear terms is overcome. Under the
condition of singularity of nonlinear terms, the existence conclusions of positive solutions are obtained
based on the Guo-Krasnosel’skii fixed point theorem.
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