106 research outputs found

    Cognitive Robotics in Industrial Environments

    Get PDF

    A framework based on Gaussian mixture models and Kalman filters for the segmentation and tracking of anomalous events in shipboard video

    Get PDF
    Anomalous indications in monitoring equipment on board U.S. Navy vessels must be handled in a timely manner to prevent catastrophic system failure. The development of sensor data analysis techniques to assist a ship\u27s crew in monitoring machinery and summon required ship-to-shore assistance is of considerable benefit to the Navy. In addition, the Navy has a large interest in the development of distance support technology in its ongoing efforts to reduce manning on ships. In this thesis, algorithms have been developed for the detection of anomalous events that can be identified from the analysis of monochromatic stationary ship surveillance video streams. The specific anomalies that we have focused on are the presence and growth of smoke and fire events inside the frames of the video stream. The algorithm consists of the following steps. First, a foreground segmentation algorithm based on adaptive Gaussian mixture models is employed to detect the presence of motion in a scene. The algorithm is adapted to emphasize gray-level characteristics related to smoke and fire events in the frame. Next, shape discriminant features in the foreground are enhanced using morphological operations. Following this step, the anomalous indication is tracked between frames using Kalman filtering. Finally, gray level shape and motion features corresponding to the anomaly are subjected to principal component analysis and classified using a multilayer perceptron neural network. The algorithm is exercised on 68 video streams that include the presence of anomalous events (such as fire and smoke) and benign/nuisance events (such as humans walking the field of view). Initial results show that the algorithm is successful in detecting anomalies in video streams, and is suitable for application in shipboard environments

    Respiratory Motion Correction on 3D Positron Emission Tomography Images

    Full text link
    PET/CT Gräte erlauben gleichzeitige morphologische und anatomische Bildaufnahme des Körpers. Die Aufnahmemodalitäten bedingen, dass bei der Positronen-Emissions-Tomographie (PET) der Patient weiter Atmet. Bei der Computer Tomographie (CT) dagegen, die nur wenige Sekunden dauert, hält er seinen Atem. Aufgrund der Diskrepanz zwischen den Aufnahmen kommt es zu Artefakten bei der Gewichtung der PET-Daten durch die CT-Daten. Diese Gewichtung ist aber für Quantitative PET-Daten notwendig. Des Weiteren können kleine Tumore durch die Verschmierung der Daten im Rauschen untergehen. In dieser Arbeit wird eine Lösung des Problems vorgeschlagen die auf zwei Schritte beruht. Zunächst werden die PET-Daten in verschiedene Atemphasen unterteilt. Im zweiten Schritt werden die Daten verschiedener Phasen mit einer Zielphase in Übereinstimmung gebracht. Hierzu wird eine Optical Flow Methode benutzt. Die Ergebnisse auf Phantom und auf Patientendaten zeigen, dass das Problem erfolgreich gelöst worden ist

    Variational Fluid Motion Estimation with Physical Priors

    Full text link
    In this thesis, techniques for Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV) are developed that are based on variational methods. The basic idea is not to estimate displacement vectors locally and individually, but to estimate vector fields as a whole by minimizing a suitable functional defined over the entire image domain (which may be 2D or 3D and may also include the temporal dimension). Such functionals typically comprise two terms: a data-term measuring how well two images of a sequence match as a function of the vector field to be estimated, and a regularization term that brings prior knowledge into the energy functional. Our starting point are methods that were originally developed in the field of computer vision and that we modify for the purpose of PIV. These methods are based on the so-called optical flow: Optical flow denotes the estimated velocity vector inferred by a relative motion of camera and image scene and is based on the assumption of gray value conservation (i.e. the total derivative of the image gray value over time is zero). A regularization term (that demands e.g. smoothness of the velocity field, or of its divergence and rotation) renders the system mathematically well-posed. Experimental evaluation shows that this type of variational approach is able to outperform standard cross-correlation methods. In order to develop a variational method for PTV, we replace the continuous data term of variational approaches to PIV with a discrete non-differentiable particle matching term. This raises the problem of minimizing such data terms together with continuous regularization terms. We accomplish this with an advanced mathematical method, which guarantees convergence to a local minimum of such a non-convex variational approach to PTV. With this novel variational approach (there has been no previous work on modeling PTV methods with global variational approaches), we achieve results for image pairs and sequences in two and three dimensions that outperform the relaxation methods that are traditionally used for particle tracking. The key advantage of our variational particle image velocimetry methods, is the chance to include prior knowledge in a natural way. In the fluid environments that we are considering in this thesis, it is especially attractive to use priors that can be motivated from a physical point of view. Firstly, we present a method that only allows flow fields that satisfy the Stokes equation. The latter equation includes control variables that allow to control the optical flow so as to fit the apparent velocities of particles in a given image pair. Secondly, we present a variational approach to motion estimation of instationary fluid flows. This approach extends the prior method along two directions: (i) The full incompressible Navier-Stokes equation is employed in order to obtain a physically consistent regularization which does not suppress turbulent flow variations. (ii) Regularization along the time-axis is employed as well, but formulated in a receding horizon manner contrary to previous approaches to spatio-temporal regularization. Ground-truth evaluations for simulated turbulent flows demonstrate that the accuracy of both types of physically plausible regularization compares favorably with advanced cross-correlation approaches. Furthermore, the direct estimation of, e.g., pressure or vorticity becomes possible

    The Analysis Of Visual Motion: From Computational Theory To Neuronal Mechanisms

    Get PDF

    A Computational Framework for the Structural Change Analysis of 3D Volumes of Microscopic Specimens

    Get PDF
    Glaucoma, commonly observed with an elevation in the intraocular pressure level (IOP), is one of the leading causes of blindness. The lamina cribrosa is a mesh-like structure that provides axonal support for the optic nerves leaving the eye. The changes in the laminar structure under IOP elevations may result in the deaths of retinal ganglion cells, leading to vision degradation and loss. We have developed a comprehensive computational framework that can assist the study of structural changes in microscopic structures such as lamina cribrosa. The optical sectioning property of a confocal microscope facilitates imaging thick microscopic specimen at various depths without physical sectioning. The confocal microscope images are referred to as optical sections. The computational framework developed includes: 1) a multi-threaded system architecture for tracking a volume-of-interest within a microscopic specimen in a parallel computation environment using a reliable-multicast for collective-communication operations 2) a Karhunen-Loève (KL) expansion based adaptive noise prefilter for the restoration of the optical sections using an inverse restoration method 3) a morphological operator based ringing metric to quantify the ringing artifacts introduced during iterative restoration of optical sections 4) a l2 norm based error metric to evaluate the performance of optical flow algorithms without a priori knowledge of the true motion field and 5) a Compute-and-Propagate (CNP) framework for iterative optical flow algorithms. The realtime tracking architecture can convert a 2D-confocal microscope into a 4D-confocal microscope with tracking. The adaptive KL filter is suitable for realtime restoration of optical sections. The CNP framework significantly improves the speed and convergence of the iterative optical flow algorithms. Also, the CNP framework can reduce the errors in the motion field estimates due to the aperture problem. The performance of the proposed framework is demonstrated on real-life image sequences and on z-Stack datasets of random cotton fibers and lamina cribrosa of a cow retina with an experimentally induced glaucoma. The proposed framework can be used for routine laboratory and clinical investigation of microstructures such as cells and tissues, for the evaluation of complex structures such as cornea and has potential use as a surgical guidance tool

    Global optimization methods for full-reference and no-reference motion estimation with applications to atherosclerotic plaque motion and strain imaging

    Get PDF
    Pixel-based motion estimation using optical flow models has been extensively researched during the last two decades. The driving force of this research field is the amount of applications that can be developed with the motion estimates. Image segmentation, compression, activity detection, object tracking, pattern recognition, and more recently non-invasive biomedical applications like strain imaging make the estimation of accurate velocity fields necessary. The majority of the research in this area is focused on improving the theoretical and numerical framework of the optical flow models. This effort has resulted in increased method complexity with an increasing number of motion parameters. The standard approach of heuristically setting the motion parameters has become a major source of estimation error. This dissertation is focused in the development of reliable motion estimation based on global parameter optimization methods. Two strategies have been developed. In full-reference optimization, the assumption is that a video training set of realistic motion simulations (or ground truth) are available. Global optimization is used to calculate the best motion parameters that can then be used on a separate set of testing videos. This approach helps provide bounds on what motion estimation methods can achieve. In no-reference optimization, the true displacement field is not available. By optimizing for the agreement between different motion estimation techniques, the no-reference approach closely approximates the best (optimal) motion parameters. The results obtained with the newly developed global no-reference optimization approach agree closely with those produced with the full-reference approach. Moreover, the no-reference approach calculates velocity fields of superior quality than published results for benchmark video sequences. Unreliable velocity estimates are identified using new confidence maps that are associated with the disagreement between methods. Thus, the no-reference global optimization method can provide reliable motion estimation without the need for realistic simulations or access to ground truth. The methods developed in this dissertation are applied to ultrasound videos of carotid artery plaques. The velocity estimates are used to analyze plaque motion and produce novel non-invasive elasticity maps that can help in the identification of vulnerable atherosclerotic plaques
    corecore